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1 INTRODUCTION

As is evident in public commentary (see, e.g., Bernanke 2007 and Mishkin 2007), central
bankers and other policymakers pay considerable attention to measures of long-run inflation
expectations. These expectations are viewed as shedding light on the credibility of monetary
policy. Monetary policy tools work differently if long-run inflation expectations are firmly
anchored than if they are not. In general, monetary policy is thought to be most effective
when long-run inflation expectations are stable.

These considerations have contributed to the development of a large literature on the
measurement of long-run inflation expectations. One simple approach is to rely on direct
estimates of inflation expectations from surveys of professionals or consumers.! For example,
Federal Reserve commentary such as Mishkin (2007) includes long-run expectations based
on the Survey of Professional Forecasters’ (SPF) projection of average inflation 1 to 10 years
ahead.

Other approaches focus on econometric estimates of trend inflation. A large literature
uses econometric methods to estimate inflation trends and forecast inflation (see, among
many others, Stock and Watson 2007, Chan, Koop, and Potter 2013, and Clark and Doh
2014).%2 One portion of this literature combines econometric models of trend with the infor-
mation in surveys (see, among others, Kozicki and Tinsley 2012, Wright 2013, Nason and
Smith 2014, Mertens 2016, and Del Negro, et al. 2017).

In recent years, some countries have experienced extended periods of inflation running
below survey-based estimates of long-run inflation expectations. For example, Fuhrer, Olivei,
and Tootell (2012) show that actual inflation in Japan consistently ran below (survey-based)
long-run inflation expectations in their sample, from the early 1990s to 2010. More recently,
in the United States, for each year between 2008 and 2016, inflation in the core PCE price
index ran below the SPF long-run forecast of roughly 2 percent (which coincides with the

4

Federal Reserve’s official goal for inflation).* Even though survey-based inflation expecta-

tions have been stable, actual inflation has been low enough for long enough to pull some
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common econometric estimates of trend inflation well below 2 percent (see, e.g., Bednar and
Clark 2014). These experiences raise the question of whether it is possible for survey-based
inflation expectations to become disconnected from actual inflation. Such a disconnect (if
irrational) would make such expectations less useful for gauging the credibility of monetary
policy and for forecasting inflation.

In this paper we develop a new model to examine the relationships among inflation,
long-run inflation expectations, and trend inflation. We build on papers such as Kozicki and
Tinsley (2012) by using models which are more flexible in empirically important directions,
extending recent work with unobserved components models with stochastic volatility (UCSV)
such as Stock and Watson (2007, 2016), Chan, Koop, and Potter (2013), Clark and Doh
(2014), Garnier, Mertens, and Nelson (2015), and Mertens (2016). Papers such as Kozicki
and Tinsley (2012) equate long-run forecasts with trend inflation. Similarly, econometric
estimates of trend inflation are sometimes calibrated to be the same as surveys. We also
build on work by Nason and Smith (2014, 2016) that considers the possible disconnect
between inflation and short-run inflation expectations in the context of a simple unobserved
components model.

Our model permits us to assess the evidence for the links between trend inflation and long-
run inflation expectations that have been assumed in some of the aforementioned literature.
For example, the model of Mertens (2016) assumes that trend inflation moves one-for-one
with long-run inflation expectations but allows a constant difference in the levels of trend
inflation and long-run inflation expectations. Our approach allows us to assess the evidence
in favor of such restrictions. We are able to estimate the relationship to investigate whether
equating trend inflation with inflation expectations based on surveys improves the model of
inflation. Our model permits the relationship to vary over time, such that trend inflation can
be equal to the forecasts provided in the surveys at some points in time, but at other points
in time forecasts can provide biased or inefficient estimates of trend inflation. We include

comparisons to other, restricted versions of the model to assess the importance of such time
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variation to the trend estimate, model fit, and forecasting. Another point of departure from
the existing literature is that, in our baseline model (although not all our models), we only
use survey data on long-run inflation forecasts, allowing us to avoid the use of a subsidiary
(possibly mis-specified) model linking short-run forecasts to long-run inflation expectations.

In our empirical work, we compare the fit and forecasting performance of our model
to more restricted alternatives and some other models from the literature, using data for
the U.S. and a few other countries. We focus on results for CPI inflation and inflation
expectations from Blue Chip and show our key results to be robust to two other data choices
for the U.S. We present evidence that extensions over simpler approaches such as the addition
of stochastic volatility and time-varying coefficients are important in practice. Survey-based
measures of inflation expectations are found to be useful for estimating trend inflation,
producing smoother and more precise estimates than a UCSV model. However, we also
present evidence that the survey-based measures should not simply be equated with trend
inflation; the relationship between the two is more complicated and, in some cases, time-
varying. We include results from a pseudo-out-of-sample forecasting exercise, which shows
point and density forecasts from our model to be at least as good as those from other models
that have been found successful in the inflation forecasting literature. After establishing
these results in U.S. data, we consider model estimates based on inflation and long-run
survey expectations for Italy, Japan, and the UK. For these countries, it continues to be
the case that the evidence indicates long-run survey expectations to be helpful to trend
estimation and model fit. Although for Italy the data indicate the survey and trend inflation
move one-for-one with no bias, for Japan and the UK the data support a more flexible
relationship.

Although our main empirical work does not directly address the question of why long-run
surveys may differ from trend inflation, the final section of this paper includes some discus-
sion of this issue in light of recent work on various topics, including work on informational

rigidities in the professionals’ forecasts by Coibion and Gorodnichenko (2015) and Mertens
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and Nason (2015).

2 ECONOMETRIC MODELING OF TREND INFLA-

TION

As discussed in sources such as Mertens (2016), an unobserved components framework is
commonly used to model inflation, 7, as being composed of trend (or underlying) inflation,

7y, and a deviation from trend, the inflation gap, ¢;:

Ty = 77: + Ct. (1)

The trend in inflation is defined (consistent with the Beveridge-Nelson decomposition) as the
infinite-horizon forecast of inflation conditional on the information set available in period t,
denoted €2;:

lim F5 [ 5|€0] = 77, (2)

j—00
which implies a random walk process for the trend 7; and a stationary, mean-zero inflation
gap, ¢;.

There are many possible econometric models consistent with this simple decomposition,
and we will argue for a particular modeling framework soon. But the basic justification for
using surveys of long-run forecasts can be clearly seen from (2). If those surveyed at time
t about what inflation will be in period t + j are rational forecasters, they can be expected
to be reporting F [m1;|€Q]. Thus, using (2), long-run forecasts of inflation will correspond
to trend inflation, 7;. There are several ways that this relationship plus data on long-run
forecasts made at time t (z;) can be used to produce estimates of current trend inflation,
with Kozicki and Tinsley (2012) being an influential recent approach.

However, there are reasons to be cautious about simply equating long-run forecasts from

surveys with inflation trends, partly in light of the simple observations on the recent expe-
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riences in the U.S. and Japan noted in the introduction. For instance, surveys may produce
forecasts that are biased, at least at some points in time. Survey forecasts at long horizons
might also not move one-for-one with trend inflation. Surveys might also contain some noise,
due to factors such as changes in participants from one survey date to another. In addition,
papers such as Coibion and Gorodnichenko (2015) and Mertens and Nason (2015) find ev-
idence of informational rigidities such that professional forecasters are slow to adjust their
expectations. Accordingly, we desire an econometric specification that allows us to estimate
the relationship between trend inflation and the long-run expectation of forecasters rather
than imposing a particular form. In our model, a finding that long-run forecasts taken from
surveys can be equated with trend inflation is possible, but not assumed a priori.

Earlier work also suggests many other desirable features we want our econometric model
to have. First, Faust and Wright (2013) find improvements in forecast performance by using
the inflation gap (as opposed to inflation itself) as a dependent variable and modeling the
inflation gap as the deviation of actual inflation from a slowly evolving trend. Many of the
other studies mentioned above with time-varying inflation trends focus on an inflation gap.
Our econometric specification follows this practice.

Second, the inflation gap, ¢;, should be stationary but may exhibit persistence. For
instance, a central bank may tolerate deviations of inflation from a trend or target for a
certain period of time, provided such deviations are temporary. Furthermore, the central
bank’s toleration for such deviations may change over time. For instance, Chan, Koop, and
Potter (2013) discuss how the high inflation in the 1970s may have been partly due to the
combination of a large inflation gap (with only a small increase in trend inflation) with a
Federal Reserve tolerant of a high degree of inflation gap persistence. When Paul Volcker
subsequently became the Fed chair, this tolerance decreased and inflation gap persistence
dropped. We want our model to be able to accommodate such shifts in persistence.

Third, a large number of papers, such as Stock and Watson (2007), have found the

importance of allowing for stochastic volatility, not only in the inflation equation but also in
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the state equations which describe the evolution of trend inflation. We include this feature
in all of our models.

Finally, a general theme of many papers on inflation modeling, including Faust and
Wright (2013) and Stella and Stock (2013), is time-varying predictability. The time-varying
persistence and stochastic volatility features mentioned above are two such sources of time-
varying predictability, accommodated by the model features mentioned above. The work of
D’Agostino, Gambetti, and Giannone (2013) also indicates time-varying parameters to be
helpful to forecast accuracy. Accordingly, we want a model with not only stochastic volatility

but also time-varying parameters (TVP).

2.1 Baseline Model

All of these features are built into the following extremely flexible model, which should be
able to accommodate any relevant empirical properties of the data on inflation (7;) and the
survey-based inflation expectation (z;). (Note that all of the errors defined in the model
below are independent over time and with each other.) We refer to this specification as

model M1:

m—m = b(m_1—m )+, (3)
2 = dop+dym e+ e, €24~ N(0,07) (4)

T o= o+, (5)

by = b1 +epy, ene ~TN(0,07), (6)

dip — prai = pai (dig—1 — pai) + €ai, €aie ~ N(0,05), i =0,1, (7)
v o= AP, €op ~ N(0,1), (8)

ne = Aents et~ N(0,1), (9)
log(Ai) = log(Nit—1) +vis, viz~ N(0,¢i), i =v,n. (10)
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In this model, the inflation gap 7 — 7/ follows an AR(1) process with a time-varying
coefficient and stochastic volatility. Allowing b, to be time-varying accommodates poten-
tial changes in the degree of persistence in the inflation gap. Note that we truncate the
innovations to the AR(1) coefficient in (6) so as to ensure the inflation gap is stationary at
every point in time (T'N(u,o?) denotes the normal distribution with mean p and variance
o? truncated to ensure 0 < b; < 1). Trend inflation 7 follows a random walk with stochastic
volatility in its innovations.

The long-run inflation expectation z; is dependent on trend inflation, with a time-varying
intercept do; and slope coefficient dy; and an MA(1) error term. Accordingly, our model
captures three dimensions along with the survey expectation can provide what we call a
“biased” — a deliberate simplification of terms — measure of trend, through: (1) a non-
zero intercept, do; (2) a non-unity slope, dy;; and (3) an MA component in the error term,
reflected in . We focus on the first two forms of “bias,” in either a constant differential
between trend inflation and the survey forecast or a failure of the survey to move one-for-one
with trend.® Since do; and dy; are time varying, we have the potential to estimate changes in
the relationship between long-run forecasts and trend inflation. For instance, it is possible
that long-run forecasts are unbiased estimates of trend inflation at some points in time, but
not others. Our model allows for this possibility, but a constant coefficient model would
not. Thus, investigating restrictions relating to dy; and dy; is of economic interest. To allow
for persistence in a long-term inflation forecast that may not be adequately picked up by
persistence in trend inflation, we add an MA(1) error term to (4). Although the empirical
evidence for the need for this MA error term is weak in one of our U.S. data combinations
(PCE inflation with PTR), in our baseline results for the U.S. and in the results for other
countries, the MA term is empirically important to model fit and we include it in our general
specification.

Variants of the model described above, excluding z;, involving only (possibly restricted

versions of) (3), (5), (6), (8), (9) and (10) have been used to estimate trend inflation by
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several authors. For instance, the popular UCSV model of Stock and Watson (2007) is this
model with b, = 0, and Chan, et al. (2013) use this model with bounded trend inflation but
without stochastic volatility in €, ;. We stress that stochastic volatility is often found to be
important in models of trend inflation such as these.® This feature allows for the possibility
that the volatility of trend inflation or deviations of inflation from trend vary over time.

By adding the additional equations (4) and (7) to a conventional unobserved components
model such as the one defined by (3), (5), (6), (8), (9) and (10), we can potentially improve
the model’s ability to fit historical inflation data and its estimates of trend inflation. That is,
adding the relationship between z; and 7} should provide extra information for estimating
trend inflation beyond that provided in a univariate model involving inflation only. This
information could improve precision of trend estimates, the model’s ability to fit inflation,
and forecast accuracy. Our model is less restrictive than those used in some other studies
that relate inflation and survey measures of inflation expectations, and our specification can
be seen as consistent with the cointegration restrictions imposed in these other studies (e.g.,
Mertens 2016, Mertens and Nason 2015, and Nason and Smith 2014). These other studies
impose stationarity of the difference between actual inflation and survey expectations. Our
model is consistent with cointegration of the survey expectation z; with trend inflation 7;:
the innovation term of the z; equation is a stationary MA(1) process. Although the posterior
of dy; and d;; need not be close to 0 or 1, respectively, our prior centers the initial values of
these coefficients at 0 and 1, respectively. So our prior implies cointegration of z; with trend
inflation 7; with a slope coefficient of 1. With 7} the source of integration in m, it follows
that we can think of m, and z; as cointegrated as well.

In sum, our model is a structural time series model (e.g., the wish to directly construct a
direct measure of trend inflation implies a particular structure in our state space model) with
additional features added by empirical necessity (e.g., the necessity of allowing for stochastic
volatility, the possibility of persistence in the inflation process through addition of MA errors,

but also that short lag lengths suffice with inflation data). It builds on, and shares, many
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similarities with other models in this literature. In our empirical work, we will investigate
some reduced -form time series approaches. These will include, in our forecast comparisons, a
vector autoregression and vector error correction model, both with time-varying parameters
(TVP-VAR and TVP-VECM, respectively).

We use Bayesian methods to estimate all the unknown parameters of our models, in-
cluding latent variables such as trend inflation. The Markov Chain Monte Carlo (MCMC)
algorithm used for estimation is similar to that used in previous work (e.g., Chan et al. 2016)
and, hence, we say no more of it here. The priors used in this paper are informative, but
not dogmatically so. In models such as ours, involving many unobserved latent variables,
use of informative priors is typically necessary.” An earlier version of this paper, Federal
Reserve Bank of Cleveland Working Paper 15-20, presented results from a prior sensitivity
analysis of our baseline model, showing our results are fairly robust to changes in our prior.

Complete details of the MCMC algorithm and prior are given in the Technical Appendix.

2.2 FExtensions of the Baseline Model

Our baseline model excludes an economic activity indicator from the inflation gap equation
(4). We do so in the interest of parsimony, motivated in part by evidence in the forecasting
literature (see Faust and Wright 2013 and references therein) of the difficulty of using eco-
nomic activity variables to improve predictions of inflation. However, in our analysis for the
U.S., we also consider a specification (denoted M7) augmented to include in the inflation
equation an unemployment rate gap with a time-varying coefficient. Our specification with
the unemployment gap has precedents in other recent studies, including: Stella and Stock
(2013), which generalizes the UCSV formulation of Stock and Watson to relate the inflation
gap to an unemployment gap; Jarocinski and Lenza (2015), which considers a specification
involving a factor model of economic activity, for the purpose of estimating the output gap,
with a structure for inflation, trend inflation, and inflation expectations that corresponds to

a restricted, constant parameter version of our formulation; and Morley, Piger, and Rasche
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(2015), which considers a bivariate, constant parameter model relating inflation less a ran-
dom walk trend to an unemployment gap.

Our baseline model includes only long-run inflation expectations since they should most
directly reflect trend inflation. From Blue Chip, we have data on short-run expectations.
To assess the potential value of short-horizon expectations, we also consider a version of
our model (denoted M6) augmented to include these expectations, using an additional state
equation which is the same as (4) except that a measure of short-run inflation expectations
is the dependent variable.

In our results below, we also include for comparison a model (denoted M8) which adds

one lag of the inflation gap in the equation for z; and drops the MA component:

2 =do + dymy + dy(m—y — )+ €0 €0~ N(0,07). (11)

The motivation for this specification can be found in papers such as Erceg and Levin (2003),
which argue that, in the absence of a credible monetary regime, long-run inflation forecasts

may respond to short-run movements in inflation as well as changes in trend inflation.

2.8 Restrictions on the Baseline Model

To help assess the ability of our model to improve the precision of trend estimates, the fit of
inflation, and forecasts of inflation, we will also consider some more restricted models. The
first of these additional models, M2, restricts dy; and dy; to be constants, dy and d;. Model
M3 imposes dy = 0 and d; = 1, which is the restriction that long-run inflation forecasts are
unbiased estimates of trend inflation. These two models will shed light on the value of time
variation in the coefficients and the value of allowing some bias in the relationship between the
survey expectation and trend inflation (using the broad definition of bias indicated above).

Model M4 restricts our baseline model M1 by making no use of inflation expectations —

which will shed light on the value of those expectations to inflation modeling. As such, it is

10
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a UCSV model like that of Stock and Watson (2007) but extended to allow an autoregressive

component:®

m—m = b(m_1—m )+, (12)
T o= m_q+n, (13)
by = b1+ by, eny ~TN(0,07), (14)
vy = /\2;?511,1;7 evt ~ N(0,1), (15)
ng = Aients Ene~ N(0,1), (16)
log(Nit) = log(Nii—1)+vis, vie~ N(0,¢;), i =v,n. (17)

Model M5 is an AR(1) model in “gap form” similar to that used in Faust and Wright
(2013), which they describe as “amazingly hard to beat by much.” We call this the Faust
and Wright model below.? We add stochastic volatility to this model to aid in comparability

with our own. Specifically, we define the gap as g; = m; — 2z; and use the model:

g¢ = Bgt—l + €g.ts €gt ™ N(Ov )‘g,t)a (18)

log(/\g,t) = 1Og()‘g,t—1) + Vgt, Vgt ™ N(07 gbg)a (19)

where we assume || < 1. The forecast for m given data until time ¢ is computed by
adding z; to a forecast for g; ;.

Finally, in the out-of-sample forecast comparison we consider bivariate TVP-VAR and
TVP-VECM specifications, featuring stochastic volatility. Both models use a data vector
containing inflation and long-run inflation expectations, such that y, = (m, z;)’. The TVP-

VAR is given by

Bowyr = bot + Biiyi—1 + Bauyr—o + €/, € ~ N(0,%;), (20)

11
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where by, is a 2 X 1 vector of time-varying intercepts, By, Ba; are 2 x 2 VAR coefficient
matrices, By, is a 2 X 2 lower triangular matrix with ones on the diagonal and »; =
diag(exp(hit), exp(hg:)). The log-volatilities and the VAR coefficients evolve according to
independent random walks. The TVP-VECM takes the following form:

CotAyr = cor + c1e(m—1 — ze-1) + Creldye_1 + GtAy, GtAy ~ N(0,%,), (21)

where cy; and c¢qy are 2 X 1 vectors of time-varying intercepts and coefficients, C'; is a 2 x 2
coefficient matrix, and Cy; is a 2 x 2 lower triangular matrix with ones on the diagonal. Again
the VAR coefficients and log-volatilities evolve according to independent random walks.
The models considered in this paper are summarized in the following table. Note, how-
ever, that not every model is used with every dataset, partly due to data availability and
partly out of consideration for brevity. For example, for some datasets we have no short-run
inflation expectations data so that M6 is not estimated, and some models (the TVP-VAR

and TVP-VECM models) are only used in the forecast comparison.

Model | Brief Description

M1 Our model as defined in equations (3) through (10)

M2 Restricts M1 such that do; and d;; are constant

M3 Restricts M1 such that dp; = 0 and dy; = 1

M4 UCSV (M1 without inflation expectations data) of equations (12) through (17)

M5 Faust-Wright model (AR(1) in gap form) in equations (18) and (19)

M6 M1 augmented with short-run inflation expectations
M7 M1 augmented with unemployment rate gap in inflation equation
M8 M1 augmented with one lag of inflation gap in equation for z;

M9 TVP-VAR

M10 TVP-VECM

12
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3 DATA

Policymakers are interested in a range of different measures of inflation, and the research
literature considers a range of measures. Accordingly, for the U.S., we provide results for
several combinations of measures of inflation and inflation expectations. Subsequently, we
present an international comparison using data from Italy, Japan, and the UK. We chose
these countries in part because the survey-based forecast data go back as far as 1990 and in
part because the survey-based long-run forecasts show some noticeable time variation.

For the U.S., we use three different measures of quarterly inflation (7; in the model):
i) inflation based on the consumer price index (CPI inflation), ii) inflation based on the
consumer price index excluding food and energy (core CPI inflation), and iii) inflation based
on the price index for personal consumption expenditures (PCE inflation). Inflation rates
are computed as annualized log percent changes (m; = 400 In (P,/P,_1), where P, is a price
index). The CPI has the advantage of being widely familiar to the public, and for much of
our sample, the available inflation expectations data refer to it. However, changes over time
in the methodology used to construct the CPI — such as the 1983 change in the treatment
of housing costs to use rental equivalence — may create structural instabilities, because the
historical data are not revised to reflect methodology changes. One reason we also consider
PCE inflation is that its historical data has been revised to reflect methodology changes,
reducing concerns with instabilities created by methodology changes. Another reason is that
the Federal Reserve’s preferred inflation measure is PCE inflation; its longer-run inflation
objective is stated in terms of PCE inflation.

Reflecting data availability, our results draw on a few different sources of long-run inflation
expectations. In most of our results for the U.S., we use the Blue Chip Consensus (the mean
of respondents’ forecasts, from Blue Chip Economic Indicators) to measure long-run inflation
expectations (z; in the model). Blue Chip has been publishing long-run (6-10 year) forecasts
of CPI inflation and GNP or GDP deflator inflation since 1979 in the latter case and 1983

in the former case. To extend the CPI forecast survey back to 1979, we fill in data for 1979

13
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to 1983 using deflator forecasts from Blue Chip.!® The forecasts are only published twice a
year; we construct quarterly values using interpolation.

Partly for the purpose of using a longer sample, in some of our results we instead use
the long-run inflation expectation series included (as the series denoted PTR) in the Federal
Reserve Board of Governor’s FRB/US econometric model. Defined in CPI terms, the PTR
series in the Board’s model splices (1) econometric estimates of inflation expectations from
Kozicki and Tinsley (2001) early in the sample to (2) 5- to 10-year-ahead survey measures
compiled by Richard Hoey to (3) 1- to 10-year ahead expectations from the Survey of Pro-
fessional Forecasters.!! Defined in the PCE terms actually used in the FRB/US model, the
series uses the same sources, but from 1960 through 2006, the source data are adjusted (by
Board staff, for use in the FRB/US model) to a PCE basis by subtracting 50 basis points
from the inflation expectations measured in CPI terms. Although some readers may be con-
cerned by the econometric component to the PTR time series and the approximations used
to translate from CPI to PCE terms, we only use the series in a relatively small set of results.

We present results for three combinations of inflation with corresponding inflation ex-
pectations: i) CPI inflation plus Blue Chip forecasts, ii) core CPI inflation plus Blue Chip
forecasts and iii) PCE inflation plus PTR long-run forecasts. This set addresses robustness
to different inflation measures and to different measures of inflation expectations.'? In re-
sults based on Blue Chip expectations, the estimation sample period is 1980:Q1 to 2016:Q1.
In results based on the PTR measure of inflation expectations, we estimate the model using
data from 1960:QQ2 to 2016:Q1.

As detailed above, one model we consider as a robustness check includes a short-run
inflation expectation (in addition to the long-run expectation). We measure the short-
run expectation with the three-quarter ahead forecast of CPI inflation from the Blue Chip
Consensus. Out of concern for data consistency, we only estimate this model with CPI
inflation and the long-run expectation from Blue Chip.

A second model we consider as a robustness check includes economic activity as a pre-

14
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dictor of inflation with a time-varying coefficient. In this model, we follow common practice
(e.g., Morley, Piger, and Rasche 2015, Stella and Stock 2013) and define the relevant ac-
tivity variable as an unemployment gap, equal to the actual unemployment rate less the
Congressional Budget Office’s estimate of the natural rate of unemployment.!?

For our international analysis, we use CPI inflation rates and long-run forecasts of CPI
inflation from Consensus Economics (hereafter, CE). The exception is the UK, for which we
use the retail price index excluding indirect taxes (RPI) and the CE forecasts of RPI inflation.
We obtained CPI data from Haver Analytics and the UK’s RPI from the website of the Office
of National Statistics. The long-run forecasts obtained from CE are conceptually comparable
to the U.S. forecasts published by Blue Chip; they are projections of average inflation 6 to
10 years ahead, reported as the average across private forecasters who participate in the
survey. Since mid-2014, the CE forecasts have been published on a quarterly basis (in the
first month of each quarter). Prior to that, the forecasts were only published twice a year
(April and October), and we construct quarterly values using interpolation. For Italy, Japan,
and the UK, data runs from 1990:Q2 through 2016:Q2. In light of the shorter samples of
expectations data available for these other countries, in the international assessment we only

report full-sample estimates and omit out-of-sample forecast comparisons.

4 EMPIRICAL RESULTS USING U.S. DATA

In this section, we present results for three different combinations of inflation and expecta-
tions measures for the U.S. In addition to our baseline model, we present selected results from
six to seven other models, detailed above. The primary purpose of this paper is to develop
an appropriate model for investigating the relationships among inflation, trend inflation and
inflation expectations. However, it is also of interest to see whether it forecasts better than
plausible alternatives. To this end, we carry out a pseudo-out-of-sample forecasting exercise.

In our results based on long-run expectations from Blue Chip, the evaluation sample begins
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with 1995Q1. In results based on the PTR measure of inflation expectations, for which a
longer history is available, the forecast evaluation period begins in 1975Q1.1

Empirical results are mostly presented using figures. In each case, the first set of figures
focusses on M1. It plots posterior means (along with an interval estimate) of all the latent
variables in the model (i.e., 7}, bs, Ay t, Ant, dot, diz). The figure for 7} also plots actual infla-
tion (m;) along with long-run forecasts taken from the surveys (z;). The next set of figures
presents comparisons of these latent variables across our models. For the baseline case of
CPI inflation with long-run inflation expectations measured by 6-10 year ahead forecasts
of Blue Chip (for brevity, we omit the same for the other data combinations), we include
some additional charts to compare the precision of trend estimates and pseudo-real time esti-
mates of trend. Finally, tables of marginal likelihoods and measures of forecast performance
are provided. For the latter, we present root mean squared forecast errors (RMSFEs) and
sums of log predictive likelihoods, both taken relative to the UCSV-AR model (M4). When

computing forecasts for model M7, we assume an AR(4) model for the unemployment gap.

4.1 Results Using CPI Inflation and Blue Chip Forecasts

4.1.1  FEstimation results using the full sample

We begin by presenting evidence on how well our baseline model performs relative to al-
ternative models at estimating trend inflation and other features of interest using the full
sample.

Figure 1 presents estimates of 7}, by, Ayt, An ¢, dor and dy; for our baseline model. Trend
inflation estimates can be seen to be much smoother than actual inflation. In a general
sense, they track long-run survey-based forecasts fairly well. However, trend inflation lies
consistently below survey forecasts and this difference is large in a statistical sense. That is,
z; consistently lies above the upper bound of the credible interval for 7} and the professionals
were forecasting long-run inflation to be somewhat higher than our estimate of trend inflation.

A finding that the professionals’ forecasts are often slightly above our estimates of trend
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inflation can also be seen in the results for dy; and dq;. Remember that do; = 0 and dy; = 1
implies long-run forecasts are unbiased estimates of trend inflation. In Figure 1, most of the
posterior probability of dg, lies in the positive region and (with high posterior probability)
dy; is above one, particularly early in our sample. These values jointly imply that our trend
inflation estimates are slightly below those of the professionals.

Estimates of b; tend to be consistent with a fair amount of inflation persistence (at
roughly 0.5), with slight evidence of some decrease over time. There is also strong evidence
of stochastic volatility, both in the inflation equation and in the equation for trend inflation.
This is consistent with the findings of Stock and Watson (2007) from their univariate model
for inflation. It is interesting to note that, as in Stock and Watson (2007), both types of
stochastic volatility were high around 1980 and fell subsequently. The recent financial crisis
was associated with a large increase in the volatility of shocks to the inflation gap, but
no increase in the volatility of shocks to trend inflation. Insofar as low volatility in trend
inflation reflects a firm anchoring of inflation expectations, then our results suggest the Fed
has succeeded in anchoring inflation expectations since the 1980s and that these expectations
were not shaken by the financial crisis.

Figure 2 compares parameter and trend inflation estimates across models (except for a
trend estimate from the Faust-Wright model (M5), which does not produce such an estimate).
These results indicate that, relative to our baseline model, estimates are only modestly
changed (early in the sample) by the addition of short-run inflation expectations (M6) or
an unemployment gap (M7). Restricting the baseline model by making the coefficients dg
and d; of the inflation expectations equation constant or restricting them to specific values
(0 and 1, respectively) has somewhat more noticeable effects on the time-varying volatility
of innovations to trend inflation (A,;), the coefficients dy and d;, and trend inflation. For
example, restricting dy and d; to be constant in model M2 lowers the estimate of the slope
dy from more than 1 in M1 to a little more than 0.8 in M2 and raises the intercept dy from

0.3 or less in model M1 to about 0.8 in model M2.
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For both M2 and M3, the estimated trend is well above the estimate from model M1 for
about the first 10 years of the sample. Perhaps not surprisingly, with dy and d; restricted
to 0 and 1, respectively, the trend estimate from model M3 is essentially the same as the
survey expectation z; (so much so as to obscure the line for z; in the top panel’s chart).
Broadly, the estimates from the various models covered in Figure 2 increase the weight of
evidence against dy; = 0 and dy; = 1. For example, M6 and M7 roughly line up with model
1 in their estimates of these time-varying coefficients, with dy above 0 and d; above 1. The
estimates of model M2 show that, even with a constant coefficient model, estimates of these
coefficients differ from the (0,1) case. The estimates for model M8 indicate that adding a
lagged inflation gap to the equation for inflation expectations has little effect on the estimate
of trend inflation or coefficients and volatilities of the model. This finding reflects the result
— not shown in the interest of brevity — that the coefficient dy; is estimated to be small.

The estimate of trend inflation produced by M1 lies consistently below z;. To shed some
light on this, note that the sample means of z;, m and our point estimates of 7} are 3.5, 3.1
and 2.9 percent, respectively. Thus, on average, the professionals’ forecasts lie above average
inflation whereas our estimates of trend inflation are, sensibly, pulled to be much closer to
it.

Dropping long-run inflation expectations out of the model, as does the UCSV-AR speci-
fication of M4, creates larger differences in estimates compared to the baseline model. The
estimate of the time-varying volatility to trend inflation (A, ;) is noticeably higher for M4
than the baseline specification. In addition, the estimate of trend inflation from M4 differs
from the baseline in some important respects. As evident from the top row of Figure 2, M4’s
trend inflation estimate tends to be more variable and substantially lower around 1980 than
any of the other approaches which include long-run inflation expectations. In addition, as
shown in Figure 3, the credible set around the estimate of trend inflation is much narrower
with M1 than M4. Using a survey-based measure of inflation expectations to inform the

estimate greatly increases the precision of the trend estimate.
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To assess the ability of our model to fit inflation data, Table 1 provides marginal like-
lihoods for the eight models under consideration.!> We start by comparing our baseline
model to the UCSV-AR (M4) and Faust-Wright models (M5) and then consider the effects
on model fit of restrictions on the d coefficients and of model extensions. By the classic
recommendations of Jeffreys for interpreting Bayes factors (see, e.g., Kass and Raftery 1995,
p. 777), the evidence in favor of our model against models M4 and M5 is strong (decisive for
M4 and substantial for M5). Restricting the d coefficients in models M2 and M3 modestly
reduces model fit compared to the baseline M1. By the standards of Jeffreys, the evidence
in favor of our time-varying d coefficients over constant coefficients is substantial, but not
strong. Finally, extending our model to include short-horizon forecasts yields a substantial
improvement in model fit, whereas extending it to include the unemployment gap makes
model fit much worse. Extending our model to include the lagged inflation gap in the pro-
cess for long-run expectations with model M8 has little effect on model fit relative to our

baseline specification M1.

4.1.2  Using our model in real time

Up to this point, we have focused on full-sample estimates of the models and smoothed
estimates of trend. However, models like these are often used in real time for forecasting or
policy purposes. For instance, a central banker might use a model like this to regularly assess
inflation trends. Hence, in this sub-section we present: 1) historical time series of pseudo-real
time estimates of trend inflation, ii) pseudo-real time forecasts and iii) a pure out-of-sample
forecasting exercise up to 2021.

Pseudo-real time estimates of trend inflation are given in Figure 4. Starting in 1990:Q1,
in each quarter ¢, we use the historical data up to that point in time to estimate the models
and their inflation trends, saving the trend as of period t as the pseudo-real time estimate,
and repeating the estimation at each subsequent quarter. As expected, these pseudo-real

time trend estimates are noisier than their full-sample smoothed counterparts. The estimate
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from model M8 is very similar to the baseline from M1. The estimates from models M1,
M2, M3, and M6 are broadly similar to one another, although there certainly can be sizable
differences across models. The estimate from M7 (which includes short-run expectations
as well as long-run expectations) has a similar contour to these other models, but tends
to be higher. The estimate from M4 is much more noticeably different from the other
estimates, particularly in its much higher volatility. In pseudo-real time estimates, including
the survey-based measure of long-run inflation expectations greatly reduces the variability
of trend inflation estimates.

Overall, these findings support the view that including information from survey forecasts
and adding time-variation in parameters helps to refine estimates of trend inflation, in di-
mensions including the capture of features that seem to exist in estimates of our relatively
flexible model, the precision of trend estimates ex post, and the variability of pseudo-real
time estimates of trend inflation. But simply assuming survey forecasts to be unbiased
measures of trend inflation appears unduly restrictive.

To assess the value of long-run inflation expectations for forecasting future inflation, Table
2 reports the accuracy of point and density forecasts, as ratios of RMSFEs of each model
relative to the UCSV-AR specification (M4) and as differences in log predictive likelihoods
relative to the M4 model baseline (a RMSFE ratio less than 1 denotes improvement on the
baseline, as does a positive relative log predictive likelihood). The horizons range from 1
through 20 quarters ahead, as well as 6-10 years ahead. These 6-10 years ahead forecasts
refer to the average rate of inflation 6-10 years ahead. Note that, at this very long horizon,
some caution is required in drawing strong conclusions from the results in that the number
of fully independent observations is limited in the available data sample.

At most horizons, all of the models that include long-run inflation expectations (abstract-
ing for the moment from models M9 and M10) improve on the accuracy of the UCSV-AR
model. At short horizons, the gains are admittedly small to modest; practically speaking,

there is little to distinguish the models in forecast accuracy. At longer horizons, up to 20
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quarters ahead, the gains increase to as much as about 16 percent for point forecasts and
more than 20 points in log predictive likelihood. The more restricted models M3 (which sets
dy to 0 and d; to 1 for all time) and M5 (the Faust-Wright model) are slightly less accurate
than the less restrictive models M1 and M6, but not meaningfully so. The picture is mostly
similar at the very long horizon of 6-10 years ahead, with the main difference being that the
performances of models M3 and M5 modestly deteriorate at this horizon. The performance
of the less restrictive models M9 (TVP-VAR) and M10 (TVP-VECM) is more mixed. At
short horizons, these models are comparable in accuracy to our proposed models. However,
at longer horizons, the performance of models M9 and M10 can be driven by explosive fore-
casts. We have taken steps in the results to essentially eliminate this behavior for model
M9 forecasts and sharply reduce it for model M10 forecasts.'® At longer horizons, the rela-
tively less restricted model M9 performs comparably to our preferred models in both point
and density forecasts. But model M10 fares less well, such that it is dominated by other
specifications, especially in density forecasts.

Finally, to illustrate some of the practical differences with our preferred model compared
to some basic alternatives, we present “true” out-of-sample forecasts using the end of our
estimation sample as the jumping-off point. These forecasts (aggregated to represent four-
quarter average rates of inflation, in keeping with common central bank practice) cover a
20 quarter period, from 2016:Q2 through 2021:Q1. We include forecasts for M1 along with
two key comparison models, M3 and M4. Figure 5 shows that forecasts from M3 lay slightly
above forecasts from M1. This reflects the estimated trends of the model, in which, at the
end of the estimation sample shown in Figure 2, the trend estimate of model M3 — which
imposes the restriction that the long-run survey expectation is an unbiased measure of trend
inflation — slightly exceeds the trend estimate of the baseline model M1. M4, the UCSV-AR
model which does not contain information from inflation surveys, produces forecasts which
are lower still, reflecting the low level of recent inflation and the absence of any influence from

long-run inflation expectations. These differences in forecasts highlight practical differences
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in the models that could, at a given moment in time, have important policy implications.
For example, a monetary policymaker relying on the forecast of model M4 would likely
prefer a much more accommodative monetary policy than would a policymaker relying on

the forecast of our preferred model M1.

4.2 Results Using Core CPI inflation and Blue Chip Forecasts

4.2.1 FEstimation results using the full sample

Results using core CPI inflation, given in Figures 6 and 7 and Table 3, are broadly similar
to those using CPI inflation. In particular, we are still finding that our estimate of trend
inflation lies below z; and that dy and dy; differ from the (0,1) values which imply that
professionals are producing unbiased forecasts of trend inflation. The UCSV-AR model
produces trend inflation estimates which are more erratic than those produced using models
which incorporate inflation expectations (although we omit the results in the interest of
brevity, this model also yields trends estimates that are less precise and much more variable
in pseudo-real time). However, there are some interesting differences. There is less evidence
of time-variation in dy; and dy; than with CPI inflation. Another point worth noting is that
the volatilities, A, ¢, Ay, are large in 1980 but both continually fall over the sample period.
This contrasts with the CPI inflation results in which A,; shoots up at the time of the
financial crisis.

In terms of model fit as captured by the marginal likelihoods of Table 3, our baseline
model (M1) yields considerable gains relative to the UCSV-AR (M4) and Faust-Wright (M5)
models. In contrast to the results for headline CPI inflation, for core CPI inflation, restricting
the dy and d; coefficients to be constants improves model fit, yielding the best-fitting model.
However, restricting these coefficients to 0 and 1, respectively, significantly harms model fit.
These findings indicate that survey-based long-run inflation expectations are closely related
to the trend in core CPI inflation but not an unbiased measure. Once again, extending the

model to include the unemployment gap (M7) makes model fit much worse.
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4.2.2  Using our model in real time

Figure 8 presents filtered, real-time, estimates of trend inflation. Our previous finding,
that incorporation of survey-based forecasts can reduce the volatility in real-time estimates
relative to models such as UCSV-AR which do not incorporate them, is also found for core
CPI inflation.

The pseudo-out-of-sample forecasting results in Table 4 show that, with core CPI in-
flation, not all of the models incorporating long-run inflation expectations improve on the
accuracy of the UCSV-AR model. Models M3 and M5 — the models that equate the long-run
expectation with trend inflation — are generally less accurate than the UCSV-AR model,
although in some cases only by small margins. Our proposed model yields forecasts slightly
more accurate than those of the UCSV-AR baseline. Restricting the dy and d; coefficients to
be constant as in model M2 yields more sizable improvements in forecast accuracy, especially
at longer horizons. For core CPI inflation, model M2 forecasts best.

Finally, the purely out-of-sample forecasts out to 2021 are given in Figure 9. Once again
the forecast from model M3 lies above — more sizably with core inflation than headline
inflation — that from our baseline model M1, reflecting the same pattern in their estimates
of trend inflation, in turn reflecting M3’s restriction that the long-run survey expectation
is an unbiased measure of trend inflation. In contrast to the findings for CPI inflation, we
are now finding that model M4 (which does not use any information from the professional

forecasts) produces a forecast which lies above that of the baseline model M1.

4.8 Results Using PCFE Inflation and PTR Forecasts

4.3.1 FEstimation results using the full sample

In this sub-section, the inflation measure is PCE inflation, and the long-run inflation expec-
tations measure is PTR. For this data combination, our sample goes back to 1960, and so

we are able to examine the performance of our model over a longer time period. Figures 10
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and 11 and Table 5 provide the results.

For much of the sample, especially in the late 1970s and early 1980s, we are again finding
strong evidence that our estimate of trend inflation lies modestly below the professionals’
long-run forecast. Our estimates of dy and d; are relatively high from the late 1970s through
roughly 1995, with d; trending up through 1980 and then down for some years. Post-1980,
results for A\,; and A, ; are similar to those for CPI inflation. Pre-1980, A, (the volatility
in the inflation gap equation) follows the expected pattern in the mid- to late- 1970s before
falling with the Great Moderation. But it is interesting to note that this pattern is not
replicated for A, ; (the volatility in trend inflation), which slowly rises throughout the 1970s
before reaching a peak in the early 1980s and falling thereafter.

Turning to our other models, we are again finding that the UCSV-AR model is producing
more erratic estimates of trend inflation (a pattern more evident in the 1960-2016 sample
used in these results than in the 1980-2016 sample of our CPI results).

The marginal likelihoods of Table 5 yield some differences with respect to the baseline
results we obtained with CPI inflation measures. In model fit, our baseline model (M1) con-
tinues to yield considerable gains relative to the Faust-Wright (M5) model, but not relative
to the UCSV-AR (M4) specification. With PCE inflation, restricting the coefficients d;; and
dy 4 to be constant slightly improves model fit, such that M2 and M3 are not really different
from the UCSV-AR (M4) specification in model fit. Once again, extending the model to

include the unemployment gap makes model fit much worse.

4.3.2  Using our model in real time

The real-time estimates of trend inflation are given in Figure 12. M1 is again producing
more reasonable — in our assessment, less variable — estimates of trend inflation than the
more volatile ones produced by UCSV-AR.

In Table 6’s pseudo out-of-sample forecasting results for PCE inflation, the forecast per-

formance of models incorporating long-run inflation expectations is broadly similar to the
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performance of the UCSV-AR model. Our proposed model M1 often improves on the accu-
racy of the baseline model, but only slightly. Restricting the model’s dy and d; coefficients
to be constant at 0 and 1, respectively, very slightly improves the accuracy of the model,
but not to a notable degree.

Finally, the out-of-sample forecasts to 2021 for PCE inflation in Figure 13 show a pattern
similar to those obtained for CPI inflation (reported in Figure 5). Again reflecting differences
in trend estimates, the forecast of PCE inflation from M1 is modestly higher than the forecast
from the restricted model M3 and notably above the forecast from the UCSV-AR model,
which has inflation below 1% for the next five years. That said, all of the point forecasts are
below the level of long-run inflation expectations (not shown in the chart), which is about 2

percent.

5 AN INTERNATIONAL COMPARISON

The CE data allow us to use methods developed in this paper with survey forecasts con-
structed in an internationally comparable way. In this section, we present results for Italy,
Japan, and the UK using the CE long-run forecasts as measures of expected inflation. In
the interest of brevity, we focus on models M1 through M5 and M8 (i.e., the models which
use only data on inflation and a long-run survey forecast). Note that these datasets have
a shorter sample span, so our estimates begin in 1990. Since the period from 1990 to the
Great Recession and financial crisis was a relatively stable time in most advanced economies,
in this section we are missing some of the variability which was present in the U.S. datasets
of the preceding section.

Figures 14, 15, and 16 provide estimates of our baseline model (M1) for Italy, Japan, and
the UK, respectively. Figures 17, 18, and 19 provide comparisons of estimates across models
M1 through M5 and M8, for Italy, Japan, and the UK, respectively.

Consider first the estimates of trend inflation. In the preceding section, we found our
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model produced estimates which were consistently slightly less than the professionals’ fore-
casts. This finding also holds true for Japan (Figure 15). For the UK it holds much of the
time. But for Italy, our estimate of trend inflation is very close to the professionals’ survey
(Figure 14). In the U.S. results, we also found the trend estimates from the UCSV-AR to be
more erratic than those from our baseline model. In the shorter sample for other countries,
this same finding applies to Italy (Figure 17) but not Japan (Figure 18) or the UK (Figure
19).

With the U.S. data, we found considerable evidence against the do; = 0 and dy; = 1
restrictions. This also holds true in our estimates for Japan and the UK but not Italy.!”
However, the way each country departs from this restriction is a bit different. For Japan,
there is support for the restriction d; = 1, but dy; is positive and quite large, indicating
that professionals’ forecasts are consistently above trend inflation. A similar pattern holds
in the UK, but only from the late 1990s until the financial crisis. There is substantial time
variation in the UK estimates of dy; and dy,. All in all, we are finding a range of patterns
but, apart from Italy, we are never finding strong support that the long-run surveys provide
unbiased estimates of trend inflation.

With regards to stochastic volatility, we are finding somewhat less evidence of its presence
in the shorter samples for Italy, Japan, and the UK than in the longer samples of U.S. data.
As noted above, with our sample for the CPI in the U.S., A, (inflation gap volatility)
and A, (trend inflation volatility) trended down in the 1980s and then were little-changed,
with the notable exception of a spike in \,; around the Great Recession. With the other
countries, there is some decline in A, ; in the 1990s and some time variation in A, ; for Japan,
but otherwise, volatility is relatively stable. It is also interesting to note that, especially for
Italy and the UK, the estimates of A, ; are much higher for the UCSV-AR model (M4) than
our baseline model (M1), which explains why this model produces more erratic estimates of
trend inflation.

Table 7 presents marginal likelihood comparisons for the models applied to each country.
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In all cases, our proposed model fits inflation data as well as or better than the UCSV-AR
(M4) and Faust-Wright (M5) models. For Italy, M1 is significantly better than M4 but only
modestly better than M5. For Japan, M1 is significantly better than M5 but about the same
in fit as model M1. For the UK, M1 fits the data significantly better than both models M4
and M5. Across countries, the evidence regarding restrictions on the dy and d; coefficients
is mixed. For Italy, the restrictions of models M2 and M3 neither harm nor help model
fit. For Japan, imposing 0,1 restrictions significantly reduces model fit, but making the
coefficients constants to be estimated significantly improves fit, making M2 the best-fitting
specification. For the UK, imposing the restrictions of models M2 and M3 slightly reduces
model fit. Extending the baseline model to allow the inflation expectation z; to depend on
the lagged inflation gap — as does model M8 — does not appear to improve model fit.

On balance, we interpret these international results as indicating that our model, which
allows information about professionals’ forecasts to help estimate trend inflation without im-
posing the restrictions that effectively equates such forecasts with trend inflation, is working
successfully in a variety of countries with different inflationary experiences. Put another
way, the evidence points to the value of using long-run expectations to help estimate trend
inflation without imposing restrictions (constant coefficients of 0 and 1 in our model) that

effectively equate the two.

6 DISCUSSION

We have proposed our new model for several reasons. First, as a way of improving estimates
of trend inflation by drawing strength from surveys of professional forecasters. Second, as
a way of investigating whether these surveys are unbiased in the sense used in this paper
(i.e., that they provide unbiased estimates of an econometric estimate of trend inflation
or, equivalently, that dyy = 0 and dy; = 1). Third, as a model that might improve on

existing specifications in fitting historical inflation data. Finally, as a simple model that
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might improve inflation forecasts over other simple models such as UCSV. Recently, there
have been several influential papers which attempt to address the question of why survey-
based forecasts might be biased. This is not the main focus of our paper, but some short
discussion of this issue is warranted.

Our model allows for the possibility that survey expectations may become disconnected
from the longer-run trend in inflation. That disconnection could take the relatively modest
form of a systematic bias, or it could take the form of a more dramatic departure from
rational expectations, with the survey expectation showing little connection to the longer-
run trend in inflation. Studies such as Coibion and Gorodnichenko (2015) have presented
evidence that survey forecasts depart from rationality in that they are subject to sluggish
adjustment consistent with information rigidities. Mertens and Nason (2015) develop a
joint model of inflation and inflation forecasts that permits time variation in the strength
of the information rigidities. In light of this evidence, we have used our sample of Blue
Chip forecasts of CPI inflation to produce estimates of the Coibion-Gorodnichenko stickiness
regression. In this data, these estimates do not point to strong evidence of such information
rigidities (however, this does not rule out bias or other manifestations of irrationality in the
forecasts).!® Although this evidence can be seen as supporting our development of a model
that does not impose parametric restrictions consistent with the Coibion-Gorodnichenko
framework, our model can be seen as incorporating features that could capture the effects of
information rigidities in a flexible way. In broad terms, our model can be seen as similar to
that of Mertens and Nason (2015); the differences reflect a deliberate choice to impose fewer
parametric restrictions and permit greater flexibility, particularly in the representation of
survey forecasts of inflation. More specifically, if we abstract from time-varying parameters
and volatilities for simplicity, our process for actual inflation is quite similar to that in
Mertens and Nason. In the process for the survey forecast (recall also that we differ in our
specification of the forecast horizon), Mertens and Nason incorporate a hierarchical structure

with an additional latent state for the inflation forecast on which the observed survey forecast
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depends, with the latent state incorporating autoregressive dynamics and trend inflation,
whereas we instead relate the observed survey forecast to a time-varying intercept, trend
inflation with a time-varying coefficient, and an MA error term. To the extent the survey
forecasts feature stickiness, this stickiness can be subsumed in our time-varying intercept
and MA error term.

More broadly, some recent research develops frameworks in which long-run inflation ex-
pectations might depart from measures of trend inflation. Cecchetti, et al. (2017) argue that
inflation expectations need not be very closely tied to inflation. Based on their empirical
results, they characterize inflation as fluctuating around a time-varying local mean (which
they also capture with a random walk process like our trend). They suggest that survey-
based inflation expectations have value as indicators of the time-varying local mean but
otherwise have little information content for inflation. At a high level, their interpretation of
the data would seem to be one in which survey measures of long-run inflation could be biased
measures of trend inflation (their local mean). More formally, some other recent work by
Hills, Nakata, and Schmidt (2016) on complexities created by monetary policy constrained
by the zero lower bound on interest rates indicates that average inflation can consistently fall
short of central bank targets. Results in Kiley and Roberts (2017) and other studies cited
therein suggest the need for a risk adjustment to policy interest rates, to make policy more
accommodative than it might otherwise be, in order for central banks to achieve inflation
targets. Until the public comes to fully appreciate such implications, it seems plausible that
survey-based measures of inflation expectations might exceed average (trend) inflation. Ad-
mittedly, such concerns with zero lower bound constraints only apply to fairly recent data
for most countries, except Japan, for which the relevant history is longer. However, they
point to the fact that much remains to be done to fully understand the dynamics of inflation

and inflation expectations, as described in sources such as Bernanke (2007).
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7 SUMMARY AND CONCLUSION

In this paper, we have developed a bivariate model of inflation and inflation expectations that
incorporates empirically-important features such as time-varying parameters and stochastic
volatility. In a broad sense, we have used our model to investigate the relationship between
these two variables. In a narrower sense, we have investigated the degree to which survey-
based long-run inflation forecasts can be used to inform estimates of trend inflation (e.g., by
increasing precision), improve the fit of historical inflation data, and improve the accuracy of
out-of-sample forecasts. In an extensive empirical exercise involving three combinations of
measures of U.S. inflation and long-run inflation forecasts, we find a consistent story: Long-
run inflation forecasts do provide useful additional information in informing estimates of
trend inflation and in improving the fit of inflation models. However, the forecasts themselves
cannot simply be equated with trend inflation. In out-of-sample forecasting, our model yields
point and density forecasts that are at least as good as those from other models that have
been found successful in the inflation forecasting literature. In estimates for Italy, Japan,
and the UK, we find a similar story in most cases. However, for Italy we find simply equating
trend inflation with long-run forecasts by the professionals’ may be sufficient. However, it is
reassuring that we are uncovering this result in the context of a flexible econometric model
instead of simply imposing it a priori.

The history captured by our estimates indicates the distinction between trend inflation
and long-run inflation expectations captured by surveys in the U.S. is practically important.
For example, as noted in the introduction, for most of the period since 2008, inflation in
the PCE price index has run below the Federal Reserve’s longer-run inflation objective of
2 percent. Over the past couple of years, inflation has declined to very low levels. Yet, for
several years before the recession that began in 2007, inflation ran steadily above target.
Some estimates of trend inflation based entirely on inflation — as in the UCSV specification
of Stock and Watson (2007) — have moved around with inflation, rising in the early to

mid-2000s and declining markedly from the mid-2000s through 2016. At the other extreme,
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long-run inflation expectations measured from the Survey of Professional Forecasters have
remained steady around 2 percent (with occasional up-ticks and down-ticks). Drawing on
the information in both inflation and the survey’s long-run expectation, our model’s estimate
of trend is much smoother than the estimate from a univariate UCSV specification, implying
the trend to be stable in the face of both the rise of inflation in the years before the recession
and the fall since the recession. In fact, our model estimates show trend inflation to be
even more stable than the survey expectation (containing a little less noise than the survey).
However, in keeping with a historical bias in the survey forecast, our estimate of trend
inflation has for some time been stable, slightly below the survey expectation. At times, the
differences in models could have important practical implications for policy. In particular,
as we show in out of sample forecasts through 2021, the forecast of headline inflation from
our preferred model is much more consistent with the Federal Reserve’s longer-run inflation
objective than is the forecast from a UCSV specification similar to that of Stock and Watson

(2007).
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Technical Appendix

This appendix provides the prior and MCMC algorithm used in this paper for our baseline
model (model M1) and its variants, details the estimation algorithm, explains the compu-
tation of marginal likelihoods, and provides the priors for the TVP-VAR and TVP-VECM

used in forecast comparison.

A Priors for Model M1

The model is given in equations (3) through (10). We initialize the state equations (5), (6),
(7), and (10) by 7f ~ N(75, ApaVar ), by ~ N(bo, Vi), dix ~ N(pai, 03:/(1—p3)), i = 0,1, and
log(A\i1) ~ N(log(Aio), Vi), i =v,n, with \;o = 1, by = 75 = 0 and V), = V, = V. = 100.

Our prior choices are motivated by a desire to use relatively non-informative choices,
but to reflect the prior beliefs about the parameters in our structural time-series model.
We note that, for some parameters, sensible prior information can easily be elicited. For
instance, if the professionals are providing unbiased forecasts of trend inflation, then dy; = 0
and di; = 1 and we would expect relatively little deviation from these values. Our prior
reflects such information. In a prior sensitivity analysis (not reported here), we found a
fair degree of robustness to prior choices (e.g., doubling or halving prior standard deviations
had little effect). However, using an extremely non-informative prior in some cases leads to
extremely erratic estimates of some of the states in our state space model. The avoidance
of extremely non-informative priors is common with structural time series models such as
ours. Indeed papers with simpler models than ours, such as Stock and Watson (2007), do
not even attempt to estimate some parameters, instead setting them to specific values. More
recent applications of the UCSV model often still calibrate key parameters as opposed to
estimating them (see, e.g., Cecchetti, Feroli, Hooper, Kashyap and Schoenholtz, 2017).

For later reference, let # = (my,...,mr) and d = (do1,d11,-..,dor,di7), and sim-

ilarly define z, 7*, b, A, and \,. In addition, let 6 denote the model parameters, i.e.,
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0= (¢7 Hdo, Hd1s Pdos Pdl, U?lo: 0-317 O-l?a 0-37 ¢v; ¢n)/

We assume independent priors for elements of the parameter vector 6 which are proper

and weakly informative. The priors for ug and py; are:

Kdo ~ N(a07 Vu>7 Hd1 ~ N(ala Vu)v Pdi ~ TN(Cl,Cz)(a% V;J)?

where T'N(c, ¢,)(1t, o) denotes the N(u, o) distribution truncated to the interval (cq, ¢2), and
we set ag = 0, a3 = 1, az = 0.95, V,, = 0.12 and V,, = 0.1%. These choices imply relatively
informative priors centered at the values which imply trend inflation is equal to long-run
inflation forecasts (apart from a mean zero error).

For the MA(1) coefficient, we consider the relatively non-informative prior which restricts
the MA process to be invertible: ¢ ~ T'N(_1 1y(0, V;,) with V,, = 0.25%

Finally, we assume independent inverse gamma priors for the variance parameters. In
particular, the degree of freedom parameters are all set to the relatively non-informative value
of 5, and the scale parameters are set such that F(o%)) = E(c2) = E(¢,) = E(¢,) = 0.01
and E(o3,) = E(c?) = 0.001. The prior hyperparameter choices reflect a desire to allow
for appreciable parameter change in these models, but such change to occur smoothly. The
prior mean for o3, implies that with high probability the difference between consecutive dp,
lies within the values —0.2 and 0.2. This means that, in each period, dy; is not expected to
change by a large amount. However, if such changes were to occur several periods in a row,
appreciable change in dy; could be accommodated.

For those models that are variants of the baseline model M1, we use the same prior for
all parameters which they hold in common with M1. For the model M2 that restricts the
dy and d; coefficients to be constant over time, we use prior means of 0 and 1, respectively,
with prior variances of V,, = 0.52 and V, = 0.52. For the additional coefficient dy; of model
M8, we use a prior on the initial value that takes the same form and values used for the

coefficient dy;, with a mean of 0 and standard deviation of 0.1.
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B Estimation Algorithm for Model M1

To estimate the model in equations (3) through (10), we extend the MCMC sampler devel-
oped in Chan, Koop, and Potter (2013) which was used for a univariate bounded inflation
trend model. Moreover, we also incorporate the sampler in Chan (2013) for handling the MA
innovations with stochastic volatility. Specifically, we sequentially draw from the following

densities:
1. p(7*| Data,b,d, Ay, Ay, 6);
2. p(b| Data, 7*,d, Ay, A, 0);
3. p(d| Data,7*,b, Ay, A, 0);
4. p(Ay, A\ | Data, 7*,b,d, 0);
5. p(ftao, par | Data, 7, b, d, Ay, Ay 0— a0 pan} )
6. p(ady, oy | Data,7,b,d, Ay, Ap, 0_(52 o2 1);
7. p(paos par | Data, 7, b, d, My, Ay 0140 pa1} )

8. P(l/) | Data, 7, b,d, Ay, Ay, 0—{1/)}>;

Ne)

. p(o-ga O-za ¢U7 an | Data7 7T*7 b7 d7 Ava )‘na 0—{U§7U§1¢v,¢n})'

Step 1: To implement Step 1, note that information about 7* comes from three sources:
the two measurement equations (3) and (4), and the state equation (5). We derive an

expression for each component in turn. First, write (3) as

Hym = Hyr* + ae + v, v~ N(0,A,),
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where &« = (by(mo — 75),0,...,0)", A, = diag(Ay1,..., A, 1) and

1 0 0 0

—by 1 0 0

Hy=| 0 -b; 1 0
0 0O - —=bp 1

Since |H,| = 1 for any b, H, is invertible. Therefore, we have
(7| 7*,b,Ay) ~ N(7* + ape, (HJ A H) ™Y,
with log density
log p(m | 7*,b, \,) —%(ﬂ' — T — e ) H)A P Hy (1 — 775 — o), (B.1)

where a+ = H, Y&, .. Note that H, is a band matrix and «,- can be obtained quickly by
solving the band system Hyr = &, for x without computing the inverse H, '

The second component comes from (4), which can be written as:
z=dy+ Xem" + Hye., €~ N(0,0517),

where d() = (d()l, e ;dOT)/; Xﬂ.* = diag(dn, e ,le) and

1 0 0 0
v 1 0 0
Hy=10 ¢ 1 0
0 0 v o1
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Thus, ignoring any terms not involving 7*, we have

* 1 * — *
logp(z | 7*,d, 02) o —2—2(2 —dy — X)) (HyHy) ' (2 — dy — Xpe™),

= (= XY (B = X1, (B.2)

where zZ = HJ1<Z —dy) and X, = HJlXW*. Since Hy, is a band matrix, Z can be computed
quickly by solving a linear system of equations without finding the inverse H,; !, The matrix
X« is lower triangular that is in general not banded. However, most of the elements away
from the main diagonal band are close to zero. In our implementation we construct a band
approximation by replacing all elements below 107¢ with 0. Since the cut-off point is so
small, it has no impact on the results, but it substantially speeds up the computation.

The third component is contributed by the state equation (5):

log p(r* | An) o —%(w* LY HAS H (5 — 5), (B.3)

where H is the T x T first difference matrix, A, = diag(Au1Vis, An2s .-, Apr) and 0p+ =
H=Y(x,0,...,0). Then, combining (B.1), (B.2) and (B.3), we finally obtain

log p(7* | Data, b, d, Ay, A\, 6)
1 1 -

x — 5(77 — 7 — ) Hy L Hy(m — 7 — ) — E(i — X)) (2 = Xpo¥)
1
— E(W* — 6 ) H'NJ H (77 — 0y),
1
x — 5(7?* — ) Ko (7% — ),
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which is the kernel of the N(7*, K.') distribution, where

1 . . —1
K. — (Hl’)_lva + 5 X X+ H’A;lﬂ) :

1 -
=K (H,;_le(w — o) + 5 X2+ H’A;lHdﬂ*) :
Ow
If we use the band approximation of X, as described above, the precision K- is also a band
matrix. Then, we use the precision sampler in Chan and Jeliazkov (2009) to sample 7* from
the conditional distribution (7* | Data, b, d, A, An, 6).
Step 2: Next, we derive the conditional density p(b| Data,7*,d, Ay, A, @). Due to the

inequality restriction 0 < b, < 1, this joint density is non-normal. We first rewrite (3) as:
T=X+v, v~N(0A),

where 7 = (m — 7}, ..., 7 — wy) and X, = diag(mo — 7, ..., 7r—1 — my_y). It follows that

the log density of (7| 7*, b, \,) can also be written as follows:

1
logp(m | 7", b, \) —5(7? — Xpb)'ASH(F — Xpb). (B.4)
Next, write (6) as
Hb = Sb + €,
where 8, = (bo, 0, ...,0) and the elements of €, are independent truncated normal variables.

Note that Pr(0 < b; < 1) = ®((1 — by)/v/V3) — ®(bo/+/ V) and

1— b, —b,_
Pr(0<bt<1):¢>( b”)-cp( b”),
Jp Op

where ®(-) is the cumulative distribution function of the standard normal distribution.
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Hence, the prior density for b is given by
1
log p(b|o}) o 5(() — &) H'S, P H(b — &) + gu(b, 07), (B.5)
where ¥, = diag(V}, 02,...,0%), 0 = H'4, and

=S5 (%)

Combining (B.4) and (B.5), we obtain

~

1 N
log p(b| Data, 7*,d, Ay, A, 0) o —é(b —b)' K, ' (b—b) + gy(b, 07),

where

Ky = (H'S, H+ XpA ' X,) 7, 77 = K (H 6, + XA 7).

We follow Chan, Koop, and Potter (2013) to sample b. Specifically, candidate draws are first
obtained from the N (l;, K, ') distribution using the precision sampler in Chan and Jeliazkov
(2009), and they are accepted or rejected via an acceptance-rejection Metropolis-Hastings
step.

Step 3: To sample from p(d| Data, 7*,b, Ay, A, 0), we first rewrite (4) and (7) as

Z:de—i—HwEZ, NN(O g [T)

ded:gd+€d €dNN<Oazd):

where Sd = (MdOa Hd1, (1_,0d0),ud07 (1—Pd1)ud1, ceey (1_pd0)ﬂd07 (1—Pd1)ﬂd1)/, Yd = diag(oﬁo/(l—
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IO?IO)> Ufll/(l - p?ll)v ‘752107 0-317 cee 70-307 031)7
1 0 0 0 0 0
0 1 0 0 0 0
1 nf 0 0 O 0
—pao 0 1 0 0 0
0o 0 1 @5 0 --- 0
Xa= 1| s Hu= 0 —pa 01 0 0
0 0 0o 0 1 =%
0 0 —pao 0 1 0
0 0 0 —pa1 0 1

Using standard linear regression results (see, e.g., Koop, 2003, pp. 60-61), we have (d | Data, 7*, b, Ay, A, 6) -
N(J, K1), where

1o, -\ R
Kd—(H;dElema—QXng) =Ky (H;d2d15d+a—zXé<lez>>

w w

with X, = H, 1X,. As before, we construct a band approximation of X, by replacing all
elements less than 107% with 0. Then, the precision K, is a band matrix and the precision
sampler in Chan and Jeliazkov (2009) is used to sample d.

Step 4: To implement Step 4, note that A, and ), are conditionally independent given
the parameters and other states. Hence, we can draw them sequentially using the auxiliary
mixture sampler of Kim, Shepherd and Chib (1998). See also Koop and Korobilis (2010, pp.
308-310) for a textbook treatment. Note that in conventional implementations, a forward-
filtering-backward-smoothing algorithm is used; here it is replaced by the more efficient
precision sampler of Chan and Jeliazkov (2009).

Steps 5 and 6: The densities both of (o, a1) and (03, 03,) are standard. In fact, we

39



Authorized for public release by the FOMC Secretariat on 1/12/2024
Nonconfidential

have

(:udi | Data) 7T*7 ba d7 )‘va )\TL? 0—{;1(10,#(11}) ~ N(ﬂdi? Kd_il)7

(03 | Data, 7, b,d, Ay, An, 0_ (52 52 y) ~ IG(vai + T/2, Sa),

where Ky = 1/V,+ (1= p%,)/og;+ (T = 1)(L = pai)*/05;s fras = K5 (ai/ Vi + (1= piy)dia /05 +
23;2(1 — pai)(dit — paidi—1)/0%) and Sgi = Sai + (1 — P2 ) (din — pai)? + ZtT:g(dit — pa; (1 —
Pdi) — pdidi,tfl)Q)/Z

Step 7: It follows from (7) that

p(pas | Data, 7, b, d, Ay, A, 07{Pd0,ﬂd1}) ~ p(Pdi)gpdi(Pdi)e_ﬁgi Zzﬂzz(dit—ﬂdi_ﬂdi(di,zfl—Mdi))27
where p(pg;) is the truncated normal prior for pg and g(pg) = (1 — p%)'/? exp(—%gi(l —
p2:)(dii—pa;)?). This conditional density is non-standard, and we implement an independence-
chain Metropolis-Hastings step with proposal distribution N (pg;, Kp:;), where K,,, =1/V,+
X;diXpdi/afh- and pg; = K;;(ag/Vp + X;diypdi/agi), with X,,, = (di — pais - -, dir—1 — phai)’
and y,,, = (di2 — fdi,- .-, dir — ptai)’. Then, given the current draw pg, a proposal pj; is
accepted with probability min(1, g,,,(03)/9pa;(Pai)); otherwise the Markov chain stays at the
current state pg;.

Step 8: To sample 1, note that

logp(v | Data, 7, b,d, Ay, Ay, 0_gy1) o< logp(z| 7", d, o2) +log p(1))

1 . - )
X —ﬁ(z — do — Xﬂ-*ﬂ' )/<H¢H¢)/ 1(2 — do — Xﬂ*ﬂ' ) =+ 10gp<1/})7

where p(1)) is the prior density of ¢). Following Chan (2013), we sample 1 via an independence-
chain Metropolis-Hastings step. Specifically, since this log density can be quickly evaluated
using band matrix routines, we maximize it numerically to obtain the mode and negative

Hessian, denoted as 1& and K, respectively. Then, we generate candidate draws from the
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N (4, Klzl) distribution.
Step 9: To sample 07,02, ¢, and ¢, first note that these parameters are conditionally
independent given the data and the states. Hence, we can sample each element one by one.

The variance parameters o2, ¢, and ¢, follow inverse-Gamma distributions:

(02 | Data, 7 b, d, Aus Ans 0 (52,03 0.63) ~ 1G (uaz + =, Spr + = Z Zt),
(d)z | D(Zt(l, W*abv da )\va >\n7 9—{05,0'12”,(1)1),(15”})

T-1 1
~ IG (V@ — Se; + 5 Z(log()\it) — log()\z-7t_1))2> Ji=wv,n,
=2

where the elements of €, can be computed as e, = H w 1(2 — X4d). Next, the log conditional

density for o7 is given by

log(o? | Data, 7, b, d, Ay, An, 9_{057037%%})

Sez T —1

2
oj, 2

T
o —(vp2 +1) log o7 — log o} — Z (b — bi—1)* + gp(b, 07),
t=2

which is a nonstandard density. To proceed, we implement an MH step with the proposal

density

T
T 1
[G<V2—|——,Sz—{—§z _btl )

t

C Computation of Marginal Likelihoods

Marginal likelihoods are calculated by decomposing the marginal density of the inflation
data as the product of predictive likelihoods. Specifically, let 71, = (71, ..., 7)) denote the
inflation data up to time ¢. Then, we can factor the marginal likelihood for model M, as

follows:

T
p(r | X, M) = [ [ (e | mra—1, X M),
t=5
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where p(myy1 | 714, My) is the predictive likelihood and X}, is a set of covariates used in model

M, such as the survey data or the unemployment gap.'®

D Priors for TVP-VAR and TVP-VECM Models

Regarding priors for the TVP-VAR and TVP-VECM models, let {2g denote the error co-
variance matrix in the state equation of the VAR coefficients. Similarly, define €2, to be
the error covariance matrix corresponding to the log-volatilities. We assume the diagonal

elements of 25 and ()}, are independently distributed as
w%ﬂ'NIG(VB,i?SB,i% w?w NIG(Vh,j7Sh,j)7 izl?"'ukB7j:17"'7n7

where kg = (np+ 1)n +n(n — 1)/2 = 11. We set the hyperparameters as follows. For the
degree of freedom parameters, they are assumed to be small: vp; = vp; = 5. The scale
parameters are set so that the prior mean of w,zm- is 0.12. In other words, the difference
between consecutive log-volatilities is within 0.2 with probability of about 0.95. Similarly,
the implied prior mean of wg ; is 0.01% if it is associated with a VAR coefficient and 0.1* for
an intercept.

Although we omit details in the interest of brevity, the models can be fitted using standard
Gibbs samplers, such as the one described in Chan and Eisenstat (2015). Since the TVP-
VECM can be written as a TVP-VAR, it can be estimated with the same methods used for

the TVP-VAR.
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Notes

!Direct estimates of inflation expectations can also be obtained based on the relationship
between real and nominal bonds. However, estimates of break-even inflation calculated using
these are usually available only for a short time span. And there are reasons to expect that
break-even inflation might reflect factors other than just long-run inflation expectations (e.g.,
if the risk premium is time-varying). Faust and Wright (2013) find it too volatile to be a
sensible forecast for long-run expected inflation. For these reasons, we do not use break-even

inflation data in this paper.

>The reader is referred to Faust and Wright (2013) for a recent survey on inflation fore-

casting, including a discussion of inflation surveys and methods for estimating trend inflation.

3Some DSGE models — developed in Del Negro and Schorfheide (2013) and references
therein — treat the inflation target of the central bank as a random walk process and
include survey measures of long-run inflation expectations as indicators of the target in
model estimation. In a different vein, Aruoba (2016) develops an econometric, three-factor

model of the term structure of inflation expectations.

4This statement is based on Q4/Q4 inflation rates for each year. The statement also

applies to headline inflation, except that headline inflation rose above two percent for one

year, 2011.

>Conceptually, the distinction between the infinite-horizon forecast that constitutes trend
inflation and the 10-year horizon of the survey expectation could cause dgy; to differ from 0
and d; ; to differ from 1. In practice, though, for professional forecasters, it seems likely that
the 10-year ahead survey forecast is equivalent to an infinite-horizon forecast. For example,
since the Federal Reserve established its longer-run inflation objective of 2 percent, the 10

year-ahead forecast of PCE inflation from the Survey of Professional Forecasters has stayed
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close to 2 percent. Moreover, in a cross-country analysis, Mehrotra and Yetman (2014) find
that survey forecasts at just a 24-month ahead horizon tend to cluster around central bank

inflation targets.

SFor the errors in other equations, preliminary estimates suggest that an assumption of

homoskedasticity is reasonable.

"Indeed, in the UC-SV model of Stock and Watson (2007), the stochastic volatility equa-
tions equivalent to our (10) are assumed to have a common error variance and this common

variance is fixed at a specific value. Our prior is much less restrictive than this.

8The supplemental appendix of Cogley, Primiceri and Sargent (2010) makes use of a

similar model.

90ur specification generalizes their “fixed p” model by estimating coefficients. Accord-
ingly, our model takes the same form as their “AR-gap” model, except that, at all horizons,
we use the 1-step ahead form of the model and iterated forecasts, whereas they use a direct

multi-step form of the model.

For the next several years following 1983, Blue Chip’s long-run forecasts of CPI and

GDP inflation are very similar.

USurveys of professional forecasters have long included projections of CPI inflation or
the GNP /GDP price deflator/price index, but only recently has any survey included PCE
inflation. The Blue Chip consensus tracks expectations of inflation in both the CPI and GDP
price index. The Survey of Professional Forecasters tracks expectations of CPI inflation and,

since 2007, PCE inflation.

12 An earlier version of this paper, released as Federal Reserve Bank of Cleveland Working
Paper 15-20, contains results for a wider range of combinations, including for GDP deflator

inflation.
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BFollowing studies such as Rudd and Peneva (2015), we use the measure the CBO refers
to as its short-term estimate of the natural rate, which incorporates a temporary, substantial
rise in the natural rate in the period following the start of the Great Recession, attributable

to structural factors such as extended unemployment insurance benefits.

4We repeated the analysis with a shorter forecast evaluation period beginning in 1985Q1

(after the Great Moderation) and found results to be qualitatively similar.

15The Technical Appendix details the computation of the marginal likelihood. These are
constructed using the predictive likelihood associated solely with inflation so as to ensure

comparability across models.

16For model M9, we followed Cogley and Sargent’s (2005) approach to imposing station-
arity on the VAR estimates, and in simulating the forecast distribution, we shut down time
variation in the latent states by holding them constant at end of sample values. For model
M10, in simulating the forecast distribution, we shut down time variation in the latent states
by holding them constant at end of sample values, and we use the posterior median rather

than the mean as the point forecast.

"In addition, our international results corroborate our U.S. results that indicate estimates

of model M8, which allows z; to depend on a lagged inflation gap, are very similar to those

of the baseline model M1.

18We ran the Coibion-Gorodnichenko regression using both long-horizon and short-horizon

Blue Chip forecasts of CPI inflation over various samples.

YWe discard an initial four predictive likelihoods to reduce the sensitivity to priors.
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Table 1: Log marginal likelihood estimates for models in CPI inflation and Blue Chip survey
forecast

Model: M1 M2 M3 M4 Mb M6 M7 M8
-277.29 -278.60 -278.60 -284.41 -279.33 -275.33 -283.10 -277.45
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Table 2: RMSFEs and log predictive likelihood for forecasting CPI inflation relative to
UCSV-AR model

Model Relative RMSFE at horizon:

1Q 2 4Q 8Q 12 16Q  20Q  6-10Y
M1 097 094 0.88 090 090 0.89 0.90 0.90
M2 098 095 0.89 088 0.87 084 0.84 0.72
M3 098 095 090 092 094 093 094 1.02
Mb 098 097 092 092 093 093 094 1.01
M6 097 094 088 090 0.89 0.88 0.88 0.84
M7 098 095 091 091 091 090 0.91 0.78
M8 097 094 0.88 090 090 0.89 0.90 0.89
M9 0.99 098 09 094 093 091 0.89 0.76
M10 098 095 090 090 091 095 0.99 1.60
Model Relative log predictive likelihood at horizon:

1Q 2 4Q 8Q  12QQ 16Q  20Q  6-10Y
M1 2.86 4.40 7.84 10.71 14.10 17.52 18.70  53.60
M2 2.34 4.61 8.67 12.64 17.56 2047 20.68 64.37
M3 1.08 233 552 844 10.54 13.35 14.24  32.05
M5 143 282 6.96 10.54 11.67 15.35 14.78 13.79
M6 244 385 7.98 10.77 15.84 1857 20.34  58.68
M7 0.78 1.10 3.83 10.10 14.60 16.80 17.95 55.16
M8 1.75 3.82 849 1195 14.20 18.35 19.26  53.42
M9 -0.24 0.44 240 7.34 1330 1941 21.92 54.74
M10 047 3.04 9.41 12.08 7.60 -7.42 -26.49 < -100
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Table 3: Log marginal likelihood estimates for models in core CPI inflation and Blue Chip
survey forecast

Model: M1 M2 M3 M4 Mb M7 M8
-148.70 -146.91 -151.14 -154.67 -152.26 -151.98 -147.99
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Table 4: RMSFEs and log predictive likelihood for forecasting core CPI inflation relative to
UCSV-AR model

Model Relative RMSFE at horizon:

1Q 2Q 4Q 8Q 12Q 16Q 20Q  6-10Y
M1 0.99 0.99 0.98 0.95 0.94 0.95 0.95 1.00
M2 097 094 0.88 0.79 0.76 0.78 0.79 0.87
M3 1.04 1.08 1.12 1.11 1.06 1.04 1.00 1.03
M5 1.04 1.10 1.16 1.14 1.06 1.04 1.00 1.02
\Y g 098 095 0.95 0.98 1.06 1.07 1.07 1.15
M8 0.99 099 0.97 0.94 0.92 0.94 0.94 1.00
M9 098 098 1.00 1.00 0.95 0.89 0.88 0.88
M10 098 097 1.00 1.09 1.12 1.08 1.10 1.24
Model Relative log predictive likelihood at horizon:

1Q 2Q 4Q 8Q 12Q 16Q 20Q  6-10Y
M1 1.31  0.74  0.52 5.69 11.24 14.05 1443  0.08
M2 295 424 852 2213 31.52 33.70 33.07 25.57
M3 -3.04 -6.98 -12.70 -17.75 -15.87 -10.56 -8.09 -35.78
M5 -3.21 -9.28 -18.66 -28.61 -29.65 -27.88 -27.99 < -100
\Y g 1.49 2,63 5.50 6.37 0.59 3.46 3.17  -16.01
M8 142 084 0.86 5.75 1226 15.70 16.11 3.28
M9 091 184 -229 -263 145 1251 23.77 13.06
M10 1.69 293 061 -3.08 -553 -226 -7.45 -29.88
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Table 5: Log marginal likelihood estimates for models PCE inflation and PTR long-run
forecast

Model: M1 M2 M3 M4 Mb M7 M8
-367.28 -366.26 -366.80 -366.35 -372.61 -373.89 -368.34
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Table 6: RMSFEs and log predictive likelihood for forecasting PCE inflation relative to
UCSV-AR model

Model Relative RMSFE at horizon:

1Q 2Q 4Q 8Q 12Q 16Q 20Q  6-10Y
M1 098 097 0.96 0.98 0.99 1.01 1.06 1.07
M2 098 098 0.96 0.98 0.99 1.02 1.15 1.24
M3 098 0.98 0.95 0.96 0.96 0.98 1.02 1.02
M5 1.02 1.04 1.05 1.02 1.03 1.05 1.09 1.02
M7 0.99 099 0.98 0.99 1.00 1.03 1.07 1.04
M8 098 097 0.95 0.97 0.97 0.99 1.04 1.06
M9 1.00 1.02 1.10 1.23 1.36 1.55 1.82 3.85
M10 1.03 1.06 1.15 1.18 1.26 1.35 1.45 > 100
Model Relative log predictive likelihood at horizon:

1Q 2Q 4Q 8Q 12Q 16Q 20Q  6-10Y
M1 145 273  4.25 1.23 8.02 5.61 0.32  -73.73
M2 1.24 269 6.29 5.60 11.49 9.34 5.03 3.71
M3 0.80 1.88 3.88 4.35 11.07 10.57 825  -45.78
M5 -3.57 -4.55 -4.78 -12.28 -12.18 -16.04 -20.02 < -100
M7 -1.15 -1.85 -0.15  2.17 5.42 0.67  -4.44  -59.23
M8 031 1.15 4.31 5.51 9.45 5.22 2.84  -77.62
M9 -0.03 -1.94 -5.68 -19.99 -44.30 -66.03 < -100 < -100
M10 -390 -6.43 -12.35 -27.60 -57.13 -46.85 -57.68 < -100
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Table 7: Log marginal likelihood estimates, other countries

Country Model: M1 M2 M3 M4 M5 M8

Italy -134.34 -134.96 -134.02 -137.92 -135.14 -134.70
Japan -196.79 -193.74 -202.53 -196.72 -203.10 -197.09
UK -164.79 -165.88 -165.41 -166.56 -167.37 -164.50
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bands are 16th-84th percentiles
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Figure 3: Estimates of 7} for M1 and M4 with 16th-84th percentiles as shaded bands (CPI
+ Blue Chip)
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Figure 4: Posterior Means of pseudo-real time estimates of 7; for M1 (CPI+Blue Chip).
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Figure 5: Point forecasts for CPI inflation (four-quarter average rates) from M1 with the
16th-84th percentiles as shaded bands.
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Figure 8: Posterior means of pseudo-real time estimates of 7/ (core CPI4-Blue Chip).
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Figure 9: Point forecasts for core CPI inflation (four-quarter average rates) from M1 with
the 16th-84th percentiles as shaded bands.
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Figure 13: Point forecasts for PCE inflation (four-quarter average rates) from M1 with the
16th-84th percentiles as shaded bands.
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Figure 17: Comparison of posterior means of 7, by, Ay ¢, A\nt, dor and dy, for different models,

for Italy
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Figure 18: Comparison of posterior means of 7, by, Ay ¢, A\nt, dor and dy, for different models,

for Japan
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Figure 19: Comparison of posterior means of 7, by, Ay ¢, A\nt, dor and dy; for different models,

for the UK
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