
Finance and Economics Discussion Series
Divisions of Research & Statistics and Monetary Affairs

Federal Reserve Board, Washington, D.C.

Using the ”Chandrasekhar Recursions” for Likelihood Evaluation
of DSGE Models

Edward P. Herbst

2012-35

NOTE: Staff working papers in the Finance and Economics Discussion Series (FEDS) are preliminary
materials circulated to stimulate discussion and critical comment. The analysis and conclusions set forth
are those of the authors and do not indicate concurrence by other members of the research staff or the
Board of Governors. References in publications to the Finance and Economics Discussion Series (other than
acknowledgement) should be cleared with the author(s) to protect the tentative character of these papers.

Using the “Chandrasekhar Recursions” for Likelihood Evaluation

of DSGE Models

Ed Herbst
Federal Reserve Board

May 17, 2012

Abstract

In likelihood-based estimation of linearized Dynamic Stochastic General Equilibrium (DSGE)

models, the evaluation of the Kalman Filter dominates the running time of the entire algorithm.

In this paper, we revisit a set of simple recursions known as the “Chandrasekhar Recursions” de-

veloped by Morf (1974) and Morf, Sidhu, and Kalaith (1974) for evaluating the likelihood of a

Linear Gaussian State Space System. We show that DSGE models are ideally suited for the use of

these recursions, which work best when the number of states is much greater than the number of

observables. In several examples, we show that there are substantial benefits to using the recur-

sions, with likelihood evaluation up to five times faster. This gain is especially pronounced in light

of the trivial implementation costs – no model modification is required. Moreover, the algorithm is

complementary with other approaches.

JEL Classification: C18, C63, E20

Keywords: Kalman Filter, Likelihood Estimation, Computational Techniques

1 Introduction

Dynamic Stochastic General Equilibrium (DSGE) are increasingly estimated by Central Banks and aca-

demic economists. In estimation, the model equilibrium conditions can be linked to the data using a

Linear Gaussian State Space (LGSS) representation. As model complexity increases, so too does com-

putational time. In maximum likelihood and Bayesian contexts, the log likelihood has to be evaluated

hundreds of thousands or millions of times, usually in sequential fashion. In this enviroment, likeli-

hood computation time dominates the running time of the entire algorithm. So it becomes crucial to

construct efficient algorithms for likelihood evaluation and state filtering. To wit, considerable effort

Correspondence: Board of Governors of the Federal Reserve System, 20th Street and Consitution Avenue N.W., Washing-

ton, D.C. 20551; edward.p.herbst@frb.gov. I thank, without implication, participants at the Research Computing Seminar

at the Fed Board and John Roberts for comments. The views expressed in this paper are those of the author and do not

necessarily reflect the views of the Federal Reserve Board of Governors or the Federal Reserve System.

1

has been expended constructing elaborate filters tailored to DSGE models–see, for example, Strid and

Walentin (2009).

The purpose of this paper is to report an old and simple algorithm for fast likelihood evaluation

outlined in Morf (1974) and Morf, Sidhu, and Kalaith (1974) and show that it is ideally suited for

DSGE models. The method, which we will call the “Chandrasekhar Recursions” (CR), is simple to

implement and can yield considerable speed improvements.

This paper is closely related to Strid and Walentin (2009), who develop a “Block Kalman Filter” by

exploiting the a priori known structure of the DSGE model to avoid some large matrix calculations. The

algorithm must be applied on a case-by-case basis. We compare the algorithms in the example section.

Moreover, in principle, one could use the CR and also exploit the block structure of the DSGE model.

Finally, although the CR has not been used to aid the estimation of DSGE models, they have been

employed in a general time series context before; see, for example, Klein, Melard, and Zahaf (1998).

The paper is structured as follows. Section 2 contains background information on the DSGE models

and the Kalman Filter, Section 3 contains the derivation of the Chandrasekhar Recursions, Section 4

contains four examples, and Section 5 concludes.

2 The Kalman Filter and DSGE Models

The starting point for our analysis is the LGSS representation of an economic model. The state vector

st is an ns×1 collection of all the relevant variables in the economic model, while εt is nε×1 vector of

structural shocks driving the model. The state equation 1 is derived by first linearizing and then solving

the model; see An and Schorfheide (2007) for details.

st = Tst−1+ Rεt , εt ∼ N(0,Q) (1)

yt = D+ Zst +ηt , ηt ∼ N(0, H) (2)

The vector yt is an ny × 1 vector of observables, and ηt is an nη × 1 vector of measurement errors.

This paper assumes that E[εtη
′
t] = 0 for ease of exposition. The objects (T, R,Q, D, Z , H) are matrix

functions of a vector θ of structure parameters. We suppress the dependence for convenience. We make

two assumptions, which are very often imposed in applications.

1. The system matrices (T, R,Q, D, Z , H) are time-invariant.

2. The process {st} is stationary. This means that for our filtering problem, we can use the invariant

distribution to initialize our state recursion.

The goal of the econometrician is to evaluate the log likelihood p(Y |θ) where Y = [y ′1, . . . , y ′T]
′. This is

accomplished by using the Kalman Filter. The Kalman Filter computes the log likelihood of the model

using the predictive error decomposition,

L (Y |θ) =−
1

2

T
∑

t=1

�

ny ln(2π) + ln(det(Ft)) + ν
′
t F
−1
t νt

�

(3)

2

Where, the forecast error νt and the forecast error variance Ft are given by,

νt = yt − D− Zŝt|t−1. (4)

Ft = Z Pt|t−1Z ′+H (5)

The quantities ŝt|t−1 and Pt|t−1 are the predictive state mean and variance,

ŝt|t−1 = Et−1[st], Pt|t−1 = Et−1[sts
′
t].

The predictive moments of the state equation evolve according to the recursions,1

ŝt+1|t = T ŝt|t−1+ Kt F
−1
t νt . (6)

Pt+1|t = T Pt|t−1T ′− Kt F
−1
t K ′t + RQR′. (7)

Equation 7 is often called the matrix Riccati difference equation because of its resemblance to the

univariate Riccati differential equation. The initial conditionals ŝ1|0 and P1|0 are, in principle, hyper-

parameters to be specified (or estimated) by the user, but this algorithm will use the unconditional

distribution. Then ŝ1|0 = 0 and P1|0 will be the unconditional variance, i.e., the one that solves the

discrete Lyapunov Equation,

T P1|0T ′− P1|0+ RQR′ = 0.

The formula for the Kt is

Kt = T Pt|t−1Z ′. (8)

This gain is usually written as Kg,t = Kt F
−1
t = T Pt|t−1Z ′F−1

t . Essentially it delivers the optimal

extraction of information from the observations at time t.

We are interested in computing the likelihood, which we could do by iterating (in suitable order)

over the above equations. However, this filtering procedure slows down as the number of states, ns,

grows. In particular, the performance is dominated by the updating of the state variance using Riccati

equation (7). In that equation, we must perform the matrix multiplication,

T
︸︷︷︸

ns×ns

Pt|t−1
︸ ︷︷ ︸

ns×ns

T ′
︸︷︷︸

ns×ns

.

This operation is O(n3
s), dominating all other matrix operations in the filter. Strid and Walentin (2009)

report that, for a large DSGE models, 60% of filtering time is spent on the operation T Pt|t−1T ′.

1We combine the standard prediction and updating equations because we are trying to avoid unecessary calculations.

3

3 The Chandrasekhar Recursions

The essence of the Chandrasekhar Recursions is the avoidance of direct computation of Pt|t−1 by instead

looking at the difference in the state variances,

∆Pt|t−1 = Pt|t−1− Pt−1|t−2.

∆Pt|t−1 is a real, symmetric, indefinite matrix.2 Suppose that rank(∆(Pt)) = α. Then ∆Pt|t−1 can be

decomposed into

∆Pt|t−1 =Wt−1Mt−1W ′
t−1,

where Wt is ns × α matrix and Mt is α× α matrix . There is room for improvement over the standard

algorithm if α < ns, since the matrix multiplications will take place on lower dimensional matrices. In

general, however, this factorization is not unique. This seems like a difficult problem, because the fac-

torization is not obvious, and, in our experience, even finding α consistently can be hard. Fortunately,

the problem becomes much easier once it is known that the states are stationary.

Before discussing the recursions for Wt and Mt , it’s worth noting that the forecast error variance Ft ,

Kt and Kg,t can be rewritten as recursions driven by ∆Pt|t−1.

Ft = Ft−1+ Z∆Pt|t−1Z ′, (9)

Kt = Kt−1+ T∆Pt|t−1Z ′, (10)

Kg,t = (Kg,t−1Ft−1+ T∆Pt|t−1Z ′)F−1
t . (11)

For verification of these recursions, see the Appendix. The heart of the algorithm lies in the recursions

for Mt and Wt . Start with the initial state variance P1|0. Recall from Assumption 2 that the system is

stationary, so we can use the unconditional variance of the states, E[sts
′
t] to initialize the state variance,

P1|0 = Et[sts
′
t].

This matrix has the property that it solves the discrete Lyapunov equation,

P1|0 = T P1|0T ′+ RQR′.

Consider now the next-period state variance forecast, P2|1. Using the Kalman Filter recursion (7), we

can write this as,

P2|1 = T P1|0T ′+ RQR′− K1F−1
1 K ′1

= P1|0− K1F−1
1 K ′1. (12)

This means we can write the initial difference of state variances as,

∆P2|1 =−K1F−1
1 K ′1,

2Indeed, looking at reduced rank decompositions of Pt|t−1 or differences thereof, has a wide literature known as Square

Root Kalman Filtering. I present these related recursions because I think they are much easier to implement.

4

which suggests natural choices for M1 and W1,

Wt = K1 = T P1|0Z ′, (13)

Mt = −F−1
1 = (Z P1|0Z ′+H)−1. (14)

Note that thse equations already satistify the initial conditions, since F1 is positive definite. Moreover,

since K1 is ns × ny and F1 is ny × ny it is easy to see that

rank(∆P2) = α≤min{ny , ns}.

For many economic models–in particular large scale DSGE models–ny << ns. In this case, by using the

Chandrasekhar recursions, very roughly speaking, the algorithm has “replaced” the matrix multiplica-

tion Pt+1|t = T Pt|t−1T ′+ . . . with Wt MtW
′
t , which involves matrices of much lower dimension.

Finally, we must derive the recursions for Mt and Wt . To do this, we utilize the following Lemma.

Lemma. For ∆Pt = Pt|t−1− Pt−1|t−2,

∆Pt+1|t = (T − Kg,t Z)(∆Pt|t−1−∆Pt|t−1Z ′F−1
t−1∆Pt|t−1Z ′)(T − Kg,t Z)

′ (15)

Proof. See Appendix.

Thus, the Ricatti-type difference equation in Pt+1 is replaced by another difference equation in terms of

∆Pt+1|t . In fact, this new difference equation gives the Chandrasekhar Recursion its name, because it

evokes the “so-called Chandrasekhar algorithm through which the matrix [Riccati Equation] is replaced

by two coupled differential equations of lesser dimensionality [Aknouche and Hamdi (2007)].” Using

the Lemma, substitute our decomposition Wt−1Mt−1W ′
t−1 for ∆Pt|t−1, to obtain

∆Pt+1|t = (T − Kg,t Z)(Wt−1Mt−1W ′
t−1+Wt−1Mt−1W ′

t−1Z ′F−1
t−1Z ′Wt−1Mt−1W ′

t−1)(T − Kg,t Z)
′. (16)

Rewriting with Wt−1 removed from the inner product, we have,

∆(Pt+1) = (T − Kg,t Z)Wt−1(Mt−1+Mt−1W ′
t−1Z ′F−1

t−1Z ′Wt−1Mt−1)W
′
t−1(T − Kg,t Z)

′. (17)

From here it is easy to see that we can rewrite

∆Pt+1|t =Wt MtW
′
t . (18)

Where Wt and Mt follow the recursions,

Wt = (T − Kt F
−1
t Z)Wt−1, Mt = Mt−1+Mt−1W ′

t−1Z ′F−1
t−1Z ′Wt−1Mt−1 (19)

Combining the equations in 19, with the rewritten recursions for Ft and Mt ,

5

Ft = Ft−1+ ZWt−1Mt−1W ′
t−1Z ′ (20)

Kt = Kt−1+ TWt−1Mt−1W ′
t−1Z ′. (21)

These equations, used in conjunction with with Equations 4 and 6, can be used to iteratively compute

the log likelihood in equation 3. We have elimated the state variance prediction, Pt|t−1, from all the

calculations in the algorithm and hence avoid the most computationally intensive calculation. Pseudo

code is reported below.

Initialization.

1. Solve the Lyapunov Equation for P̄
2. Set K1 = T P̄Z ′, F1 = Z P̄Z ′+H.
3. Set W1 = K1, M1 =−F−1

1 .

Iteration. For each time period t = 1, . . . , T .

1. Compute νt , and evaluate the likelihood.
2. Compute ât+1|t .
3. Compute Ft+1 using Equation 20, and F−1

t+1.
4. Compute Kt+1 using Equation 21,
5. Compute Wt+1 using part one of Equation 19.
6. Compute Mt+1 using part two of Equation 19.

Another advantage of this initialization is that it can shown that Mt will converge to a matrix as t

gets large. This is analgous to the steady state of the system expressed in usual form. With a general

initialization, though, one cannot show that Mt will converge to anything. Finally, note that we can

recover Pi|i−1 by

Pi|i−1 = P1|0+
i
∑

j=1

∆Pj| j−1, i > 1. (22)

3.1 Discussion

It is difficult to compute analytically the exact speed gain given by the Chandrasekhar Recursions given

the differences between highly optimized linear algebra routines across architectures. Still, one can

perform a crude assessment of the differences in the algorithms without resorting to purely empirical

studies. We looked at all the matrix multiplications, including intermediate calculations, in the Kalman

Filter and the Chandrasekhar Recursions, taking care to avoid unnecessary calculations, to gain insight

into the differences in the two algorithms.

Table 1 lists the remaining matrix multiplication operations after the “common” operations have

been canceled out. The two algorithms appear almost the mirror image of one another, with ns and

6

ny switched and a few additional operations for the Chandrasekhar recursions. Using naive linear

algebraic calculations, the running time of two additional distinct operations for the Kalman Filter is

O(n3
s) and O(n2

s ny). For the Chandrasekhar Recursions, the running times are O(n2
y ns) and O(n3

y). It is

clear that if ns > ny , the Kalman Filter will have greater algorithmic complexity than the Chandrasekhar

recursions. If ny < ns, the situation will be reversed.

Given that DSGE models feature more states than observables, the Chandrasekhar recursions seem a

promising algorithm on this basis. However, the calculations in Table 1 are based on (1) a crude matrix

multiplication accounting and (2) the naive matrix multiplication algorithmic complexity. Moreover, we

have abstracted from matrix addition and transposes. We use four examples to give empirical guidance

on the relative performance.

4 Four Examples

We compare the algorithm using four different models: a small Real Business Cycle Model, the Generic

State Space model of Chib and Ramamurthy (2010), the Smets and Wouters (2007) model and the

model of Schmitt-Grohe and Uribe (2010). For each of the models, we calculate the “wall” (clock) time

it takes to evaluate the likelihood at a particular point in the posterior 1000 times. We normalized

these times, with the fastest algorithm being normalized to 100. This is a crude comparison, but it

gives a sense of the actual user experience running the algorithms. We compare three algorithms, the

standard Kalman Filter, the Block Kalman Filter of Strid and Walentin (2009), and the Chandrasekhar

Recursions. We implement all the algorithms in Intel Fortran 11.1 and Matlab 2010a.

We wrote code for the standard KF and the CR recursions, and used the code provided by Strid and

Walentin (2009) for the Block Kalman Filter. This algorithm, specific for DSGE models, uses a priori

knowledge of the structure of T – it has large matrix of zeros where the exogenous variables load onto

the endogenous variables – and Z , which is often quite sparse, to build a fast Kalman filter. It requires

the user to prestructure the model in a particular way and apply it on a case-by-case basis. We did not

benchmark this for the Generic State Space model, since it is not a DSGE model.

The Fortran code utilizes Intel’s Math Kernel Library implementation of BLAS and LAPACK fast linear

algebra routines, including dsymm, symmetric matrix multiplication. The Matlab code uses a standard

distribution of BLAS and does not consider symmetric matrix multiplication, which might disadvantage

it somewhat. Both programs utilize multithreaded BLAS, using four threads for matrix operations.3 All

calculations were on a 12-core Intel Xeon x5670 CPU (2.93GHz) with L1, L2, and L3 cache sizes of

32K, 256K, 12288K, respectively.

One other technical detail worth mentioning is method of computing the solution to the discrete

Lyapunov Equation. For the Chandrasekhar Recursions, it is crucial that this solution be (at least

approximately) correct. Repeating trials suggests that for large (ns greater than 100), the Matlab

routine dlyap does not provide a good solution. Instead, the Matlab implementation of the CR uses

lyap_symm, distributed as part of Dynare [Adjemian, Bastani, Juillard, Mihoubi, Ratto, and Villemot

3The results were broadly the same when only serial computation was considered.

7

(2011)], which yields a much better solution.

The equilibriums for the RBC and SW models are computed with Sims (2002) GENSYS. GENSYS
is widely used to compute equilibriums of Linear Rational Expectations Models in economics. The

algorithm uses the Generalized (complex) Schur decomposition, which gives it the advantage that

“controls” and “states” don’t have to be specified ahead of time; i.e., redundant states can be included.

This means that for our examples, it is possible to reduce the size of the state vector and thus the

efficacy of the CR. Given that our examples are of the small and medium size, we think that they are

illustrative of speed gains for larger models.

4.1 Real Business Cycle Model

The first example is a simple Real Business Cycle model. There are ny = 2 observables, labor and

output. In the GENSYS formulation of the model, there are ns = 12 states. The model is driven by two

shocks, neutral technology and demand.

Table 2 reports the timings associated with evaluating the likelihood 1000 times, with the fastest

normalized to 100. The language gain associated with Fortran is substantial, with the likelihood eval-

uation between four and 8 times faster than their Matlab counterparts. Within languages, that the

Chandrasekhar recursions are the fastest in both languages. While, the Block KF outperforms the stan-

dard KF in Matlab, that is not the case in Fortran. The slow performance in Fortran is consistent with

the findings of Strid and Walentin (2009), who find that the additional overhead associated with the

increased number of matrix multiplications outweighs the size gain for small models.

4.2 Generic State Space Model

The next example is the Generic State Space model used in Chib and Ramamurthy (2010). This is not

a DSGE model. It has no meaningful economic interpretation. It is, however, a good example, because

there are fewer states than observables. In the model ns = 5 while ny = 10. Stochastic singularity is

avoided by measurement error. The data used is simulated, with length 200 periods.

Table 3 shows the timings associated with evaluating the likelihood 1000 times, with the fastest

normalized to 100.4 The language gain is quite substantial, with Fortran being roughly four times faster

for both algorithms. This large difference is mostly driven by the length of sample size. Concentrating

on within-language performance, we see that there is a slight drop in speed when using the CR in

Fortran. Relative to the standard KF, the CR about 17% percent slower. On the other hand, they

are about 10% faster in Matlab. In both cases, the speed difference is small compared to the other

examples.

4.3 Smets-Wouters Model

The Smets and Wouters (2007) is a medium-scale macroeconomic model that has become a benchmark

for many issues related to the estimation and identification of DSGE models. In this formulation of the

4We again note that we do not use the Block KF because it is not a DSGE model.

8

model, there are ns = 50 states and only ny = 7 observables.5 This example includes some redundant

states, I but it is consistent with the conventional way of writing and estimating such models in eco-

nomics. 50 states are not unusual for a medium-scale DSGE model, especially the kind used in central

banks. For this reason, this example serves as a good benchmark.

Table 4 reports the timings associated with evaluating the likelihood 1000 times, with the fastest

normalized to 100. It quite apparent that the language gain associated with Fortran relative Matlab is

large, with the running time approximately doubled for each algorithm in Matlab compared to Fortran.

Within a language, we see that the Chandrasekhar Recursions dominate both the Block and the standard

KF. For Matlab, the CR offer algorithmic speed gains of 61% and 72%, for the Block KF and Standard

KF respectively.

This speed gain is accomplished by eliminating of the matrix operation T Pt|t−1T ′. Indeed, in-

spection of the Matlab Profiler indicates that this operation is about 45% of all filtering time for the

Standard KF. For the Block KF, about 35% of the filtering time is spent on similar, slightly smaller matrix

multiplication corresponding to the non-exogenous sub-state vector (which has ns − ny = 43 states.)

4.4 Schmitt-Grohe and Uribe (2010) Model

The final model comes from Schmitt-Grohe and Uribe (2010). The paper estimates a DSGE model

augmented with “news” shocks. Specifically, they construct a real business cycle model with investment

adjustment consts, capacity utilization, habits, and Jaimovich and Rebelo (2009) preferences. Each of

the seven structural shocks is driven by three innovations. One of these innovations is unanticipated,

while the other two are anticipated four and quarters ahead, respectively. The process for a given

exogenous shock, zt , looks like:

zt = ρzzt−1+ ε
z,0
t + ε

z,4
t−4+ ε

z,8
t−8.

Writing this process recursively requires at least an additional eight states. In total, there are ns = 98

states in the model and ny = 7 observables, using quarterly data from 1965 - 2006, yielding 207 obser-

vations. Moreover, given the news structure, this model is not easily converted into a form used by Strid

and Walentin. The comparison is thus restricted to the standard Kalman Filter and the Chandrasekhar

Recursions.

Table 4 reports the timings associated with evaluating the likelihood 1000 times, with the fastest

normalized to 100. Once again, the gain from using Fortran is substantial, regardless of the algorithm

used. Once again, the Chandrasekhar Recursions dominate the Kalman Filter irrespective of language.

Much like the Smets-Wouters model, much of the gain comes from eliminating the matrix operation

T Pt|t−1T . Overall, the CR posts algorithmic gains of about 38% and 68% for Matlab and Fortran,

respectively.

5We set the moving average coefficients on the markup shocks and automatic stabilizer on the government spending shock

to zero. This way we can use the two block (AR), sparse Block Kalman Filter.

9

5 Conclusion

For DSGE models, the biggest bottleneck in computation is the evaluation of the log likelihood. Within

this evaluation, the prediction of the state variance is the slowest operation, taking about half of all

filtering time for large models. This paper has presented the Chandrasekhar recursions, a simple, fast

algorithm for evaluating the likelihood of a Linear Gaussian State Space System. The CR algorithm

works by eliminating the predicted state variance from the Kalman Filter equations altogether. In this

way, it is ideally suited for DSGE models. The price paid to use this algorithm is relatively small. The

system must be stationary and time invariant, assumptions that are typically satisfied for DSGE models.

It should be noted that this method is entirely consistent with other fast filtering techniques, such as

Durbin and Koopman (2000). These additional speed gains are largely orthogonal to the ones presented

here. Given the ease of implementation and apparent speed gains, the Chandrasekhar Recursions

should become part of applied macroeconomists’ computational toolkit.

10

References

ADJEMIAN, S., H. BASTANI, M. JUILLARD, F. MIHOUBI, M. RATTO, AND S. VILLEMOT (2011): “Dynare: Refer-

ence Manual, Version 4,” Dynare Working Papers 1, CEPREMAP.

AKNOUCHE, A., AND F. HAMDI (2007): “Periodic Chandrasekhar recursions,” arXiv:0711.385v1.

AN, S., AND F. SCHORFHEIDE (2007): “Bayesian Analysis of DSGE Models,” Econometric Reviews, 26(2-4),

113–172.

CHIB, S., AND S. RAMAMURTHY (2010): “Tailored Randomized Block MCMC Methods with Application to

DSGE Models,” Journal of Econometrics, 155(1), 19–38.

DURBIN, J., AND S. KOOPMAN (2000): “Fast Filtering and Smoothing For Multivariate State Space Mod-

els,” Journal of Time Series Analysis, 21, 281–296.

JAIMOVICH, N., AND S. REBELO (2009): “Can News about the Future Drive the Business Cycle?,” American

Economic Review, 9(4), 1097–1118.

KLEIN, A., G. MELARD, AND T. ZAHAF (1998): “Computation of the Exact Information Matrix of Gaussian

Dynamic Regression Time Series Models,” The Annals of Statistics, 26, 1636–1650.

MORF, M. (1974): “Fast Algorithms for Multivariate Systems,” Ph.D. thesis, Stanford University.

MORF, M., G. SIDHU, AND T. KALAITH (1974): “Some new algorithms for recursive estimation in constant,

linear, discrete-time systems,” IEEE Transactions on Automatic Control, 19, 315–323.

SCHMITT-GROHE, S., AND M. URIBE (2010): “What’s News in Business Cycles?,” Working Paper.

SIMS, C. A. (2002): “Solving Linear Rational Expectations Models,” Computational Economics, 20, 1–20.

SMETS, F., AND R. WOUTERS (2007): “Shocks and Frictions in US Business Cycles: A Bayesian DSGE

Approach,” American Economic Review, 97, 586–608.

STRID, I., AND K. WALENTIN (2009): “Block Kalman Filtering for Large-Scale DSGE Models,” Computa-

tional Economics, 33, 277 – 304.

11

6 Tables

Table 1: Noncommon Matrix Multiplications

Algorithm

Standard KF (2x) (ns × ns)(ns × ns), (ns × ns)(ns × ny)
Chandrasekhar Recursions (3x) (ns × ny)(ny × ny), (2x) (ny × ny)(ny × ny)

Table 2: RBC Model: Wall Time, Fastest Normalized to One Hundred

Method Language Wall Time

Standard KF Matlab 982

Block KF Matlab 616

Chandrasekhar Recursions Matlab 410

Standard KF Fortran 123

Block KF Fortran 151

Chandrasekhar Recursions Fortran 100

Table 3: Generic State Space Model: Wall Time, Fastest Normalized to One Hundred.

Method Language Wall Time

Standard KF Matlab 499

Chandrasekhar Recursions Matlab 451

Standard KF Fortran 100

Chandrasekhar Recursions Fortran 120

12

Table 4: Smets-Wouters Model: Wall Time, Fastest Normalized to One Hundred

Method Language Wall Time

Standard KF Matlab 643

Block KF Matlab 451

Chandrasekhar Recursions Matlab 174

Standard KF Fortran 249

Block KF Fortran 214

Chandrasekhar Recursions Fortran 100

Table 5: News Model: Wall Time, Fastest Normalized to One Hundred

Method Language Wall Time

Standard KF Matlab 1263

Chandrasekhar Recursions Matlab 787

Standard KF Fortran 309

Chandrasekhar Recursions Fortran 100

7 Appendix

7.1 Verification of recursions for Ft , Kt ,and Kg,t .

For Ft :

Ft = Z Pt|t−1Z ′+H

= Z Pt|t−1Z ′+H + Ft−1− Ft−1

= Ft−1+ Z Pt|t−1Z ′− Z Pt−1|t−2Z ′

= Ft−1+ Z∆Pt|t−1Z ′.

Kt and Kg,t are similar.

7.2 Verification of the difference equation for ∆Pt|t−1.

To show that Chandrasekhar recursions work for the special case discussed above, we show how to

write the recursions for Ft and Kt in terms of ∆(Pt).

Proof. Using the definition of Ft and adding and subtracting Ft−1, A similar algebraic manipulation

13

can be used for Kt . Note that we can also write Kg,t as

Kg,t = (Kg,t−1Ft−1+ T∆(Pt)Z
′)F−1

t . (23)

Proof of Lemma. From the Kalman Filter, we have that

Pt+1|t = T Pt|t−1T ′+ RQR− Kg,t Ft K
′
g,t .

Subtracting Pt|t−1 from both sides, we have that

∆Pt+1|t = T∆Pt|t−1T ′− Kg,t Ft K
′
g,t + Kg,t−1Ft−1Kg,t−1.

Using the recursions for Ft shown in the previous lemma, we have

∆Pt+1|t = T∆Pt|t−1T ′− Kg,t(Ft−1+ Z∆Pt−1|t Z
′)K ′g,t + Kg,t−1Ft−1Kg,t−1.

Grouping like terms and completing the square for (T − Kg,t Z), we have

∆Pt+1|t = (T − Kg, tZ)∆Pt|t−1(T − Kg,t Z)
′+ Kg,t Z∆Pt|t−1T ′+ T∆Pt|t−1Z ′K ′g,t

− 2Kg,t∆Pt|t−1K ′g,t − Kg,t Ft−1K ′g,t + Kg,t−1Ft−1K ′g,t−1. (24)

Note that we can write the final product in the equation, using 23, 20, and tediously expanding terms,

as,

Kg,t−1Ft−1Kg,t−1 = (Kg,t Ft − T∆Pt|t−1Z ′)F−1
t (Kg,t Ft − T∆Pt|t−1Z ′)

= (Kg,t(Ft−1+ Z∆Pt|t−1Z ′)− T∆Pt|t−1Z ′)F−1
t (Kg,t(Ft−1+ Z∆Pt|t−1Z ′)T∆Pt|t−1Z ′)

= (Kg,t Ft−1+ (Kg,t Z − T)∆Pt|t−1Z ′)F−1
t−1(Kg,t Ft−1+ (Kg,t Z − T)∆Pt|t−1Z ′)

= (T − Kg,t Z)∆Pt|t−1Z ′F−1
t−1Z∆Pt|t−1(T − Kg,t Z) + Kg,t Ft−1Kg,t

+ Kg,t Z∆Pt|t−1(Kg,t Z − T)′+ (Kg,t Z − T)∆Pt|t−1Z ′K ′g,t

= (T − Kg,t Z)∆Pt|t−1Z ′F−1
t−1Z∆Pt|t−1(T − Kg,t Z) + Kg,t Ft−1Kg,t

− Kg,t Z∆Pt|t−1T ′− T∆Pt|t−1Z ′K ′g,t + 2Kg,t∆Pt|t−1K ′g,t . (25)

Combining 24 and 25, we have verified the lemma.

14

