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Abstract: The values of a vast array of financial assets are functions of rates or prices
determined in OTC, interbank or other off-exchange markets.  In order to price such
derivative assets, underlying price indexes must be surveyed and processed.  At present, many
standard contracts utilize a technique known as trimmed-means to guard against misreporting,
whether unintentional or for market manipulation.  This paper points out that the polling
problem falls within the statistical framework of robust estimation.  Intuitive and
economically meaningful criteria for choosing among robust valuation procedures are
discussed.  In particular, the approach taken is to minimize the worst-case scenario arising
from a false report.  The finite sample performance of the procedures which qualify, the
trimmed-mean and the Huber-estimator, are examined in a set of simulation experiments.
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    1.  The total notional outstanding value of interest rate derivatives alone was over 26 trillion dollars
in 1995.  See, the Central Bank Survey of Foreign Exchange and Derivatives Market Activity (1996)
from the Bank for International Settlements.
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I. Introduction

It would be difficult to overstate the importance of the role played by interbank rates,

such as Libor, in the valuation of global financial assets.  For example, the vast interest rate

swaps market depends critically on the ability to accurately measure the underlying reference

rate.   The value of these, and many other assets, are functions of privately negotiated or1

decentralized rates and prices.  As a result, many contracts explicitly call for dealer polling.  

The importance of the role of dealer polling has previously been recognized in the

context of cash settlement of certain futures contracts.  In order to allow cash settlement at

expiration, the prevailing cash bond price or reference rate must be estimated.  For example,

Paul (1985) discusses settlement of the International Monetary Market�s Eurodollar futures

contract, which is based on private negotiated deposit rates.  Cita and Lien (1992) provide a

detailed description of how the Chicago Board of Trade (CBOT) samples brokers for

Municipal Bond Index futures.  These authors note that the hedging value of such contracts

depends acutely on the accuracy and reliability of the brokers� reports.  Inaccurate reporting,

whether intentional or accidental, would distort futures prices and discourage its use by

market participants.  

However, the use of dealer polling is far more extensive than those authors

recognized.  Dealer polling plays a key role in much wider contexts.  Most notably, leading

reference rates such as Libor are themselves estimated by polling a small number of dealers. 
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Indeed, the generality of dealer polling has been understated even with respect to futures. 

Throughout the life of a futures contract, exchanges require daily margining adjustments

based on fluctuations in the futures value.  Since the futures value itself depends on the value

of the underlying security, daily dealer polling affects even physically settled futures

contracts.

A primary concern of market participants and exchanges is the potential for

misreporting and contamination of reported prices.  This is made particularly poignant by the

widespread practice of polling very small numbers of dealers (generally, between 5 and 20). 

In order to minimize the effects of inaccurate observations, exchanges and interested parties

make use of ªtrimmed-meansº rather than simple averages.  This paper emphasizes that

trimmed-means can be couched within the statistical framework known as robust estimation. 

Robustness is the ability to deliver consistent estimates even in the presence of outliers or

contamination.   While it is known that trimmed-means ameliorate the effects of misreporting,

the extensive theoretical insights formulated in the robust estimation literature have not been

brought to bear on the problem.

The three-month U.S. dollar Libor rate provides a leading example of the importance

of contamination.  Every day, the British Bankers� Association (BBA) polls 16 large banks,

who each report 11:00 o�clock Libor rates.  The BBA processes these reports into an

aggregate Libor rate by discarding the 4 highest, the 4 lowest reports and averaging the

remaining 8.  Most interest rate swaps, Eurodollar futures and many other contracts rely on



    2.  The Chicago Mercantile Exchange�s Eurodollar futures contracts began using BBA poll results
in January 1997 (CME Consolidated Rulebook (1997)).

    3.  The Open Bloomberg database provides daily observations on the 16 underlying Libor rates. 
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this rate.   To illustrate the importance of contamination, Figure 1 displays the three-month2

Libor rate that would result had the BBA taken the simple average of the 16 reports from

1995 to 1997.   Three days in early 1996 appear to have unusual spikes.  Inspection of the 163

underlying reports on these days reveals that one bank reported daily rates of 14.00, 20.00

and 20.00 on the respective days.  Undoubtedly, these three rates were unintentionally

misreported.

Nevertheless, it is far from clear that the trimmed-mean is the optimal solution to the

contamination problem.  In this paper, both the theoretical and finite-sample performance of

alternative robust estimators are compared to that of trimmed-means.  The finite-sample

performance is a gauged through Monte Carlo experiments designed to mimic the settlement

price problem. 

The remainder of the paper is organized as follows.  Section II presents a formal

description of truthful and false price reports.  Two leading robust procedures are discussed.   

In section III, the sensitivity of robust estimators to multiple false reports is examined. 

Section IV presents the results of the Monte Carlo experiments.  Section V concludes.

II. Theoretical Framework

To make the notion of robustness concrete, it is useful to begin with a formal

definition of contamination.  Assume that the true distribution of the cash price is .  The

exchange wants to guard against inaccurate reports of unknown form.  In other words,



    4.  In fact, if the data are normally distributed, the simple mean is the most efficient unbiased
estimator.  However, this is not the case if the underlying distribution is fat-tailed as, for example,
with the logistic distribution.
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(1)

(2)

contamination is drawn from some other distribution, .  Denote the probability of false

reporting as , so that  corresponds to no contamination.  In this situation, the exchange

only knows that observations are drawn from a family of compound distributions, 

 is the set of distributions formed by  accurate reports combined with a fraction  of

faulty reports.

This sort of definition leads to a copious theory of optimal robust estimators.  If the

exchange wanted to minimize the variance or bias (or both) assuming perfect reporting, then

the simple average is generally optimal.   Unfortunately, the simple average is highly4

sensitive to false reports or outliers.  Robust procedures protect against contamination or

market manipulation (at the cost of higher variance).  Two particularly successful notions of

optimality which have emerged in the robust estimation literature are minimax bias and

minimax variance.  To possess minimax bias, an estimator must minimize the worst

(maximum) possible bias for any type of contamination.  

Minimizing the worst possible bias entails finding the estimator  which solves the

following problem,



    5.  Specifically, the median is minimax for bias if the true uncontaminated distribution is unimodal
and symmetric.

    6.  Still other criteria have been suggested.  For example, Hampel (1968, 1971) proposes
minimization of (asymptotic) variance subject to some tolerance level for sensitivity to outliers. 
Unfortunately, this approach yields estimators which are excessively variable in realistic settings.
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(3)

where  is the true mean of .  The maximum here ranges over all possible types of

misreporting. 

Huber (1981) shows that in very general settings, the median is the solution to

equation (2).   This result is perhaps not surprising.  After all, the median is obviously5

insensitive to misreporting of any size as long as the ordering of reports is preserved. 

Moreover, the median is certainly the easiest robust estimator to compute.  It does not require

the user to specify any further design parameters as, for example, does the truncated-means

(which requires specification of the amount of truncation).

It is not clear, however, that minimax bias is what an exchange or market participants

will care about.  An equally plausible objective would be to minimize the worst possible

variance of an estimator.   Estimators with this property are called minimax for variance and6

solve the problem,

In general, the variance of the estimator depends on the true distribution as well as the type

of contamination.  

If minimax variance is the criterion of interest, it is possible to show that there are



    7.  This paper only considers two of these.  The third approach, known as R-estimation, is not
intuitively appealing and tends to be computationally burdensome.
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(4)

three estimators which qualify (see Jureckova and Sen (1996)).   The next section considers7

the first of these, the trimmed-mean.

A. Trimmed-Means

The best known procedure for processing dealer reports, and the one currently used to

calculate Libor, is that of trimmed-means.   The trimmed-mean is formed by discarding a

given number of the highest and lowest obervations and then taking the average of the

remaining data.  Specifically, the symmetric trimmed mean can be written,

where  and  is the i-th largest observation.  For example,

eliminates the lowest 10% of the values and the highest 10% of the values.  In

other words, this trimmed mean is the average of the values between the 10  quantile and 90th th

quantile.  The median is, in fact, a trimmed-mean formed by taking  to be .5 (assuming an

odd number of observations for simplicity).

A second closely related estimator, which has been explored by Cita and Lien (1997)

in the context of cash futures settlement, is the Winsorized-mean.  The Winsorized-mean can

be written,



    8.  The CBOT Municipal Bond Index futures contracts are settled based on 6 observations, while
Libor is calculated from 16 underlying rates.

    9.  Jureckova and Sen (1996) provide a thorough overview of robust estimation.
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(5)

where .  Rather than discarding the observations outside the -quantiles, the Winsorized

mean repeats the -quantiles for each outlier.

Unfortunately, both the trimmed-mean and Winsorized-mean tend to be quite sensitive

to faulty data in small samples.  In fact, it is possible to show that a 10% trimmed-mean

based on fewer than 20 observations can break down in the presence of even 2 outliers.   This8

means there is no bound on the bias or variance of the estimate, given sufficiently bad

outliers.  Intuitively, if the trimmed mean discards only the single highest and lowest values,

2 overstated (or 2 understated) trades contaminate the estimate.  

Although the trimmed-mean is the only approach currently in use, a variety of other

robust estimators have been discussed in the statistical literature.   The next subsection9

discusses an alternative set of robust procedures. 

B. Maximum Likelihood

Maximum likelihood estimators include many familiar statistics, including the simple

mean, and generally possess good finite-sample properties.  The maximum likelihood

estimator which minimizes the worst possible variance is known as the Huber-estimate. 

Again, this is an objective function likely to be of interest to both exchanges and other market



    10.  Other M-estimators are defined by replacing the function  in equation (6) with other

functions.  For example, the simple average is the M-estimator which results from defining =1.
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(6)

(7)

participants.  It is defined as the value, , which satisfies the following equation,

where the function  is defined by, .   is a cutoff point

analogous to the -level of an L-estimator.10

To understand the Huber-estimate it is helpful to view it as a close relative of the

Winsorized-mean.  Given a specified tolerance level, , the Huber-estimate is an average that

first replaces outliers (values greater than  or less than - ) with the values  and - ,

respectively.  The Winsorized-mean is similar but less flexible because it requires  be equal

to an observation, .  The Huber-estimate allows  to take on any value that minimizes the

maximum variance. 

For the Huber-estimator, the optimal cutoff is a function of the degree of

contamination.  In the case of normally distributed data, an analytic formula is available for

.  It is defined implicitly by the function,

where and  are the standard Normal density and distribution functions, respectively. 



    11.  For the truncated-mean, the optimal degree of trimming, , can be written as a function of
the fraction of inaccurate reports.  Specifically, again assuming the true distribution is normal,

.

    12.  The CBOT�s procedure, setting =.16, corresponds to an expected 10% chance of
misreporting.
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Of course, in practice the degree of contamination, , is generally unknown.  Nevertheless,

equation (7) can be used for rough guidance.  For illustration, Table 1 reports optimal cutoff

values for some plausible contamination rates.  Table 1 also displays the optimal truncated-

mean for comparison.   It is interesting to compare these values to the actual degree of11

trimming commonly in use.  The British Bankers� Association  calculates Libor by setting

=.25.  Table 1 indicates that the BBA�s choice is optimal if they believe that there is

approximately a 20% chance of misreporting on any given day.12

At first blush, a 20% chance of misreporting may seem unrealistically high. However,

high trimming rates may reflect a fear of more general notions of ªcontaminationº than simple

misreporting.  In particular, recent crises in Asia have caused Japanese banks to pay

somewhat higher Libor rates.  Of the 16 dealers polled by the BBA, three are Japanese banks. 

 From January 1995 to June 1998, Japanese banks have reported three-month Libor rates 6.2

basis points higher than non-Japanese banks.  Whether unusual risk premia are properly

treated as contamination is not addressed further in this paper.  I merely note that dealer

polling is significantly more complicated when the underlying market is segmented or

differentiated.



    13.  The cutoff point of the Huber-estimator cannot be directly bootstrapped.  To see why, note that
the finite-sample variance is strictly decreasing in the cutoff point. As a result, the bootstrap will select
the smallest possible cutoff point which is, in general, not minimax.

    14.  The least informative distribution is described in the appendix.
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C. Bootstrapping the Cutoff Point

In practice, it is straightforward to estimate  by boostrapping, as Cita and Lien

(1997) do to select the truncation point for the trimmed-mean.  The bootstrap algorithm is

designed to provide estimates of the finite-sample variance of the Huber-estimate for

alternative cutoff points.  To do so, it is necessary to estimate the finite-sample variance of

the trimmed-mean and select the truncation point associated with the lowest variance.   Once13

this is done, the optimal Huber-estimator is easily calculated.  The bootstrap algorithm is as

follows,

1) Resample with replacement, n draws,  from the actual observations,

.

2) Calculate the truncated-mean of the bootstrap data, , for a range of

cutoff points, .  The values given in Table 1 may be used for guidance in

constructing the range, .

3) Repeat steps 1 and 2 a large number of times, R.

4) Pick the cutoff point  which corresponds to the optimal .  This is

implemented via Huber�s (1981) formula, , where  is the inverse of

the ªleast informativeº distribution function.14

To illustrate its use in practice, Figure 2 displays a sample of daily observations on the

three-month Libor rate as currently estimated by the BBA, together with the boostrapped



    15.  For a detailed discussion of refinements to the standard bootstrap, see Berkowitz and Kilian
(1998).
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(8)

Huber-estimate.  The graphs seems to indicate that the two approaches generate similar

estimates on most days.  However, the BBA�s method displays higher peaks in, for example,

mid-1995, and lower troughs than the Huber-estimator.  In addition, the BBA�s trimmed-mean

occasionally takes discrete jumps rather than varying smoothly, as occurred in May and June

of 1995.

Several variations and refinements to this bootstrap algorithms are also possible.  For

example, rather than resampling with replacement from the observed data, it is also possible

to resample from a normal distribution fit to the data.  15

II. Breakdown Points

In the foregoing discussion, the probability of observing an inaccurate report, , was

treated as a small fixed number.  It is of obvious interest, however, to imagine what would

happen with a large fraction of inaccurate reports.  Can some robust estimators handle more

misreporting than others?  To answer this and other questions, Hampel (1971) introduced the

notion of a breakdown point.  The breakdown point defines the largest number of inaccurate

reports, no matter how extreme, that can be handled.  If false reporting exceeds the

breakdown point, the bias of the estimate can be infinitely large.

Formally, it is the largest number of false reports, m, for which a limit can be put on

the bias,
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For example, the breakdown point of the truncated mean is , half the number of discarded

observations (see, Huber (1981)).  For the CBOT�s Municipal Bond contract, the exchange

omits the single largest and smallest values.  As a result, the breakdown point for the both

contracts is  false report.  Regardless of how bad is one faulty report, the worst

possible bias or variance cannot be very large.  However, with two dealers misreporting, there

is no bound on the bias or variance of the estimate whatsoever.

In contrast, the breakdown point of robust M-estimators is .   For the CBOT

Municipal bond contract, with a sample of 6 cash prices, the Huber-estimate can handle two

inaccurate reports.  With a sample of 16 (as with Libor), the Huber-estimate can handle as

many as 7 false reports.  In fact, Jureckova and Sen (1996) prove that robust M-estimators

have the largest breakdown point possible.  This suggests a strong a priori justification for

considering Huber-estimates of settlement prices where multiple false reports are plausible.

It is worth emphasizing that this definition of breakdown points is formulated for

finite-samples.  Huber (1981) also describes an asymptotic formula for the breakdown point. 

In that case, the breakdown point is the limiting fraction of bad reports that yield a finite

(bounded) asymptotic bias.  For the purposes of daily dealer polling, however, the sample size

is always quite small, suggesting an important role for finite-sample definitions.

III. Simulation Experiment

In this section, a Monte Carlo study is conducted to assess the relative ability of these

estimators to deliver accurate underlying rate/price estimates in the presence of outliers.  In

each simulation, the simple mean, median, trimmed-mean and Huber-estimator are calculated



    16.  Because the sample size is even, the modified median, the average of the two middle
observations, must be used.  Setting n to 17 would dispose of this problem but would be unrealistic
since the exchanges currently use even-valued sample sizes.
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(10)

from a sample size, n, of 16.   The number of Monte Carlo trials is also set to 2000. 16

Both the BBA�s trimmed-mean and the Cita and Lien (1997) bootstrap trimmed-mean

are considered.  For the Huber-estimate, the cutoff point, , is estimated by the bootstrap

described in section 2.  The number of bootstrap replications is set to 1000.  In order to

consider alternative price/rate processes, the Monte Carlo is conducted assuming actual true

prices follow Normal or Student-t distributions with mean zero.

The form of the contamination is designed to mimic realistic misreporting. 

Contaminated prices are drawn from a Normal or Student-t with a random underlying mean,

ranging from zero to four.  For example, with four contaminated observations, the family of

compound distributions is,

where  is the standard deviation of the true distribution (as well as the contaminating

distribution).  This design reflects the realistic assumption that, on any given day, the severity

of contamination is unknown.

Table 2 displays the results when no contamination is present.  This is useful both as a

starting point and of independent interest.  After all, on many days there will be no

misreporting.  The table indicates the bias, standard deviation, mean-squared-error of each

estimator across Monte Carlo trials.   In addition, the line labeled ªWorst 1%º shows the

average bias of the 20 worst estimates (out of 2000) for each estimator.  This is a measure of
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how well the estimator handles worst-case scenarios.  The column marked ªBBA trimmed-

meanº is the trimmed-mean with , currently used to estimate Libor rates.  For the

Normal distribution, the simple mean displays the lowest mean-squared error across

simulations.  This is exactly as the statistical theory predicts.  On the other hand, if rates

follow a Student-t distribution, the simple mean is no longer the minimum variance estimator. 

In addition, even with no contamination, the simple mean need not always have the lowest

worst-1% of misses.  In the Student-t case, the Huber-estimator is best along this dimension.

The results for four false reports are presented in Table 3.  In this context, the BBA

trimmed mean has lower MSE than the simple mean for both distributions.  However, the

simpler median performs equally as well.  This pattern hold for both underlying distributions. 

As far as the worst-1%, the median and the status-quo BBA estimator are best followed by

the Huber-estimator.  Again, this is in fact what the statistical theory indicates. 

We expect the median and Huber-estimator to have low worst-case misses, since they

are minimax estimators.  At the same time, the status-quo procedure is expected to perform

well as long as there are no more than 4 false reports.  The BBA procedure is to always drop

the four highest and four lowest prices, thereby, in all likelihood, eliminating the four false

reports.  This approach should not be accurate if the breakdown point of 4 is exceeded.  On

the other hand, the bootstrapped truncated-mean, the median and the bootstrapped Huber-

estimator sacrifice some efficiency to guard against larger numbers of false reports.

Table 4 displays the Monte Carlo results based on eight inaccurate reports.  Here the

pattern of results clearly favors the Huber-estimator.  The Huber-estimator has the lowest

mean-squared error regardless of the underlying distribution.  More importantly, it guards well
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against worst-case scenarios.  That is, the Huber-estimator has the lowest worst-1%.  Not

surprisingly, in this context the status-quo approach performs poorly by comparison.

IV. Conclusion

Valuation of securities and obligations that depends on negotiated rates or OTC traded

assets relies on dealer polling.  In order to cope with unintentional misreporting and to guard

against market-manipulation, dealer reports are routinely processed through robust estimation. 

At present, the truncated-mean is the only such approach in use.  However, both theoretical

underpinnings and simulation studies suggest that serious consideration should be given to the

median and the Huber-estimator.   While the Huber-estimator requires specification of a

truncation point, the bootstrap provides a straightforward and reliable procedure for its

selection.

The reliance on dealer polling is widespread in financial markets.  Perhaps most

notably, quoted Libor rates are formulated from a small sample of bank reports.  Robust

estimation may provide market participants, exchanges and regulators interested in minimizing

the effects of worst-case scenarios a useful approach to processing dealer polling.
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Appendix

Least Informative Distributions

Assume that the true underlying rates or prices of interest are drawn from a

distribution, .  They may be falsely reported with probability , in which case they are

drawn from some other distribution, .   Polling results are therefore drawn from the set of

compound distributions,  shown in equation (1).  The objective is to formulate a minimax

estimator in this context.

Huber (1964) shows that, under general conditions, there is some unique distribution  

in  which attains the lowest Fisher information, , defined by 

Given a distribution, Fisher information provides an efficiency bound for all possible

estimators  -- no location estimator can have asymptotic variance lower than 1/  if the data

is distributed .

Since  has the lowest Fisher information among the possible true but unknown price

distributions, it is the least favorable for the purpose of estimation.  Of all distributions in the

family ,  gives rise to the worst possible efficient estimator. This estimator satisfies the

minimax variance criterion: it has the lowest variance under the worst-case scenario.

The distribution  is known as the ªleast informativeº distribution.  It can be

explicitly solved for by taking the Gateaux derivative of Fisher information and setting it

equal to zero,  In the Normal case, Huber (1981) shows that the least

informative distribution is,



Of course, for small  (and hence large ), the least informative density is approximately

itself a Normal density.  In practice, this approximation is reasonably accurate for  less than

a few percent.  

For practical purposes then, we can set = .  Thus, it is straightforward to

convert the optimal truncated-mean into an optimal Huber-estimator, according to the formula

.  The Monte Carlo results suggest that the approximation works adequately

even for fairly large .



Table 1
Optimal Huber-Estimates for Given Contamination Rates

probability of misreporting       optimal      optimal 

0.1%    0.005  2.630
0.2%     0.008  2.435
0.5%    0.018  2.160
1.0%    0.031  1.945
2.0%    0.052  1.717
5.0%    0.102  1.399
10%    0.164  1.140
20%    0.256  0.862

Notes:   Optimal  refers to the degree of truncation for the truncated-mean.  Optimal 
refers to cutoff points for Huber-estimates.  These results are exact for observations drawn
from contaminated standard Normal distributions and were tabulated in Huber (1981).



Table 2
Alternative Estimates of Location

No Contamination

                                                   BBA             Bootstrap         Bootstrap
Estimator:            Mean        Median   Trimmed-mean Trimmed-mean  Huber-Estimate 

Normal

Bias   -0.0025         0.0044        -0.0002        -0.0012        -0.0512

Std. Dev.  0.2448         0.2965         0.2653         0.2546         0.2601

MSE  0.0599         0.0879         0.0704         0.0648         0.0703

Worst 1%    0.6691         0.8034         0.7247         0.7070         0.7449

Student-t

Bias    -0.0059        -0.0001        -0.0007        -0.0028        -0.1287

Std. Dev.      0.3588         0.3315         0.3064         0.3153         0.3241

MSE    0.1288         0.1099         0.0939         0.0994         0.1216

Worst 1%     1.2634         1.0844         0.9781         1.0086         0.9637

Notes: The Table compares the Monte Carlo performance of alternative estimators of the
average price over 2000 simulations.  In each simulation, the sample size is 16 and the true
distribution is Normal, or Student-t with 4 degrees of freedom. ªStd. Dev.º and MSE denote
the Monte Carlo standard deviation and mean squared error. Worst 1% is the average bias of
the estimator�s 20 worst misses.



Table 3
Alternative Estimates of Location

Four Contaminated Reports

                                                     BBA            Bootstrap         Bootstrap
Estimator:            Mean        Median   Trimmed-mean Trimmed-mean  Huber-Estimate 

Normal

Bias    0.4959         0.3092         0.3419         0.4427         0.3522

Std. Dev.     0.3745         0.3465         0.3186         0.3696         0.3819

MSE     0.3861         0.2156         0.2184         0.3326         0.2699

Worst 1%     1.4061         1.2179         1.1596         1.3610         1.2823

Student-t

Bias      0.5130         0.3355         0.3810         0.4543         0.3305

Std. Dev.     0.4552         0.3909         0.3761         0.4300         0.4840
     
MSE     0.4704         0.2654         0.2865         0.3913         0.3435

Worst 1%     1.7000         1.4618         1.4528         1.6294         1.6181

Notes: Monte Carlo performance of estimators in the presence of four misreported prices. 
See note to Table 1.  



Table 4
Alternative Estimates of Location

Eight Contaminated Reports

                                                    BBA            Bootstrap         Bootstrap
Estimator:            Mean        Median   Trimmed-mean Trimmed-mean  Huber-Estimate 

Normal

Bias     1.0026         0.9917         1.0031         1.0037         0.9622

Std. Dev.     0.6231         0.6758         0.6410         0.6256         0.6386

MSE  1.3934         1.4402         1.4172         1.3987         1.3336

Worst 1%  2.3278         2.6350         2.4059         2.3278         2.2987

Student-t

Bias  1.0198         1.0250         1.0209         1.0175         0.9308

Std. Dev.   0.6583         0.7300         0.6645         0.6496         0.6967

MSE    1.4734         1.5836         1.4838         1.4572         1.3518

Worst 1%     2.6314         3.0825         2.6595         2.5622         2.5521

Notes: Monte Carlo performance of estimators in the presence of eight misreported prices. 
See note to Table 1.  
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Figure 1

Average Three-Month Libor Reported

by 16 Large Banks 

Notes to Figure: The average rate over 16 large dealers reporting daily three-month Libor to
the British Bankers� Association.  Data are taken from Open Bloomberg and extend from
January 4, 1995 to June 4, 1998.  
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Figure 2

Alternative Estimates of Three-Month Libor

Notes to Figure: Three-month Libor fixings calculated two ways.  BBA refers to the method
currently in use by the British Bankers� Association.  Huber denotes the bootstrapped Huber-
estimator.  See text for details.  Data are taken from Open Bloomberg and extend from
January 4, 1995 to June 4, 1998.  


