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1 Introduction

Since the seminal work of Stigler [1961], economists have long recognized the

importance of imperfect information in explaining the workings of a variety of

markets. Surprisingly, given its importance to the macro economy, little work

has focused on the effects of imperfect information in the housing market.1

The housing market is a classic example of a market affected by imperfect

information. Each house is a unique, differentiated asset; trading volume of

comparable homes tends to be thin due to high transaction costs; and market

conditions are highly volatile over time. These features of the housing market

make it difficult for sellers to determine their home values at any point in time.

In this paper I model the effect of this type of seller uncertainty on the hous-

ing market. The model adds a framework for seller uncertainty and Bayesian

learning in the spirit of Lazear [1986] to the typical features of the dynamic

micro search models in the housing literature (Carrillo [2010], Horowitz [1992],

Salant [1991]). I estimate the model and use it to test whether uncertainty is

important for explaining several key stylized facts about housing market dy-

namics that have attracted much attention in the literature, in part because

they are inconsistent with the predictions of standard asset pricing models.

The first fact is that price appreciation rates display predictability in the

short-run. In their seminal papers, Case and Shiller [1989] and Cutler et al.

[1991] find that a 1 percent increase in real annual house prices is associated

with a .2 percent increase the next year, adjusting for changes in the nominal

interest rate. Numerous other studies have also documented this persistence,

and it has led some to question the efficiency of the housing market because

it cannot be explained by fundamentals.2 Thus, an important question is

whether the amount of short-run momentum found in the data is consistent

1Levitt and Syverson [2008] and Taylor [1999] are examples of studies that focus on the
effect of information asymmetries on micro features of the data, but less is understood about
the broader effects of information frictions on housing market dynamics.

2For example, Case and Shiller [1989] and Glaeser and Gyourko [2006] find that persis-
tence in rents and wages cannot explain the amount of serial correlation in prices, and thus
cite inefficiency as a likely explanation. See Cho [1996] for a survey of the literature on
house price dynamics.
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with a rational model of the housing market.

Another key feature of housing markets is that sales volume and marketing

time are positively and negatively correlated with sales price changes, respec-

tively. The existing literature has convincingly emphasized the importance of

search frictions and credit constraints as explanations.3 Here, I investigate

whether imperfect information is an additional friction that causes housing

markets to display these unusual time series properties.

At a more micro level, the literature has also documented a set of styl-

ized facts about the behavior of individual sellers (Merlo and Ortalo-Magne

[2004]). For example, sellers tend to adjust their list prices downwards, even

when market conditions do not change, and sales prices for observationally

equivalent homes depend on time on market (TOM). These empirical patterns

are inconsistent with the predictions of existing search, matching and bar-

gaining theories of housing transactions, which do not accommodate duration

dependence in seller behavior.4 In addition to explaining the macro stylized

facts discussed above, I will show that uncertainty and the gradual acquisition

of information during the listing period is an explanation for these and many

other dynamic features of the micro data.

I motivate the model with reduced form evidence that lack of information

does affect selling behavior. While several studies show that homeowners mis-

estimate their home values at various points during their ownership tenure5,

I am not aware of other studies that investigate the information set of sellers

when the home is on the market for sale. Since most sellers hire a realtor

when they are ready to sell their homes, this is potentially an important dis-

tinction. The reduced form evidence comes from a new micro dataset that

I compile from two independent sources. For a large sample of single family

homes listed for sale with a realtor in the two major California metropolitan

areas from 2007-2009, the combined dataset describes the precise location of

each listing, list prices each week that the home is listed for sale, TOM, and

3See Stein [1995], Ortalo-Magne and Rady [2006], Genesove and Mayer [1997], Anenberg
[2011a], Krainer [2001], Ngai and Tenreyro [2010].

4See Carrillo [2010], Horowitz [1992], Novy-Marx [2009], Chen and Rosenthal [1996].
5See for example, Goodman and Ittner [1992], Kiel and Zabel [1999].
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sales prices.

I exploit cross-sectional variation in the heterogeneity of the housing bust

across neighborhoods to test whether sellers price their homes using the most

up to date information about local market conditions. I find that they do

not; initial list prices are overly sensitive to lagged market information. The

regression results show that for two comparable homes in a given time period,

the home in the neighborhood that experienced the greater amount of price

depreciation in the previous four months will be listed at a higher price on

average. Neighborhood price levels from longer than four months ago do not

provide any additional explanatory power for initial list prices. This finding

is consistent with anecdotal evidence that sellers, with the help of realtors,

look to previous sales of similar houses when pricing their homes, presumably

because comparable sales volume can be thin and sales prices become publicly

available with a lag. Evidently, realtors do not fully adjust for the downward

trend in prices during my sample period.

Using list prices to infer seller beliefs is complicated by the fact that many

unobservables affect list prices, and some of them may be correlated with

lagged market information. However, the correlation between sales prices and

lagged neighborhood price depreciation confirms that expectation bias is in-

deed the explanation for the inflated list prices. In particular, I find that

for the same homes that have higher list prices because of high lagged neigh-

borhood price depreciation, sales prices are lower. Theoretically, higher list

and lower sales prices can arise when sellers overstate their home value, but

this crossing pattern, which is shown in Figure 1, cannot easily be explained

by many alternative explanations for the high list prices including loss aver-

sion (Genesove and Mayer [2001], Anenberg [2011a]), equity constraints (Stein

[1995],Genesove and Mayer [1997], Anenberg [2011a]), high unobserved home

quality, or low unobserved motivation to sell, among others. In other words,

unobservables that increase list prices should also increase sales prices.6 This

6In Figure 1, the two stylized neighborhoods trend at the same rate after the listing date.
In the empirical specification, I control for heterogeneous trends across neighborhoods by
normalizing list and sales prices by a time varying, neighborhood specific sales price index.
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simple identification strategy for expectation bias could be useful in other

settings where list prices or reserve prices are observed in addition to selling

prices.

Having established this new evidence that information frictions are an im-

portant part of the home selling process, I incorporate them into a single-agent

dynamic micro model of the home selling problem. I model seller uncertainty

as a prior on the mean of the distribution of buyer valuations for their home,

and this prior may be biased depending on the information available. Sellers

set list prices to balance a trade-off: a high list price strengthens their bar-

gaining position if a buyer arrives, while a low list price attracts more offers

and increases the pace of learning. Conditional on the list price, buyers with

idiosyncratic valuations arrive randomly. The house sells if the buyer’s val-

uation is above the seller’s reservation price, which depends on the value of

declining the offer and continuing the dynamic process. Sellers in the model

behave rationally and optimally given the available information.

I estimate the parameters of the model using simulated method of mo-

ments.7 The parameter estimates themselves are informative about the amount

of information that sellers have and the pace of learning. I find that the stan-

dard deviation of the typical seller’s prior about their home value is $38,000,

which is about 7 percent of the average sales price. Learning over the course

of the marketing period decreases this standard deviation by 37 percent by

the time of sale, on average.

Simulations of the estimated model show that annual aggregate sales price

appreciation rates persist even when changes in the market fundamentals do

not. The model can account for over half of the persistence typically found

in the data. To see the intuition behind this result, suppose that there is

uncertainty about demand at time t, the expected value of demand is γ at time

t, and the realization of a permanent demand shock is higher than expected

at γ + ε. Even if every seller receives an idiosyncratic signal at time t that

7In this respect, my paper contributes a new application to the growing literature on
empirical learning models. See, for example, Crawford and Shum [2005], Ackerberg [2003],
Hitsch [2006], Erdem and Keane [1996], Narayanan et al. [2007]. I highlight a couple unique
features of my learning model in Section 4.1.
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demand is high, in the absence of a mechanism (either formal or informal

as in Grossman and Stiglitz [1976]) that publicizes private information, the

reservation price of the average Bayesian updating seller will not fully adjust

to the shock at time t. In subsequent periods, after more information about

the positive shock becomes available, reservation prices, and thus sales prices,

will fully adjust. It is this lag in the flow of information that gives rise to serial

correlation in price changes.

The same lag in the updating of reservation prices to demand shocks gener-

ates a positive (negative) correlation between price changes and sales volume

(TOM). For example, when there is a positive demand shock, reservation prices

are too low relative to the fundamentals, which leads to higher sales volume

and quicker sales. The model predicts that a 1 percent increase in quarterly

prices leads to a 4.8 percent increase in volume and a 7.2 percent decrease

in TOM. These predicted co-movements are comparable to what is observed

in the data. Thus, uncertainty does appear to be important in explaining

variation in transaction rates over the housing cycle as well.8

A related paper by Head et al. [2011], written recently and independently

of this one, also explores the serial correlation of house price changes. Under

some calibrations and functional form assumptions, their macro model, which

is one of complete information, is also able to generate some, but not all,

of the momentum observed in the data. Their model, like mine, does not

rely on inefficiency or irrationality of the market. Matching frictions in the

spirit of Mortensen and Pissarides [1994] and Pissarides [2000] interact with

a lagged housing supply response to cause market tightness (i.e. the ratio of

buyers to sellers), and thus prices, to gradually rise in response to an income

shock. Future efforts to explain even more of the momentum in housing market

conditions could try incorporating information frictions into this type of search

and matching framework.

This paper proceeds as follow. Section 2 introduces the data. Section 3

8The idea that uncertainty about market conditions can lead to slow adjustment of prices
and sales is also discussed in Berkovec and Goodman [1996]. However, the idea is introduced
with a more stylized version of the model in this paper, and their model is not taken to the
micro data.
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motivates the model with reduced form evidence that information frictions are

an important part of the home selling problem. To investigate the broader im-

plications of seller bias and uncertainty for housing market dynamics, Section

4 develops a model where the flow of information has an endogenous effect

on selling behavior. Section 5 and 6 discuss estimation details. Section 7

simulates the model to highlight the importance of information frictions in ex-

plaining the stylized facts discussed above. Section 8 discusses the robustness

of the results to certain stylized features of the model and section 9 concludes

the paper.

2 Data

I use home sale and listing data for the core counties of the San Francisco

Bay Area and Los Angeles. These counties include Alameda, Contra Costa,

Marin, San Francisco, San Mateo, and Santa Clara in San Francisco; and Los

Angeles, Orange, Riverside, San Bernardino, and Ventura counties in the Los

Angeles area.

The listing data come from Altos Research, which provides information

on single-family homes listed for sale on the Multiple Listing Service (MLS)

from January 2007 - June 2009. Altos Research does not collect MLS data

prior to 2006. Since a seller must use a licensed real estate agent to gain

access to the MLS, my sample only contains selling outcomes for sellers who

use realtors.9 Every Friday, Altos Research records the address, mls id, list

price, and some characteristics of the house (e.g. square feet, lot size, etc.) for

all houses listed for sale. From this information, it is easy to infer the date of

initial listing and the date of delisting for each property. A property is delisted

when there is a sale agreement or when the seller withdraws the home from

the market. Properties are also sometimes delisted and then relisted in order

to strategically reset the TOM field in the MLS. I consider a listing as new

only if there was at least a 180 day window since the address last appeared in

9According to the National Association of Realtors, over 90 percent of non-arms length
home sales were listed on the MLS in 2007.

7



the listing data.

The MLS data alone does not provide information on which listings result

in a sale, and what the sales price is if a sale occurs. To obtain this information,

I supplement the MLS data with a transactions dataset from Dataquick that

contains information about the universe of housing transactions from 1988-

2009. In this dataset, the variables that are central to this analysis are the

address of the property, the date of the transaction, and the sales price.

Using the address, I attempt to merge each listing to a transaction record

that is within 1 year of the date of delisting from the MLS.10 I also attempt

to merge each listing to a previous sale in the transaction dataset. The latter

merge acquires information on the purchase price of each home, which I use

to construct a predicted log selling price for each house:

p̂ijt : log predicted sales price for house i located in neighborhood j in month t.

I calculate these prices by applying a zip code price change index to the previ-

ous log sales price. The price index is calculated using a repeat sales analysis

following Shiller [1991]. I let the price index vary by zip code and month.

The predicted price measures what the economist expects house i to sell for in

time t, and it controls for time-invariant unobserved home quality and differ-

ences in neighborhood price appreciation rates. Appendix A.2 describes how

I calculate these prices from the data in more detail.

Appendix A.1 describes more details of the data building process, including

minor restrictions to the estimation sample (e.g. exclude listings where the

ratio of the minimum list price to the maximum list price is less than the first

percentile). I exclude listings where the initial listing date equals the first week

of the sample and listings where the final listing data equals the last week of

the sample to avoid censoring issues. I also drop all listings that do not merge

to a previous transaction.11

10The sales date in the transaction data is the closing date, which lags the agreement date
by a month on average.

11I compare summary statistics of the limited sample to the full sample to ensure that
my sample is representative. The failure to merge here is because there is an idiosyncracy
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2.1 Summary Statistics

Figure 2 shows the Case-Shiller home price index for Los Angeles and San

Francisco from 2007 - 2009. During the years where the MLS and transactions

data overlap, both cities experienced comparable and significant price declines.

In Los Angeles, the market peaked in September 2006, and fell 37.5 percent

in nominal terms through December 2009. The San Francisco market peaked

in May 2006, and also fell by 37.5 percent by the end of 2009. The prolonged

episode of falling prices, low sales volume, and long marketing time that my

sample period covers is not an isolated event; Burnside et al. [2011] show

that sustained booms and busts occur throughout housing markets around

the world. For example, in real terms, Los Angeles experienced a comparable

price decline during the housing bust of the early 90’s.12 Thus, my sample

and my results like characterize market dynamics during cold housing markets

more generally.

Table 1 presents summary statistics for the listings that sell. The median

time to sale is about 3 months, and there is a lot of variation. Twenty five

percent of listings sell in less than 5 weeks and 25 percent take more than

25 weeks to sell. Most sellers adjust their list price at least once before they

sell. These list price changes tend to be decreases: only 6 percent of list price

changes are increases.13 Table 2 shows that list price changes occur through-

out the selling horizon, and many occur in the first few weeks after listing.

These stylized facts about list price changes seem challenging for models with

complete information to explain.14 Since some sellers will quickly adjust their

in the way the addresses are recorded, the house is new, or the current owner purchased the
house prior to 1988.

12I also find evidence that the percent of transactions that are foreclosures during the
recent downturn is comparable to the downturn during the 1990’s. Campbell et al. [2011]
also report that the foreclosure rate is not unusually high during the recent recession relative
to the downturn during the 1990’s in Massachusetts.

1350 percent of listings do not sell during the sample period. These withdrawals tend to
have longer marketing times and higher list prices (normalized by predicted price) relative
to listings that sell. I discuss reasons for these withdrawals in more detail in Section 8.

14For example, list prices could decline in a complete information framework if holding
costs increase over time. But to generate list price increases during a market decline and to
generate list price changes so quickly after listing likely requires a very flexible parameteri-
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beliefs in response to new information, the learning model that I present below

will also predict changing list prices in the first few weeks and some list price

changes that are increases.

Few studies have had access to such a large dataset on home listings that

includes the full history of list prices for each listing.15 This feature of the data

will be important for identifying the parameters of the non-stationary model

of selling behavior presented below.

3 Motivating Empirical Facts

I begin by presenting strong evidence, which does not rely on my modeling

assumptions below, that imperfect information does affect the home selling

process. This is important because even though many features of the data are

consistent with a model with uncertainty and learning as I show below and as

documented in Knight [1996], alternative models may be able to explain these

features as well.

3.1 Expectation Bias and List Prices

I test whether the initial list price choices of sellers reflect the most up to date

market information, or whether they place undue weight on lagged informa-

tion. Outdated information may affect list prices because the thinness of the

market and the lag in which sales data become public make it difficult to assess

current market conditions.16 Conversations with a realtor suggest that lagged

zation of holding costs.
15A related study that uses a similar dataset from the Netherlands is de Wit and van der

Klaauw [2010]. The authors find empirical evidence that list price changes affect selling
outcomes such as the hazard rate of sale. Since list prices have no legal role, they interpret
this as evidence that information frictions do exist in the housing market. My study is
different from theirs in that they do not actually model the information frictions or address
the implications of these frictions on market dynamics.

16Sales data become available only upon closing, which typically lags the date when the
buyer and seller agree on price by months. In addition, home price indexes (e.g. Case-
Shiller) that process sales data using econometric techniques lag the market by months.
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comparable sales are often used as a proxy for the current market value.17

I implement this test by regressing the log list price in the initial week of

listing, normalized by the log predicted sales price, on lagged price changes

according to:

pLi,j,t0 − p̂i,j,t0 = αj + γt + β1(p̂i,j,t0−1 − p̂i,j,t0) + β2Xi,j,t + εi,j,t (1)

where the 0 subscript denotes that it is i′s first month on the market and

j denotes the neighborhood. Variation in the dependent variable across list-

ings could be due to several factors, including heterogeneous motivation to

sell, time-varying house characteristics, and heterogeneous beliefs about house

values. The regressor of interest is the percentage change in average neigh-

borhood prices from the previous month relative to the current month. The

average value of p̂i,j,t0−1 − p̂i,j,t0 is 1.7 percent and the standard deviation is

2.9 percent. I also include month fixed effects, zip code fixed effects, other

controls X, and so β1 is identified from heterogeneity in the variation in price

declines across neighborhoods.

Column 1 of Table 3 reports the results. Standard errors are clustered at

the zip code level. A 1 percent increase in the price depreciation rate leads to a

0.57 percent increase in the list price, all else equal. That this estimate is less

than one suggests that realtors have some information, just not perfect infor-

mation, that market conditions have deteriorated. In Columns 2-5, I continue

to add lagged neighborhood price changes as regressors until the estimated co-

efficient becomes insignificant. One month price changes immediately before

listing have the biggest effect on list price premiums, and the effect of 1 month

price changes diminish as they occur further before the month of listing. A

price change between month t0 − 5 and t0 − 4 does not affect the list price

premium. It makes sense that the most recent price changes are the least cap-

italized into list prices because the least information is available about these

17My language suggests that sellers and realtors have the same objective function, even
though the empirical evidence suggests otherwise (Levitt and Syverson [2008]). I do not
feel that this distinction is important for my analysis since the results are identified off of
cross-sectional variation and all of the sellers in my sample use realtors.

11



changes.18

In Table 4, I test how the list price premium varies over the entire distri-

bution of lagged depreciation. The regression specification is

pLi,j,t0 − p̂i,j,t0 = αj + γt +
10∑
k=2

αkI[∆4
ijt < dk] + β2Xi,j,t + εi,j,t (2)

where

∆4
ijt = p̂i,j,t0−4 − p̂i,j,t0 (3)

is the local price change over the four months prior to initial listing, I is the

indicator function, and dk is the kth decile of the distribution of ∆4 across

all the listings in my sample.19 As shown in Table 4, the higher the lagged

price depreciation, the higher the list price, and the relationship is monotonic

over the entire ∆4 distribution. Coefficients in bold denote cases where the

difference in the coefficient relative to the coefficient in the decile immediately

below is statistically significant. The results are similar in column 2, where I

restrict the sample only to listings that eventually sell.20

3.2 Expectation Bias and Selling Outcomes

The previous section showed evidence that sellers set higher list prices when

their local market is declining at a faster than average rate. I interpret this as

expectation bias. In this section, I test whether market deterioration affects

other variables such as the sales price and marketing time. Here, I find pat-

terns that are consistent with expectation bias, but not with other plausible

explanations for the list price results.

Columns 3 and 4 of Table 4 substitute TOM as the dependent variable in

equation (2) using the full sample and the sample of only sales, respectively.

18The results are similar when I restrict the sample to listings that sell.
19d10 denotes the largest price declines. The median value of ∆4 is 6 percent.
20To test the robustness of these results to my assumption about off-market properties

described in Section 2, I ran these regressions treating each listing where the address does not
appear in the dataset in the week prior, as a new listing. The results are largely unchanged.
In Table 3, the coefficient on p̂i,j,t0−5 − p̂i,j,t0−4 becomes marginally significant.
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TOM is increasing in ∆4, although the extreme decile of the price change

distribution appears to be an outlier. Column 5 shows that the propensity to

withdraw is also increasing in ∆4, and monotonic over the entire ∆4 distribu-

tion. In this specification, I include in X an additional control for the change

in price level during the marketing period, p̂i,j,T − p̂i,j,t0 , where T denotes the

time period that the house sells or is withdrawn.

Column 6 reports results where the dependent variable is the log sales

price normalized by the predicted log sales price in the month of sale, i.e.

psalei,j,T − p̂i,j,T . Sales prices are significantly decreasing in the lower deciles of

∆4, but are flat or slightly increasing in the higher deciles.

3.3 Discussion

That higher lagged depreciation leads to longer marketing time and a higher

propensity to withdraw is consistent with the expectation bias interpretation.

Biased beliefs lead to higher reservation prices, which should increase market-

ing time in a standard search model. Biased beliefs may also draw sellers into

the market, only to withdraw later once they realize that their home will not

sell for what they initially expected.

The theoretical effect of inflated beliefs on sales price is ambiguous. For

example, a high reservation price could cause sellers to stay on the market

for longer, which allows them to sample more offers and ultimately receive a

higher price at the expense of a longer time to sale. Inflated beliefs can also

decrease sales prices if, for example, motivation to sell increases over time (e.g.

there is a finite selling horizon). In this case, the seller is pricing too high,

and potentially turning off potential buyers, exactly when he is most likely to

accept higher offers.

For this reason, the sales price results alone do not tell us much about

the existence of expectation bias. However, the fact that for some regions

of the price decline distribution, list prices are significantly increasing while

sales prices are significantly decreasing is an unusual pattern that is consistent

with expectation bias but inconsistent with alternative explanations for the list
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price, TOM and withdrawal results. A stylized case of this crossing property is

illustrated in Figure 1. Finding a reasonable model where an omitted variable

from equation (2) increases list prices above what is expected while decreasing

sales price below what is expected is a challenge. In fact, finding a model where

a variable increases list prices and leads to no change in sales price, which is the

case for much of the ∆4 distribution, is also difficult. For example, standard

models of the home selling problem, including the model we present below,

predict that unobservables such as high home quality, low motivation to sell,

loss aversion, and equity constraints should all lead to higher list and higher

sales prices.21 Appendix A.3 presents additional results that are consistent

with the conclusions established in this Section.

4 Model

4.1 Overview and Comparison with Related Literature

The heart of my model is similar to Carrillo [2010], Horowitz [1992], Salant

[1991]. The seller’s decision to list the home and sell it is taken as given,

and the seller’s objective is to maximize the selling price of the house less the

holding costs of keeping the home on the market. My main contribution is to

introduce uncertainty and Bayesian learning into this framework. This makes

the home selling problem nonstationary; unlike in Carrillo [2010] and Horowitz

[1992], sellers in my model will adjust their list prices over time and the hazard

rate of selling varies over time as learning occurs.22 I endogenize the effect of

information on market dynamics while 1) only introducing parameters that are

identified given the dataset described in Section 2 and 2) capturing the key fea-

tures of the home selling process including search, a posting price mechanism,

preference heterogeneity, and duration dependence in optimal seller behavior.

21Genesove and Mayer [2001] and Anenberg [2011a] present empirical evidence that loss
aversion and equity constraints, which may be positively correlated with ∆4, lead to higher
list and higher sales prices

22Salant [1991] introduces nonstationarity into the search problem with a finite selling
horizon, although sales prices in his model never differ from the asking price and he does
not estimate his model.
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I discuss extensions to the model and their implications for my conclusions in

Section 8.

The way that I model uncertainty and learning is similar to the existing

empirical learning models (see cites in footnote 7)), but my model is unique in

two ways. First, I allow the parameter, µ, that agents are learning about to

change over time. Second, agents in my model receive direct signals about the

unknown parameter (i.e. µ + noise) as in the existing studies, but also receive

signals (when buyers do not inspect their house) that the unknown parame-

ter is below a known threshold (i.e. µ + noise < T). The latter innovation

introduces some new computational challenges that I discuss in Section 4.5.

4.2 Offer Process and Buyer Behavior

At the beginning of each week t that the house is for sale, seller/house com-

bination i selects an optimal list price, pLit. This list price and a subset of the

characteristics of the house are advertised to a single risk-neutral potential

buyer. From now on, I refer to these potential buyers as simply buyers. The

logarithm of each buyer j’s willingness to pay (or valuation) vijt is parameter-

ized as

vijt = µit + ηijt (4)

where µit is common across all buyers and ηijt represents buyer taste hetero-

geneity. The distribution of buyer valuations is exogenous to the model.

I assume that

ηijt ∼ N(0, σ2
η). (5)

That is, η is iid across time, houses, and buyers.

The advertisement only provides the buyer with a signal of their valuation.

From the advertisement, the buyer forms beliefs about v that are assumed

buyer beliefs: vijt ∼ N(v̂ijt, σ
2
v̂) (6)

where v̂ijt is drawn from N(vijt, σ
2
v̂). Thus, buyers get an unbiased signal of

15



their true valuation from the advertisement.23

After observing v̂ijt, the buyer decides whether to inspect the house at

some cost, κ.24 If the buyer inspects, then v is revealed to both the buyer and

the seller. If v < pL, the seller has all the bargaining power and has the right

to make a ’take it or leave it’ offer to the buyer at a price equal to v (which I

assume the buyer will accept). If v > pL, then the buyer receives some surplus:

the buyer has the right to purchase the house at a price equal to the list price.

If the buyer chooses not to inspect or if the buyer’s valuation lies below the

seller’s continuation value of remaining on the market, then the buyer departs

forever and the seller moves onto the next period with her house for sale.

The proof of the following theorem, which characterizes the buyer’s optimal

behavior, appears in Appendix A.4.

Theorem 1 The optimal search behavior for the buyer takes the reservation

value form. That is, the buyer inspects when v̂ > v̄, and does not inspect

otherwise. v̄ = T ∗ + pL where T ∗ is a function of the parameters (κ,σ2
v̂).

This price determination mechanism delivers a closed form relationship

between v̄ and the list price, which is necessary to keep estimation tractable

given that the list price choice will be endogenous. Since the buyer receives no

surplus when v < pL, v̄ does not depend on the seller’s reservation price or any

other variable (like TOM) that provides a signal about the seller’s reservation

price.

This simple model of buyer behavior endogenizes the list price and leads to

a trade-off (from the seller’s perspective) when setting the list price between

sales price and TOM.25 The model also generates a mass point at the list price

in the sales price distribution. These predicts are consistent with the empirical

23This specification of beliefs would arise if buyers had flat priors (i.e. prior variance =
∞) and processed the signal, v̂, according to Bayes’ rule.

24The inspection cost should be interpreted broadly as the cost of making a serious offer,
including the inspection itself and the opportunity costs of lost time.

25The way the list price mechanism works in Carrillo [2010] is as follows. With exogenous
probability θ, the list price serves an a take-it-or-leave-it offer to the buyer. With probability
(1− θ), the buyer can make an offer that extracts the entire surplus from the transaction.

16



evidence, and with the theoretical literature on the role of asking prices as a

commitment device.26

4.3 The µ process

The underlying valuation process, µit, is exogenous to the model. It is not

affected by the individual decisions of the buyers and sellers that I model.27

I assume that it follows a random walk with drift, so that there is no pre-

dictability in changes in housing market fundamentals. In other words, in a

frictionless environment, there should be no predictable returns to owning a

house. The particular parametrization I use in estimation is

µit − µit−1 = γ0 + εit. (7)

where ε ∼ N(0, σ2
ε ).

4.4 Structure of Information

I assume that the seller knows all of the parameters that characterize the search

problem except for the mean of the valuation distribution, µit. When sellers

receive an offer, they cannot separately identify η from µ. That is, sellers have

difficulty distinguishing a high offer due to high average demand from a high

offer due to a strong idiosyncratic taste for the house.

Sellers have rational expectations about the µ process in (7). Sellers do

not observe the realizations of ε, but they observe an unbiased signal z param-

eterized as

zit ∼ N(µit − µit−1, σ
2
z). (8)

The source of this signal is exogenous to the model, but we can think about

it as idiosyncratic information about real-time market conditions that realtors

can collect as professional observers of the market.

26See for example Glower et al. [1998], Merlo and Ortalo-Magne [2004], Chen and Rosen-
thal [1996]. 15 percent of sales occur at the list price in my data.

27In other words, sellers are price takers in this model.
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To summarize, there are three sources of information that sellers receive

during the selling horizon. Sellers observe whether or not a buyer inspects.

This reveals whether or not a noisy signal of a buyer’s valuation exceeds

a known threshold. Secondly, sellers observe the buyer’s valuation if the

buyer inspects. Thus, inspections are more informative to the seller than

non-inspections. Since the choice of list price affects whether or not a buyer

inspects, the list price has an endogenous effect on the flow of information. I

am not aware of other models where the optimal list price will depend on the

amount of information that the buyer response to the price is likely to provide.

Finally, each period sellers observe the exogenous signal about changes in the

valuation process.

Appendix A.5 shows how sellers update their beliefs with this information

using Bayes’ rule. The final piece of the information environment is the seller’s

initial prior, which is assumed to be:

initial prior: µit0 ∼ N(µ̂it0 , σ̂
2). (9)

The mean of the prior is given by

µ̂it0 = θ1(

∑4
j=1 µt0−j

4
− µt0) + θ2(

∑8
j=5 µt0−j

4
−
∑4

j=1 µt0−j

4
)+

θ3(

∑12
j=9 µt0−j

4
−
∑8

j=5 µt0−j

4
) + θ4(

∑16
j=13 µt0−j

4
−
∑12

j=9 µt0−j

4
) + νit0 (10)

where

νit0 ∼ N(µit0 , σ̂
2). (11)

The parameters θ allow the initial beliefs to be sensitive to market condi-

tions from the previous 4 months, as the evidence in Section 3 suggests. If

θj = 0 for j = 1, ..., 4, then the average seller will have unbiased initial beliefs,

although there will still be heterogeneity due to ν. Although I do not explic-

itly model how this initial prior is generated, I show in Appendix A.7 that if

a similar Bayesian learning framework applies prior to the beginning of the
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selling horizon, then initial priors will depend on lagged information.

4.5 Seller’s Optimization Problem

The timing of the model is summarized in Figure 3. Each period begins

with the realization of z. The seller updates his beliefs, and then chooses an

optimal list price. The list price is set to balance the tradeoffs that emerge

from Theorem 1. Once the list price is advertised, the buyer decides whether

to inspect, the seller updates the reservation price with the information from

buyer behavior, and then the seller chooses to either sell the house (if an offer

is made) and receive a terminal utility equal to the log sales price or to move

onto the next period with the house for sale. Each period that the home does

not sell, the seller incurs a cost c, which reflects discounting and the costs of

keeping the home presentable to show to prospective buyers. I impose a finite

selling horizon of 80 weeks.

The following Bellman’s equation, which characterizes selling behavior at

the third hash mark on the timeline in Figure 3, summarizes the seller’s opti-

mization problem:

Vt(Ωt) = max
pLt

∫
z

(
(c+ Vt+1(Ωt+1|v̂t < T ∗ + pL, zt+1))Pr(v̂t < T ∗ + pL)

+
[ ∫ pL

−∞
max {vt, c+ Vt+1(Ωt+1|vt, zt+1)}

+

∫ ∞
pL

pLt
]
Pr(v̂t > T ∗ + pL)g(vt|v̂t > T ∗ + pL)dvt

)
f(zt+1)dzt+1 (12)

where Ωt denotes the state variables. The normality assumptions imposed

throughout, in addition to an approximation method borrowed from a statis-

tics paper by Berk et al. [2007] on Bayesian learning with censored demand,

imply that Ωt is comprised of a single mean and variance. The self-conjugacy

of the normal distribution is critical in avoiding the curse of dimensionality
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that can make dynamic models infeasible to estimate.28 This is discussed in

more detail in Appendix A.5. Expectations are with respect to whether v̂ will

exceed T ∗ + pL, the realization of v, which is correlated with v̂, and the real-

ization of the signal about demand changes, z. The top line of equation (12)

reflects the case when a buyer does not inspect. In this case, the seller updates

his beliefs to Ωt+1 and moves onto the next period. If v̂t > T ∗ + pL, the seller

receives an offer, v. If the offer is above pL, the payoff is pL. If the offer is

below pL, the seller Bayesian updates and then decides whether to accept, or

reject and move onto the next period. pL is chosen by the seller to maximize

this expected utility. In the Appendix A.5, I show how Ωt transitions to Ωt+1

given the realizations of v, z, and v̂.

5 Estimation and Identification

Table 5 summarizes the notation of all of the model parameters. I estimate

the parameters using simulated method of moments. That is, I minimize a

weighted average distance between sample moments and simulated moments

with respect to the model’s parameters. The weights are the inverses of the

estimated variance of the moments. The target moments are listed in Table 6.

I calculate the empirical moments using the subset of listings that sell (which

introduces potential sample selection issues that I discuss in Section 8). I

describe the dynamic programming techniques used to estimate the model in

Appendix A.6.

The parameters that are not estimated are the time invariant holding cost

(c = 0) and the buyer’s inspection cost (κ = −.005 or .5 percent of the list

price). The conclusions that follow are related to the parameters that dictate

the flow of information, and so I find that my results are not sensitive to the

choices for these parameters. I calibrate the mean (γ0 = −.0033 or .33 percent)

of the µ process using the average monthly change in the Case-Shiller index

28The same normality assumptions are made in most empirical learning models. See, for
example, Crawford and Shum [2005] and Ackerberg [2003]. I am not aware of any empirical
learning models that allow for the type of censored demand that arises when the buyer’s
valuation exceeds the list price.
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for San Francisco and Los Angeles during my sample period. I set θ1,θ2,θ3,θ4

equal to the coefficients on lagged depreciation estimated in Column 4 of Table

3. Since ∂pL/∂µ̂ = 1 in the model (proof not reported), this implies that the

initial list price will display the same level of sensitivity to lagged market

conditions as found in the data.

The variance of the offer distribution, σ2
η, is identified by the distribution

of sales prices relative to the list price. The level of initial uncertainty, σ̂2, is

identified by the size of list price changes, especially in the first couple weeks

after listing before depreciation in µ increases the variance in list price changes.

Both variances also have different predictions for TOM. More variance in the

offer distribution increases TOM because the higher incidence of very good

offers increases the value of searching. More uncertainty distorts the choice

of list price and reservation price, which decreases the returns to staying on

the market. The average premium of the list price relative to the sales price

helps to identify σ2
v̂ , as does the propensity for prices to occur at the list price.

For example, if buyers have a lot of information about their valuation prior

to inspection (low σ2
v̂), sellers need to set low list prices to induce inspections.

σ2
z is identified by the correlation between list price changes and changes in

p̂. A high correlation suggests that σ2
z is low because sellers can quickly and

fully internalize changes in market conditions into their list price decisions.29

The variance of the µ process, σ2
ε , is identified by the variance of changes in

average prices over time. In the data, I calculate this moment by taking the

standard deviation of monthly price changes in the Case-Shiller index for San

Francisco and Los Angeles during my sample period.

29If I used weekly list price changes, the model would generate a high σ2
z because in most

cases list prices do not change week by week. Some of this may be due to high σ2
z , but some

of it may be due to menu costs, which I do not model. As a result, I use list price changes
in the initial week of listing relative to the final week of listing. Menu costs should have less
of an effect on average changes over longer horizons.
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6 Estimation Results and Model Fit

The learning model matches the data well (see Table 6 for the simulated mo-

ments at the estimated parameter vector). Even when agents have rational

expectations about the severe market decline during my sample period, the

model matches the lengthy TOM observed in the data. At the estimated pa-

rameters, more uncertainty raises the list price because sellers want to test

demand before dropping the price, which will attract more buyers but will

also transfer more of the bargaining power to the buyer. Since uncertainty de-

creases over the selling horizon, the model generates declining list prices, and

would do so even if market conditions (i.e. the µ process) were constant. How-

ever, as in the data, a minority of list price changes are increases (6 percent

in the data versus 4 percent in the model). The fraction of list price changes

that are increases is not a moment that I directly target in estimation. In the

model, list price increases primarily occur from sellers with low draws of ν in

equation (10).

Interestingly, the model fits the fact that list to sales price premiums in-

crease with TOM. This is true even though list prices are increasing in the level

of uncertainty, and the level of uncertainty decreases over the selling horizon.

The reason for the increasing wedge between list and sales prices is selection:

sellers with low reservation prices tend to sell quickly and post lower list prices.

The model overpredicts the average list price change at delisting relative to

listing. This is partly because I do not model menu costs. In Section 8 I

discuss the robustness of my results to this and other simplifications.

Table 5 reports the parameter estimates and their standard errors.30 The

results suggest that sellers typically accept offers that are 12 percent above the

mean of the valuation distribution, which is the 92nd percentile. Given that

the average sales price is $ 628,000, this implies that the mean of the offer

distribution is about $ 561,000 (628000/1.12) for the typical house. Thus,

the standard deviation of the seller’s prior for the typical house is about $

30The variance-covariance matrix of the parameter estimates is given by (G′W−1G)−1,
where G is the matrix of derivatives of the moments with respect to the parameters and W
is the variance-covariance matrix of the moments. Off-diagonal elements are ignored.
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38,000 and the standard deviation of the offer distribution is about $47,000.

I calculate that Bayesian learning reduces the standard deviation (variance)

of the seller’s initial prior by 37 percent (60 percent) over the course of the

selling horizon.

I also relate the predictions of the model to the reduced form results pre-

sented in Section 3. As mentioned above, the specification of the initial prior

in equation (10) ensures that the model replicates the correlation between

lagged price depreciation and list prices observed in the data. The model also

predicts that lagged price depreciation is positively correlated with TOM.31

The stronger is perceived demand, the higher is the reservation price, which

increases TOM, all else equal. The model predicts a small effect of lagged

price depreciation on sales price.32 Just as in the data, for some parts of the

distribution of initial bias, more bias leads to lower sales prices. The model

predicts that two alternative explanations for the high list prices found in

Section 3 – high unobserved home quality (a higher µ) and low unobserved

motivation to sell (a higher |c|) – lead to unambiguously higher sales prices

as well higher list prices (proof not reported). Thus, the model illustrates how

these explanations are inconsistent with the evidence from Section 3.

7 Simulations of Market Dynamics

7.1 Price Dynamics

It has been well documented that house price appreciation rates are persis-

tent in the short-run. An important question is whether this predictability

can be supported in an equilibrium where market participants are behaving

optimally. My model of rational behavior conditional on an exogenous level

of information suggests that it can. I show this by simulating average weekly

sales prices using the model for T = 48000 and N = 20000 new listings each

week. The parameters of the model are set at their estimated values. Following

31A 1 percent increase in lagged price depreciation increases TOM by 5.1 percent.
32A 1 percent increase in lagged price depreciation increases sales price by .1 percent.
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the literature, I run the following regression on the simulated price series

pt − pt−52 = ρ0 + ρ1(pt−52 − pt−104) + νt. (13)

where pt is the log average price over all simulated sales in week t.33

Table 7 shows the results. The level of sales price persistence generated

by the model is .124. The information frictions are completely responsible for

the persistence. Column 1 shows that when the average seller has unbiased

beliefs at the time of initial listing and when σz = 0, ρ1 = 0.34 The third and

fourth columns show results when I aggregate weekly prices to the quarterly

level. In this case, the dependent variable is pt− pt−4 where t is a quarter and

pt is the simple average of all sales in quarter t. I present these results because

in practice sales do not occur frequently enough to compute price indexes at

the weekly level. Case and Shiller [1989] and Cutler et al. [1991], for example,

run their regressions at the quarterly level. The aggregation alone introduces

persistence, and the AR(1) coefficient rises to .152.

7.1.1 Discussion, Robustness, and Further Results

At the parameter estimates, the model generates persistence that is over half

the level typically found in the data. The intuition for the result is as follows.

Sellers do not fully adjust their beliefs in time t to a shock to µ in time t,

on average. The optimal Bayesian weighting places some weight on the signal

about the shock and some weight on the seller’s prior expectation. Then, for

example, when there is a positive shock, the average reservation price in the

population rises, but is too low relative to the perfect information case. As

time progresses, however, learning from buyer behavior provides more infor-

mation about the shock, and reservation prices eventually fully adjust. The

same intuition holds for a negative demand shock. Thus, serial correlation in

33By simulating a large number of sales each week, I avoid measurement errors that affect
the estimation of these regressions in practice. See Case and Shiller [1989].

34Recall that the fundamental determinant of house values in the model, µt, follows a
random walk (see equation 7). So by construction, there is zero persistence in changes in
the fundamentals.
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price changes arises because 1) persistent demand shocks are not immediately

capitalized into reservation prices and 2) there exists a mechanism through

which additional information about these shocks arrives with a lag.

Over shorter frequencies, the persistence is even higher, as shown in the

right-most columns of Table 7. We can see this through the equation for the

OLS estimate of ρ1:

ρ̂1 =
cov(pt − pt−L, pt+L − pt)

var(pt − pt−L)
. (14)

As the lag length, L, gets smaller, the numerator stays approximately the

same and the denominator gets smaller because there are fewer shocks between

time t and t − L. By the same logic, the persistence dies out as L increases.

Thus, the short-run persistence generated here does not preclude long-run

mean reversion in price changes, which is an additional stylized fact about

house price dynamics. The model can generate long-run mean reversion with

the addition of a mean reverting shock to the µ process.35

The persistence generated by the model could be arbitraged away if some

traders have superior access to information about the current period funda-

mentals. However, given that realtors already provide the typical seller with

information based on their professional insights and access to data in the MLS,

this seems like a difficult arbitrage. In addition, the difficulty in taking short

positions and the large transaction costs involved in trading homes complicates

any potential trading strategy (Meese and Wallace [1994]).

σ2
z potentially plays a large role in determining the amount of persistence

because it affects how much of a demand shock is immediately capitalized into

reservation prices. When σ2
z is high, there is a lot of scope for persistence

because most of the information about the demand shock will arrive with a

lag. To test the sensitivity of the results in Table 7 to the point estimate of

σ2
z , I re-simulate the model at the upper and lower limits of the 95 percent

confidence interval for the estimate of σz. The annual persistence (weekly

35Glaeser and Gyourko [2006] cannot generate short-run momentum, but generate long-
run mean reversion with a mean reverting shock to local productivity and a slow construction
response.
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prices) always lies between 0.12 and 0.13. Given that σz = .018 (1.8 percent)

at the lower end of the confidence the interval, the model does not require

much signal noise at all to generate a significant amount of persistence.

I also test the sensitivity of the results to the assumption that the mean of

the valuation distribution, µt, changes each period (i.e. each week). I simulate

a version of the model where µt only changes every four periods; I multiply σ2
ε

by four so that the variance of µt − µt−4 is the same as in the baseline model.

In this version of the model, the annual persistence is slightly higher at .131

for weekly prices and .162 for quarterly prices.

7.2 Sales Volume and TOM Dynamics

The existing literature has identified frictions related to search and credit

constraints as explanations for the positive price-volume correlation in the

housing market. In this section, I show that an information friction is an

additional contributor to this correlation.

Table 8 shows the results when I regress log(V olume) and log(TOM) on

quarterly price changes using data simulated from the model at the estimated

parameters. Column 1 shows that a 1 percent increase in quarterly prices

leads to a 6.7 percent increase in sales volume. The estimate from running

the same specification on the actual data for Los Angeles and San Francisco

is 5 percent, which is close to the estimate reported in Stein [1995] who uses

data from the entire US housing market.36 Column 2 shows that absent the

information friction, the model does not predict a relationship between price

changes and volume.

When the dependent variable is log(TOM), the model generates a β1 =

−7.6: a 1 percent increase in quarterly prices leads to a 7.6 percent decline

in TOM.37 To compare this prediction to the data, I collect a TOM time-

36To estimate this regression on the data, I first run a repeat sales regression with quarter
dummies on the transaction data from 1988-2009. The change in the quarter dummies
(adjusted for inflation) is then the explanatory variable in an OLS regression where volume
is the dependent variable. I run the regressions separately for Los Angeles and San Francisco,
but the estimates are similar.

37In the version of the model where shocks arrive only once a month, β1 = −6.3 for TOM
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series from the Annual Historical Data Summary produced by the California

Association of Realtors. The TOM data reflects averages for the entire state

of California, while the quality adjusted price data I have is from Los Angeles

and San Francisco so the comparison is quite rough. The estimate of β1 is -5.6

percent using LA prices and -4.1 percent using SF prices, suggesting that the

model is generating predictions that are of the same order of magnitude as the

empirical price-TOM relationship.

The results suggest that information frictions are important for explaining

variation in transaction rates over the housing cycle. The intuition for these

results is that positive shocks to home values are accompanied by reservation

prices that are too low relative to the perfect information case. Lower reserva-

tion prices relative to the fundamentals leads to more and quicker transactions.

8 Discussion of Model Assumptions

In this section, I discuss the robustness of the results to a few stylized features

of the model.

8.1 No Buyer Learning

In the model, changes in the offer, or willingness to pay, distribution are exoge-

nous. A model that endogenizes buyer willingness to pay from the fundamental

demand and supply conditions in the economy could also include a dynamic

learning process, as the thinness and volatility of the market probably make

it difficult for buyers to observe market conditions as well. We do not model

such a dynamic process because it would be difficult to identify without data

on buyer behavior and it would significantly complicate the seller’s problem.

However, I suspect that including a buyer learning process would increase

the level of price persistence. In the current setup, reservation prices adjust

to market shocks with a lag, but offers adjust immediately. If offers adjust

with a lag as well, then the adjustment of prices to market shocks would be

and β1 = 7.3 for volume.
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even slower. The correlations between volume and TOM with price changes,

however, may be attenuated because sluggish reservation prices are met with

sluggish demand.

8.2 Abstraction from Features of the Micro Data

The model presented above is the simplest version of an empirical model

needed to highlight the effects of information frictions on market dynamics.

As a result, the current version of the model does not explain some features of

the micro data such as withdrawals, sales prices above list prices, and sticky

list prices.38 In a working paper version of the paper Anenberg [2011b], I ex-

perimented with more detailed versions of the model to address each of these

features. The main conclusions are unchanged. In this section, I summarize

these adjustments to the model.

To accommodate withdrawals, I allow sellers to withdraw at any time and

receive an exogenous and heterogenous termination utility, vw. The parameter

estimates from that model suggest that there is a group of motivated sellers,

with very low vw as modeled above, and a group of unmotivated sellers with

high vw. Hardly any of the unmotivated sellers end up selling given the decline

in the market. Thus, the predictions of the model with respect to sales price

and volume dynamics are similar.39 This version of the model requires positive

holding costs, c, to explain why sellers do not stay on the market indefinitely.

The estimated holding costs are small.

To accommodate sales prices above the list price, I assume that when

v > pL, there is some exogenous probability that the price gets driven up

above pL. This addition to the model does not affect the main parameter

estimates or conclusions.

38The models of Carrillo [2010] and Horowitz [1992] do not accommodate these features
of the data either.

39I also note here that uncertainty is able to rationalize the high withdrawal rate observed
in the data. The estimated amount of uncertainty is high enough and the holding costs of
keeping a home on the market are low enough that unmotivated sellers find it optimal to
test the market even though they fully anticipate withdrawing if they learn that demand
for their house is insufficient.
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The current model predicts that sellers should adjust their list price, of-

tentimes by an ε amount, each period. This is one reason that the model

overpredicts the average list price change at delisting relative to listing. In

practice, list prices are sticky, presumably due to menu costs. In the working

paper version of this paper, I show that very small menu costs can rationalize

sticky list prices. Thus, I do not expect the addition of a menu cost, which

would significantly increase the computational burden, to affect the conclu-

sions.

8.3 One Offer per Period

In the model I assume that the expected amount of information that the seller

receives does not vary much over the selling horizon. In practice, the arrival of

buyers may be especially strong in the first several periods while the listing is

fresh. Thus, learning in the initial weeks may be higher than the model allows

for. Modeling multiple offers significantly complicates estimation, and it is not

clear how the arrival rate would be identified without information on buyer

behavior. Instead, I test the robustness of my results to stronger learning in

the initial weeks by allowing sellers to observe an additional draw from the

offer distribution, vit, during each period in the first month after listing. The

annual price persistence declines from .124 to .092. The effect of price change

on volume decreases from 6.7 percent to 3.3 percent, and the effect of price

change on TOM increases from -7.6 percent to -5.8 percent.

9 Conclusion

This paper shows that information frictions play an important role in the work-

ings of the housing market. Using a novel and robust identification strategy

for expectation bias, I find direct evidence that imperfect information affects

the micro decisions of individual sellers. Then, I show that a search model

with uncertainty and Bayesian learning fits the key features of the micro data

remarkably well, suggesting that information frictions are important in ex-
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plaining the distribution of marketing times, the role of the list price, and the

microstructure of the market more generally. I also use the model to high-

light how micro-level decision making in the presence of imperfect information

affects aggregate market dynamics. Most notably, I find a significant micro-

founded momentum effect in short-run aggregate price appreciation rates.

The analysis here raises several interesting directions for future research.

Given the sample period that I have access to, I have argued that my results

likely characterize market dynamics during cold housing markets. Since the

basic mechanisms generating the main results do not depend on the market

being in decline, I suspect that my model, estimated using a sample with rising

prices, would be successful in explaining momentum and correlations between

price, volume, and marketing time in rising markets as well. However, the

magnitude of the results may differ as the pace of learning may change over

the housing cycle. This paper does not discuss the welfare implications of

uncertainty. In a working paper version, I use a similar model to show that

the value of information to sellers is large, which helps to explain the demand

for realtors that typically charge 3 percent of the sales price. On the modeling

side, extending micro models of the home selling problem to the multi-agent

setting, so that the pricing and selling outcomes of neighboring listings has

an endogenous effect on the flow of information, is an interesting direction for

future research.
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A Appendix: For Online Publication

A.1 Data Appendix

I first describe how I combine the listing data from Altos Research with the
transaction data from Dataquick. I begin by cleaning up the address variables
in the listing data. The address variables in the transaction data are clean
and standardized because they come from county assessor files.

The listing data contains separate variables for the street address, city, and
zip code. I ignore the city variable since street address and zip code uniquely
characterize houses. The zip code variable does not need any cleaning. In
a large majority of cases, the address variable contains the house number,
the street name, the street suffix, and the condo unit number (if applicable)
in that order. We alter the street suffixes to make them consistent with the
street suffixes in the transaction data (e.g. change ”road” to ”rd”, ”avenue” to
”ave”, etc). In some cases, the same house is listed under 2 slightly different
addresses (e.g. ”123 Main” and ”123 Main St”) with the same MLSIDs. We
combine listings where the address is different, but the city and zip are the
same, the MLSids are the same, the difference in dates between the two listings
is less than 3 weeks, and at least one of the follow conditions applies:

1. The listings have the same year built and the ratio of the list prices is
greater than 0.9 and less than 1.1.

2. The listings have the same square feet and the ratio of the list prices is
greater than 0.9 and less than 1.1.

3. The listings have the same lotsize and the ratio of the list prices is greater
than 0.9 and less than 1.1.

4. The first five characters of the address are the same.

We merge the listing data and the transaction data together using the
address. If we get a match, we keep the match and treat it as a sale if the
difference in dates between the transaction data (the closing date) and the
date the listing no longer appears in the MLS data (the agreement date) is
greater than zero and less than 365 days. If the match does not satisfy this
timing criteria, we keep the most recent transaction to record the previous
selling price. Before we do the merge, we flag properties that sold more than
once during a 1.5 year span during our sample period. To avoid confusion
during the merge that can arise from multiple sales occurring close together,
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we drop any listings that merge to one of these flagged properties (< 1 percent
of listings).

I drop listings where the ratio of the minimum list price to the maximum
list price is less than the first percentile. I drop listings where the TOM is
greater than the 99th percentile. I drop listings where the list to predicted
price ratio is less than the 1st or greater than the 99th percentile. I drop
listings where the predicted price is less than the 1st or greater than the 99th
percentile. I drop listings where the sales to predicted price ratio is less than
the 1st or greater than the 99th percentile.

A.2 Detail on Calculation of Predicted Prices

p̂it is the log expected sales price for house i in month t. This expected
price is simply equal to the previous log price paid for the house plus some
neighborhood (zip code in this analysis) level of appreciation or depreciation.
To calculate the level of appreciation, I follow Shiller [1991], who estimates
the following model

p∗ijt = vi + δjt + εijt (15)

where v is a house fixed effect, δjt is a neighborhood specific time dummy, and
εijt is an error term. We can estimate the coefficients on the neighborhood-
specific time dummies, which form the basis of a quality adjusted neighborhood
index of price appreciation, through first-differencing and OLS using a sample
of repeat-sales. In practice, when I estimate the time-dummy coefficients for
a particular zip code j, I use the entire sample of repeat sales from 1988-2009,
except I weight the observations for zip code i using

Wi(j) =

[
1

h
φ(

distij
h ∗ std(distij)

)

]1/2

(16)

where φ is the standard normal pdf, dist is the distance between the centroid
of the zip codes i and j, and h is a bandwidth.40 I use this weighting scheme
because sometimes the number of sales in a particular zip code in a particular
month is not large.

40I set the bandwidth equal to 0.25. This choice of bandwidth implies that the weights
decline about 40 percent as we move 10 miles away from the centroid of a neighborhood.
The main results of the paper are robust to alternative choices of bandwidth.
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A.3 Further Results on Expectation Bias

Appendix Table 1 presents additional results that are consistent with the con-
clusions established Section 3. I test whether sellers in neighborhoods where
there have been a lot of recent sales are better able to detect recent price
trends. In the context of the model, we could think of these sellers as receiv-
ing signals, z, with a tighter variance because there is more information about
recent price trends. We run the following variation of specification (2)

yi,j,t = γt + β1∆4
jt + β2∆4

jt ∗ salesjt + β3Xi,j,t + εi,j,t (17)

where salesjt is the total number of sales in neighborhood j in the previous
4 months. Column 1 of Appendix Table 1 shows that a 1 standard deviation
increase in salesjt lowers the effect of ∆4

jt by 0.12, or 22 percent. Columns
(2)-(4) show the results when we substitute TOM , I[Withdraw], and the
sales price premium as the dependent variable.41 More thickness decreases the
positive (negative) effects of lagged depreciation on TOM (sales price). The
effects on the propensity to withdraw are economically insignificant.

Column (5) shows that the effects of ∆4
jt on list prices diminish as we move

later in the sample period. The time series of prices in Figure 2 provides a
likely explanation. As the housing decline deepened and sellers learned that
prices were depreciating rapidly, they did a better job of adjusting the prices
of recent comparable sales for the downward trend.

A.4 Proof of Theorem 1

Buyers will inspect house i when the expected surplus from visiting exceeds
the expected cost, i.e. when∫ ∞

pL
(v − pL)

1

σv̂
φ(
v − v̂
σv̂

)dv ≥ −κ (18)

where φ is the standard normal distribution. The lower limit of integration is
pL because the buyer receives no surplus when her valuation is below the list
price.

To show that the optimal buyer behavior takes the reservation value form, it
is sufficient to show that the term in the integral in equation (18) is increasing
in v̂. Using properties of the truncated normal distribution, we rewrite the

41The adjustments to the regressors in (17) depending on the dependent variable follow
the discussion/specifications in Section 3. In these specifications where we have no controls
for neighborhood, we also include an additional control for the level of salesjt.
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integral as

(v̂ − pL)(1− Φ(
pL − v̂
σv̂

)) + σv̂φ(
pL − v̂
σv̂

) (19)

Taking the derivative of this expression with respect to v̂ gives

(1−Φ(
pL − v̂
σv̂

))+(v̂−pL)φ(
pL − v̂
σv̂

)+(pL− v̂)φ(
pL − v̂
σv̂

) = 1−Φ(
pL − v̂
σv̂

) > 0.

(20)
To show the particular form of v̄, using properties of the truncated normal

distribution, we rewrite equation (18) for v̂ = v̄ as

(v̄ − pL)(1− Φ(
pL − v̄
σv̂

)) + σv̂φ(
pL − v̄
σv̂

) + κ = 0. (21)

Let z be the left hand size of (19). It is clear from (19) that ∂z
∂pL

= −∂z
∂v̄

.

Then, using the implicit function theorem, ∂v̄
∂pL

= 1. Thus, the remaining
determinant of v̄ will be an additively separable term, T ∗. To get an expression
for T ∗, plugging the solution for v̄ into (19), we get

(T ∗)(1− Φ(
−T ∗

σv̂
)) + σv̂φ(

−T ∗

σv̂
) + κ = 0. (22)

Given values for (σv̂, κ), we can solve for T ∗ using fixed-point iteration.

A.5 Model Details on Learning

In this section, we detail how sellers update their beliefs in response to infor-
mation that arrives during the selling horizon.

Define the following means and variances of seller beliefs over µit:

µ̂preit , σ̂
pre
it : Beliefs after observing z but before observing buyer behavior in week t.

µ̂it, σ̂
2
it : Beliefs after observing buyer behavior in week t.

Suppose that µ̂it and σ̂2
it are the mean and variance of a normal distribution

at any time t. Given the assumptions made in the model, I show below that this
will be the case. Then, Bayes’ rule implies that the posterior after processing
z is also normal where

µ̂preit = µ̂it−1 +
σ2
z µ̂p + σ̂2

pzit

σ2
z + σ̂2

p
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σ̂preit = σ̂2
it−1 +

σ2
z σ̂

2
p

σ2
z + σ̂2

p

. (23)

The best case scenario for the seller is that σ2
z = 0; in this case, weekly changes

to the mean of the valuation distribution do not increase uncertainty.
The source of learning that decreases uncertainty in week t is buyer behav-

ior. If a buyer arrives, recall that the seller observes vit, which is a noisy signal
of µit. The posterior distribution of µ after the seller processes the information
in vit remains normal with mean and variance at time t given respectively by:

µ̂it =
σ2
ηµ̂

pre
it + σ̂preit vit

σ2
η + σ̂preit

σ̂2
it =

σ̂preit σ
2
η

σ̂preit + σ2
η

. (24)

The initial conditions are given in equation (9).
If a buyer does not arrive, the seller observes that v̂it < T ∗ + pLit and the

density function of the posterior is

f(µ̂t|v̂ < T ∗ + pL) =
Φ(T

∗+pL−µ̂t√
σ2
η+σ2

v̂

)φ(
µ̂t−µ̂pret

σ̂pret
) 1
σ̂pret

Φ(
T ∗+pL−µ̂pret√
σ̂pret +σ2

η+σ2
v̂

)
. (25)

This is not a normal distribution because of the µ̂t term in the normal cdf in
the numerator. A statistics paper by Berk et al. [2007] shows that a normal
distribution with mean and variance equal to the mean and variance of the
distribution in equation (25) is a good approximation for the true posterior
when demand is censored in exactly this way. I use this approximation method
here, noting that simulations show this approximation to work extremely well
for my application. Then, when a buyer does not arrive, the posterior distri-
bution after processing that v̂it < T ∗ + pLit is normal with mean and variance
at given respectively by:

µ̂it = µ̂preit − σ̂
pre
it h(T ∗ + pL)

σ̂2
it =

1

τ 2
((µ̂preit )2σ4 + τ σ̂preit σ

2 + 2σ̂preit σ
2(µ̂preit )2 + (σ̂preit )2τ + (µ̂preit )2(σ̂preit )2)

+ (2µ̂preit σ̂
pre
it σ

2 + (σ̂preit )2(T ∗ + pL + µ̂preit ))− h(T ∗ + pL)/τ − (µ̂it)
2 (26)

where τ = σ̂preit +σ2
η +σ2

v̂ , σ
2 = σ2

η +σ2
v̂ , and h is the hazard rate corresponding
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to the normal distribution with mean µ̂preit and variance τ .

A.6 Dynamic Programming Methods

I assume a finite horizon of 80 weeks for the selling horizon. It is well known
that in these types of dynamic programming problems, V from equation (12)
needs to be calculated for each point in the state space. I calculate V for a
discrete number of points and use linear (in parameters) interpolation to fill
in the values for the remainder of the state space.

The integrals in equation (12) have a closed form. No simulation is re-
quired. This avoids a source of bias that often arises in practice when the
number of simulations required to preserve consistency is not feasible to im-
plement. See Keane and Wolpin [1994] for a more detailed discussion. The
closed form arises due to the normal approximation for the pdf, g, described in
Berk et al. [2007], properties of the truncated normal distribution, the absence
of idiosyncratic choice specific errors from the model, linearity in equations
(23) and (24), and linearity in the interpolating function.

The optimal list price, however, does not have a closed form. For each
point in the discretized state space, I solve for the optimal list price using a
minimization routine. The optimal list price also needs to be calculated when
simulating selling outcomes for each seller. I approximate the list price policy
function using linear (in parameters) interpolation. This is done using the
discrete points used to approximate the value function.

A.7 Bayesian Learning Prior to Listing

In this section, I show that if a similar Bayesian learning framework applies
prior to the beginning of the selling horizon, the initial priors will depend on
lagged information. To see how, consider a simplified information structure
where µt follows a random walk with a drift equal to zero (and normally
distributed shocks). Furthermore, assume that µt0−1 is observable, but the
seller only gets a signal z about µt0 − µt0−1. Then, the seller’s beliefs about
µt0 will be

µt0−1 + θz (27)

where θ = σ2
ε

σ2
ε+σ2

z
is the optimal Bayesian weight that sellers put on the signal.

For a realization of µt0 < 0, sellers will tend to overstate µt0 on average. This
will lead to high list prices because the optimal list price is monotonic in µ̂ as
discussed above. The noisier the signal z, the lower is θ, and the more sellers
will overstate µt0 for low realizations of µt0 .
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Figure 1: Test for Expectation Bias
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Figure 3: Timeline of Events in Model

Seller gets Buyer gets
signal, z, about signal, chooses Seller updates If offer made, Seller repeats

μt - μt-1; seller Seller  whether to beliefs from seller decides to process if reject

Pay cost c updates beliefs chooses pL inspect buyer behavior accept or reject chosen in time t

t t+1



List Price - Predicted Price Square Feet Year Built Time on Market Change in List Price Sales Price

(%) (Weeks) over Selling Horizon

Mean 8% 1683 1961 18 -10% 628372

Sell p25 -5% 1188 1950 5 -14% 360000

N= 87,879 p50 6% 1513 1960 12 -2% 530000

p75 18% 1999 1980 25 0% 765000

Mean 17% 1673 1960 20 -7%

Withdraw p25 2% 1156 1949 8 -9%

N=88,060 p50 14% 1495 1958 16 -1%

p75 28% 2032 1979 26 0%

Mean 12% 1678 1960 19 -9% 628372

Total p25 -2% 1172 1949 6 -11% 360000

N=175,939 p50 9% 1504 1959 14 -2% 530000

p75 23% 2014 1979 26 0% 765000

Notes: The Predicted Price is calculated by applying a neighborhood level of sales price appreciation to the previous log selling price.  

Table I : Summary Statistics



Table 2: Percent of Sellers on Market that Adjust List Price by Week Since Initial Listing

Weeks Since % Adjusting
Listing List Price

1 4.47%
2 7.72%
3 9.91%
4 11.21%
5 11.42%
6 10.82%
7 10.20%
8 10.27%
9 10.47%
10 10.26%
11 10.04%
12 9.78%
13 9.88%
14 9.86%
15 8.91%
16 8.97%
17 8.95%
18 9.24%
19 8.99%
20 8.92%
21 8.83%
22 8.69%
23 8.68%

>=24 9.54%



Table 3: Effects of Lagged Market Conditions on List Price

(1) (2) (3) (4) (5)

Log List Price‐ Log List Price‐ Log List Price‐ Log List Price‐ Log List Price‐

Dependent Variable Log Predicted Price Log Predicted Price Log Predicted Price Log Predicted Price Log Predicted Price

Log Predicted Pricet‐1 ‐ Log Predicted Pricet 0.5631*** 0.7052*** 0.7298*** 0.7439*** 0.7475***

(0.0266) (0.0327) (0.0347) (0.0367) (0.0381)

Log Predicted Pricet‐2 ‐ Log Predicted Pricet‐1 0.3933*** 0.4858*** 0.5167*** 0.5298***

(0.0321) (0.0415) (0.0473) (0.0534)

Log Predicted Pricet‐3 ‐ Log Predicted Pricet‐2 0.2262*** 0.3071*** 0.3238***

(0.0366) (0.0548) (0.0644)

Log Predicted Pricet‐4 ‐ Log Predicted Pricet‐3 0.1583*** 0.1999***

(0.0478) (0.0741)

Log Predicted Pricet‐5 ‐ Log Predicted Pricet‐4 0.0771

(0.0570)

Month fixed effects X X X X X

Zip code fixed effects X X X X X

Observations 175939 175939 175939 175939 175939

Adjusted R‐squared 0.111 0.113 0.113 0.114 0.114

*** p<0.01, ** p<0.05, * p<0.1

Notes: The Predicted Price is calculated by applying a neighborhood level of sales price appreciation to the previous log selling price.  The t  in the subscript of 

the explanatory variables denotes the month of initial listing.  Regressions also include a Real Estate Owned dummy.  Standard errors clustered at the zip code 

level are in parentheses.



Table 4: Effects of Lagged Market Conditions on Selling Outcomes

(1) (2) (3) (4) (5) (6)

Log List Price‐ Log List Price‐ Log Sales Price‐

Dependent Variable Log Predicted Price Log Predicted Price TOM TOM Withdraw Log Predicted Price

Distribution of Price Depreciation Rates:

2nd decile 0.0196*** 0.0111** 2.8823*** 3.0797*** 0.0499*** ‐0.0171***

(0.0048) (0.0047) (0.3819) (0.4404) (0.0099) (0.0033)

3rd decile 0.0226*** 0.0121** 3.7888*** 3.9170*** 0.0828*** ‐0.0245***

(0.0046) (0.0049) (0.4001) (0.4555) (0.0109) (0.0034)

4th decile 0.0279*** 0.0132*** 3.9401*** 4.4235*** 0.0983*** ‐0.0291***

(0.0048) (0.0051) (0.4131) (0.4910) (0.0111) (0.0034)

5th decile 0.0447*** 0.0308*** 4.5446*** 5.4883*** 0.1151*** ‐0.0227***

(0.0052) (0.0054) (0.4038) (0.4982) (0.0104) (0.0035)

6th decile 0.0490*** 0.0371*** 4.7441*** 5.5356*** 0.1199*** ‐0.0197***

(0.0054) (0.0059) (0.4716) (0.6070) (0.0112) (0.0036)

7th decile 0.0474*** 0.0364*** 4.6186*** 5.7616*** 0.1250*** ‐0.0224***

(0.0056) (0.0059) (0.5134) (0.6659) (0.0119) (0.0037)

8th decile 0.0588*** 0.0474*** 4.4823*** 4.7369*** 0.1505*** ‐0.0172***

(0.0057) (0.0061) (0.5507) (0.6548) (0.0118) (0.0038)

9th decile 0.0657*** 0.0553*** 4.9347*** 5.2629*** 0.1621*** ‐0.0157***

(0.0063) (0.0065) (0.5504) (0.6645) (0.0124) (0.0040)

10th decile 0.0927*** 0.0815*** 3.5064*** 2.9475*** 0.1672*** 0.0088**

(0.0087) (0.0091) (0.5506) (0.6505) (0.0135) (0.0042)

Change in Predicted Price over Selling Horizon ‐0.5106***

(0.0369)

Month fixed effects X X x x x x

Zip code fixed effects X X

Only Listings that Sell x x x

Observations 175939 87879 175939 87879 175939 87879

Adjusted R‐squared 0.111 0.104 0.100 0.127 0.207 0.101

*** p<0.01, ** p<0.05, * p<0.1

Notes: The price depreciation rate is the the predicted price from 4 months prior to the initial listing date minus the predicted price at the initial listing date.  d1 is the 

excluded group.  TOM is measured in weeks.  Withdraw is a dummy variable equal to one if  the listing is ultimately withdrawn.  Regressions also include a Real Estate 

Owned dummy.  Coefficients in bold denote cases where the difference in the coefficient relative to the coefficient in the decile immediately below is statistically 

significant at the 10 percent level.  Standard errors clustered at the zip code level in parentheses.  In specification 6, robust standard errors are reported.



Table 5: Parameter Estimates of the Structural Model

Variable Description Estimate Std. error

σ St. dev. of Initial Prior 0.0679 0.0054

ση St. dev. of buyer valuations 0.0841 0.0022

σv St. dev. of buyer uncertainty over their valuation prior to inspection 0.0606 0.0016

σz St. dev. of signal about weekly decline in mean valuations. 0.0322 0.0073

σε St. dev. of Belief about weekly decline in mean valuations. 0.0094 0.0007

κ Buyer inspection cost. -0.0050 --

c Weekly holding cost. 0.0000 --

γ0 Mean of Belief about weekly decline in mean valuations. -0.0033 --

Note: The parameters without standard errors are fixed in estimation.



Table 6: Moments Used in Estimation

Moment Simulated Moment

1 % of homes that sell 5 weeks after initial listing 4.30% 4.65%

2 % of homes that sell 10 weeks after initial listing 3.30% 3.89%

3 % of homes that sell 15 weeks after initial listing 2.20% 2.92%

4 % of homes that sell 20 weeks after initial listing 1.55% 2.23%

5 Median Time on Market 12 12

6 25th pctile of List Price - Sales Price 0.00% 0.00%

7 50th pctile of List Price - Sales Price 1.90% 2.86%

8 75th pctile of List Price - Sales Price 5.40% 5.42%

9 Corr(Change in List Price, Change in Predicted Price) 0.76 0.76

10 5th percentile of list price change in week 3 -4.40% -3.32%

11 Average Change in List Price -10.00% -12.23%

12 Median (List Price - Sales Price in Week 10 - (List Price - Sales Price in Week 5)) 0.95% 0.02%

13 Median (List Price - Sales Price in Week 15 - (List Price - Sales Price in Week 10)) 0.42% 0.13%

14 Stdev. of Monthly Price Changes 1.20% 0.67%

Note: All prices are in logs.  The changes in moments 9 and 11 are at the week of sale relative to the week of initial listing.  In 
moment 14, the empirical moment is the standard deviation of monthly price changes in the Case-Shiller index for San 
Francisco and Los Angeles during my sample period.  The model equivalent is the standard deviation of monthly average 
sales price changes. 



Table 7: Sales Price Dynamics from the Simulated Model

Dependent Variable
Annual Price Semi- Semi-Annual Price

Annual Price Change Annual Price Change
Change Prices Aggregated Change Prices Aggregated 

OLS Estimates of AR(1) Coefficient -0.003 0.124 0.040 0.152 -0.013 0.279 0.079 0.346

Assumptions
Uncertainty Over Changes in Market Conditions x x x x

Average weekly sales prices are simulated for T=48,000 weeks and 20,000 new listings each week.  Columns 2 and 4 show the 
results when average quarterly prices are used instead of average weekly prices.  When there is no uncertainty over changes in 
market conditions, sellers beliefs at the time of listing are not sensitive to lagged market conditions, and any change in the 
distribution of buyer valuations during the listing period is perfectly observable.



Table 8: Volume and Time-on-Market Dynamics from the Simulated Model

Dependent Variable

Log(Sales Volume) Log(TOM)

Quarterly Change in Price 0.000 6.732 0.000 -7.633

Assumptions
Uncertainty Over Changes in Market Conditions x x

Average weekly sales prices are simulated for T=48,000 weeks and 20,000 new listings 
each week.  When there is no uncertainty over changes in market conditions, sellers 
beliefs at the time of listing are not sensitive to lagged market conditions, and any change 
in the distribution of buyer valuations during the listing period is perfectly observable.



Appendix Table 1: Robustness Specifications

(1) (2) (3) (4) (5)

Dependent Variable List Price TOM Withdraw Sales Price List Price

Lagged Depreciation 0.6022*** 21.6028*** 0.7018*** 0.1370*** 0.7818***

(0.0482) (1.0780) (0.0315) (0.0247) (0.1185)

Lagged Depreciation*Lagged Num. Sales ‐0.0018*** ‐0.0590*** 0.0002 0.0000

(0.0003) (0.0062) (0.0002) (0.0002)

Lagged Num. Sales ‐0.0055*** ‐0.0000 ‐0.0001***

(0.0009) (0.0000) (0.0000)

Change in Expected Price over Selling Horizon ‐0.5124***

(0.0096)

Lagged Depreciation*Months Since Beginning of Sample Period ‐0.0187**

(0.0078)

Month fixed effects X X x x x

Zip code fixed effects X

Observations 171066 171066 171066 85603 172460

Adjusted R‐squared 0.111 0.096 0.202 0.100 0.112

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1


