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Abstract

This paper investigates strategies for real-time estimation of the output

gap. First, I examine estimates from univariate models with stochastic cycles.

This corresponds to the use of model-based band-pass filters in real-time, and

I find that the turning points in real-time and final output gap series match

more closely for higher order models and that the revisions properties and real-

time accuracy are more favorable. Second, I investigate the use of capacity

utilization as an auxiliary indicator to improve on output gap estimates in

real-time. I find that this bivariate approach leads to significant gains in the

accuracy of real-time estimates and in the quality of revisions.
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1 Introduction

The measurement of the output gap, or position of the business cycle, is of central

importance in discussions about the current state of the economy. As a summary

indicator of aggregate demand conditions and economic performance, estimates of the

output gap serve as a key input in policy-making. Updated assessments or policy

decisions are made with the information available at the time, so attention centers

on the real-time estimate of the output gap.

In studying macroeconomic fluctuations, current analysis reflects real-time data.

Therefore, in accounting for agents’ beliefs and their relationship with the economy,

one must incorporate the proper knowledge at each time point. The evolution of the

output gap is of particular interest as it signals the general economic climate and the

potential for inflationary pressures. Yet recent work, such as Orphanides and Van

Norden (2002) and Watson (2006), has highlighted the challenges in getting useful

and accurate estimates in real-time. The importance of real-time analysis has been

exemplified in the work of Orphanides (2001), who showed that basic conclusions

about the stance of monetary policy can be affected. Orphanides and Van Norden

(2002) compared a number of methods for estimating output gaps and concluded

that none of the methods was particularly reliable, in the sense that revisions were

excessively large and had undesirable properties.
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In this paper, I try a different approach along two separate dimensions. First,

I produce the real-time estimates of the output gap from time series models that

explicitly account for cyclical behavior. Second, I investigate the strategy of using

capacity utilization as an auxiliary indicator to improve on these estimates.

Recently, a class of unobserved components models has been proposed by Harvey

and Trimbur (2003). The implied filters for such models give rise to a class of low-pass

and band-pass filters, related to the well-known Butterworth filters in engineering.

The filters generated by the model are consistent with each other and with the data,

and thus, one of their prime advantages is the coherency of the output gap estimates

that are produced. Another advantage is that they automatically adapt to the ends

of the sample. The "ideal filter", or perfectly sharp filter, which has been emulated in

applied work such as Baxter and King (1999) and Christiano and Fitzgerald (2003),

emerges as a limiting case of the model-based filters. Harvey and Trimbur (2003) fit

the models to US real GDP and investment and show how the higher order models

lead to smoother cycles. The implied band-pass filters taper off gradually at the

frequency endpoints. One goal in this paper is to investigate the application of the

models and associated band-pass filters in real-time.

Another goal is to examine the ability of capacity utilization as an indicator for

the output gap. Capacity utilization (CU) is a broad indicator of economic activity

that has clear cyclical properties and that has close links with a number of major

economic variables, such as the inflation rate. The use of additional series to help

improve estimates of trend, or potential has been demonstrated recently in Basistha

and Startz (2007), who relate cyclical components in different series to get a more

accurate estimate of the natural rate of unemployment. Watson (2006) also finds

some improvement in combining series with economic content, or information about

the business cycle, in real-time estimation. In another study, Planas and Rossi
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(2004) use inflation data to improve real-time estimates of the output gap. One

motivation for using capacity utilization is that it is well known to represent a highly

procyclical indicator. Another motivation is that macroeconomic theory, such as

the real business cycle models in Burnside and Eichenbaum (1996) and Boileau and

Normandin (2003), suggest a close connection with variations in output.

The Federal Reserve Board publishes industrial production, capacity, and capacity

utilization measures for the U.S. industrial sector, which includes manufacturing,

mining, and utilities. For a summary of the measurement of capacity utilization and

a discussion of its role as a business cycle indicator, see Corrado and Mattey (1997).

For more detailed information on the calculation of capacity and utilization from the

source survey data, see Morin and Stevens (2003).

Capacity is defined as a realistically sustainable maximum level of output. This

definition, involving the full use of available factors of production, has a close con-

nection with the concept of potential output. As the rate of utilization measures the

deviation of current activity from its capacity, or potential activity, it naturally helps

indicate the position of the business cycle, or output gap. Despite this link with

cyclical components, previous work on modeling and estimating the output gap has

not considered capacity utilization as an indicator. In this paper, I attempt to fill this

gap in the literature by examining how the rate of capacity utilization may be used in

a real-time analysis to improve GDP gap estimation. As a precursor, a further aim

is to investigate the cyclical dynamics of capacity utilization using structural time

series models estimated in real-time.

The rest of the paper proceeds as follows. In Section 2, I discuss the real-time

dataset on capacity utilization and apply a univariate time series model centered on a

flexible cyclical component. In Section 3 I apply unobserved components models to

quarterly real-time GDP and compare the results with those for capacity utilization.
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In Section 4 I first adapt the monthly real-time utilization data to the quarterly level,

which requires careful consideration of data release timing, and then set up a bivariate

model of real GDP and capacity utilization. The bivariate model is analyzed, and

the properties of the real-time output gap estimates are measured and compared with

earlier results. Section 5 concludes.

2 The cyclical behavior of Capacity Utilization

This section analyzes the real-time dataset on capacity utilization using an unob-

served components approach. The stochastic cycle model is briefly reviewed, and

estimates are first computed for the most recently available data to examine the

overall characteristics of the series.

At each point in time, a particular sample, or vintage, is publicly available and

represents the updated information available to the user of the data at that point in

time. In real-time analysis, a distinction is made between the different vintages that

have been available throughout the history of the dataset. The final estimates of the

cycle are based on the latest vintage, or most recently available data. By comparing

the real-time estimates with the final ones, the accuracy can be quantified, to assess

how well the real-time estimates represent the final estimates, computed with the

benefit of hindsight. Thus, the total revisions for the capacity utilization cycle are

analyzed using several measures.

A primary focus of this paper is to improve real-time estimates of the GDP cycle,

or gap. In choosing a useful indicator, I focus on capacity utilization for the man-

ufacturing sector, which is the largest and most cyclical sector of production. Note

also that earlier vintages are available for manufacturing utilization than for total

industry utilization.
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2.1 Real-time data

Data are taken from the real-time database of the Federal Reserve Bank of Philadel-

phia. The data on capacity utilization represents an expansion of the original real-

time dataset for macroeconomics described in Croushore and Stark (2001). For CU,

these vintages are recorded on a monthly basis, and the sample for each vintage ex-

tends to one month prior to the vintage month. For each vintage, labelled by month,

the sample is assumed to include all information available by the end of the vintage

month. The CU figures for a particular month are first released around the middle

of the following month. For example, the earliest recorded vintage of the dataset for

manufacturing CU is August 1979. This corresponds to the data available by the end

of August, including the figures for July capacity utilization, which were originally

released around the 15th of August. For all vintages up to August 2007 (the most

recent vintage available at the time of writing), the recorded time series started in

January 1969 or before. For consistency, in estimating models and components, I

use a fixed starting point of January 1969.

The real-time estimate for a given month is based on data ending in that month (so

the vintage is the following month), and each real-time estimate is revised a number

of times with the arrival of information with each new vintage. In terms of vintage,

the sample period for each vintage extends up to the month preceding the vintage

month, so the most recent filtered estimate of the cyclical component, at the end of

the sample period, also lies in the month preceding the vintage month; this gives the

most timely indicator of the output gap. Thus, real-time estimation starts with the

vintage of August 1979 (sample period from January 1969 to July 1979) and ends

with the vintage of August 2007 (sample period from January 1969 to July 2007). In

terms of comparing real-time and final estimates, the first cyclical estimate analyzed
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is July 1979, and the last cyclical estimate analyzed is May 2005. This allows for

reasonable spacing, or duration, between final estimate and final vintage.

2.2 Modeling cyclical dynamics

Figure 1 shows the data available in August 2007. Shaded regions indicate recessions

as dated by the NBER. A simple inspection of the graph shows that it is highly

cyclical, and in fact, many declines in the utilization rate foreshadowed or coincided

with the onset of an economic downturn1. As there is no obvious long-term trend in

the series, a natural model to capture the cyclical behavior is given by

yt = μ+ ψn,t + εt, εt ∼WN(0, σ2ε), t = 1, ..., T (1)

where WN denotes ‘white noise’, the parameter μ represents an average level, and

ψn,t is an nth order stochastic cycle.

This class of cyclical models, introduced in Harvey and Trimbur (2003), is defined

as2

⎡⎢⎣ ψ1,t

ψ∗1,t

⎤⎥⎦ = ρ

⎡⎢⎣ cosλc sinλc

− sinλc cosλc

⎤⎥⎦
⎡⎢⎣ ψ1,t−1

ψ∗1,t−1

⎤⎥⎦+
⎡⎢⎣ κt

κ∗t

⎤⎥⎦ (2)

1The dates of expansions and recessions are established by the NBER; note that this classification
is based on judgmental procedures applied with hindsight. Further, there may be loss of information
in moving from continuous-valued cyclical components to a binary upturn-downturn labelling.

2The model structure in (2) has a degree of symmetry in that ψn,t and ψ∗n,t are both subject
to shocks, and similarly there is balance in the equations for [ψi,t,ψ∗i,t] in the recursion when both
ψi−1,t−1 and ψ∗i−1,t−1 enter on the right side. An alternative form, called the Butterworth form,
has both κ∗t and ψ∗i−1,t−1 replaced by zero and ψi−1,t−1 shifted ahead to ψi−1,t; this gives a more
direct link with the frequency domain.
In what follows, I work with this balanced form. Experience suggests that the balanced form

works slightly better empirically for US macreconomic series and produces more plausible periods.
A further advantage of (2) is that the time-domain properties of the stochastic cycle are more easily
derived compared to the Butterworth form.
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⎡⎢⎣ ψi,t

ψ∗i,t

⎤⎥⎦ = ρ

⎡⎢⎣ cosλc sinλc

− sinλc cosλc

⎤⎥⎦
⎡⎢⎣ ψi,t−1

ψ∗i,t−1

⎤⎥⎦+
⎡⎢⎣ ψi−1,t−1

ψ∗i−1,t−1

⎤⎥⎦ , i = 2, ..., n

where κt, κ∗t ∼ WN(0, σ2κ) and κt is uncorrelated with κ∗t . Note that κt and κ∗t are

assumed uncorrelated with εt. The parameter ρ is called the damping factor; it

satisfies 0 < ρ ≤ 1, while 0 ≤ λc ≤ π. The central frequency of oscillation is λc, with

corresponding period of 2π/λc.

The model in (2) guarantees a peaked spectral shape, with a certain width, for

suitable parameter values. This shape characterizes cyclical behavior in economics

where, in the frequency domain, a spectrum displaying a clear peak indicates a ten-

dency for periodic movements. Relative to engineering or the physical sciences, one

typically would expect a wider peak because, for economic series, random distur-

bances of different kinds play a relatively more important role. For n > 1, the

shocks on the right hand side of the recursion in (2) are themselves cyclical; this

gives rise to a kind of resonance effect, reinforcing the cycle. Harvey and Trimbur

(2003) found that higher order models were especially appropriate for US investment,

a series known to have a pronounced cyclical component.

One advantage of (2) is that the model parameters are directly linked to cyclical

behavior; periodicity may be studied directly, for instance, through λc. An advantage

of the models ψn,t, with n > 1, is that they allow for estimation of smoother cycles,

which can be useful for studying turning points. General expressions for the auto-

covariances and spectrum are given in Trimbur (2006). The spectral shape shows

increased concentration around the central frequency as n increases.

Estimation results for different orders n are shown in table 1 for the most recent

vintage for CU. I estimate the models by ML using state space methods; this requires

the stronger assumption of Gaussian disturbances. Given a feasible parameter vector,
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the likelihood function is evaluated from the prediction error decomposition obtained

from the Kalman filter, see Harvey (1989). The parameter estimates are computed

by optimizing over the likelihood surface in each case. To do the calculations for the

results given below, programs were written in the Ox language (Doornik 2006) and

included the Ssfpack library of state space functions (Koopman et. al 1999). Several

diagnostics are reported in the table. R2D is the coefficient of determination with

respect to first differences, and bσ is the equation standard error. Q(P ) is the Box-

Ljung statistic based on the first P residual autocorrelations. In all cases, I have set

P to the largest integer less than or equal to
√
T where T is the sample size. Q(P )

should be compared with a chi-squared distribution with P − 4 degrees of freedom.
The Akaike Information Criterion (AIC) is defined by AIC = −2 log L̂ + 2k, where
log L̂ is the maximized log-likelihood and k is the number of model parameters.

In figure 1, the level, μ = 0.800, indicated by the dotted line, was estimated

with the cyclical model with n = 2. The component eψ2,t is shown in figure 2;
this indicates the cyclical oscillations above and below the mean level of utilization.

The component eεt represents the nonsystematic noise in the series and is graphed in
figure 3. As eεt is removed, eψ2,t is smoother than the original series, and it is easier
to make comparisons with recession dates and, more generally, to study transitions

in the cycle. The diagnostics suggest that n = 2 and 3 are the preferred models. As

n increases, the estimated variance3 of the cycle σ2ψ declines somewhat, though the

change from order 1 to 6 is relatively moderate, being somewhat less than 25%. It is

clear in table 1 that the value of ρ falls with n; this owes to the resonance property

of higher order cycles, where shocks are increasingly reinforced within the system.

For n > 1, the noise assigned to the irregular increases as the order n rises, and the

implied band-pass filter has a sharper cutoff on the right.

3Analytical expressions for the variance in terms of n, σ2κ, and ρ are given in Trimbur (2006).
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Typically, periods between, say, 1 1/2 to 8 years are taken as representative of

business cycle movements. For n = 1, the estimated period is about seven years,

and the estimate of ρ is close to 0.99, indicating substantial persistence in the cycle.

For higher orders, there is difficulty in estimating a period within the business cycle

interval due to irregularities in the finite sample likelihood. These results are con-

sistent with the experience of Harvey and Trimbur (2003) where an excessively large

period was obtained for real GDP for n > 1. This problem is successfully addressed

in Harvey, Trimbur, and van Dijk (2007), where it is shown how a weakly informative

prior reflecting business cycle expectations can help overcome flatness in the likeli-

hood surface. The Bayesian approach, in addition to providing a practical solution

to an irregular likelihood, is appealing from other standpoints as well. In the current

paper, however, I use a frequentist approach, and I choose to fix the period for higher

n to the value estimated for n = 1 (this value, equal to about seven years, is plausible

for a business cycle period, and fixing the frequency effectively corresponds to using

an extremely sharp prior in a Bayesian analysis).

In preparation for the real-time analysis, suppose that a researcher starts with

the first recorded vintage in the Philadelphia Fed’s dataset, which became available

in August 1979. This covers data from January 1969 to July 1979, and the researcher

would encounter the series shown in figure 4. This differs from the early portion of

the later vintage sample shown in figure 1. Now suppose model (1) is estimated on

the early vintage dataset. Results are given in table 2 for different orders n.

Figure 4 shows oscillations in the cycle, above and below an estimated mean level

of utilization, due to the first two major oil price shocks. It is notable that, although

there are only two cyclical swings present in the sample, the model in (1) is still able

to pick out plausible periods for both n = 1 (slightly above four years) and n = 2

(about seven years). The pattern of estimated ρ with respect to order is similar to
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that in table 1. There is again difficulty in estimating periods for higher orders n > 2,

so these results are based on fixing the period to the average of the first and second

order periods, that is, 66.4. The model chosen on the basis of fit is again n = 2,

with other higher order models also performing well. The estimated variance of the

cycle σ2ψ is slightly higher for n = 2 than for other orders, so that the second order

component explains a greater proportion of overall movements. The main point of

this exercise is that, when a researcher estimates the output gap in real-time, starting

with the data in figure 4, estimation of the models in (1) are viable and further, the

results show that a higher order model, in particular n = 2, would tend to be chosen

at an early stage of estimation.

2.3 Real-time estimation of the CU cycle

The previous Section showed the results of fitting the stochastic cycle model to two

different data vintages of capacity utilization. In this sub-Section, I extend the

treatment to real-time estimation for the range of available vintages.

Repeated estimation over different vintages shows that n = 2 is consistently the

best performing model, as for the first and last vintage. When unrestricted esti-

mation led to a period outside the business cycle range (2 to 8 years), the period

is constrained to equal seven years, or 84 months; this value, lying with the proper

interval, approximately matches the estimate for the first vintage for the best fitting

model (n = 2). Figure 5 shows the real-time estimates for the second order cycle and

compares them with the final estimates obtained for the most recent vintage of August

2007. Note that in some periods the real-time estimates lie below the final ones for

several consecutive periods, such as in 1982 (this means that the real-time estimates
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reflected greater severity of the recession) and in 1995-2000, whereas in other periods,

the real-time estimates are consistently higher, such as 1984-7. Overall, however, the

real-time estimates track the final ones rather well.

The quality and accuracy of the real-time estimates, in representing the final

measures, is quantitatively assessed in tables 3 and 4. Table 3 presents a number

of statistics related to the size and accuracy of revisions. Table 4 compares the

characteristics of the real-time and final cyclical estimates. The values in the tables

may be compared with those reported in Orphanides and van Norden (2002) for

various methods applied to real-time GDP gap estimation.

The relatively accurate real-time estimation of the capacity utilization cycle is

confirmed by looking at the Corr measure, which indicates the correlation between

real-time and final estimates. The correlation of nearly 0.95 is well above the cor-

relations computed for all eight methods investigated in Orphanides and van Norden

(2002). Further, opposite signs are obtained for the final and real-time cycles less

often, and the NS ratio, representing the noisiness of revisions relative to output

gap signal, is lower in every case. The high real-time accuracy is consistent across

different n. These findings are encouraging for the use of the CU cycle as a real-time

indicator for the output gap.

Figure 6 shows the revisions over the vintage set for n = 1 and 2. The revisions are

highly persistent, as indicated by the first order autocorrelation, ACF (1), of more

than 0.95. There is no tendency, however, for the real-time estimates to perform

worse around the recession times. In contrast, for the first three recessions shown,

the revisions immediately preceding the downturn are relatively small. The graphs

shows moderate upward revisions around the start of the 1980 recession (indicating

better than expected rates of utilization) and moderate downward revisions around

the start of the 2001 recession (worse than expected). The biggest revisions occur
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around 1983-85, which saw large, downward, and erratic adjustments; around 1992,

for which there were large, upward changes over a limited time span; and between

1998 and 2000, when there is an interval of noisy, upward revisions. The revisions

then switch sign in the year 2000. There is little difference between the revisions for

n = 1 and n = 2. Overall, on comparison with the results for the GDP gap shown

in the next Section, the summary statistics imply that the real-time estimates for the

capacity utilization cycle are relatively successful as they anticipate the final values

with reasonable accuracy.

3 The cyclical behavior of real GDP

In this Section, I investigate to what extent univariate models, which explicitly ac-

count for cyclical behavior, can give useful real-time estimates of the output gap. It

is useful to focus on the cycle since it represents systematic deviation from potential,

or the gap with noise removed. These models are also of interest in that they give

rise to filters with band-pass properties. These implied filters enable one to extract

cycles in a way that is consistent with the properties of the series and with the other

components in the model. Furthermore, as they adapt to sample endpoints auto-

matically, they provide a natural candidate for generating real-time cycle estimates.

In this Section, I first discuss the dataset and unobserved components models briefly

and then study the properties of the real-time estimates and their revisions.

3.1 Real-time data

Data are available from the real-time database of the Federal Reserve Bank of Philadel-

phia. Each vintage for real GDP covers a specific quarter and refers to the data that
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were available by the middle of the quarter. Note that the first estimate of GDP

for a particular quarter is typically released around the end of the first month of

the following quarter and so is already available around the middle of the second

month of the following quarter. For instance, take 1985Q4; this vintage contains

data that were available by mid-November, and the last observation recorded is for

1985Q3. Similarly, for each vintage up to the most recent one (2007Q3), the dataset

contains values up to the quarter immediately preceding the vintage quarter. For

each vintage, data are available from 1947Q1. The real-time estimates are computed

by taking, for each vintage, the last estimate of the cycle in the sample. The final

estimates are all computed from the last vintage of 2007Q3.

3.2 Modeling cyclical dynamics

Figure 7 shows the latest vintage dataset for the logarithms of GDP. The graph shows

cyclical movements around a clear upward trend.

The model fitted to the series is the following decomposition:

yt = μm,t + ψn,t + εt, εt ∼WN(0, σ2ε), t = 1, ..., T (3)

where ψn,t is defined as before.

Now μm,t can be defined generally as an m-th order stochastic trend. Thus, given

positive integer m,

μ1,t = μ1,t−1 + ζt (4)

μi,t = μi,t−1 + μi−1,t, i = 2, ...,m

where the disturbance term, ζt ∼WN(0, σ2ζ ), is uncorrelated with εt and with κt, κ∗t .
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In what follows, I assume m = 2, which gives the smooth trend model; this model

underpins, for example, the well-known Hodrick-Prescott filter for smoothing a time

series, and it is often used in structural time series models. Typically, in time series

modelling, m = 1 or 2 as most series are I(1) or I(2). The choice m = 2 has

the advantage of producing smoother trends, which also makes it more feasible to

estimate the cyclical behavior in a series. In the frequency domain, the resulting

low-pass filter has a sharper cutoff at low frequencies.

The link of (3) with low-pass and band-pass filters was explored in Harvey and

Trimbur (2003). Specifically, considering (3) as a signal extraction problem, the

optimal estimator of the cycle is a filter with band pass properties applied to yt4. As

n increases the band pass filter tends toward a sharp filter, such as the one emulated

in Baxter and King (1999)5.

Figure 7 is based on the n = 1 model. The trend is clearly stochastic as there are

changes in growth rate; for instance, potential output grew more quickly in the 1960’s

than in the 1970’s. The fluctuations around the trend correspond to the changing

output gap over the economic cycle, and these are shown in figure 8. The estimated

period of the cyclical component is 2π/18.4, or about four and a half years.

Table 5 shows results for different orders n for the last vintage, 2007Q3 (sample

period from 1947Q1 to 2007Q2). These results may be compared with the estimates

reported in Harvey and Trimbur (2003) for a sample period ending in 2001Q3. As

in Harvey and Trimbur (2003), there is again difficulty in estimating a business cy-

4Harvey and Trimbur (2003) introduce a class of model-based band-pass filters based on the slight
variation of (2) called the Butterworth form. The nth order cycle then gives rise to a generalized
band-pass Butterworth filter of order n. This encompasses a wide array of patterns for the gain; as
n increases, for instance, the equivalent of the ‘ideal’ filter is obtained as a special case.

5In particular, higher n are associated with sharper band pass filters in the frequency domain.
The location of the left and right boundaries and the particular shape might, however, be different.
For instance, it is shown in Harvey and Trimbur (2003) that for US investment, the results of
applying the optimal band-pass filter for n = 6 differed from the results of applying the BK filter.
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cle period for higher orders, so I fix the period for n ≥ 2 to the value obtained for
n = 1. This difficulty, due to the flatness or irregularity of the likelihood, can also

be overcome by the Bayesian approach in Harvey, Trimbur, and van Dijk (2007). In

particular, one can specify an informative prior on the frequency, expressing expecta-

tions about the business cycle in a consistent way, and Bayesian modeling in real-time

would provide other advantages, such as accounting for parameter uncertainty. In

this paper, I retain a classical approach.

The estimation results in table 5 for the last vintage are basically similar to those

in Harvey and Trimbur (2003). In addition to a period of between four and five years,

for n = 1, the estimate of ρ indicates a somewhat persistent cycle. The pattern of

ρ with respect to different n is similar to that in tables 1 and 2, though the values

are somewhat smaller for real GDP. Similar to the results for capacity utilization,

as n increases, the estimated variance σ2ε rises as the irregular absorbs increasing

amounts of noise from the cycle. In table 5, the cycle variance is relatively stable

with respect to order, with σ2ψ reaching a maximum for n = 2. The preferred models

are n = 2 and higher, with the second order doing best on the basis of R2D and of

AIC comparisons. For comparison, the estimated cycle for n = 2 is shown in figure 8

along with the n = 1 case.

In the next sub-Section, I will apply the model-based band-pass filters to real

GDP in a real-time setting. As noted, the cyclical models have clear links with band-

pass filters, but there is a key difference from the direct design of band-pass filters

in the frequency domain. The intention of nonparametric methods, such as Baxter

and King (1999) and Christiano and Fitzgerald (2003), is to select out the range of

periods in an input process associated with the business cycle component, and the

strategy is to emulate a particular shape of gain function. The interval of periods

is chosen in advance, and further, the shape of the "ideal" filter is prespecified to be
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perfectly sharp. Although the concept is simple, this strategy involves a serious risk

of properties distortion, as discussed, for instance, in Murray (2003) and Harvey and

Trimbur (2003). Such distortions may, however, be avoided by designing a model-

based band pass filter with the time series modelling approach. In this way, the

cyclical component is estimated in a framework consistent with the data, and the

filters for trends and cycles are also mutually consistent.

3.3 Real-time estimation of the GDP cycle

In a previous sub-Section, results were given for fitting the smooth trend plus sto-

chastic cycle model to real GDP for the latest vintage, 2007Q3. Given the empirical

performance of the models, their close connection with low-pass and band-pass fil-

tering, and the availability of real-time data, I now investigate the use of the models

and their associated filters in a real-time application.

Recall that the earliest vintage for monthly capacity utilization is August 1979;

in transforming to a quarterly real-time dataset with quarterly vintages, the first

vintage becomes 1979Q3 (discussed in the next Section). Now suppose a researcher

estimating the output gap in real-time begins with the vintage of 1979Q3 for real

GDP. The results of estimation are shown in table 6, and they have a similar form to

the results in table 5. Thus, there is the same decline in ρ with respect to n, and the

n = 2 model is still preferred to n = 1. For the earlier vintage, however, a period in

the business cycle range is estimated for both n = 1 and 2, and the fit of the models

for n > 2 slightly improves on the fit for n = 2.

I now examine the real-time estimation of the GDP gap, with the different cyclical

models, without using any information about the capacity utilization rate or other

auxiliary indicators. In each case, the period, 2π/λc, is first estimated without
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restriction. If the resulting estimate lies outside the business cycle interval of two

to eight years, then the period is constrained to equal five years, or 20 quarters; this

nearly matches the average estimate for the first vintage for n = 1 and 2, and the value

falls near the center of the business cycle interval. For each quarterly vintage, the

model is estimated and the most recent cyclical estimate is recorded as the real-time

output gap. The last cyclical estimate analyzed is 2005Q2.

Tables 7 and 8 shows summary statistics for real-time estimates and revisions for

the different cycle models. These results clearly differ from the results for capacity

utilization given in tables 3 and 4, and they are typical of the results shown for dif-

ferent methods in Orphanides and van Norden (2002) for estimation of the GDP gap.

The correlation between real-time and final estimates, which for capacity utilization

was nearly 0.95, is now reduced to just above 0.50. Further, the values of NS are

about three times higher for quarterly real GDP, and the frequency of matching signs

is significantly reduced. On the other hand, the Mean measure shows that the revi-

sions to the GDP gap typically average about zero. The volatility, measured by Std

and RMSE, decreases with order.

As an example, the real-time estimates of the output gap for n = 1 are shown in

figure 9 and for n = 4 in figure 10. The relationship between the real-time and final

estimates varies significantly over the historical period. At certain times, such as

near the end of 1981 and during 1986, for n = 4 they match up reasonably well. Over

a number of intervals, however, there are clear differences. For instance, in 1989,

the real-time estimate is negative and falling, while the final estimates are positive

and stable. Also, in the mid-90’s, the real-time estimates are often of opposite sign

than the final estimates. Despite the sometimes large revisions, it appears that, with

n = 4, the turning points in the real-time estimates roughly coincide with the turning

points in the final estimates on a number of occasions. For instance, for n = 4, the
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downturn in the cycle marking the start of the 1981-2 recession is apparent in both

real-time and ex post. Similarly, the recovery beginning after the 90-91 recession is

evident in both series, and the decline in the cycle around 2000-1 starts at the same

point in both real-time and final estimates. These turning points show up more

clearly for n = 4 than for n = 1.

Figure 11 compares the revision history for n = 1 and 4. The revisions tend to

track each other, though one exception is that there is a large upward revision for

several quarters in 1991-2 for n = 1, whereas for n = 4 the revision is downward and

of more moderate size. For each of the first three recesions, the revisions show a

tendency to decrease as the downturn in the cycle progresses. The revisions show

a fairly steady increase from about 1983 to 1990; from around 1984 to 1987, the

revisions are larger in magnitude for the first order model. Generally, the revisions

are highly persistent, for example remaining negative throughout much of the 1990’s.

Compared to those for n = 1, typically, the revisions for n = 4 appear less volatile

(note the lower Std and RMSE in table 7 and the lower NS in table 8) and slightly

more persistent (higher ACF (1) in table 7).

The performance of the real-time estimates, as described by the summary statistics

in tables 7 and 8, appears basically consistent across different cyclical orders. The

biggest differences seem to arise between n = 1 and 2 estimates. Generally, the n ≥ 2
models performed best in terms of real-time estimation. In terms of the measures

CoSign, Corr, and NS, the model n = 2 is preferred, though the differences with

the n = 3 and 4 cases are not large. Further, the volatility of revisions, as captured

by Std and RMSE, declines further as n moves to 6, which suggests that removing

noise from the cycle leads to a more stable real-time estimate. Thus, we might prefer

models in the range 2 ≤ n ≤ 4, noting that models with higher orders involve a higher
dimensional state space. When viewed against the results for capacity utilization,
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however, the differences between the cyclical models are not large. Essentially, the

correlation between real-time and final estimates is about 0.50 and around 40% of the

time, the two estimates are of opposite sign. This suggests room for improvement in

the accuracy of real-time estimates, and extensions in modeling, such as designing a

multivariate analysis, may contribute to better real-time performance.

4 The CU cycle and the GDP gap

In this Section, I combine the models for GDP and CU into a bivariate setup where

the cycle may be estimated in real-time using both sources of data. Since the

utilization rate is defined as proportional use of capacity, a reasonable maximum

level of sustainable output, there is a natural link with the output gap as a measure

of deviation from potential.

To the extent that capacity utilization provides useful information about the out-

put gap and the CU cycle revises relatively little, one may expect gap estimates at

sample end-points to be significantly improved by its application. The paper by

Orphanides and Van Norden (2002) compared a number of methods including a few

multivariate models, specifically ones with a Phillips-curve relationship between out-

put and inflation, following the work of Kuttner (1994). The Kuttner model produced

a correlation of 0.88 between real-time and final estimates, considerably higher than

univariate methods. Further, Orphanides and Van Norden (2002) then decomposed

the sources of revisions and concluded that the primary difficulty lay in estimating

the end-of-sample trend, rather than in real-time updating of datasets. In his study,

Watson (2006) noted some modest improvement in estimates by including certain

auxiliary indicators, such as housing starts and yield spreads, but he did not include

capacity utilization or another indicator with a similarly close relationship with the
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output gap6.

This section first discusses the conversion of the real-time dataset on CU to the

quarterly frequency, so as to produce quarterly vintages of utilization rate series

that are comparable with quarterly vintages of real GDP. This requires a careful

consideration of data release dates. Next, a class of bivariate unobserved components

models is set up for capturing the joint trend and cyclical properties of the indicator

(CU) and target (GDP) series. The models are used to compute new real-time

estimates of the business cycle component of real GDP for the range of data vintages.

The properties of revisions are studied and compared with those of previous univariate

estimates.

4.1 Real-time data

In the real-time database of the Federal Reserve Bank of Philadelphia, the recorded

vintages for real GDP refer to data available in the middle of the quarter. On in-

vestigating historical release dates for each vintage of capacity utilization, it becomes

clear that, at each vintage month, the first estimate for the previous month usually

became available slightly after the middle of the vintage month. Therefore, in con-

structing the quarterly real-time CU data, I assume that, for each vintage quarter,

in the middle of quarter, the CU rates for the three months of the previous quarter

were known. Then I construct the average quarterly estimates from the monthly

estimates.

The cycle parameters (variance and period) estimated for the quarterly series are

similar to the ones reported in table 1 for the monthly case. There is again difficulty

in estimating a reasonable period for higher orders, though for n = 1, a period of
6Note that since the analysis in Watson (2006) is based on the Baxter-King filter (augmented

with endpoint adjustments), the results are subject to the same criticism of possible distortions
when using the "ideal" filter that were noted previously.

21



29.7, quarters, or about 7 1/2 years, is obtained.

4.2 A bivariate model for real GDP and CU

In the most general case, define the N×1 vector of observations yt, where yt = (y1t , ...,
yNt )

0. Similarly, define the N × 1 vectors μt, ψn,t, and εt as the trend, cycle, and

irregular. I then consider the multivariate structural time series model:

yt=μt +ψn,t+εt, εt ∼ NID(0,Σε), t = 1, ..., T, (5)

where NID(0,Σε) denotes that the vector is serially independent and normally dis-

tributed with zero mean vector and N ×N positive semi-definite covariance matrix,

Σε.

The N × 1 vector ψn,t = [ψ
1
n,t, ..., ψ

N
n,t]

0 contains the cycles in the different series,

assumed to have order n. In the similar cycles model, ρ and λc are the same across all

series. Therefore, the cycles have the same dynamic properties in the sense that their

autocorrelation functions and spectral densities are identical. The cycles themselves

are not, however, identical in their movements. The similar cycles model, originally

proposed by Harvey and Koopman (1997) for n = 1, was applied to US real GDP

and investment in Harvey and Trimbur (2003) and to US and Canadian real GDP

in Carvalho, Harvey, and Trimbur (2007) for different orders n. The similar cycles

model is expressed for higher order cycles by defining a 2nN × 1 state vector

ψt = [ψ
1
n,t, ..., ψ

N
n,t, ψ

1∗
n,t, ..., ψ

N∗
n,t , ...ψ

1
1,t, ..., ψ

N
1,t, ψ

1∗
1,t, ..., ψ

N∗
1,t ]

0 (6)

Now construct the matrix
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Tn = In ⊗T+ Sn ⊗ I2 (7)

where

T = ρ

⎡⎢⎣ cosλc sinλc

− sinλc cosλc

⎤⎥⎦ (8)

and Sn is n × n with ones on the off-diagonal strip that lies adjacent to the main

diagonal on the right hand side and zeros everywhere else; that is, the row i, column

i+1 element of Sn equals 1 for i = 1, ..., n−1, and all other elements equal 0. Define
cn to be an n× 1 vector with one in the last position and zeroes elsewhere. Then

ψt = (Tn ⊗ IN)ψt−1 + cn ⊗

⎡⎢⎣ κt

κ∗t

⎤⎥⎦ , (9)

where the assumptions on the N × 1 vectors of Gaussian disturbance, κt and κ∗t , are

E(κt) = 0, E(κtκ
0
t) = E(κ∗tκ

∗0
t ) = Σκ, E(κsκ

0
t) = O, for s 6= t

with Σκ an N ×N covariance matrix and E(κsκ
∗0
t ) = O for all s, t = 1, ..., T .

Now I focus attention on the real GDP, Capacity Utilization application. Set

N = 2, and the trend has the special form:

μt = [μ
GDP
t , μ]0, βt = [β

GDP
t , 0]0, Σζ =

⎡⎢⎣ σ2(GDP )
ζ 0

0 0

⎤⎥⎦ (10)

where μGDP
t follows a smooth trend. Note that for the trend section of the state

space, the Kalman filter is initialized with level and slope assigned zero variance for

the CU part and assigned a diffuse prior for the GDP part. The cycle state vector
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has initial conditions given by the unconditional variance matrix, shown in Trimbur

(2006).

Parameter estimates and measures of fit are shown in table 9 for the latest available

vintage, that is, 2007Q3. The period for n > 1 was fixed to the value estimated

for n = 1 to ensure a period in the business cycle range. Generally, the results

suggest that the similar cycles assumption is appropriate, as the values of the cyclical

correlation νκ are large and reach 0.92 for order 6. The values of νε show moderate

correlation between the irregular components in the two series. It is clear that,

compared to the n = 1 case, the higher order models dominate on the basis of model

selection criteria and lead to improved goodness of fit and diagnostics for both GDP

and capacity utilization. The results in table 9 generally point to higher order models,

which have larger values of σ2ε , as particularly successful; while n = 2 is the preferred

model, the measures of performance do not fall excessively for n = 3 and 4.

Figure 12 shows estimated GDP cycles for n = 1 and 4. The series give a similar

message about changes in the output gap over the sample period; in particular, the

recent movements indicate the beginning of a downturn in the cycle which has been

interrupted by the last observation, which shows an uptick. There are, however,

some differences. Specifically, the n = 1 cycle suggests that the economy began from

a slightly stronger state before the downturn in early 2000’s, whereas between 1993

and 1998, the n = 4 gap displayed larger values. Note that the timing of the start of

the decline around 2000 seems clearer for n = 4 because of its greater smoothness. In

recent years, the n = 4 model points to a slightly more pronounced upswing moving

beyond the mid 2000’s.

24



4.3 Real-time estimation with bivariate model

In this sub-Section I examine the real-time estimation of the GDP gap using the

bivariate model with capacity utilization. As noted earlier, the CU rate leads to a

coherent measure of deviation from potential production. Given the high relative

accuracy of real-time estimates of the CU cycle, this naturally suggests the use of

the series to improve real-time estimates of the GDP gap. Given a particular cycle

order, the model (5) is estimated in real-time starting with the vintage of 1979Q3. In

each case, the period, 2π/λc, is first estimated without restriction, but if the resulting

estimate lies outside the business cycle interval of two to eight years, then the period

is constrained to equal seven years. This fits with the preliminary estimates of

the period for the earliest vintage for capacity utilization. Also, in estimating the

bivariate model with the latest vintage, a nearly equal period of about 7 1/2 years

was obtained. The series of real-time estimates is then compared to the final output

gap series computed with the most recent vintage of 2007Q3. Over the range of

models, I examine real-time GDP cycle estimates from 1979Q2 to 2005Q2.

Tables 10 and 11 show the revision statistics for the real-time output gap estimates

from the bivariate model. For all orders n, the Corr measure is higher than in table

6, and the Std and RMSE are lower. Also, the NS measure is lower and the CoSign

larger for the bivariate models. Overall, the results show considerable improvement

in the accuracy of real-time estimates. For all higher order models, the performance

is better than for n = 1 on all reliability measures except for CoSign. The success

of the models with n ≥ 2 may be linked to their providing a better description of the
dynamics of CU and GDP over most of the available vintages. Indeed, the models

for n ≥ 2 produce more highly correlated cycles between CU and GDP, and as n

increases, more irregular movements are removed, which may lead to a clearer, more
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accurate signal being generated by the model.

Examples are shown in figures 13, 14, and 15 for n = 1, 2, and 4. The real-time

and final cycles track each other fairly well over much of the sample period. The cycles

tend to be close in the early phase of recessions. In the case of the 1990-1 recession, it

appears that the downturn in the real-time cycle leads the decline in the final cycle by

a slight margin. The biggest discrepancy in the cycles occurs in the period following

the 1990-1 recession, where the real-time cycle appears to overestimate the extent of

the fall in output and then makes a late call in marking the start of the upturn. On

the other hand, the magnitude of this discrepancy dimishes for larger n, as seen from

inspection of the graphs or from inspection of the measure Max in table 8. Overall,

there are several stretches where the real-time and final estimates show the same

timing and kinds of transitions, even though their values may differ. For instance,

in the recovery after the 1981-2 recession, there is a good deal of accuracy in timing

the turning point, even though the level of the real-time estimate soon departs from

that of the final estimate as the real-time estimate accelerates upward more quickly.

Figure 16 shows the revisions series for both n = 1 and 4. The series follow

each other closely at certain times, for instance, 1986 to 1990, but at other times,

the n = 4 revisions are clearly more favorable. Especially noticeable is the period

1991 to 1993, where the graph shows the revisions for n = 1 reaching about twice the

value for n = 1. Between 1996 and 1998, and between 2000 and 2002, the series for

n = 4 is clearly smaller in magnitude. This improved performance may be due to

the combination of having more noise removed from the signal (output gap), as well

as linking the "cleaner" signals in the two series through the assumption of correlated

components.
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5 Conclusions

This paper has investigated real-time estimation of the output gap using models

based on the class of stochastic cycles introduced in Harvey and Trimbur (2003).

In a univariate analysis, the models give estimates whose properties are comparable

to those of the methods examined in Orphanides and van Norden (2002). This

analysis demonstrates the viability of using model-based band-pass filters in real-

time. Overall, the higher order models performed better than the basic (first order)

model in term of fit and accuracy measures.

The real-time estimates tend to perform well around the NBER-dated recessions,

particularly for higher orders, and appear to gauge turning points relatively well.

This suggests that, even though discrepancies remain between real-time and final

estimates throughout the sample period, during periods of transition, the direction

of the real-time estimates can serve as a valuable guide.

Throughout the paper, a few references to Bayesian methods have been made.

Given the irregularities in the likelihood surface, in some cases, I have used the con-

vention of fixing the central period to a value plausible for business cycle fluctuations.

A more satisfactory way to express business cycle expectations is to set up a Bayesian

prior, as in Harvey, Trimbur, and van Dijk (2007), and using the Bayesian approach

allows for other advantages, such as accounting for parameter uncertainty. A pos-

sible topic for future work would be to explore the feasibility of Bayesian estimation

in real-time to see if consistent use of prior knowledge may perhaps lead to further

improvements in the quality of real-time estimates of the output gap.

In this paper, I have focussed on a classical approach and have shown how the

pooling of information from a closely related series can increase the accuracy of real-

time estimation and improve revision properties. The capacity utilization series has
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clear cyclical dynamics, and I have demonstrated the relatively small revisions to the

cycle as new data become available. It seems natural to link the output gap with

CU given its definition as a measure of deviation from potential. This relationship

has been expressed in a bivariate unobserved components model in which the cycles

in CU and real GDP are intertwined. Indeed, the estimated correlation parameter

between the two cycles, which rises with increasing order, reaches 0.92 for n = 6. The

properties of revisions and accuracy of real-time estimates are significantly improved

relative to the univariate analysis, and again, the higher order models outperform the

basic model. The correlation between real-time and final estimates of the GDP gap

peaks at about 0.93 for n = 3.
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Figure 1: Most recent vintage (August 2007) for capacity utilization, sample period
January 1969 to July 2007.

Table 1.–Estimates for cyclical model of monthly capacity utilization
n μ σ2ψ σ2ε ρ 2π/λc R2D bσ Q(P ) AIC

×103 ×105 ×103
1 0.7995 1.48 0.00 0.988 85.32 0.12 6.08 65.6 -3396.4
2 0.8003 1.37 0.72 0.868 – 0.17 5.91 32.7 -3423.4
3 0.8001 1.21 0.92 0.761 – 0.13 6.03 44.3 -3404.2
4 0.8000 1.16 1.00 0.685 – 0.11 6.11 52.4 -3392.5
5 0.8000 1.13 1.04 0.627 – 0.10 6.16 57.6 -3385.3
6 0.7999 1.11 1.06 0.581 – 0.09 6.19 61.2 -3380.4
Note: Results for August 2007 vintage (sample period January 1969 to July 2007). For

n > 1, the cycle period, 2π/λc, was set equal to the value obtained for n = 1. μ (level), σ2ε
(the irregular variance), and ρ correspond to other parameters in model (1). σ2ψ is the cycle
variance. The designation ‘×103’ in the second row means that the variance parameter has
been multiplied by 103.
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Figure 2: Estimated second order cycle in capacity utilization for January 1969 to
July 2007 (August 2007 vintage).

Table 2.–Estimates for cyclical model of monthly capacity utilization
n μ σ2ψ σ2ε ρ 2π/λc R2D bσ Q(P) AIC

×103 ×105 ×103
1 0.8179 1.75 0 0.984 49.39 0.279 7.79 56.6 -858.4
2 0.8234 1.86 0.40 0.829 83.47 0.398 7.11 10.9 -881.6
3 0.8226 1.59 0.81 0.705 – 0.383 7.24 16.4 -877.0
4 0.8224 1.48 0.97 0.618 – 0.363 7.37 22.7 -872.7
5 0.8224 1.44 1.10 0.561 – 0.347 7.46 28.6 -869.6
6 0.8225 1.47 1.27 0.534 – 0.335 7.52 34.5 -867.5
Note: Results for August 1979 vintage (sample period January 1969 to July 1979). For

n > 2, the cycle period, 2π/λc, was set equal to the average of the periods for n = 1 and
2. See also Note for Table 1.
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Figure 3: Estimated irregular component in capacity utilization for January 1969 to
July 2007 (August 2007 vintage).

Table 3.– Properties of Revisions: Monthly Capacity Utilization
n Mean Std RMSE Max Min ACF (1)

×103
1 4.76 0.0126 0.0134 0.0347 -0.0276 0.943
2 4.90 0.0123 0.0133 0.0315 -0.0237 0.951
3 4.78 0.0124 0.0133 0.0333 -0.0235 0.950
4 4.76 0.0125 0.0134 0.0342 -0.0236 0.949
5 4.76 0.0125 0.0134 0.0347 -0.0237 0.949
6 4.77 0.0125 0.0134 0.0348 -0.0237 0.948
Note: The integer n denotes the order of the cyclical model. Mean is the average

revision, while Std denotes the standard deviation of revisions. RMSE is the root mean-
square of revisions. Max stands for the maximum revision,Min for the minimum revision.
ACF (1) is the first order serial correlation in the revision series.
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Figure 4: The first available vintage (August 1979) for capacity utilization, sample
period January 1969 to July 1979.

Table 4.– Real-Time Accuracy: Monthly Capacity Utilization
n Corr NS CoSign
1 0.946 0.345 0.818
2 0.945 0.335 0.829
3 0.944 0.338 0.817
4 0.943 0.340 0.813
5 0.944 0.340 0.814
6 0.943 0.341 0.814
Note: Corr stands for the correlation between real-time and final estimates. NS is the

ratio of the standard deviation of revisions to the standard deviation of the final output
gap estimates. CoSign gives the frequency with which the final and real-time estimates
have the same sign.
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Figure 5: Final and real-time cyclical estimates for capacity utilization for July 1979
to May 2005 for n = 2 model. The latest vintage is August 2007.

Table 5.–Estimates for cyclical model of quarterly real GDP
n σ2ζ σ2ψ σ2ε ρ 2π/λc R2D bσ Q(P ) AIC

×106 ×104 ×105 ×103
1 1.52 2.78 0 0.897 18.36 0.054 9.54 30.9 -1536.6
2 1.17 3.12 1.24 0.716 – 0.083 9.39 16.9 -1543.8
3 1.19 3.05 1.56 0.602 – 0.081 9.40 17.3 -1543.3
4 1.23 2.98 1.66 0.521 – 0.078 9.42 18.0 -1542.5
5 1.28 2.91 1.71 0.461 – 0.075 9.43 18.6 -1541.9
6 1.30 2.87 1.73 0.415 – 0.074 9.44 19.0 -1541.4
Note: Results for 2007Q3 vintage (sample period 1947Q1 to 2007Q2). σ2ζ denotes the

slope disturbance variance parameter in model (3). See note under table 1 for descriptions
of other parameters.
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Figure 6: Revisions in cyclical estimates for capacity utilization for July 1979 to May
2005 for n = 1 and 2 models.
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Figure 7: Series of quarterly US real GDP (logarithms), with estimated trend, for
the vintage of 2007Q3 (sample period from 1947Q1 to 2007Q2) with n = 1.
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Figure 8: Estimated cycles (first and second order) in US real GDP (logarithms)
shown for the vintage of 2007Q3 (sample period from 1947Q1 to 2007Q2).

Table 6.–Estimates for cyclical model of real GDP
n σ2ζ σ2ψ σ2ε ρ 2π/λc R2D bσ Q(P) AIC

×106 ×104 ×105 ×103
1 1.21 4.02 0 0.918 17.47 0.128 10.28 10.85 -792.43
2 0.859 5.07 1.25 0.726 21.52 0.156 10.11 7.18 -796.80
3 0.933 4.71 1.51 0.622 – 0.160 10.09 7.82 -797.29
4 0.928 4.71 1.86 0.547 – 0.161 10.09 8.16 -797.46
5 0.925 4.70 1.91 0.490 – 0.162 10.08 8.32 -797.53
6 0.925 4.69 1.94 0.446 – 0.162 10.08 8.41 -797.58
Note: Results for 1979Q3 vintage (sample period 1947Q1 to 1979Q2). For n > 2, the

cycle period, 2π/λc, was set equal to the average of the periods for n = 1and 2. See notes
to tables 1 and 5 for further explanation.
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Table 7.–Properties of Revisions: Real GDP
n Mean Std RMSE Max Min ACF (1)

×104
1 5.7 0.01258 0.01260 0.0371 -0.0251 0.865
2 -0.6 0.01212 0.01213 0.0271 -0.0307 0.915
3 -1.4 0.01206 0.01206 0.0284 -0.0320 0.911
4 -1.8 0.01185 0.01185 0.0284 -0.0322 0.907
5 -1.5 0.01169 0.01169 0.0283 -0.0323 0.905
6 -1.4 0.01151 0.01151 0.0281 -0.0321 0.902
Note: See note under table 3.

Table 8.–Real-Time Accuracy: Real GDP
n Corr NS CoSign
1 0.474 1.089 0.601
2 0.518 0.891 0.638
3 0.501 0.897 0.628
4 0.494 0.901 0.609
5 0.492 0.901 0.609
6 0.493 0.902 0.600
Note: See note under table 4.

Table 9a.–Estimates for bivariate cyclical model: capacity utilization
n μ σ2ψ σ2ε R2D bσ Q(P )

×103 ×105
1 0.800 1.15 0 0.212 0.0119 41.58
2 0.800 1.43 0.03 0.344 0.0108 36.98
3 0.799 1.29 0.34 0.319 0.0110 42.12
4 0.798 1.22 1.26 0.297 0.0112 54.85
5 0.797 1.18 1.84 0.293 0.0112 59.75
6 0.797 1.17 2.12 0.287 0.0113 62.42
Note: Results for 2007Q3 vintage (sample period 1969Q1 to 2007Q2). See note under

table 1.
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Figure 9: Real-time and final estimates of the output gap from 1979Q2 to 2005Q2,
for cyclical model with n = 1.

Table 9b.–Estimates for bivariate cyclical model: Real GDP
n σ2ζ σ2ψ σ2ε R2D bσ Q(P )

×107 ×104 ×105 ×103
1 3.21 3.57 0.55 0.098 7.83 24.43
2 4.29 3.52 1.01 0.154 7.58 15.03
3 5.57 3.10 1.09 0.137 7.65 16.11
4 5.77 3.01 1.29 0.133 7.68 17.10
5 5.77 2.96 1.41 0.135 7.66 18.63
6 5.83 2.97 1.48 0.134 7.67 19.44
Note: Results for 2007Q3 vintage (sample period 1969Q1 to 2007Q2). See note under

table 5.
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Figure 10: Real-time and final estimates of the output gap from 1979Q2 to 2005Q2,
for cyclical model with n = 4.
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Figure 11: Revisions of output gap estimates, sample period 1979Q2 to 2005Q2, for
cyclical model with n = 1 and n = 4. (Vintages from 1979Q3 to 2007Q3)
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Figure 12: Estimated cycles (first and fourth order) in US real GDP (logarithms)
shown for the vintage of 2007Q3 (sample period from 1947Q1 to 2007Q2) for bivariate
model with capacity utilization.

Table 9c.–Estimates for bivariate cyclical model
n νκ νε ρ 2π/λc AIC
1 0.780 0.742 0.945 30.3 -2023.6
2 0.891 0.525 0.725 – -2056.4
3 0.918 0.342 0.551 – -2049.2
4 0.919 0.454 0.479 – -2042.2
5 0.918 0.505 0.436 – -2039.1
6 0.920 0.524 0.400 – -2035.4
Note: Results for 2007Q3 vintage (sample period 1969Q1 to 2007Q2). See note under

table 1. νκ is the correlation between cyclical disturbances in real GDP and CU, and νε is
the correlation between irregular components in real GDP and CU.
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Figure 13: Real-time versus final estimates of the GDP gap, 1979Q3 to 2005Q2 for
bivariate cyclical model with n = 1.
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Figure 14: Real-time versus final estimates of the GDP gap, 1979Q3 to 2005Q2 for
bivariate cyclical model with n = 2.
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Figure 15: Real-time versus final estimates of the GDP gap, 1979Q3 to 2005Q2 for
bivariate cyclical model with n = 4.

Table 10.–Properties of Revisions for bivariate model: Real GDP
n Mean Std RMSE Max Min ACF (1)

×103
1 3.89 0.01056 0.01124 0.0313 -0.0164 0.913
2 3.59 0.00825 0.00901 0.0256 -0.0118 0.915
3 2.51 0.00757 0.00797 0.0191 -0.0127 0.904
4 2.11 0.00746 0.00776 0.0168 -0.0138 0.879
5 1.62 0.00760 0.00777 0.0184 -0.0150 0.843
6 1.18 0.00749 0.00758 0.0209 -0.0156 0.838
Note: See Note for Table 3.
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Table 11.–Real-Time Accuracy for bivariate model: Real GDP
n Corr NS CoSign
1 0.890 0.546 0.838
2 0.918 0.445 0.829
3 0.928 0.417 0.791
4 0.925 0.410 0.800
5 0.922 0.415 0.809
6 0.920 0.408 0.810

Note: See Note for Table 4.
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Figure 16: Revisions of output gap estimates, sample period 1979Q2 to 2005Q2, for
bivariate cyclical model with n = 1 and n = 4. (Vintages from 1979Q3 to 2007Q3)
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