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The Survey of Consumer Finand&CF) is designed to gather detailed information on the
financial and demographic characteristicdJo§ households. Inevitably in such a survey, some
respondents amenwilling or unable tgrovideall of theinformation requested of them. In waves
of the SCF before 1989, imputations of missing values were made ohan basis. A decision was
made for the 1989 survey to build systematic imputatiorediichg software that reflects the current
state of knowledge in the area and that would be substantially reusable in future waves of the survey.

This paper describes the Federal Reserve Imputation Technique Zeta (FRITZ) developed for
the 1989 SCF. In the next section of this paper, | giesaription of the structure of the 1989 SCF
and evaluate thencidence of missinglata. In thethird section, | review some a@he theory
underlying the proceduregplied. Inthe fourth section, ¢jive an outline othe structure of the
FRITZ model. The next section provides some statistics on the performance of the model. In the final
section, | provide a brief summary and discuss areas for further research.

1989 SURVEY OF CONSUMER FINANCES
History and Purpose of the Survey

The SCF as a wealth surveaces itsorigins tothe landmark 1963 Survey dfinancial
Characteristics of Consumers conducted by Dorothy Projector and Gertrude Weiss [1966]. Other
surveys known as the SCF were conducted in the 1970s. However, it was only in 1983 that the SCF
was revived as a wealth survey. The 1989 SCF is the third of the new series of SCFs. Our hope is
that there will be support to continue the survey on a triennial basis.

The 1989 SCF was sponsored by the Board of Gok&of the Federal Reserve System, the

Statistics of IncomeDivision of the Internal Revenue Servi¢€0I), the Congressional Joint
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Committee onlaxation, theOffice of the Assistant Secretary f@lanningand Evaluation in the
Department of Health and Human Services, the National Institute on Aging, the General Accounting
Office, the Small Businessdministration,the Office of the Comptroller of the Currency, and the
Social Security Administration. The data from the project are used broadly for policy analysis and
for more academic research in economics and other areas.

The purpose of the SCF is to provideanprehensive and detailed viewtbé financial
behavior of households. Altogether well over 1,500 variables were colfected. Detailed information
was gathered on all assets and liabilities attributable to the primary economic unit in the hdusehold.
Liabilities includecredit card debtsnstallment loansmnortgageslines ofcredit, andotherloans.

Assets include the principal residence, all types of loans made to others, real estate assets, businesses,
various types of accountsicluding checking, saving, moneyarket, IRA, Keogh, and brokerage
accounts, stocks, mutual funé®nds, and other assets. Detailed information was also collected on

the currenjob of respondents and their spouses, their current and future pension rights, and other
demographic characteristics. A supplementary surveycaagucted of th@ension providers of
currently employedespondents and their spousesider toobtain more comprehensive and

accurate information than could reasonably be expected of households.

This figure is adjusted for cases where the same figure could be reported in more than
one place.

*The "primary economic unit" is defined as the person within a household who holds
primary title to the dwelling, who is the principal lessee, or who is otherwise economically
dominant, together with the spouse and minor children of that person and any other persons who
are economically dependent on that group. A brief section of the interview was devoted to
summary information about other economic units within the household.



Questionnaire Design

To accommodate the many types of information requested from a range of socio-economic
groups, thejuestionnaire for the SCF is quite long dmghly structured. Typically, the design of
the instrument is sucthat questions abowollar amounts are preceded by one or nfiter
guestions. Foexample, before askinfpe amount in a respondenfifth checkingaccount, the
person is asked first whethigre unithas any checking accounts, and then how many accounts the
unit has. Sometimes respondents are asked different sequences of questions depending on the answer
to such filter questions.
Sample Design

The sample design of the 1989 SC&l& compleX. The two major parts of the sample are
the overlapping paneatross-section based on the 1983 Sample(1803 cases), and a new
independent cross-section sample (2000 cases). Without loss of information essential for this paper,
in this section | will review only the new cross-sectiomgie design. This design is based on a dual-
framedesign. Ongart ofthis samplevas drawn from a standard national area- probability frame
and the remainder was selected from a list frame developed from administrative files maintained by
SOI. A"wealth index" was constructed for each list frame element using income flows reported on
tax returns capitalized at variowates of returi. Elementswere then selected kstratified

probability sampling t@ver-represent units with higher values of the wealth index. The motivation

3A more complete description of the sample design is available in Heeringa and Woodburn
[1991].

“For example, taxable interest income was assumed to be supported by a stock of
interest-bearing assets equal to ten times the interest income (implicitly this assumes a rate of
return of ten percent). See Heeringa, Juster, and Woodburn [1991] for more detalils.
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for the dual frame design wawo-fold. First,since animportantmission ofthe survey is to
characterize the distribution of financial assets, which are highly concentrated in a small part of the
population, an efficient design should over-represent that group. Second, common survey folklore
and on-going analyses thfe 1989 SCF support tliaim that nonresponse tends tolgher for
households with higher levels wfealth® In most area-probabilisamplesthere is naneans of
making systematic adjustment for this differential nonresponse. The advantage of the list sample used
for the 1989 SCF is that nonresporegjustments can be made based on extensocagme
information contained in the administrative records that served as the sample frame.
Data Collection

Data for the survey were collected between the months of July 1989 and March 1990 by the
Survey Research Center at the University of Michigan. Interviews were largely conducted in person
and averaged about 75 minutes. Some panel interviews were conducted by telephone. In addition,
some other interviews were conducted at least in part by telephone at the request of the respondent.
In general, the telephone and in-persurrviewsappeardentical interms of the proportion of
missing information, amount of marginal comments, and other such information.
Data Editing

Before the data were punched, theestionnaires went througleveral stages @&diting.

Interviewers performed a consistency check as soon as possible after the interview. In the field office,

°It was estimated from the 1983 and 1986 SCFs that about a half of one percent of
households in the U.S. owns about a quarter of total household net worth. The degree of
concentration was even greater for assets such as stocks and bonds. See Avery, Elliehausen and
Kennickell [1988] and Avery and Kennickell [forthcoming, 1991].

®Preliminary information on unit nonresponse in the 1989 SCF is given in Woodburn
[1991].
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the guestionnaires weexaminedmorecloselyfor evidence of interviewer or respondentor --
with particular attention to the possibility of double-counting of assetdiabilities. Further machine
editing was performed otne punchediata for morecomplicated logical problems. Oreea in
which the survey igjuite weak is in the retrieval afformation missingdue to interviewer or
respondent errors.

Datachanges aall stages okditing represent somethingery closeto, if notidentical to,
imputation. Generally, a conservatiapproach was taken tthangingdata inediting. However,
when missing pieces of informatiomere obvious in the context afther information in the
guestionnaire, the data were filled in at this stage. Records were kept of major changes to the data.
As onemightexpect of an interviewhat wasadministered to households of all ranges of financial
sophistication, editing was substantial and importanthe quality of the final product. Many
lessons have been learnedhe effort both about how tavoid a number ofhe more serious
problemsthroughimproved questionnaire designtime future andibout what types addditional
information are most useful in resolving inconsistencies that cannot be eliminated entirely.
Unit and Item Nonresponse

The achieved sample for the entire 1989 survey includes 3,803 households. Of this number
3,134 havecross-section representation and 1,479 hpares| representation.  @fe 2000 new
Cross- section cases, 866 derive from thellSOframe. Area-probability and list cases were treated
slightly differently in the field. Area- probability cases were approached directly by interviewers, and

about 69 percent of these cases warentually interviewed.The list casesvere given a prior

This figure includes both cases from the new cross-section and from the part of the
overlapping panel cross-section with cross- section representation.



6

opportunity to refuse participation by returning a postpaid card. About a third lidttbases

refused participation at th#age. Theemaindemwere approached by intervieweyglding an

overall interviewrate for thdist sample ofabout 34 percentWhile the interviewrate for the list

cases is nohigh according to usual criteria, this figureerely makes explicithe differential
nonresponse with respect tacomethat ishidden inother surveysthat haveinsufficient frame
information to reveathe problem. Moreover, in the SCF, we have at least the hopmaking
systematic adjustments to the sample by estimation of response models using the universe data under
the assumption that units are conditionally missing at rarfdom.

Every observation in the survey contains at least one piece of missing information -- often a
very trivial item such as the interviewer ID number. Partial information was available for many items.
Respondents who were reluctant to provide deidues directlywere offered a cardontaining
dollar rangesabeled withletters. For totaincome amore directed "tree" approach was taken to
bound income more tightly. Excluding range-card responses, the mean number of missing values per
case is 21.6, the median is 11, the 90th percentile is 37, and the total number of missing values to be
imputed is 82,128. The mean number of range responses vpas Biterview and the total number
of such responses wa@sA77. Forcomparison, the maximum possible number of missing values is

about 6 million'® However, all pieces of missing information are not of equal value in terms of the

8See Woodburn [1991] for a review of our recent efforts in this direction.

°For purposes of this count, if a branch variable is missing, all subsequent variables within
the branch are also taken as missing.

9f one looks only at dollar amounts of financial assets (checking, money market, savings,
and other such accounts, certificates of deposits, stocks, mutual funds, bonds, and trusts), out of a
maximum of 136,908 data items, 3350 are missing, the mean number missing per case is 0.9 and
the median number is zero.
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overall objectives othe survey --e.g., the amount a respondéas in a sixth checking account is
usually lessmportant that the total amount of corporate stocks. Anathege of severity of the
problem, the proportion of missing dollar amounts based on the imputed values, is given below in the
discussion of the results of the model.

The structure ofmissing values iguite complicated. Asoted above, thguestionnaire is
designed sothat respondents aked down many question paths with several conditional branches.

In addition, a vengreatnumber ofpatterns ofmissingdata appear in the data. Fadirpractical
purposes, it is a safe assumption that the overall pattern of missingness for each case is unique. Thus,
the imputation of thenissing valuesannot be addressed routinely using techniques developed for
"monotone"” patterns ommissingnesswithout sacrificing substantial information to achieve
monotonicity for subgroup's.

Table 1 provides response rates for a nonrandom selection of survey variables for the panel
and cross-section observations taken together. As shown in the table, item nonresponse rates vary
widely, but generally within a range that is typical of other economic surveys. One exception is 1988
adjusted gross income, which was missing in over 28 percent of cases. | suspect that this very high
level of nonresponse hado inportant sources. THeeld period began later than expected after
April 15th and ran longer than expected, and respondents were not encouraged very strongly to look

up data where appropriate.

Y“For a discussion of monotonicity and techniques for imputation where missing data
patterns are monotone, see Rubin and Little [1987].



Shadow Variables

We have attempted to incorporate in the dataset as much information as possible about what
went into the determination of eadatavalue. For example, a piece of information might be
provided exactly by the respondent, provided by the respondent as a range, refused by the respondent,
unknown by the respondent, inferred from other information at the stage of editing and imputation,
etc. Every variable in the survey has a shadow variable that reflects the information content of the
primary variable. In all, each of these shadaewables can take on 63 values. The function of these
variables is twofold. First, for purposes of automated imputation, tressbles serve as a
convenient flag for imputation. Such flags become even more important in the context of longitudinal
imputation. Second, it is important for many analytic purposes to know exactly which items were not
reported by the respondent. Fotample, some analystsay wish touse different methods of
imputation, or to use other techniques to allow for the possibility of specific models of nonignorable
nonresponse.

REVIEW OF IMPUTATION THEORY

There are numerous ancestors of the missing value techniques reviewed in this section. For
a more complete history, | refer the reader to the detailed referenceslamdhwark National
Academy volumes (Madow, Olin, and Rubin [1983]), Little and Rubin [1987], and Rubin [1987].

Three strands of literature are particularly relevant to the work reported in this paper: the EM
algorithm, multipleimputation, andsibbs sampling, ostochastic relaxationAll of the methods
discussed here are strongtyluenced by Bayesian thinking. #ore complete overview of this

literature is given in Rubin [1990] and Gelfand and Smith [1990].
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The EM algorithnpresented as a distingtocedurdirst appeared in Demster, Laird and
Rubin [1977]. That model is intended to estimate parameters in a dataset where some information
is only partially observed and direct estimation in the presence of missing information is difficult, but
estimation with complete data would be easier. Using observed information, starting estimates of the
parameters are computed. These estimates are then used to simulate the missing information. The
original information is used along with the simulated information as a basis for maximum likelihood
estimation of the parameters of intere3tis process continuegeratively untilthe parameter
estimates are sufficiently close to a fixed point. The intuition of this landmark paper underlies all that
is reported here.

Rubin'swork onmultiple imputation (see particularly Rubin [1987] and references therein)
serves as a bridge between EM and the later simulation techniques that involve a structure similar to
EM. Briefly, multiple imputation simulates the distribution of missing data and, thus, allows a more
realistic assessment of variances and a more efficient representation of first moments.

A paper by Tanner and Wong [1987] follows from the methods of EM and ideas of multiple
imputation and offers a clear framework for understandingiseéulness of iterative simulation
methods in imputation. Tanner and Wong focus on the estimation of a set of parameters where some
potential conditioning information ignobserved, but as shown below, ie&sy to extend the
argument to estimation ahissingdata. Abrief review ofpart of their argumentsnay help in
understanding the development of this paper.

Let X be unobserved values of a larget X, let X = {X - X,}, and let0 be a set of

parameter values to be estimated. Using notation similar to Tanner and Wong, one may write

@) KOX,) = [« f(BX,,2) f(ZIX,) dZ and
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(2) XX = [o X JD X F(BIX,) dp .
By substitution and rearrangement of terms, one may write (as do Tanner and Wong)
(3)  f(BXo) = [o { [ x. F(BIX2)(ZIdXJAZ } F(HIX,) dp .
Similarly, one may write
@ fKIX) = [ { o F(O1X5,2) f(X b X Jd} f(ZIX ) dZ .

Both (3) and(4) areeasilyseen to be a recursive relationsthat might be solved by iterative
substitutions. Tanner and Wong provattundermregularity conditions(3) (equivalently(4) by
simple change of notation) converges uniformly to a unique fixed point.

Equation (4) has a simple interpretation in the imputation framework with the paratnheters
serving as an intermediadéepusing simulation techniques and multiple imputation. Given some
starting values, one could draw a number of replicat@saofd X, in turn until convergence of the
posterior distribution 06 or X, is reached. In order ftlis method to be practical, one must be
able to compute several conditional distributions to be able to draw samples of all of X artd all of
simultaneously. In some complex sets of data this constraint is not practical.

Papers by Geman and Geman [1984] and Li [1988] provide useful approaches for dealing with
more complex data structures. These papers describe an iterative Markovian procedure of successive
simulation ofthe distribution ofvariables conditioned oboth observed dat@nd distributions of
variables previously simulated in the same iteration. The method is typically referred to as stochastic
relaxation or Gibbs samplinglhe proceduréas had extensive applicationgle area ofmage
processing. The iterative nature of the procedure is similar to the model of Tanner and Wong with

the following exception. If X above is partitioned into elemenjs X , where i=1 to U, the procedure
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can be described as a successive simulation of the distribution of the separate eledramis>Qf
conditioned on all available information, where "available" is taken to mean nonmissing information
as well as simulated missing data. For example, in iteration | for variable V, one graws X from

FOX X o X DX (1) wvBY
wherey(l),, denotessimulateddata onmissing variable j ithe Ith iteration. Moreover, the set of
conditioning variables neatbt be the entire set pbssible variables if it iknow thatsome local
structure (or'clique” intheterminology of Geman and Geman) can be assuorezhch variable.
A variation of thisprocedure ispplied inthe construction of the FRIT&odel described below.
Although convergence is reported to be slow for large numbers of variables, Geman and Geman show
that under regularity conditionthe process converges att thesimulated distribution of X
moves closer to the true latent distribution with each iteration.

DESCRIPTION OF FRITZ

After a review of the literature and of existing procedures, we decided to build comprehensive
new imputation software for statistical imputation of the 1989 SCKegirand Holt [1976] and their
proposal for an automated system of edit and imputation sets an imposing standard. Two software
packages represent important extensions of the ideas in that paper. Statistics Canada maintains very
interesting edit-imputation software, the Generalized Edit and Imputation System (GEIS). A review
of this model is given in Giles [1987]. This is a very impressive model. However, for our purposes,
the system isoo limited inthe types of imputatiomodels available. laddition, it appearthat it
would be cumbersome to implement the multiply-imputed Gibbs sampling direction taken here. The
Structured Program for Economic Editing and Referrals (SPEER) developed at the Census Bureau

(Greenberg and Surdi [1984]) offers ae@lent environment for the implementation of the types of
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complicated algebraic constraints important in the imputation of the SCF. However, given the nature
of the SCF data and the theoretical direction taken here, SPEER appeared too difficult to adapt for
our purposes.

In the past, imputation had been performed on an advésis, with significanand very
frequent intervention by analysts at the level of individual imputations well beyond the editing stage.
While the effort involved in the development of FRITZ has been great, we believe that much of the
core set of procedures can be reused for future SCFs as well as for other purposes.

In designingthe imputation procedures for the SCF, we were constrainedumber of
ways. First, "reasonable" estimates of the missing data for a subset of financial variables needed to
be available very quickly for pressing policy needs. Second, for several reasons we were limited to
about a year from the time the first complete data tape was received in the fall of 1990. Third, the
systemwas required to allow the imposition of prior information both in the form of edit rules and
specific information about individual cases. Fourth, the procedure had to accommodate any possible
pattern ofmissingvalues. Finally, the workhad to be performed witimited computer resources
(storage and CPU).

There is a continuum of changesthe respondents' answéram the point of interviewer
recording, through primary data editing, to statistical imputation. Virtually all imputations made after
the primary editingtage are model-based, though a small number of documented cases have been
imputed judgmentally — typically variabléisat would bequite cumbersome to impute, but which

are resolved with very high probability upon inspection. gehtally imputed variables are flagged

12 Fewer than 500 variables were imputed judgmentally. One frequent imputation of this
type is the case where a respondent has reported an amount of a payment or a type of income, but
the frequency of that amount is missing (e.g., a respondents who reports receiving $450 in Social
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as such in the shadovariables and &le of these decisions waseated as a part of tiserrvey
documentation.

FRITZ was designed tbandlethe greaimajority of statistical imputations. Although the
procedure is iterative and involves multiple imputations, for relative transparency of exposition, it will
be convenient tact atfirst as thougththe modelwere the moreisual case of single imputations
computed without iterations. The general procedures applied in the first iteration are used in all later
iterations. Special problems inducedtbg mixture of panel and cross-sectidata will only be
presented later in the discussion.

Basic Procedures in the First Iteration

Let the potential set ofariables collectefbr agivencase r (r=1 to R) be denoted by X
where X is a vector of N variablgs.  Additionally, lgt X (ofrank N)apd X (ofrapk N =N-N)
denote, respectivelyhe partitioning of X intovariablesthat areavailableand thoseamissing for
some reason. The goal of the imputation process is to obtain a good estimatg of F(X |X ). Multiple
imputation allows the dataset itself to stand as a proxy for that distribution.

Using a variation on the technique of Gibbs sampling or stochastic relaxation described above,
FRITZ proceeds through the variables to be imputed in a predeterminedcgemaking imputations

variable-by-variable, and for a given variable, independently for each obset{/ation. In the process,

Security payments, but reports no time interval over which the payments are received). Almost all
other imputations of this sort are similarly obvious.

BIn fact, N is not a constant for all cases. In particular, panel cases were asked different
guestions in a number of areas. Allowing for this distinction would only complicate the notation
here.

“In principle, the sequencing of the variables for imputation should not be important.
Every imputation should be conditioned on every possible bit of relevant information. Practically,
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the information set available for imputation of each case expands as imputation proceeds through the
sequence of variabledmputedvariablesare treatedexactly likereportedvariables within each
iteration. That is, in the first iteration we estimate

F(B. 1Xy)

FOX X580

FBXgoX med

FOIXgoX nen B0

F(ﬁlegUde) ,

FXuXgX e B
where X, denotes theissing valuesmputed in the sequence befa@iable n andvhere the
parameters of thdistribution are estimated fromeportedand simulateddata in theprevious
iteration, and wherf, is an intermediate parameter vector corresponding to the "M" stage of EM.

In the FRITZ system, therare four types of model-based imputations: imputation of
continuous variables, binary variables, and polychotomous variables, and nonparametric imputation.

Unfortunately, theory does not offer much help in finding the "true" functional form of F. In the case

this is not possible both because of degrees of freedom problems and because of the time required
to invert enormous matrices in the application. For example, suppose for an observation that the
number of business the household owns is missing and the only information known is that for the
second business the household loaned $500,000 to the business. A model could be specified
especially for this case, but that would be quite cumbersome. Alternatively, a very large model
could be built, but that would likely exhaust the degrees of freedom. It turns out that careful
sequencing of the imputation of variables often allows the use of summary variables that appear to
be a reasonable proxy for more detailed data (e.g., the total amount of money in all checking
accounts instead of the amount in each of as many as six accounts).
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of most continuous-variable imputations, it is assumed implicitly that the variables with missing values
can be taken to have a conditional distribution of the form

F(G(a)|H(b)) ~ Normal(m ¢2), where a is aariable withmissingvalues, b is &et of
conditioning variables, and G and H are transformations of a and b, respectively. This assumptions
amounts to assuming that

G(a) = H(b) +¢,, wherec, ~ Normal(0¢2,) .
Typically H is assumed to be multiplicative in b dhd transformations G and H are taken as log
transforms, implicitly yielding the linear model,

A = constant#3,B, +...%€, ,
where thecapital letters indicatthe log transform. The grebénefit of this assumption itkat a
relatively simple covariance matrix of the variables forms a sufficient statistic for imputation and the
simulation of A is straightforward.

In practice, we can be almost certémat thevariables we observare a subset of the
appropriate vector B. At the least there ldaly idiosyncraticfactors forevery observation that
would be extremely difficult to represent as a reasonably small set of variables even in principle. Once
we face the fact that all of B is not known, a potential problem of nonignorable nonresponse arises
— that is, conditional on the observed variables the set of nonrespondents for a given item may be
a nonrandom subset of the whole sample.

In FRITZ an agnostic approach is taken to the set of observed variables chosen to proxy for
B. In principle, it might be desirable to take the conditioning set as a series expansion of the function

G involving all variables availabker each observation. In practice, degrees of fredduoitnthe

1°See Little [1983].
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number of variables, interaction terms, and higher order terms that can feasibly be included. In any
event, no attempt is made to exclude variables that have no obvious "structural” interpretation -- the
underlying model is a pure reduced form. Most often, the maximal set of conditioning variables for
a given case is on the order of 200 or marables, frequently including a numberretoded
variables particularly relevant for a given imputation. Typically included in the set of variables used
is a group of interviewer observations on respondésts! of suspiciorbefore and after the
interview, theirlevel of interest, etc. The data indicateemsonable variation in the amount of
information reported foall levels ofthese variables. Thiope is that theseariables will be
correlated with unobserved characteristics of item nonrespondents and, thus, mitigate the potential
for nonignorable nonresponse bias.

While there is no guarantee that such an approach eliminates — or even reduces — possible
response bias, such a strategy may be the best practical insurance against bias. Our means for testing
this assumption areery limited. Ongpossibility may be t@ompare the distribution efariables
available for the list sample in the administrative records with the distribution of comparable variables
in the survey. While confidentiality concerns strictly limit direct comparison of cases in the two files,
it may be possible to look at such distributions within some sub-groups.

Operationally, FRITZooks at agivencase, determines whethbe current variable in the
sequence should be imputed, determines which variables in the conditioning set are available either
as reported values or previously imputed values, and computes a randomized imputation. As noted
earlier, thecombinations of missing values varies widelser all cases sthatvirtually every case
involves a different "regression.” Thus, A, the imputed value of variable A for observation j is drawn

according to
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Ba=[B gy Byl [Byy Al and

Aj - F(A|ng aBA) ,
where B, denotes the set\adlues ofall observations fovariables included in B the set of all
available (reported and already imputed within the iteration) values for case |.

In the first iteration, an improper imputation is made by drawing a value from the distribution
implied taking the model coefficienfisto be fixed and assuming thatis distributed normally with
mean zero and variance given by AA - AB (B g'(i)B1 LyB 'A, where the relevant moments are
computed as described below. The allowed distributian ofay be truncated or otherwise altered
using prior information or editing rules. Because the inversion of a large matrix is usually involved
for each such imputation, this method is quite time-consuming.

The moment matrix for the continuous and binary imputations is computed for the appropriate
sub-population —e.g.,the covariance matrix needed for the imputation of the amount of holdings
of certificates of deposit is computading onlyhouseholdghat actually have such instruments.
Conveniently, a moment matrcomputedusingthe maximalset of conditioning variables allowed
will suffice for every case. Theoftware automatically selects a submatrigr each case
corresponding to the conditioning variables available. In the first iteration, the covariance matrix for
the imputations is computed without weights asghgall non-missingpairs of variable$or each
observatiort®  As is well-known, this method of calculation allows the possibility that the covariance
matrix may no longer be positive definite, implying a negative value?forin practicec?, is rarely

estimated to be negativezor convenience athe first stage,e?, is given afloor of zero. The

*Both cross-section and panel observations are pooled for estimations for variables that
are common in the two parts of the survey. Special problems, which are noted later in this paper,
arise when we begin to use prior-wave information in the estimation.
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alternative of using only cases with full information would usually too drastically reduce the number
of observations available for the calculation.

A more serious problem in the covariance estimation is that induced by the presence of very
influential cases. Typically this has been a problem in cases wheere arecoefficients of
conditioning variables thatreidentified by a vensmallnumber of observations. In such cases as
have been detected, the setcohditioning variables has beesduced to excludthe offending
variables. Unfortunately, | havet had either computgyower orstaff resources to explore this
dimension systematically. FRITZ writes out information about imputations as it proceeds and such
problems detected to date have bfsemd throughnspection othe modeloutput. One sign of
problems is the frequemability of a givenmodel to impute a value strictly withthe bounds
imposed by the constraints (either determined through edit rules, or from range card estimates). The
most desirable approach would be to use robust estimation techniques for the covariance matrix. This
will be an important line of research for this project in the future.

There appears to be another — perhaps related — class of problems with covariance matrices
estimated in this way. Initially, it would happen occasioth#ly the model would impute values that
were clearly absurd. Although a sweep algorithm with a facility for elimination of near-singularities
is used in FRITZ, decomposition of the covariamoatrix indicated a situation normally
corresponding to near-collinearifye., very large condition numbers)Moreover, theproblem
disappears once eompletely imputedile is availablefor covariance estimation afténe first
iteration. Thus, theroblem seems to stem from a characteristic of using all non-missing pairs for

variables irthefirst iteration. Although | havaot beerable to resolve the problem analytically, |
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have implemented a numerical patch in the first iteration only that is related to principal component
regression.

For binary variables, it is assumed that the same model holds as in the continuous case. This
amounts to the somewhat more suspect assumfitainthe inear probability model applies.
Problems withthe linear probability modehrewell-known!” The modéails to account for the
information implied by the fact that probabilities must be in the closed interval [0,1] and, because the
model is heteroskedastic, produces inefficient estimates of the model parameters. Much better from
a theoretical point of view would be to pose the relationship as a probit, logit or other such explicit
probability model? As iturnsout here, however, the informational requirements of such models
are too large to be practical. First, such models must be estimated iteratively, requiring an additional
pass through all of the data at each iteration of thagpriity model. In addition, as is the case with
the continuous variable imputations, patterns of missing data are such that virtually every observation
has a different informatioget. Because there is lmwv-dimensionaket ofsummary statistics that
would apply to allsubsets of conditioning variablesttually everyobservation would require a
different model an@dditional passes through the data. Goldberger [1964] has suggested that one
use the estimates from the linear probability model to create weights for a second iteration which, as

Rubin has pointedut in conversation, would amount to a fildewton step in thenaximum

"See, for example, Judge et. al. [1985], p. 756 ff.

8As Roderick Little has pointed out in converstaion, the discriminate model uses the same
set of input statistics as the linear probability model, but has the advantage that outcomes are
contrained to lie between zero and one. In the on-going revision of the FRITZ model, the
discriminant function approach is being explored.
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likelihood estimation. Unfortunately, the time required for even that refinement is prohibitive given
the current speed of the computers available to the project.

Given an estimated probability frotne linear probability model, draw ismade from the
implied binomial distribution to determine the outcome. Some key polychotomous imputations are
structured as the sequential prediction of binary choices. The input covariance matrix is computed
exactly as in the continuous variable case above.

Less critical polychotomous variables are imputed using a type of randomized hotdeck. Cases
are arrayed as multidimensional frequency table using a numbecla$sifying variables. The
imputation procedurgandomly selects a valu®r the missing variablefrom the appropriate
conditional cell. Aminimum number of cases is required in each cell.th#t minimum is not
achieved, there are rules fwllapsing adjacent cells. Very closedlated to this simpleotdeck
procedure is a nonparametric regression technigssentially the difference isthat continuous
variables are allowed in the frequency table and the collapsing procedures select a slice of specified
size from the joint distribution of the variables.

Higher-Order Iterations

In the firstiteration, the goal is to estimate a reasonabteof startingzaluesfor further
iterations. At the end of the first iteration, we have one copy of the dataset with all missing values
filed in. From the seond iteration and on, the initial dataset containing missing values is replicated
3 to 5 times, anthe missing valuesre filled in based on statistics computsthgthe completed
dataset from the prior iteration. In the second iteration, the covariance matrices and other such basic

statistics needed for imputation are estimated from the reported data and the single imputations from
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the firstiteration. In higher-order iterations, these statistics are pooled across the imputation
replicates.

Following the example of Tanner and Wong, the number of replicates is allowed to vary over
iterations. The first iteratiomvolvesone replicate, the second iteration three replicates, and later
iterations five replicates. The primary justification for the varying number of replicates is the severe
constraints on disk storafe. Given the complex tree structure of the data, it is an open question how
many replicates may be needed to reflect adequately the variation due to imputation.

If the assumptions we have made @t move ustoo far from the requirements of the
underlying theory, at each iteration, FRITZ will move clodeward the trudatent posterior
distribution of the data. For convenience, we define convergence in terms of changes in the implied
distribution of wealth, rather than as a function of all possible variables. In many applications, Gibbs
sampling isknown to converge slowly. Unfortunately, tmsay be asevere limitation in this
application. The first iteration of FRITZ requires at least 11 dayargelydue to the number of
matrices that must be inverted -- on a fairly fast Solbourne minicomputer computer dedicated to the
project. Subsequent iterations dake 3 weeks or longer. The amountiofe required places
particularly strains oour ability to debug such complex software. For this paper, only the output
of the first two iterations is available.

Structure of Software

FRITZ is written in the SAS language (vers®03) andmakes extensive use thie SAS

MACRO language to create a subroutine structure. The entire model comprises about 100,000 lines

of code. The majority of the basic computer code is written in PROC IML. The advantages of SAS

An efficiently written replicate requires about 120M of disk space.
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are that it is a known and closely-monitogdductwith excellentdatamanagement facilities.
Among the important disadvantages are that it can be slow and there are bugs in PROC IML in the
version of SAS used.

Generally, FRITZ requires four types of statements for each variable to be imputed. First, a
set of rules is specified to impose editing rules atiger priorinformation about thefeasible
distribution of imputations. Secondsat of transformations specified giverthe imputed value.

Third, a set of statistics is computed for the imputation for the appropriate sub-population. Finally,
there is a call to the central imputation driver. An annotated version of a simple set of such routines
for the imputation of directly-held corporate stocks is provided as apperttlix A.

As in the example in the appendix, the edit rules generally are posed in terms of feasible upper
and lower bounds for imputations. In the example there may be prior information from a range card,
from information on the subset of stock held in the company where someone in the household works,
from the number of companies in which the household owns stocks, or from the combination of legal
requirements anthe amount borrowed on a stookargin account. Often irother cases the
constraints derive from complex algebraic relationships between variables. In the recode section, an
attempt is made to create all related variables for which there is complete information at the time of
the imputation, including constructed variables that may be needed in further imputations in the same
program. In the example, the program may fill in the missing amount or percent that the stock had
changed in value since its purchase and other items.

The call to the module that computes the moment matrix generally specifies a list of variables

and a sub-population on which these estimates should be made. In the appendix, the calculation is

The main imputation program is discussed further in Kennickell [1991].



23

made only for the population that has already been determined to have stocks. Finally, the call to the
main imputation prograrspecifies aype of model, the input covariance matrix, conditiander
which the variable should be imputed, and so forth.

The larger program is constructed asedes ofsix large SAS MACROs. Each of these
modules in turn creates a working dataset containing all variables to be imputed and all condtioning
variablesneeded withirthe modulecalls alarge number of smaller modulis the imputation of
individual variables (such d@hatdescribed above), and thetores thébasic variableshat have
changed in thenaindataset. For the interested readgpendix B provides aketch of how the
overall code is arranged. More detailed information is available from the author upon request.
Panel Imputations

The work reported ithis paper igorimarily concerned with the imputation data for the
1989 SCF cross-section, rather than the pamelgb that project. With the exception of marital and
employment history variables, whigrere constructed from updathstorical information for the
panel, the questions in tiservey forthe cross-section cases arpraper subset of thguestions
asked of thepanel cases. Ilorder toexpand thebasisfor covariance estimation, theanel
observations have been included wiftke cross- sectiomariables irnthe imputations along with a
dummy variable indicating that a case is a panel case.

Explicit recognition of the longitudinal dimension of the panel cases increases the complexity
of the imputation and editing problem by an order of magnitude. Patterns of missing data are even
more complicated when the longitudinal dimension is added: a respondent may report one data item

in 1989, but have refused thanse item in 1983, or data items may be only partially comparable. In
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principle, one should use all information in all periods to model the joint distribution of all variables
and impute -- or re-impute -- all data missing in any period.

Panel imputation is an enormously complicated task that grows in complexity with the number
of panel observatiord. The amount of time needédr modeling andor computation would be
extremely large. Moreover, degrees of freedom in modeling would quickly become very limited. The
strategy | expect to follow is a compromise. A vector of key panel financial and other variables will
be createdlong with indicators of the degree missingnes$or eachvariable. Ifthe amount of
missing information exceeds a certain percent, a varidbleewreated as missing. A single pass will
then be made through the data, augmenting the sets of conditioning variables used for cross-section
imputation to include the constructed variables and adding imputation modules for the newly included
variables. Since the historical variables will only exist for the panel cases, problems may arise in the
covariance estimation similar to those encountered in the first iteration of the imputations discussed
above. Alternatively (and preferably), one could simply treat the panel variables as missing from the
cross-section cases and proceed as before. Unfortunatelgrynlarge number of variables that
would then be "missing" may render such an approach infeasible with current resources. In light of
the importance of panel data for research, further work in panel imputation will have a high priority
in the SCF project, and | hope in the work of others.

SOME RESULTS FROM THE MODEL
As noted earlier, short adddding upall missingvalues equally, it is difficult to find a

universally applicable singleneasure of thenformation missingdue to nonresponseAfter

“The task is further complicated here by the fact that the data structure of earlier SCFs
makes it very difficult to identify which values were imputed.
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imputation, othemetricsareavailable. One such compelling measurhésproportion ofilollars

imputed for various items. Table 2 provides an estimate of the unweighted percentage of dollars that
were imputed for selected items for the panel and cross-section cases together. Weighted percentages
might be more informative here, but sampling weights are at such a stage that | do not believe such
estimates would be reliable. Weighted and unweighted estimates will be provided later for the panel
and cross-section separately.

An estimated 19 percent of total net worth in the sample was imputed, with 4.9 percentage
points of that amount imputed using range information. In the case of total income, 35.2 percent of
dollarswere imputed with aamazing30.5 percentage points of this amount constrained by range
estimates. Most of the other figures reported lie somewhere between these cases.

Table 2 alsadisplaysthe coefficient of variationdue to imputation for components of
household net worth and other variables based on data from the second iteration of FRITZ. As might
be expected, the model performs better in terms of predicting higher-order aggregates than in terms
of individual assets. For example, while the variation for money market accounts is 7.6 percent, the
total variation in net worth is only 0.3 percent.

Because only the first two iterations of the model are currently available, it is impossible to
say very much about the empirical convergence properties of FRITZ. However, as shown in figure 1,
it does appeafrom the data that areurrently available thathe difference inthe cumulative
distribution of financial assets (a key variable) is virtually unchanged between the first two iterations.

SUMMARY AND FUTURE RESEARCH
The FRITZ model was developed to provide a coherent framework for the imputation of the

1989 SCF with the expectation that the model could be incremedplisted for use in future SCFs.
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An attempt has been made to utilize the most current research in imputation. To our knowledge, this
effort represents the first attempt to apply multiple imputation or methods of stochastic relaxation to
a large social science survey.

In addition to the question of panel imputation noted above, there are many areas in need of
further research. One of the most pressing concerns in the imputation of the SCF is to modify FRITZ
to take advantage of obvious opportunities for parallel processing of the data. Although the software
modifications would be complex, in principle on our UNIX system, it would be possible to farm the
work out to a large number of independent processors with a central coordinator. While saving time
is a reasonable goal alone, it is also the case that it is only by speeding up the processing that we can
have a hope of implementing significant improvements in FRITZ. Of particular interest are changes
related to improved robustness of the imputation and improved nonparametric imputation techniques.

Currently, the software used for nonparametric imputatiotinited in the number of
conditioning variablethatcan be used. It gossible to "trick'the software by creatingpmplex
index numbers to be used as conditioning variables.difffr@ilty in allowing alarger number of
variables is in devising reliable classes of rules for grouping observations to create high-dimensional
cells with a sufficient number of observations.

At the time this paper was completed, only the first two iterations of FRITZ were available.
As we progress, it will bariportant to study the convergence properties of the model. If the model
converges as slowly as Gibbs sampling appears to converge in some application, it is unlikely that in
the near future there will be sufficient computer power to allow calculation to a near neighborhood
of convergence. A related problem is the sensitivity of the model to starting values. Wu [1983] has

noted that the convergence of EM to a global maximum is not always guaranteed. Since the Gibbs
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sampling approach is in a sense logically subordinate to EM, FRITZ might be expected to have similar
problems.

Finally, we plan to examine how our estimates of imputation variance change as the number
of replicates increases. Becatisesurvey variables have a complicated hierarclstraicture, it
seems plausiblhat alarger number of replicates might be necessary to dlevdata texpress
possible variations in thatructure due tamputation. Howeveradditional replicatesre very
expensive in terms of time required for imputation, amount of storage required for the data, and time
required at the analysis stage. As in many other applied statistical exercises, greater computer power

will eventually solve alot of problems.
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APPENDIX A
Imputation Modules for Amount of Directly-Held and Publicly-Traded Stocks

this MACRO definesconstraints on the imputation gélue of directly-held publicly-traded
corporate stocks;

this MACRO and the following one are written in IML code and are called in the processing of
the IMPUTEL1 MACRO below;

%MACRO TR1ISTKS;

define default bounds;

assume have at least $10 in each company where own stock;
LB=10*MAX(1,NCOSTK);

UB=9999999999;

use information on amount in margin account + legal requirements to set LB;

IF (AMARGIN>0 & JAMARGIN<24) THEN LB=AMARGIN*4;

ELSE IF (JAMARGIN>=24 & JAMARGIN<=45) THEN DO;
extract information from range card (JMARGIN is shadow variable for amount
borrowed on margin account);
%CARDBB(J=JAMARGIN,UB=MUB,LB=MLB);
LB=MAX(LB,MLB*4);

END;

use information from range card for stocks (JASTK is shadow variable for amount of
stock);
IF (JASTK>=24 & JASTK<=45) THEN DO;
%CARDBB(J=JASTK,UB=SUB,LB=SLB);
UB=MIN(UB,SUB);
LB=MAX(LB,SLB);
END,;

use information on amount of stock in place where work + $10/company (JASTKWRK is
shadow variable for amount of stock in company where household member works);
WLB=0; WUB=0;
IF (JASTKWRK>=24 & JASTKWRK<=45) THEN DO;
%CARDBB(J=JASTKWRK,UB=WUB,LB=WLB);
END,;
IF (WLB>0) THEN LB=MAX(LB,WLB+MAX(0,(NCOSTK-1)*10));
ELSE IF (ASTKWRK>0) THEN
LB=MAX(LB,ASTKWRK+MAX(0,(NCOSTK-1)*10));
IF (NCOSTK=1 & WUB>0) THEN UB=MIN(UB,WUB);
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*

put bounds in log form;
UB=LOG(MAX(LB,UB));
LB=LOG(MAX(10,LB));

%MEND TR1ISTKS;

*

this MACRO sets recodes using imputation of log(stock);

%MACRO TR2ISTKS;
* compute level value of stock from log;
ASTK=INT(EXP(LASTK)+.5);

compute percentage/amount of gain/loss since bought all stock;

IF (GAINSTK=1 & PGSTK>.Z & AGSTK<=.Z) THEN AGSTK=
MAX(1,INT(.5+ASTK*(1-1/(1+PGSTK/10000))));

IF (GAINSTK=1 & PGSTK<=.Z & AGSTK>.Z) THEN PGSTK=
MAX(L,INT(.5+((ASTK/(ASTK-AGSTK))-1)*10000));

IF (GAINSTK=5 & PLSTK>.Z & ALSTK<=.Z) THEN ALSTK=
MAX(1,INT(.5+ASTK*(1-1/(1+PLSTK/10000))));

IF (GAINSTK=5 & PLSTK<=.Z & ALSTK>.Z) THEN PLSTK=
MAX(1,INT(((ASTK/(ASTK-ALSTK))-1)*10000)):

try to compute total financial assets;

AFIN=ACHKG+AIRA+AMMA+ACD+ASAV+AMUTF+ASAVB+ABOND+ASTK;
IF (AFIN>.Z) THEN LAFIN=LOG(MAX(1,AFIN));

if only stock in one company and have stock in business where work, the value of stock same
as value of stock in business where work;

IF (NCOSTK=1 & STKWORK=1) THEN DO;
ASTKWRK=ASTK;
LASTKWRK=LASTK;

END;

create interaction term from log(stock) and log(number brokerage transactions in past year);
LNBTSTK=LNBRTRA*LASTK;,

%MEND TR2ISTKS;
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* this MACRO computes covariance matrix for imputation using standard input set
(%INCVARS?2) and variables specific to variable — using only population with stocks for
calculation;

%SSCPMISS(VAR=%INCVARS2 NCSTK GAINSTK LAGSTK LALSTK STKWORK
LASTKWRK GAINMF NCMUTF LNBRTRA,DATA=&0LDI,OUT=_TAB,
WHERE=%STR(DSTOCK=1));

* call to the main imputation MACRO;

* specify continuous variable model, dependent variable is log of holdings of corporate stock,
JASTK is the name of the shadow variable, _TAB contains the covariance matrix estimated
above, the dataset containing the values to be imputed is given by &NEWI, the MACROs
TR1ISTK3 and TR2STKS3 are called, imputation is restricted to cases that own stock and
have a current missing value (or have a temporary value based on a range card), TOLER
specifies a variance decomposition routine in the first iteration to stabilize the model, AUX
specifies variables that are needed for the imputation, and KEEP specifies variables to be kept
in the working dataset;

%IMPUTEL(TYPE=CONTIN,DEP=LASTK,MISS=JASTK,TABLE=_TAB,DATA=&NEWI,
TRANS1=TRI1ISTK3,TRANS2=TR2ISTK3,WHEREV=DSTOCK ASTK JASTK,
WHERE=(DSTOCK=1 & (ASTK<=.Z | JASTK<45)),TOLER=YES, AUX=STKWORK
NCOSTK JASTK ASTK ACHKG AIRA AMMA ACD ASAV AMUTF LNBRTRA JAFIN
ASAVB ABOND ASTKWRK JASTKWRK AMARGIN, KEEP=ASTK AFIN LAFIN
ASTKWRK LASTKWRK LNBTSTK AGSTK ALSTK PGSTK PLSTK GAINSTK);
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APPENDIX B
Overall Organization of FRITZ

Control file for FRITZ (Federal Reserve Imputation Technique Zeta);
* Designed and implemented for the 1989 SCF;

Arthur B. Kennickell;
* original version December 20, 1989;
o Current version August 2, 1991

* set and define all FILENAMES here;
FILENAME IMPUTE1 '/..."
FILENAME INCOMEL1 /...";
FILENAME RESPROP1 /...
FILENAME INSTIT1 '/...";
FILENAME MORTDEB1 '/..."
FILENAME CONDEB1 Y..."
FILENAME BUS1 /..."
FILENAME LABOR1 '/...";
FILENAME DEMOG1 '..."
FILENAME SSCP '/..."
FILENAME CARDB ..."
FILENAME CONVERGE '/...";
FILENAME BACKUP '/..."
LIBNAME LOUISE '/..."
LIBNAME LITTLE /...";
LIBNAME RUBIN '/..."

* all include statements here for MACROSs;
%INCLUDE CARDB;
%INCLUDE SSCP;
%INCLUDE IMPUTEZ;
%INCLUDE INCOMEZ;
%INCLUDE RESPROP1;
%INCLUDE INSTITZ1;
%INCLUDE MORTDEB!I;
%INCLUDE CONDEB1;
%INCLUDE BUSI;
%INCLUDE LABORI1;
%INCLUDE DEMOG1,;
%INCLUDE CONVERGE;
%INCLUDE BACKUP;
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* begin imputation control code;
%MACRO FRITZ;

* set-up variables;
%LET ITERNUM=1;
%LET CNVRG=NO;
%LET NOPRINT=YES;
%LET SEED=1111111,
%GLOBAL ITERNUM NOPRINT SEED;

* FRITZ1 is always the name of the dataset used to compute the statistics for imputation;

* FRITZ2 is always the name of the dataset that contains the imputed values;

» atthe 1st iteration, the input dataset is the original dataset and the output dataset is a single
replicate of the same dataset;
%LET FRITZ1=%QUOTE(LOUISE.SCFR);
%LET FRITZ2=%QUOTE(RUBIN.SCFR1);

* begin iteration loop;
%DO %UNTIL (&CNVRG EQ YES OR &ITERNUM EQ 100);

* create (new) replicates of the original RECODES dataset to contain the imputations;
DATA &FRITZ2,
SET LOUISE.SCFR;

* set number of replicates;
%IF (&I TERNUM=1) THEN %LET NREPL=1,
%ELSE %IF (&I TERNUM=2) THEN %LET NREPL=3;
%ELSE %LET NREPL=5;

* alter original ID number (XX1) to reflect replicate number;
DO I=1 TO &NREPL;
X1=XX1*10+I;
OUTPUT %QUOTE(&FRITZ2);
END;
RUN;
* invoke the MACROS that contain the imputation modules for each variable;
* total income for the PEU, AGI, principal branch variables, financial assets;

%INCOME1(OLDDATA=%STR(&FRITZ1), NEWDATA=%STR(&FRITZ2));

* home value, vehicles, loans made, total value of investment properties;
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%RESPROP1(OLDDATA=%STR(&FRITZ1),NEWDATA=%STR(&FRITZ2));

financial institutional relationships;
%INSTIT1L(OLDDATA=%STR(&FRITZ1),NEWDATA=%STR(&FRITZ2));

impute mortgages;
%MORTDEB1(OLDDATA=%STR(&FRITZ1),NEWDATA=%STR(&FRITZ2));

impute terms of all consumer loans and all non-mortgage loans for home purchase and
home improvement;
%CONDEB1(OLDDATA=%STR(&FRITZ1),NEWDATA=%STR(&FRITZ2));

businesses, credit cards, lines of credit, misc. properties, working or not, misc. attitudinal
guestions;
%BUS1(OLDDATA=%STR(&FRITZ1), NEWDATA=%STR(&FRITZ2));

impute labor force participation, current job pensions, and employment history;
%LABOR1(OLDDATA=%STR(&FRITZ1),NEWDATA=%STR(&FRITZ2));

current pension/SS, other future pensions, past settlements, inheritances, Section Y
demographics unimputed at this point (including non-PEU finances), and misc. income,
etc.;

%DEMOG1(OLDDATA=%STR(&FRITZ1),NEWDATA=%STR(&FRITZ2));

determine convergence (CNVRG=YES/NO);
% CONVERGE;

after the first iteration, back up imputed dataset (FRITZ1) on tape;
%IF (&ITERNUM GT 1) % THEN %DO;

%BACKUP(&FRITZ1);
%END;

after first iteration, delete imputed dataset from previous iteration;
%IF (&I TERNUM GT 1) %THEN %DO;
PROC DATASETS;
DELETE %STR(&FRITZ1);
RUN;
%END;
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determine location of files for next iteration;

%IF (YbEVAL(MOD(&ITERNUM,2) EQ 0) % THEN %DO;
%LET TAG1=RUBIN;
%LET TAG2=LITTLE;

%END;

%ELSE %DO;
%LET TAG1=LITTLE;
%LET TAG2=RUBIN;

%END;

%LET FRITZ1=%QUOTE(%UNQUOTE(
&TAG1.%QUOTE(.)%UNQUOTE(SCFRR%EVAL(&ITERNUM+1))));

%LET FRITZ2=%QUOTE(%UNQUOTE(
&TAG2.%QUOTE(.)%UNQUOTE(SCFRR&ITERNUM)));

increment iteration number;
%LET ITERNUM=%EVAL(&ITERNUM+1);

%END;

%MEND FRITZ;
%FRITZ,



Tablel
Item Nonresponse Rates, Selected Items, Percént
1989 Survey of Consumer Finances, Panel and Cross-Section, Unweighted

Item Don't Not Unknown Range Memo item:
know avail. whether  resp. % all cases
have item inap.

Balance on bank credit cards 0.6 1.2 0.0 0.8 30.9
Value of own home,

excl. mobile homes 1.6 1.2 0.0 0.6 29.6
Amount outstanding on

mortgage on home 3.2 2.0 0.1 1.2 58.5
Have any owned cars 0.0 0.0 0.0 0.0 0.0
Number of owned cars 0.0 0.2 0.0 0.0 115
Value of ' business with

mgt. role 15.0 3.1 11 4.8 73.7
Have checking acct. 0.0 0.2 0.0 0.0 0.0
Number of chkg. accts. 0.0 0.2 0.3 0.0 11.6
Amt. in I chkg. acct. 1.4 4.6 0.3 2.5 11.6
Amount of CDs 3.1 7.8 1.8 5.7 73.9
Amt. of savings bonds 4.9 2.3 2.5 2.5 76.3
Amount of stock, excl.

mutual funds 54 5.1 1.5 54 65.4
Cash value of life insurance 31.7 1.6 4.5 1.9 53.0
Wage for respondent

currently working 0.9 4.3 1.1 2.1 42.3

Balance in 1 defined
contribution pension

plan for respondent 16.7 1.8 6.2 2.7 84.2
Total family income 2.1 1.7 14.6 0.0 0.0
Filed 1988 tax return 0.2 1.0 0.0 0.0 0.0
Amount of 1988 ad;.

gross income 29.0 6.3 1.4 5.2 134
Amount of ¥ inheritance 5.9 4.4 3.3 3.6 68.1
Amount of 1988 charitable

contrib. 1.6 1.9 2.5 3.0 48.9
Wage income for non-

primary unit members 30.3 2.9 5.1 5.9 90.1

* Computed as a percent of cases either where response was appropriate or where it was
unknown whether response is appropriate.







Table 2
Proportion of Total Dollar Value Imputed,

Coefficient of Variation Due to Imputation, Various Items.
1989 Survey of Consumer Finances, Panel and Cross-Section, Unweighted.

Item

Checking accounts

IRA and Keogh accounts
Money market accounts
Savings accounts
Certificates of deposit
Corporate stock

Mutual funds

Savings bonds

Other bonds

Trust assets and annuities
Cash value of life insurance
Notes held

All financial assets

Principal residence
Other real estate
All businesses
Vehicles

Misc. assets

Total assets

Credit card debt

Consumer debt

Principal residence mortgage
Other mortgages

Lines of credit outstanding
Misc. debt

Total debt

Net worth

Total income

Adjusted gross income

Total inheritances received
Total charitable contributions

% total $
imputed with
range info.

3.1
10.9
4.2
3.6
5.4
13.2
7.5
3.6
3.9
7.5
1.8
0.8

7.1

3.3
5.5
22.2
2.6
9.8

5.3
6.0
0.1
0.7
4.4
0.9
12.2

3.8

4.9

30.5
15.6
6.6
4.3

% total $
imputed w/o
range info.

11.8
4.2
16.3
13.8
8.0
15.5
15.6
41.7
8.3
6.0
19.0
154

12.0

2.2
2.9
6.3
0.3
5.0

12.9
4.2
4.2

6.3
5.8
3.4

7.1

6.3

14.1
4.7
38.6

19.5
2.6

Coeff. of
var. due to
imputation

0.039
0.013
0.076
0.056
0.014
0.056
0.087
0.026
0.042
0.024
0.033
0.037

0.005

0.003

0.016
0.066
0.001

0.011

0.005
0.012
0.000
0.002
0.036
0.007
0.028

0.030

0.003

0.010
0.036
0.117
0.009




Figure 1: Cumulative Distribution of Total Financial Assets, Iterations 1 and 2,, FRITZ
Model, 1989 SCF
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