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The Survey of Consumer Finances (SCF) is designed to gather detailed information on the

financial and demographic characteristics of U.S households.  Inevitably in such a survey, some

respondents are unwilling or unable to provide all of the information requested of them.  In waves

of the SCF before 1989, imputations of missing values were made on an ad hoc basis.  A decision was

made for the 1989 survey to build systematic imputation and editing software that reflects the current

state of knowledge in the area and that would be substantially reusable in future waves of the survey.

This paper describes the Federal Reserve Imputation Technique Zeta (FRITZ) developed for

the 1989 SCF.  In the next section of this paper, I give a description of the structure of the 1989 SCF

and evaluate the incidence of missing data.  In the third section, I review some of the theory

underlying the procedures applied.  In the fourth section, I give an outline of the structure of the

FRITZ model. The next section provides some statistics on the performance of the model.  In the final

section, I provide a brief summary and discuss areas for further research.

1989 SURVEY OF CONSUMER FINANCES

History and Purpose of the Survey

The SCF as a wealth survey traces its origins to the landmark 1963 Survey of Financial

Characteristics of Consumers conducted by Dorothy Projector and Gertrude Weiss [1966].  Other

surveys known as the SCF were conducted in the 1970s.  However, it was only in 1983 that the SCF

was revived as a wealth survey.  The 1989 SCF is the third of the new series of SCFs.  Our hope is

that there will be support to continue the survey on a triennial basis.

The 1989 SCF was sponsored by the Board of Governors of the Federal Reserve System, the

Statistics of Income Division of the Internal Revenue Service (SOI), the Congressional Joint
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This figure is adjusted for cases where the same figure could be reported in more than1

one place. 

The "primary economic unit" is defined as the person within a household who holds2

primary title to the dwelling, who is the principal lessee, or who is otherwise economically
dominant, together with the spouse and minor children of that person and any other persons who
are economically dependent on that group.  A brief section of the interview was devoted to
summary information about other economic units within the household. 

Committee on Taxation, the Office of the Assistant Secretary for Planning and Evaluation in the

Department of Health and Human Services, the National Institute on Aging, the General Accounting

Office, the Small Business Administration, the Office of the Comptroller of the Currency, and the

Social Security Administration.  The data from the project are used broadly for policy analysis and

for more academic research in economics and other areas.

The purpose of the SCF is to provide a comprehensive and detailed view of the financial

behavior of households.  Altogether well over 1,500 variables were collected.   Detailed information1

was gathered on all assets and liabilities attributable to the primary economic unit in the household.2

Liabilities include credit card debts, installment loans, mortgages, lines of credit, and other loans.

Assets include the principal residence, all types of loans made to others, real estate assets, businesses,

various types of accounts, including checking, saving, money market, IRA, Keogh, and brokerage

accounts, stocks, mutual funds, bonds, and other assets.  Detailed information was also collected on

the current job of respondents and their spouses, their current and future pension rights, and other

demographic characteristics.  A supplementary survey was conducted of the pension providers of

currently employed respondents and their spouses in order to obtain more comprehensive and

accurate information than could reasonably be expected of households.
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A more complete description of the sample design is available in Heeringa and Woodburn3

[1991]. 

For example, taxable interest income was assumed to be supported by a stock of4

interest-bearing assets equal to ten times the interest income (implicitly this assumes a rate of
return of ten percent).  See Heeringa, Juster, and Woodburn [1991] for more details. 

Questionnaire Design

To accommodate the many types of information requested from a range of socio-economic

groups, the questionnaire for the SCF is quite long and highly structured.  Typically, the design of

the instrument is such that questions about dollar amounts are preceded by one or more filter

questions.  For example, before asking the amount in a respondent's fifth checking account, the

person is asked first whether the unit has any checking accounts, and then how many accounts the

unit has.  Sometimes respondents are asked different sequences of questions depending on the answer

to such filter questions.

Sample Design

The sample design of the 1989 SCF is also complex.   The two major parts of the sample are3

the overlapping panel cross-section based on the 1983 SCF sample (1803 cases), and a new

independent cross-section sample (2000 cases).  Without loss of information essential for this paper,

in this section I will review only the new cross-section sample design.  This design is based on a dual-

frame design.  One part of this sample was drawn from a standard national area- probability frame

and the remainder was selected from a list frame developed from administrative files maintained by

SOI.  A "wealth index" was constructed for each list frame element using income flows reported on

tax returns capitalized at various rates of return.   Elements were then selected by stratified4

probability sampling to over-represent units with higher values of the wealth index.  The motivation
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It was estimated from the 1983 and 1986 SCFs that about a half of one percent of5

households in the U.S. owns about a quarter of total household net worth.  The degree of
concentration was even greater for assets such as stocks and bonds.  See Avery, Elliehausen and
Kennickell [1988] and Avery and Kennickell [forthcoming, 1991]. 

Preliminary information on unit nonresponse in the 1989 SCF is given in Woodburn6

[1991]. 

for the dual frame design was two-fold.  First, since an important mission of the survey is to

characterize the distribution of financial assets, which are highly concentrated in a small part of the

population, an efficient design should over-represent that group.   Second, common survey folklore5

and on-going analyses of the 1989 SCF support the claim that nonresponse tends to be higher for

households with higher levels of wealth.   In most area-probability samples, there is no means of6

making systematic adjustment for this differential nonresponse.  The advantage of the list sample used

for the 1989 SCF is that nonresponse adjustments can be made based on extensive income

information contained in the administrative records that served as the sample frame.

Data Collection

Data for the survey were collected between the months of July 1989 and March 1990 by the

Survey Research Center at the University of Michigan.  Interviews were largely conducted in person

and averaged about 75 minutes.  Some panel interviews were conducted by telephone. In addition,

some other interviews were conducted at least in part by telephone at the request of the respondent.

In general, the telephone and in-person interviews appear identical in terms of the proportion of

missing information, amount of marginal comments, and other such information.

Data Editing

Before the data were punched, the questionnaires went through several stages of editing.

Interviewers performed a consistency check as soon as possible after the interview.  In the field office,



5

This figure includes both cases from the new cross-section and from the part of the7

overlapping panel cross-section with cross- section representation. 

the questionnaires were examined more closely for evidence of interviewer or respondent error --

with particular attention to the possibility of double-counting of assets and liabilities.  Further machine

editing was performed on the punched data for more complicated logical problems.  One area in

which the survey is quite weak is in the retrieval of information missing due to interviewer or

respondent errors.

Data changes at all stages of editing represent something very close to, if not identical to,

imputation.  Generally, a conservative approach was taken to changing data in editing.  However,

when missing pieces of information were obvious in the context of other information in the

questionnaire, the data were filled in at this stage.  Records were kept of major changes to the data.

As one might expect of an interview that was administered to households of all ranges of financial

sophistication, editing was substantial and important for the quality of the final product.  Many

lessons have been learned in the effort both about how to avoid a number of the more serious

problems through improved questionnaire design in the future and about what types of additional

information are most useful in resolving inconsistencies that cannot be eliminated entirely.

Unit and Item Nonresponse

The achieved sample for the entire 1989 survey includes 3,803 households.  Of this number

3,134 have cross-section representation and 1,479 have panel representation.   Of the 2000 new7

cross- section cases, 866 derive from the SOI list frame.  Area-probability and list cases were treated

slightly differently in the field.  Area- probability cases were approached directly by interviewers, and

about 69 percent of these cases were eventually interviewed.  The list cases were given a prior
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See Woodburn [1991] for a review of our recent efforts in this direction. 8

For purposes of this count, if a branch variable is missing, all subsequent variables within9

the branch are also taken as missing.

If one looks only at dollar amounts of financial assets (checking, money market, savings,10

and other such accounts, certificates of deposits, stocks, mutual funds, bonds, and trusts), out of a
maximum of 136,908 data items, 3350 are missing, the mean number missing per case is 0.9 and
the median number is zero.

opportunity to refuse participation by returning a postpaid card.  About a third of the list cases

refused participation at this stage.  The remainder were approached by interviewers, yielding an

overall interview rate for the list sample of about 34 percent.  While the interview rate for the list

cases is not high according to usual criteria, this figure merely makes explicit the differential

nonresponse with respect to income that is hidden in other surveys that have insufficient frame

information to reveal the problem.  Moreover, in the SCF, we have at least the hope of making

systematic adjustments to the sample by estimation of response models using the universe data under

the assumption that units are conditionally missing at random.8

Every observation in the survey contains at least one piece of missing information -- often a

very trivial item such as the interviewer ID number.  Partial information was available for many items.

Respondents who were reluctant to provide dollar values directly were offered a card containing

dollar ranges labeled with letters.  For total income a more directed "tree" approach was taken to

bound income more tightly.  Excluding range-card responses, the mean number of missing values per

case is 21.6, the median is 11, the 90th percentile is 37, and the total number of missing values to be

imputed is 82,125.   The mean number of range responses was 3.4 per interview and the total number9

of such responses was 3,477.  For comparison, the maximum possible number of missing values is

about 6 million.   However, all pieces of missing information are not of equal value in terms of the10
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For a discussion of monotonicity and techniques for imputation where missing data11

patterns are monotone, see Rubin and Little [1987].

overall objectives of the survey -- e.g., the amount a respondent has in a sixth checking account is

usually less important that the total amount of corporate stocks.  Another gauge of severity of the

problem, the proportion of missing dollar amounts based on the imputed values, is given below in the

discussion of the results of the model.

The structure of missing values is quite complicated.  As noted above, the questionnaire is

designed so that respondents are led down many question paths with several conditional branches.

In addition, a very great number of patterns of missing data appear in the data.  For all practical

purposes, it is a safe assumption that the overall pattern of missingness for each case is unique.  Thus,

the imputation of the missing values cannot be addressed routinely using techniques developed for

"monotone" patterns of missingness without sacrificing substantial information to achieve

monotonicity for subgroups.11

Table 1 provides response rates for a nonrandom selection of survey variables for the panel

and cross-section observations taken together.  As shown in the table, item nonresponse rates vary

widely, but generally within a range that is typical of other economic surveys.  One exception is 1988

adjusted gross income, which was missing in over 28 percent of cases.  I suspect that this very high

level of nonresponse had two inportant sources.  The field period began later than expected after

April 15th and ran longer than expected, and respondents were not encouraged very strongly to look

up data where appropriate.
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Shadow Variables

We have attempted to incorporate in the dataset as much information as possible about what

went into the determination of each data value.  For example, a piece of information might be

provided exactly by the respondent, provided by the respondent as a range, refused by the respondent,

unknown by the respondent, inferred from other information at the stage of editing and imputation,

etc.  Every variable in the survey has a shadow variable that reflects the information content of the

primary variable.  In all, each of these shadow variables can take on 63 values.  The function of these

variables is twofold.  First, for purposes of automated imputation, these variables serve as a

convenient flag for imputation.  Such flags become even more important in the context of longitudinal

imputation. Second, it is important for many analytic purposes to know exactly which items were not

reported by the respondent.  For example, some analysts may wish to use different methods of

imputation, or to use other techniques to allow for the possibility of specific models of nonignorable

nonresponse.

REVIEW OF IMPUTATION THEORY

There are numerous ancestors of the missing value techniques reviewed in this section.  For

a more complete history, I refer the reader to the detailed references in the landmark National

Academy volumes (Madow, Olin, and Rubin [1983]), Little and Rubin [1987], and Rubin [1987].

Three strands of literature are particularly relevant to the work reported in this paper: the EM

algorithm, multiple imputation, and Gibbs sampling, or stochastic relaxation.  All of the methods

discussed here are strongly influenced by Bayesian thinking.  A more complete overview of this

literature is given in Rubin [1990] and Gelfand and Smith [1990].
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The EM algorithm presented as a distinct procedure first appeared in Demster, Laird and

Rubin [1977].  That model is intended to estimate parameters in a dataset where some information

is only partially observed and direct estimation in the presence of missing information is difficult, but

estimation with complete data would be easier.  Using observed information, starting estimates of the

parameters are computed. These estimates are then used to simulate the missing information.  The

original information is used along with the simulated information as a basis for maximum likelihood

estimation of the parameters of interest.  This process continues iteratively until the parameter

estimates are sufficiently close to a fixed point.  The intuition of this landmark paper underlies all that

is reported here.

Rubin's work on multiple imputation (see particularly Rubin [1987] and references therein)

serves as a bridge between EM and the later simulation techniques that involve a structure similar to

EM. Briefly, multiple imputation simulates the distribution of missing data and, thus, allows a more

realistic assessment of variances and a more efficient representation of first moments.

A paper by Tanner and Wong [1987] follows from the methods of EM and ideas of multiple

imputation and offers a clear framework for understanding the usefulness of iterative simulation

methods in imputation.  Tanner and Wong focus on the estimation of a set of parameters where some

potential conditioning information is unobserved, but as shown below, it is easy to extend the

argument to estimation of missing data.  A brief review of part of their arguments may help in

understanding the development of this paper.

Let X  be unobserved values of a larger set X, let X  = {X - X }, and let 2 be a set ofo    u

parameter values to be estimated.  Using notation similar to Tanner and Wong, one may write

(1) f(2|X ) = I  f(2|X ,Z) f(Z|X ) dZ  ando   X  o  ou
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(2) f(X |X ) = I  f(X |N,X ) f(N|X ) dN  .u o   2 u o  o

By substitution and rearrangement of terms, one may write (as do Tanner and Wong)

(3) f(2|X ) = I  {I  f(2|X ,Z)f(Z|N,X )dZ } f(N|X ) dN  .o   2 X  o o   ou

Similarly, one may write

(4) f(X |X ) = I  {I  f(2|X ,Z) f(X |N,X )dN} f(Z|X ) dZ  . u o   Xu 2 o  u o  o

Both (3) and (4) are easily seen to be a recursive relationship that might be solved by iterative

substitutions.  Tanner and Wong prove that under regularity conditions, (3) (equivalently (4) by

simple change of notation) converges uniformly to a unique fixed point.

Equation (4) has a simple interpretation in the imputation framework with the parameters 2

serving as an intermediate step using simulation techniques and multiple imputation.  Given some

starting values, one could draw a number of replicates of 2 and X   in turn until convergence of theu

posterior distribution of 2 or X   is reached.  In order for this method to be practical, one must beu

able to compute several conditional distributions to be able to draw samples of all of X  and all of 2u

simultaneously.  In some complex sets of data this constraint is not practical.

Papers by Geman and Geman [1984] and Li [1988] provide useful approaches for dealing with

more complex data structures.  These papers describe an iterative Markovian procedure of successive

simulation of the distribution of variables conditioned on both observed data and distributions of

variables previously simulated in the same iteration.  The method is typically referred to as stochastic

relaxation or Gibbs sampling.  The procedure has had extensive applications in the area of image

processing.  The iterative nature of the procedure is similar to the model of Tanner and Wong with

the following exception.  If  X  above is partitioned into elements X , where i=1 to U, the procedureu      ui 
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can be described as a successive simulation of the distribution of the separate elements of 2 and Xu

conditioned on all available information, where "available" is taken to mean nonmissing information

as well as simulated missing data.  For example, in iteration I for variable V, one draws X  fromuv

f(X |X , P(I) ,...,P(I) ,$ )  , uv o  u1  u v-1 v

where P(I)  denotes simulated data on missing variable j in the Ith iteration.  Moreover, the set ofuj

conditioning variables need not be the entire set of possible variables if it is know that some local

structure (or "clique" in the terminology of Geman and Geman) can be assumed for each variable.

A variation of this procedure is applied in the construction of the FRITZ model described below.

Although convergence is reported to be slow for large numbers of variables, Geman and Geman show

that under regularity conditions, the process converges and that the simulated distribution of Xu

moves closer to the true latent distribution with each iteration.

DESCRIPTION OF FRITZ

After a review of the literature and of existing procedures, we decided to build comprehensive

new imputation software for statistical imputation of the 1989 SCF.  Fellegi and Holt [1976] and their

proposal for an automated system of edit and imputation sets an imposing standard.  Two software

packages represent important extensions of the ideas in that paper.  Statistics Canada maintains very

interesting edit-imputation software, the Generalized Edit and Imputation System (GEIS).  A review

of this model is given in Giles [1987].  This is a very impressive model.  However, for our purposes,

the system is too limited in the types of imputation models available. In addition, it appears that it

would be cumbersome to implement the multiply-imputed Gibbs sampling direction taken here.  The

Structured Program for Economic Editing and Referrals (SPEER) developed at the Census Bureau

(Greenberg and Surdi [1984]) offers an excellent environment for the implementation of the types of
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 Fewer than 500 variables were imputed judgmentally.  One frequent imputation of this12

type is the case where a respondent has reported an amount of a payment or a type of income, but
the frequency of that amount is missing (e.g., a respondents who reports receiving $450 in Social

complicated algebraic constraints important in the imputation of the SCF. However, given the nature

of the SCF data and the theoretical direction taken here, SPEER appeared too difficult to adapt for

our purposes.

In the past, imputation had been performed on an ad hoc basis, with significant and very

frequent intervention by analysts at the level of individual imputations well beyond the editing stage.

While the effort involved in the development of FRITZ has been great, we believe that much of the

core set of procedures can be reused for future SCFs as well as for other purposes.

In designing the imputation procedures for the SCF, we were constrained in a number of

ways.  First, "reasonable" estimates of the missing data for a subset of financial variables needed to

be available very quickly for pressing policy needs.  Second, for several reasons we were limited to

about a year from the time the first complete data tape was received in the fall of 1990.  Third, the

system was required to allow the imposition of prior information both in the form of edit rules and

specific information about individual cases.  Fourth, the procedure had to accommodate any possible

pattern of missing values.  Finally, the work had to be performed with limited computer resources

(storage and CPU).

There is a continuum of changes to the respondents' answers from the point of interviewer

recording, through primary data editing, to statistical imputation.  Virtually all imputations made after

the primary editing stage are model-based, though a small number of documented cases have been

imputed judgmentally — typically variables that would be quite cumbersome to impute, but which

are resolved with very high probability upon inspection.   Judgmentally imputed variables are flagged12
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Security payments, but reports no time interval over which the payments are received).  Almost all
other imputations of this sort are similarly obvious.

In fact, N is not a constant for all cases.  In particular, panel cases were asked different13

questions in a number of areas. Allowing for this distinction would only complicate the notation
here. 

In principle, the sequencing of the variables for imputation should not be important. 14

Every imputation should be conditioned on every possible bit of relevant information.  Practically,

as such in the shadow variables and a file of these decisions was created as a part of the survey

documentation.

FRITZ was designed to handle the great majority of statistical imputations.  Although the

procedure is iterative and involves multiple imputations, for relative transparency of exposition, it will

be convenient to act at first as though the model were the more usual case of single imputations

computed without iterations.  The general procedures applied in the first iteration are used in all later

iterations.  Special problems induced by the mixture of panel and cross-section data will only be

presented later in the discussion. 

Basic Procedures in the First Iteration

Let the potential set of variables collected for a given case r (r=1 to R) be denoted by Xr

where X  is a vector of N variables.   Additionally, let X   (of rank N ) and X   (of rank N  = N - N )r          g       m    m    r
13

denote, respectively, the partitioning of X   into variables that are available and those missing forr

some reason.  The goal of the imputation process is to obtain a good estimate of F(X  |X  ).  Multiplem g

imputation allows the dataset itself to stand as a proxy for that distribution.

Using a variation on the technique of Gibbs sampling or stochastic relaxation described above,

FRITZ proceeds through the variables to be imputed in a predetermined sequence making imputations

variable-by-variable, and for a given variable, independently for each observation.   In the process,14
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this is not possible both because of degrees of freedom problems and because of the time required
to invert enormous matrices in the application.  For example, suppose for an observation that the
number of business the household owns is missing and the only information known is that for the
second business the household loaned $500,000 to the business.  A model could be specified
especially for this case, but that would be quite cumbersome.  Alternatively, a very large model
could be built, but that would likely exhaust the degrees of freedom.  It turns out that careful
sequencing of the imputation of variables often allows the use of summary variables that appear to
be a reasonable proxy for more detailed data (e.g., the total amount of money in all checking
accounts instead of the amount in each of as many as six accounts).

the information set available for imputation of each case expands as imputation proceeds through the

sequence of variables.  Imputed variables are treated exactly like reported variables within each

iteration.  That is, in the first iteration we estimate

F($  |X )1 g

F(X |X ,$ )g 1

.....

F($ |X cX )n g m<n

F(X |X cX ,$ )n g m<n n

.....

F($ |X cX ) ,N g m<n

F(X |X cX ,$ ) , N g m<n N

where X  denotes the missing values imputed in the sequence before variable n and where them<n

parameters of the distribution are estimated from reported and simulated data in the previous

iteration, and where $  is an intermediate parameter vector corresponding to the "M" stage of EM.j

In the FRITZ system, there are four types of model-based imputations: imputation of

continuous variables, binary variables, and polychotomous variables, and nonparametric imputation.

Unfortunately, theory does not offer much help in finding the "true" functional form of F.  In the case
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See Little [1983].15

of most continuous-variable imputations, it is assumed implicitly that the variables with missing values

can be taken to have a conditional distribution of the form

F(G(a)|H(b)) ~ Normal(m , F ), where a is a variable with missing values, b is a set of2
a

conditioning variables, and G and H are transformations of a and b, respectively. This assumptions

amounts to assuming that

G(a) = H(b) + ,  ,  where ,  ~ Normal(0,F ) .a    a  a
2

Typically H is assumed to be multiplicative in b and the transformations G and H are taken as log

transforms, implicitly yielding the linear model,

A = constant+ $ B  +...+,  ,1 1 A

 where the capital letters indicate the log transform.  The great benefit of this assumption is that a

relatively simple covariance matrix of the variables forms a sufficient statistic for imputation and the

simulation of A is straightforward.

In practice, we can be almost certain that the variables we observe are a subset of the

appropriate vector B.  At the least there are likely idiosyncratic factors for every observation that

would be extremely difficult to represent as a reasonably small set of variables even in principle.  Once

we face the fact that all of B is not known, a potential problem of nonignorable nonresponse arises

— that is, conditional on the observed variables the set of nonrespondents for a given item may be

a nonrandom subset of the whole sample.15

In FRITZ an agnostic approach is taken to the set of observed variables chosen to proxy for

B.  In principle, it might be desirable to take the conditioning set as a series expansion of the function

G involving all variables available for each observation.  In practice, degrees of freedom limit the
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number of variables, interaction terms, and higher order terms that can feasibly be included.  In any

event, no attempt is made to exclude variables that have no obvious "structural" interpretation -- the

underlying model is a pure reduced form.  Most often, the maximal set of conditioning variables for

a given case is on the order of 200 or more variables, frequently including a number of recoded

variables particularly relevant for a given imputation.  Typically included in the set of variables used

is a group of interviewer observations on respondents' level of suspicion before and after the

interview, their level of interest, etc.  The data indicate a reasonable variation in the amount of

information reported for all levels of these variables.  The hope is that these variables will be

correlated with unobserved characteristics of item nonrespondents and, thus, mitigate the potential

for nonignorable nonresponse bias.

While there is no guarantee that such an approach eliminates — or even reduces — possible

response bias, such a strategy may be the best practical insurance against bias.  Our means for testing

this assumption are very limited.  One possibility may be to compare the distribution of variables

available for the list sample in the administrative records with the distribution of comparable variables

in the survey.  While confidentiality concerns strictly limit direct comparison of cases in the two files,

it may be possible to look at such distributions within some sub-groups.

Operationally, FRITZ looks at a given case, determines whether the current variable in the

sequence should be imputed, determines which variables in the conditioning set are available either

as reported values or previously imputed values, and computes a randomized imputation.  As noted

earlier, the combinations of missing values varies widely over all cases so that virtually every case

involves a different "regression."  Thus, Â, the imputed value of variable A for observation j is drawn

according to
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Both cross-section and panel observations are pooled for estimations for variables that16

are common in the two parts of the survey.  Special problems, which are noted later in this paper,
arise when we begin to use prior-wave information in the estimation.

$  = [B  B ]  [B  A]  andA   g(i)  g(i)  g(i)
-1

Â  ~ F(A|B ,$ )  , j  gj A

where B  denotes the set of values of all observations for variables included in B , the set of allg(i)             gj

available (reported and already imputed within the iteration) values for case j.

In the first iteration, an improper imputation is made by drawing a value from the distribution

implied taking the model coefficients $ to be fixed and assuming that ,  is distributed normally withA

mean zero and variance given by A'A -  A'B  [B ' B ]  B   'A, where the relevant moments areg(i)  g(i)   g(i)  g(i)
-1

computed as described below.  The allowed distribution of ,  may be truncated or otherwise alteredA

using prior information or editing rules.  Because the inversion of a large matrix is usually involved

for each such imputation, this method is quite time-consuming.

The moment matrix for the continuous and binary imputations is computed for the appropriate

sub-population — e.g., the covariance matrix needed for the imputation of the amount of holdings

of certificates of deposit is computed using only households that actually have such instruments.

Conveniently, a moment matrix computed using the maximal set of conditioning variables allowed

will suffice for every case.  The software automatically selects a submatrix for each case

corresponding to the conditioning variables available.  In the first iteration, the covariance matrix for

the imputations is computed without weights and using all non-missing pairs of variables for each

observation.   As is well-known, this method of calculation allows the possibility that the covariance16

matrix may no longer be positive definite, implying a negative value for , .  In practice ,  is rarely2     2
A     A

estimated to be negative.  For convenience at the first stage, ,  is given a floor of zero.  The2
A
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alternative of using only cases with full information would usually too drastically reduce the number

of observations available for the calculation.

A more serious problem in the covariance estimation is that induced by the presence of very

influential cases.  Typically this has been a problem in cases where there are coefficients of

conditioning variables that are identified by a very small number of observations. In such cases as

have been detected, the set of conditioning variables has been reduced to exclude the offending

variables.  Unfortunately, I have not had either computer power or staff resources to explore this

dimension systematically.  FRITZ writes out information about imputations as it proceeds and such

problems detected to date have been found through inspection of the model output.  One sign of

problems is the frequent inability of a given model to impute a value strictly within the bounds

imposed by the constraints (either determined through edit rules, or from range card estimates).  The

most desirable approach would be to use robust estimation techniques for the covariance matrix.  This

will be an important line of research for this project in the future.

There appears to be another — perhaps related — class of problems with covariance matrices

estimated in this way.  Initially, it would happen occasionally that the model would impute values that

were clearly absurd.  Although a sweep algorithm with a facility for elimination of near-singularities

is used in FRITZ, decomposition of the covariance matrix indicated a situation normally

corresponding to near-collinearity (i.e., very large condition numbers).  Moreover, the problem

disappears once a completely imputed file is available for covariance estimation after the first

iteration.  Thus, the problem seems to stem from a characteristic of using all non-missing pairs for

variables in the first iteration.  Although I have not been able to resolve the problem analytically, I
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See, for example, Judge et. al. [1985], p. 756 ff.17

As Roderick Little has pointed out in converstaion, the discriminate model uses the same18

set of input statistics as the linear probability model, but has the advantage that outcomes are
contrained to lie between zero and one.  In the on-going revision of the FRITZ model, the
discriminant function approach is being explored.

have implemented a numerical patch in the first iteration only that is related to principal component

regression.

For binary variables, it is assumed that the same model holds as in the continuous case.  This

amounts to the somewhat more suspect assumption that the linear probability model applies.

Problems with the linear probability model are well-known.   The model fails to account for the17

information implied by the fact that probabilities must be in the closed interval [0,1] and, because the

model is heteroskedastic, produces inefficient estimates of the model parameters.  Much better from

a theoretical point of view would be to pose the relationship as a probit, logit or other such explicit

probability model.   As it turns out here, however, the informational requirements of such models18

are too large to be practical.  First, such models must be estimated iteratively, requiring an additional

pass through all of the data at each iteration of that probability model.  In addition, as is the case with

the continuous variable imputations, patterns of missing data are such that virtually every observation

has a different information set. Because there is no low-dimensional set of summary statistics that

would apply to all subsets of conditioning variables, virtually every observation would require a

different model and additional passes through the data.  Goldberger [1964] has suggested that one

use the estimates from the linear probability model to create weights for a second iteration which, as

Rubin has pointed out in conversation, would amount to a first Newton step in the maximum
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likelihood estimation.  Unfortunately, the time required for even that refinement is prohibitive given

the current speed of the computers available to the project.

Given an estimated probability from the linear probability model, a draw is made from the

implied binomial distribution to determine the outcome.  Some key polychotomous imputations are

structured as the sequential prediction of binary choices.  The input covariance matrix is computed

exactly as in the continuous variable case above.

Less critical polychotomous variables are imputed using a type of randomized hotdeck.  Cases

are arrayed as a multidimensional frequency table using a number of classifying variables.  The

imputation procedure randomly selects a value for the missing variable from the appropriate

conditional cell.  A minimum number of cases is required in each cell.  If that minimum is not

achieved, there are rules for collapsing adjacent cells.  Very closely related to this simple hotdeck

procedure is a nonparametric regression technique. Essentially, the difference is that continuous

variables are allowed in the frequency table and the collapsing procedures select a slice of specified

size from the joint distribution of the variables.

Higher-Order Iterations

In the first iteration, the goal is to estimate a reasonable set of starting values for further

iterations.  At the end of the first iteration, we have one copy of the dataset with all missing values

filled in.  From the second iteration and on, the initial dataset containing missing values is replicated

3 to 5 times, and the missing values are filled in based on statistics computed using the completed

dataset from the prior iteration.  In the second iteration, the covariance matrices and other such basic

statistics needed for imputation are estimated from the reported data and the single imputations from
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An efficiently written replicate requires about 120M of disk space.19

the first iteration.  In higher-order iterations, these statistics are pooled across the imputation

replicates.

Following the example of Tanner and Wong, the number of replicates is allowed to vary over

iterations.  The first iteration involves one replicate, the second iteration three replicates, and later

iterations five replicates.  The primary justification for the varying number of replicates is the severe

constraints on disk storage.   Given the complex tree structure of the data, it is an open question how19

many replicates may be needed to reflect adequately the variation due to imputation.

If the assumptions we have made do not move us too far from the requirements of the

underlying theory, at each iteration, FRITZ will move closer toward the true latent posterior

distribution of the data.  For convenience, we define convergence in terms of changes in the implied

distribution of wealth, rather than as a function of all possible variables.  In many applications, Gibbs

sampling is known to converge slowly.  Unfortunately, this may be a severe limitation in this

application.  The first iteration of FRITZ requires at least 11 days — largely due to the number of

matrices that must be inverted -- on a fairly fast Solbourne minicomputer computer dedicated to the

project.  Subsequent iterations can take 3 weeks or longer.  The amount of time required places

particularly strains on our ability to debug such complex software.  For this paper, only the output

of the first two iterations is available.

Structure of Software

FRITZ is written in the SAS language (version 6.03) and makes extensive use of the SAS

MACRO language to create a subroutine structure.  The entire model comprises about 100,000 lines

of code. The majority of the basic computer code is written in PROC IML.  The advantages of SAS



22

The main imputation program is discussed further in Kennickell [1991].20

are that it is a known and closely-monitored product with excellent data management facilities.

Among the important disadvantages are that it can be slow and there are bugs in PROC IML in the

version of SAS used.

Generally, FRITZ requires four types of statements for each variable to be imputed.  First, a

set of rules is specified to impose editing rules and other prior information about the feasible

distribution of imputations.  Second, a set of transformations is specified given the imputed value.

Third, a set of statistics is computed for the imputation for the appropriate sub-population.  Finally,

there is a call to the central imputation driver.  An annotated version of a simple set of such routines

for the imputation of directly-held corporate stocks is provided as appendix A.20

As in the example in the appendix, the edit rules generally are posed in terms of feasible upper

and lower bounds for imputations. In the example there may be prior information from a range card,

from information on the subset of stock held in the company where someone in the household works,

from the number of companies in which the household owns stocks, or from the combination of legal

requirements and the amount borrowed on a stock margin account.  Often in other cases the

constraints derive from complex algebraic relationships between variables.  In the recode section, an

attempt is made to create all related variables for which there is complete information at the time of

the imputation, including constructed variables that may be needed in further imputations in the same

program.  In the example, the program may fill in the missing amount or percent that the stock had

changed in value since its purchase and other items.

The call to the module that computes the moment matrix generally specifies a list of variables

and a sub-population on which these estimates should be made.  In the appendix, the calculation is
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made only for the population that has already been determined to have stocks.  Finally, the call to the

main imputation program specifies a type of model, the input covariance matrix, conditions under

which the variable should be imputed, and so forth.

The larger program is constructed as a series of six large SAS MACROs.  Each of these

modules in turn creates a working dataset containing all variables to be imputed and all condtioning

variables needed within the module, calls a large number of smaller modules for the imputation of

individual variables (such as that described above), and then stores the basic variables that have

changed in the main dataset.  For the interested reader, Appendix B provides a sketch of how the

overall code is arranged.  More detailed information is available from the author upon request.

Panel Imputations

The work reported in this paper is primarily concerned with the imputation of data for the

1989 SCF cross-section, rather than the panel part of that project.  With the exception of marital and

employment history variables, which were constructed from updated historical information for the

panel, the questions in the survey for the cross-section cases are a proper subset of the questions

asked of the panel cases.  In order to expand the basis for covariance estimation, the panel

observations have been included with the cross- section variables in the imputations along with a

dummy variable indicating that a case is a panel case.

Explicit recognition of the longitudinal dimension of the panel cases increases the complexity

of the imputation and editing problem by an order of magnitude.  Patterns of missing data are even

more complicated when the longitudinal dimension is added: a respondent may report one data item

in 1989, but have refused the same item in 1983, or data items may be only partially comparable.  In
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The task is further complicated here by the fact that the data structure of earlier SCFs21

makes it very difficult to identify which values were imputed.

principle, one should use all information in all periods to model the joint distribution of all variables

and impute -- or re-impute -- all data missing in any period.

Panel imputation is an enormously complicated task that grows in complexity with the number

of panel observations.   The amount of time needed for modeling and for computation would be21

extremely large.  Moreover, degrees of freedom in modeling would quickly become very limited.  The

strategy I expect to follow is a compromise.  A vector of key panel financial and other variables will

be created along with indicators of the degree of missingness for each variable. If the amount of

missing information exceeds a certain percent, a variable will be treated as missing.  A single pass will

then be made through the data, augmenting the sets of conditioning variables used for cross-section

imputation to include the constructed variables and adding imputation modules for the newly included

variables.  Since the historical variables will only exist for the panel cases, problems may arise in the

covariance estimation similar to those encountered in the first iteration of the imputations discussed

above.  Alternatively (and preferably), one could simply treat the panel variables as missing from the

cross-section cases and proceed as before. Unfortunately, the very large number of variables that

would then be "missing" may render such an approach infeasible with current resources.  In light of

the importance of panel data for research, further work in panel imputation will have a high priority

in the SCF project, and I hope in the work of others.

SOME RESULTS FROM THE MODEL

As noted earlier, short of adding up all missing values equally, it is difficult to find a

universally applicable single measure of the information missing due to nonresponse.  After
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imputation, other metrics are available.  One such compelling measure is the proportion of dollars

imputed for various items.  Table 2 provides an estimate of the unweighted percentage of dollars that

were imputed for selected items for the panel and cross-section cases together.  Weighted percentages

might be more informative here, but sampling weights are at such a stage that I do not believe such

estimates would be reliable.  Weighted and unweighted estimates will be provided later for the panel

and cross-section separately.

An estimated 19 percent of total net worth in the sample was imputed, with 4.9 percentage

points of that amount imputed using range information.  In the case of total income, 35.2 percent of

dollars were imputed with an amazing 30.5 percentage points of this amount constrained by range

estimates.  Most of the other figures reported lie somewhere between these cases.

Table 2 also displays the coefficient of variation due to imputation for components of

household net worth and other variables based on data from the second iteration of FRITZ.  As might

be expected, the model performs better in terms of predicting higher-order aggregates than in terms

of individual assets. For example, while the variation for money market accounts is 7.6 percent, the

total variation in net worth is only 0.3 percent.

Because only the first two iterations of the model are currently available, it is impossible to

say very much about the empirical convergence properties of FRITZ.  However, as shown in figure 1,

it does appear from the data that are currently available that the difference in the cumulative

distribution of financial assets (a key variable) is virtually unchanged between the first two iterations.

SUMMARY AND FUTURE RESEARCH

The FRITZ model was developed to provide a coherent framework for the imputation of the

1989 SCF with the expectation that the model could be incrementally adjusted for use in future SCFs.
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An attempt has been made to utilize the most current research in imputation.  To our knowledge, this

effort represents the first attempt to apply multiple imputation or methods of stochastic relaxation to

a large social science survey.

In addition to the question of panel imputation noted above, there are many areas in need of

further research.  One of the most pressing concerns in the imputation of the SCF is to modify FRITZ

to take advantage of obvious opportunities for parallel processing of the data.  Although the software

modifications would be complex, in principle on our UNIX system, it would be possible to farm the

work out to a large number of independent processors with a central coordinator.  While saving time

is a reasonable goal alone, it is also the case that it is only by speeding up the processing that we can

have a hope of implementing significant improvements in FRITZ.  Of particular interest are changes

related to improved robustness of the imputation and improved nonparametric imputation techniques.

Currently, the software used for nonparametric imputation is limited in the number of

conditioning variables that can be used.  It is possible to "trick" the software by creating complex

index numbers to be used as conditioning variables.  The difficulty in allowing a larger number of

variables is in devising reliable classes of rules for grouping observations to create high-dimensional

cells with a sufficient number of observations.

At the time this paper was completed, only the first two iterations of FRITZ were available.

As we progress, it will be important to study the convergence properties of the model.  If the model

converges as slowly as Gibbs sampling appears to converge in some application, it is unlikely that in

the near future there will be sufficient computer power to allow calculation to a near neighborhood

of convergence.  A related problem is the sensitivity of the model to starting values.  Wu [1983] has

noted that the convergence of EM to a global maximum is not always guaranteed.  Since the Gibbs
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sampling approach is in a sense logically subordinate to EM, FRITZ might be expected to have similar

problems.

Finally, we plan to examine how our estimates of imputation variance change as the number

of replicates increases.  Because the survey variables have a complicated hierarchical structure, it

seems plausible that a larger number of replicates might be necessary to allow the data to express

possible variations in that structure due to imputation.  However, additional replicates are very

expensive in terms of time required for imputation, amount of storage required for the data, and time

required at the analysis stage.  As in many other applied statistical exercises, greater computer power

will eventually solve alot of problems.
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APPENDIX A
Imputation Modules for Amount of Directly-Held and Publicly-Traded Stocks

* this MACRO defines constraints on the imputation of value of directly-held publicly-traded
corporate stocks;

* this MACRO and the following one are written in IML code and are called in the processing of
the IMPUTE1 MACRO below;

%MACRO TR1ISTK3;

* define default bounds;
* assume have at least $10 in each company where own stock;

LB=10*MAX(1,NCOSTK);
UB=9999999999;

* use information on amount in margin account + legal requirements to set LB;
IF (AMARGIN>0 & JAMARGIN<24) THEN LB=AMARGIN*4;
ELSE IF (JAMARGIN>=24 & JAMARGIN<=45) THEN DO;

* extract information from range card (JMARGIN is shadow variable for amount
borrowed on margin account);
%CARDBB(J=JAMARGIN,UB=MUB,LB=MLB);
LB=MAX(LB,MLB*4);

END;

* use information from range card for stocks (JASTK is shadow variable for amount of
stock);
IF (JASTK>=24 & JASTK<=45) THEN DO;

%CARDBB(J=JASTK,UB=SUB,LB=SLB);
UB=MIN(UB,SUB);
LB=MAX(LB,SLB);

END;

* use information on amount of stock in place where work + $10/company (JASTKWRK is
shadow variable for amount of stock in company where household member works);
WLB=0; WUB=0;
IF (JASTKWRK>=24 & JASTKWRK<=45) THEN DO;

%CARDBB(J=JASTKWRK,UB=WUB,LB=WLB);
END;
IF (WLB>0) THEN LB=MAX(LB,WLB+MAX(0,(NCOSTK-1)*10));
ELSE IF (ASTKWRK>0) THEN

LB=MAX(LB,ASTKWRK+MAX(0,(NCOSTK-1)*10));
IF (NCOSTK=1 & WUB>0) THEN UB=MIN(UB,WUB);
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* put bounds in log form;
UB=LOG(MAX(LB,UB));
LB=LOG(MAX(10,LB));

%MEND TR1ISTK3;

* this MACRO sets recodes using imputation of log(stock);

 %MACRO TR2ISTK3;

* compute level value of stock from log;
ASTK=INT(EXP(LASTK)+.5);

* compute percentage/amount of gain/loss since bought all stock;
IF (GAINSTK=1 & PGSTK>.Z & AGSTK<=.Z) THEN AGSTK=

MAX(1,INT(.5+ASTK*(1-1/(1+PGSTK/10000))));
IF (GAINSTK=1 & PGSTK<=.Z & AGSTK>.Z) THEN PGSTK=

MAX(1,INT(.5+((ASTK/(ASTK-AGSTK))-1)*10000));
IF (GAINSTK=5 & PLSTK>.Z & ALSTK<=.Z) THEN ALSTK=

MAX(1,INT(.5+ASTK*(1-1/(1+PLSTK/10000))));
IF (GAINSTK=5 & PLSTK<=.Z & ALSTK>.Z) THEN PLSTK=

MAX(1,INT(((ASTK/(ASTK-ALSTK))-1)*10000));

* try to compute total financial assets;
AFIN=ACHKG+AIRA+AMMA+ACD+ASAV+AMUTF+ASAVB+ABOND+ASTK;
IF (AFIN>.Z) THEN LAFIN=LOG(MAX(1,AFIN));

* if only stock in one company and have stock in business where work, the value of stock same
as value of stock in business where work;
IF (NCOSTK=1 & STKWORK=1) THEN DO;

ASTKWRK=ASTK;
LASTKWRK=LASTK;

END;

* create interaction term from log(stock) and log(number brokerage transactions in past year);
LNBTSTK=LNBRTRA*LASTK;

%MEND TR2ISTK3;
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* this MACRO computes covariance matrix for imputation using standard input set
(%INCVARS2) and variables specific to variable — using only population with stocks for
calculation;

%SSCPMISS(VAR=%INCVARS2 NCSTK GAINSTK LAGSTK LALSTK STKWORK
LASTKWRK GAINMF NCMUTF LNBRTRA,DATA=&OLDI,OUT=_TAB,
WHERE=%STR(DSTOCK=1));

* call to the main imputation MACRO;
* specify continuous variable model, dependent variable is log of holdings of corporate stock,

JASTK is the name of the shadow variable, _TAB contains the covariance matrix estimated
above, the dataset containing the values to be imputed is given by &NEWI, the  MACROs
TR1ISTK3 and TR2STK3 are called, imputation is restricted to cases that own stock and
have a current missing value (or have a temporary value based on a range card), TOLER
specifies a variance decomposition routine in the first iteration to stabilize the model, AUX
specifies variables that are needed for the imputation, and KEEP specifies variables to be kept
in the working dataset;

%IMPUTE1(TYPE=CONTIN,DEP=LASTK,MISS=JASTK,TABLE=_TAB,DATA=&NEWI,
TRANS1=TR1ISTK3,TRANS2=TR2ISTK3,WHEREV=DSTOCK ASTK JASTK,
WHERE=(DSTOCK=1 & (ASTK<=.Z | JASTK<45)),TOLER=YES, AUX=STKWORK
NCOSTK JASTK ASTK ACHKG AIRA AMMA ACD ASAV AMUTF LNBRTRA JAFIN
ASAVB ABOND ASTKWRK JASTKWRK AMARGIN, KEEP=ASTK AFIN LAFIN
ASTKWRK LASTKWRK LNBTSTK AGSTK ALSTK PGSTK PLSTK GAINSTK);
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APPENDIX B
  Overall Organization of FRITZ

C Control file for FRITZ (Federal Reserve Imputation Technique Zeta);
* Designed and implemented for the 1989 SCF;
C Arthur B. Kennickell;
* original version December 20, 1989;
C Current version August 2, 1991

* set and define all FILENAMES here;
FILENAME IMPUTE1 '/...';
FILENAME INCOME1 '/...';
FILENAME RESPROP1 '/...';
FILENAME INSTIT1 '/...';
FILENAME MORTDEB1 '/...';
FILENAME CONDEB1 '/...';
FILENAME BUS1 '/...';
FILENAME LABOR1 '/...';
FILENAME DEMOG1 '/...';
FILENAME SSCP '/...';
FILENAME CARDB '/...';
FILENAME CONVERGE '/...';
FILENAME BACKUP '/...';
LIBNAME LOUISE '/...';
LIBNAME LITTLE '/...';
LIBNAME RUBIN '/...';

C all include statements here for MACROs;
%INCLUDE CARDB;
%INCLUDE SSCP;
%INCLUDE IMPUTE1;
%INCLUDE INCOME1;
%INCLUDE RESPROP1;
%INCLUDE INSTIT1;
%INCLUDE MORTDEB1;
%INCLUDE CONDEB1;
%INCLUDE BUS1;
%INCLUDE LABOR1;
%INCLUDE DEMOG1;
%INCLUDE CONVERGE;
%INCLUDE BACKUP;
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* begin imputation control code;
%MACRO FRITZ;

* set-up variables;
%LET ITERNUM=1;
%LET CNVRG=NO;
%LET NOPRINT=YES;
%LET SEED=1111111;
%GLOBAL ITERNUM NOPRINT SEED;

* FRITZ1 is always the name of the dataset used to compute the statistics for imputation;
C FRITZ2 is always the name of the dataset that contains the imputed values;
C at the 1st iteration, the input dataset is the original dataset and the output dataset is a single

replicate of the same dataset;
%LET FRITZ1=%QUOTE(LOUISE.SCFR);
%LET FRITZ2=%QUOTE(RUBIN.SCFR1);

C begin iteration loop;
%DO %UNTIL (&CNVRG EQ YES OR &ITERNUM EQ 100);

* create (new) replicates of the original RECODES dataset to contain the imputations;
DATA &FRITZ2;

SET LOUISE.SCFR;

* set number of replicates;
%IF (&ITERNUM=1) THEN %LET NREPL=1;
%ELSE %IF (&ITERNUM=2) THEN %LET NREPL=3;
%ELSE %LET NREPL=5;

* alter original ID number (XX1) to reflect replicate number;
DO I=1 TO &NREPL;

X1=XX1*10+I;
OUTPUT %QUOTE(&FRITZ2);

END;

RUN;

* invoke the MACROS that contain the imputation modules for each variable;

* total income for the PEU, AGI, principal branch variables, financial assets;
%INCOME1(OLDDATA=%STR(&FRITZ1),NEWDATA=%STR(&FRITZ2));

* home value, vehicles, loans made, total value of investment properties;
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%RESPROP1(OLDDATA=%STR(&FRITZ1),NEWDATA=%STR(&FRITZ2));

* financial institutional relationships;
%INSTIT1(OLDDATA=%STR(&FRITZ1),NEWDATA=%STR(&FRITZ2));

* impute mortgages;
%MORTDEB1(OLDDATA=%STR(&FRITZ1),NEWDATA=%STR(&FRITZ2));

* impute terms of all consumer loans and all non-mortgage loans for home purchase and
home improvement;
%CONDEB1(OLDDATA=%STR(&FRITZ1),NEWDATA=%STR(&FRITZ2));

* businesses, credit cards, lines of credit, misc. properties, working or not, misc. attitudinal
questions;
%BUS1(OLDDATA=%STR(&FRITZ1),NEWDATA=%STR(&FRITZ2));

* impute labor force participation, current job pensions, and employment history;
%LABOR1(OLDDATA=%STR(&FRITZ1),NEWDATA=%STR(&FRITZ2));

* current pension/SS, other future pensions, past settlements, inheritances, Section Y
demographics unimputed at this point (including non-PEU finances), and misc. income,
etc.;
%DEMOG1(OLDDATA=%STR(&FRITZ1),NEWDATA=%STR(&FRITZ2));

* determine convergence (CNVRG=YES/NO);
%CONVERGE;

* after the first iteration, back up imputed dataset (FRITZ1) on tape;
%IF (&ITERNUM GT 1) %THEN %DO;

%BACKUP(&FRITZ1);
%END;

* after first iteration, delete imputed dataset from previous iteration;
%IF (&ITERNUM GT 1) %THEN %DO;

PROC DATASETS;
DELETE %STR(&FRITZ1);

RUN;
%END;
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* determine location of files for next iteration;
%IF (%EVAL(MOD(&ITERNUM,2) EQ 0) %THEN %DO;

%LET TAG1=RUBIN;
%LET TAG2=LITTLE;

%END;
%ELSE %DO;

%LET TAG1=LITTLE;
%LET TAG2=RUBIN;

%END;
%LET FRITZ1=%QUOTE(%UNQUOTE(

&TAG1.%QUOTE(.)%UNQUOTE(SCFRR%EVAL(&ITERNUM+1))));
%LET FRITZ2=%QUOTE(%UNQUOTE(

&TAG2.%QUOTE(.)%UNQUOTE(SCFRR&ITERNUM)));

* increment iteration number;
%LET ITERNUM=%EVAL(&ITERNUM+1);

%END;

%MEND FRITZ;
%FRITZ;



Item Don't Not Unknown Range Memo item:
know avail. whether resp. % all cases

have item inap.

Balance on bank credit cards 0.6 1.2 0.0 0.8 30.9
Value of own home,

 excl. mobile homes 1.6 1.2 0.0 0.6 29.6
Amount outstanding on

mortgage on home 3.2 2.0 0.1 1.2 58.5
Have any owned cars 0.0 0.0 0.0 0.0 0.0
Number of owned cars 0.0 0.2 0.0 0.0 11.5
Value of 1  business withst

mgt. role 15.0 3.1 1.1 4.8 73.7
Have checking acct. 0.0 0.2 0.0 0.0 0.0
Number of chkg. accts. 0.0 0.2 0.3 0.0 11.6
Amt. in 1  chkg. acct. 1.4 4.6 0.3 2.5 11.6st

Amount of CDs 3.1 7.8 1.8 5.7 73.9
Amt. of savings bonds 4.9 2.3 2.5 2.5 76.3
Amount of stock, excl.

mutual funds 5.4 5.1 1.5 5.4 65.4
Cash value of life insurance 31.7 1.6 4.5 1.9 53.0
Wage for respondent

currently working 0.9 4.3 1.1 2.1 42.3
Balance in 1  definedst

contribution pension
plan for respondent 16.7 1.8 6.2 2.7 84.2

Total family income 2.1 1.7 14.6 0.0 0.0
Filed 1988 tax return 0.2 1.0 0.0 0.0 0.0
Amount of 1988 adj.

gross income 29.0 6.3 1.4 5.2 13.4
Amount of 1  inheritance 5.9 4.4 3.3 3.6 68.1st

Amount of 1988 charitable
contrib. 1.6 1.9 2.5 3.0 48.9

Wage income for non-
primary unit members 30.3 2.9 5.1 5.9 90.1

* Computed as a percent of cases either where response was appropriate or where it was
unknown whether response is appropriate.

Table1
Item Nonresponse Rates, Selected Items, Percent *

1989 Survey of Consumer Finances, Panel and Cross-Section, Unweighted





Item % total $ % total $ Coeff. of
imputed with imputed w/o var. due to
range info. range info. imputation

Checking accounts 3.1 11.8 0.039
IRA and Keogh accounts 10.9 4.2 0.013
Money market accounts 4.2 16.3 0.076
Savings accounts 3.6 13.8 0.056
Certificates of deposit 5.4 8.0 0.014
Corporate stock 13.2 15.5 0.056
Mutual funds 7.5 15.6 0.087
Savings bonds 3.6 41.7 0.026
Other bonds 3.9 8.3 0.042
Trust assets and annuities 7.5 6.0 0.024
Cash value of life insurance 1.8 19.0 0.033
Notes held 0.8 15.4 0.037

All financial assets 7.1 12.0 0.005

Principal residence 3.3 2.2 0.003
Other real estate 5.5 2.9 0.016
All businesses 22.2 6.3 0.066
Vehicles 2.6 0.3 0.001
Misc. assets 9.8 5.0 0.011

Total assets 5.3 12.9 0.005
Credit card debt 6.0 4.2 0.012
Consumer debt 0.1 4.2 0.000
Principal residence mortgage 0.7 6.3 0.002
Other mortgages 4.4 5.8 0.036
Lines of credit outstanding 0.9 3.4 0.007
Misc. debt 12.2 7.1 0.028

Total debt 3.8 6.3 0.030

Net worth 4.9 14.1 0.003
Total income 30.5 4.7 0.010
Adjusted gross income 15.6 38.6 0.036
Total inheritances received 6.6 19.5 0.117
Total charitable contributions 4.3 2.6 0.009

Table 2
Proportion of Total Dollar Value Imputed,

Coefficient of Variation Due to Imputation, Various Items.
1989 Survey of Consumer Finances, Panel and Cross-Section, Unweighted.



Figure 1: Cumulative Distribution of Total Financial Assets, Iterations 1 and 2,, FRITZ
Model, 1989 SCF


