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ABSTRACT

This paper utilizes frequency-domain techniques to identify
and characterize economically important properties of government
spending. Using post-war data for the United States, the paper
first identifies peaks in the estimated spectra of the major
components of fiscal spending. Second, the paper examines the
relationship between these fiscal variables and various measures
of aggregate economic activity. The analysis reveals that
defense spending is best modeled as exogenous with respect to the
aggregate economy, and nondefense spending (growth) appears to be
white noise. Further, the unemployment rate has a very high
coherency at the business cycle frequencies with unemployment
insurance but far smaller coherency with other transfer payments.
Finally, the paper finds a moderate degree of direct
substitutability between certain types of government spending and
private consumption and in the process illustrates how spectral
techniques can be readily combined with a standard intertemporal

optimizing model.



An Analysis of Government Spending in the Frequency Domain
I. Introduction

Recent legislative experience in the United States suggests
a growing reliance on reductions on the spending side of the
federal government budget to achieve the desired medium-term
evolution of the budget surplus. Moreover, the long—te;m budget
outlook under current law will be strongly influenced by
explosive growth in social security and Medicare spending as the
baby-boom generation retires. In addition to these dramatic
current and prospective developments for government spending,
recent papers by Blanchard and Perotti (1998) and by Eichenbaum
and Fisher (1998) suggest renewed academic interest in the
effects of government spending on the economy.

With such factors as motivation, this paper seeks to
identify and characterize economically important properties of
government spending both in isclation and in relation to other
macroeconomic variables. To achieve this goal, the paper adopts
a frequency-domain approach. In particular, the paper first will
identify the important peaks of the estimated spectra of the
major components of fiscal spending, using quarterly post-war
data from the U.S. National Income and Product Accounts. This
will allow determination of whether a substantial portion of the
variance of a series can be attributed to components associated
with business cycle and seasonal frequencies or with low
frequencies, most likely related to demographic or other long-
term, slowly evolving factors, and thus help create a set of

stylized facts in the frequency domain. Second, the paper will
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examine the relationship between fiscal variables and various
measures of aggregate economic activity using bivariate spectral
techniques. This will shed light on the freguencies, if any, at
which government spending is related to business cycle variables
and relative prices. It also will allow us to examine‘the degree
of direct substitutablility between certain types of government
spending and private consumption and in the process illustrate
how spectral techniques can be readily combined with a standard
intertemporal optimizing model.

Of course, any structural interpretation of a relationship
between two variables must be pursued cautiously. For example, a
strong frequency domain relationship between unemployment
insurance outlays and the unemployment rate can be given at least
two interpretations. On the one hand, an increase in the latter
will increase the former for a given structure of the
unemployment insurance program; this effect is likely to show up
prominently at the business cycle frequencies. However,
expansions of the unemployment insurance program over time likely
will boost the unemployment rate; such an effect arguably would
show up at low frequencies if the underlying structural or trend
level of the unemployment rate is altered, but also could show up
at business cycle frequencies if the cyclical properties of the
unemployment rate are affected as well.

The estimated population spectra of government spending
variables will allow us to confirm certain well-known properties

of these series in the time domain but not confirm others.
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Although all second-moment properties would be identical in a
very large sample, differences arise given small samples.
Indeed, the existence of small samples helps to justify the study
of government spending in the frequency, as well as, the time
domain.! However, the spectral approach is not without‘its
limitations. There typically are a lot of parameters to be
estimated and it is difficult to identify low frequency
components. The latter suggests difficulty, for example, in
finding low-frequency components of government spending arising
from slowly changing demographic factors such as retirement
dynamics. In any case, based on the framework of this paper it
is hoped that spectral techniques will be seen as much easier to
use than probably most applied economists realize.

The remainder of the paper is organized as follows. Section
ITA analyzes various components of government consumption and
investment expenditures and their relationship to the unemploy-
ment rate. Section IIB examines government transfer payments and
grants as well as their relationship to the unemployment rate and
relative prices. Section IIC considers the issue of the degree
of direct substitutability between private consumption and
government spending. Section III offers some concluding
thoughts. An appendix, written with the practitioner in mind,
contains a summary of the main results from the spectral analysis

of time series that are relevant for this paper.

! Moreover, as shown in Engle (1976), spectral methods can

be used to specify a time domain model.
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II. Spectral Properties of Fiscal Variables

In this section, the properties of U.S. federal (and certain
state and local) government seasonally adjusted fiscal wvariables
taken from the National Income and Product Accounts (NIPAs) are
discussed.? Most of these variables clearly are non-stationary
in levels form and so they generally have been transformed into
percent changes. Plots of the spectral densities and selected
coherencies along with corresponding 95 percent confidence bands
are included at the end of the paper.?
A. Government Consumption and Gross Investment Expenditures

We begin by examining consumption and investment
expenditures on national defense in billions of current dollars,
using quarterly NIPA data for the period from 1947:Q1 to 1997:01.
The use of current dollars enables us to illustrate the "typical
spectral shape" of macroeconomic variables identified by Granger
(1966). Notice that the estimated spectrum has a prominent peak
at very low frequencies, declines rapidly, and flattens out at

high frequencies. Viewing this as evidence of nonstationarity,

> There also are a few fiscal variables (not including

transfer payments and grants) published on a not seasonally
adjusted basis; in addition, these few variables are available

only on a current dollar basis. In percent change form, their
spectra (not displayed here) reveal dramatic spectral peaks at
the 4-quarter and 2-quarter--or seasonal--frequencies. The

spectrum of the percent change in nominal (nsa) federal
consumption and investment spending also shows some spectral
power at the business cycle frequencies.

> We utilize PROC SPECTRA from SAS to generate the basic
spectral densities and squared coherencies. The respective 95
percent confidence bands, described in the appendix, were
programmed by us.
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we next examine the spectrum of defense consumption and
investment expenditures as a percent of GDP, both in current
dollars (Def/Y); the results are virtually identical if the
variables are expressed in real terms. The spectrum of Def/Y
also has roughly the typical spectral shape, suggesting‘that
scaling by GDP may not be sufficient to achieve stationarity; an
alternative interpretation is that Def/Y is a stationary series
whose variance is primarily determined by very low frequency
movements.* By contrast, the spectrum of the growth rate of
defense consumption and investment expenditures does not have the
typical spectral shape, suggesting that stationarity has been
achieved. Moreover, the null hypothesis that the series is white
noise is rejected by both the Fisher-Kappa (FK) and Bartlett-
Kolmogorov-Smirnov (BKS) tests (as is the case for the other
defense series discussed above).

Interestingly, the spectrum displays a prominent peak over
the frequency range roughly between 0.15 and 0.30, corresponding
to a period between 20 and 50 quarters. Because the spectral
approach is nonparametric, with no explicit economic structure
imposed, there is not a unique explanation of the spectral peak.
One possibility is that it reflects recurring--if not exactly

periodic--wartime (hot and cold) fluctuations in defense

‘* Moreover, the spectra of federal government consumption

and investment expenditures as a percent of GDP and total
government consumption and investment expenditures as a percent
of GDP (either in nominal or real terms) each have the typical
spectral shape.
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spending. Over this period there was the Korean War in the early
1950s, the Vietnam War in the late 1960s and early 1970s, the
Carter-Reagan defense buildup of the 1980s, and the Gulf War in
the early 1990s; these reasonably can be viewed as exogenous
fluctuations and provide support for the common practiqe in
macroeconomics of specifying defense expenditures as an exogenous
variable or instrumental variable.

However, one might hypothesize that defense spending has a
countercyclical component, involving, for example, increased
recruitment during periods of cyclical downturns. This view
receives a bit of support because there is a prominent peak in
the (squared) coherency between the growth rate of real defense
compensation and the change in the civilian unemployment rate at
a frequency of about 0.7 or a period of 9 to 10 quarters; further
the coherency at this frequency is statistically significant
based on the Bloomfield test (indeed, values above roughly 0.3
are significantly different from zero). However, this evidence
is far from overwhelming because the coherency itself is only
about 0.4. Very similar results hold for the coherency between
the growth rate of real defense investment spending and the
change in the unemployment rate.

The estimated spectrum of the growth rate of real federal
nondefense consumption and investment expenditures appears to
have several prominent peaks including one at the business cycle
frequencies (associated with a period of 5 years). However,

based on the FK and the BKS tests, the hypothesis that this
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series is white noise cannot be rejected. The spectra for
several of the components of total nondefense spending also are
presented. Several have interesting looking spectra, especially
the growth rate of nondefense services (compensation and other).
However, in almost every case, the hypothesis of white poise
cannot be rejected.

In addition to analyzing federal government spending, we
have examined certain components of state and local government
spending as well. For example, the hypothesis that the growth
rate of real state and local consumption and investment spending
is white noise is rejected using both the FK and BKS tests.
Further, the spectrum of this series has power at low
frequencies, reflecting long-run factors. It also has a modest
peak at a period of about 20 guarters and the squared coherency
between this series and the change in the unemployment rate is
high (around 0.7) at business cycle frequencies corresponding to
periods of about 12 to 14 quarters.

B. Government Transfer Payments and Grants

We now discuss the frequency domain properties of certain
federal government transfer payments and grants, where the basic
outlay data are expressed in nominal or current dollars.
Unemployment insurance (regular plus extended), UI, is commonly
viewed as the most important automatic stabilizer on the spending
side of the budget. Its spectrum, based on quarterly data for
the period 1959:Q1 to 1997:02, has the "typical spectral shape,"

showing no special spectral power at the business cycle
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frequencies. The spectrum of the unemployment rate has virtually
the same shape. However, the (squared) coherency between these
two series is very high at the business cycle frequencies,
confirming the conventional view (and consistent with the
methodological point in Sargent (1979), discussed in thg
appendix) .

Moreover, the (squared) coherency between the growth in UI
outlays and the change in the unemployment rate also is very high
at the business cycle frequencies, and, indeed, the individual
spectra of each series has a prominent peak at the business cycle
frequencies.® Further, UI outlays as a share of GDP has a
spectrum that does not display a peak at business cycle
frequencies, although its coherence with the level of the
unemployment rate is very high at these frequencies.

Finally, we can use the gain as a quantitative measure of
the impact of an increase in the unemployment rate on UI outlays
as a share of GDP. Over the range of business cycle frequencies,
the gain is roughly constant with a value of about 0.18; this
implies that a recession-induced increase in the unemployment
rate of one percentage point will increase unemployment insurance
outlays about $15 billion at an annual rate (as of 1997). This

contrasts with recent estimates by the Office of Management and

> We also have examined the spectrum of the growth in

monthly, not seasonally adjusted unified budget outlays for
unemployment insurance over the period January 1970 to January
1998. The spectrum displays no spectral power at the business
cycle frequencies but clearly shows prominent peaks at the
seasonal frequencies.
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Budget (1998) that show total federal outlays increasing about
$10 billion per point of unemployment (most of which results from
higher unemployment insurance outlays). One possible explanation
for the difference is that the gain at business cycle frequencies
may be picking up the effect of expansions in the unemployment
insurance program on the unemployment rate as well as the effect
of unemployment on outlays.

Social security (OASDI) is the largest federal transfer
program, comprising about 45 percent of total personal transfer
payments in 1997. The FK test implies that the growth rate of
social security payments over the period 1959:02 to 1997:Q1 is
white noise, although the more powerful BKS test implies that the
series is not white noise. Assuming that the series is not white
noise, the spectrum has three interesting features.

First, there is a modest peak at business cycle frequencies
around 0.6, corresponding to a period of 9 to 10 quarters. This
suggests that social security may be a cyclically-sensitive
program. However, conflicting evidence is provided by the
(squared) coherency of the growth in OASDI spending and the
change in the unemployment rate; the coherency is only about 0.2
at the business cycle frequencies. This contrasting evidence is
consistent with the mixed results from the time domain which,
when they have shown cyclical sensitivity of OASDI spending, have
found a weak relationship.

Second, the spectrum of the growth rate of 0OASDI has

prominent peaks at the seasonal frequencies (corresponding to
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periods of 4 and 2 quarters). At first glance, this might be
surprising given that OASDI spending is a seasonally-adjusted
series. However, the BEA has adopted the convention of "level
adjusting" the series whenever a cost-of-living adjustment is
made to social security payments; this adjustment has bgen made
once every four quarters automatically since the mid-1970s and on
an ad hoc basis in prior periods.®

Third, the spectrum displays power at very low frequencies
which could reflect several factors such as general expansion of
the program or demographic influences. The latter would not
include the effects of the post-war baby-boom, baby-bust cycle
because baby boomers have yet to retire. However, increases in
life expectancy for retirees as well as increases in the number
of retirees owing to population growth over the period may be
captured in the low-frequency portion of the spectrum.’

Medicare has become the second largest federal transfer
program since its inception in the mid-1960s; spending on
Medicare amounted to about 25 percent of total transfer payments

in 1997. Based on both the FK and the BKS tests, the growth rate

¢ As might be expected, the seasonal peaks are eliminated

in the spectrum of the 4-quarter growth rate of OASDI spending.
Further, this spectrum has a modest peak at business cycle
frequencies although at these frequencies the (squared) coherency
between the 4-quarter growth rate of OASDI and the change in the
unemployment rate is low.

” We also examine the properties of OASDI spending as a
share of GDP. This variable has the "typical spectral shape,"
showing no peaks in the business cycle frequencies; moreover, the
(squared) coherency with the level of the unemployment rate is
low at these frequencies.
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of Medicare over the period from 1967:04 to 1997:01 is not white
noise. The spectrum displays most of its power at low
frequencies, with no noticeable peak at the business cycle
frequencies. Indeed, the squared coherency between the growth
rate of Medicare and the change in the unemployment ratg is very
low at the business cycle frequencies, suggesting that this is
not a cyclically-sensitive program, which generally accords with
results from the time domain. Because the variance in Medicare
growth apparently has been determined by slow moving factors,
such as partially technology-driven changes in relative health
care costs, it is natural to look for statistical evidence of
such a relationship. Some supportive evidence is provided by the
(squared) coherency between the growth rate of Medicare and
relative medical services inflation (the growth rate of CPI,
medical services minus the growth rate of the total CPI) which is
high at low business-cycle frequencies, corresponding to periods
between 20 and 30 quarters.

The spectrum of the growth rate of spending on the Food
stamps program over the period 1963:Q2 to 1997:Q01 shows most of
its power at very low frequencies, although two modest peaks
appear at the business cycle frequencies. Moreover, the
(squared) coherency between the growth rate of Food stamps and
the change in the unemployment rate has a local maximum at
business cycle frequencies; nevertheless, the maximum value is
less than 0.3. Taken together the evidence suggests that the

Food stamp program is cyclically sensitive, albeit with a
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sensitivity that is not quantitatively very large.

Medicaid is a federal grant-in-aid to state and local
governments; indeed it is the largest grant, amounting to more
than 40 percent of total grants in 1997. The spectrum of the
growth rate of Medicaid spending has a small peak at thg business
cycle frequencies and large peaks at the seasonal frequencies,
the latter again reflecting BEA conventions. Further, the
coherency between the growth rate of Medicaid and the change in
the unemployment rate has a local maximum at low business cycle
frequencies; however, the value is low (around 0.3) suggesting
that at best there is a quantitatively weak relationship.

C. Private Consumption and Government Spending

We now utilize spectral techniques to address the issue of
the degree of direct substitutability between aggregate private
consumption expenditures, C., and government spending, G,. There
has been limited empirical analysis of this issue in the time
domain. Aschauer (1985), for example, estimates that an
additional dollar of government consumption expenditures directly
crowds out about 25 cents worth of private consumption. Kormendi
and Meguire (1995) reach substantially the same conclusion,
although Graham (1995) finds a value only half as large.

To help in interpreting subsequent results of our empirical
cross spectral analysis, we provide a slightly modified version
of the Aschauer framework. Agents maximize the expected present
discounted value of utility of "effective" consumption, C~

t!

where C’, = C, + YG,. That is, for a given level of effective
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consumption, an additional unit of government spending will
induce the agent to reduce private consumption by ¥ units.

Subject to quadratic utility, rational expectations, and
equality of the rate of time preference and the real interest
rate, Aschauer establishes that:
AC, = YG,.; - VE_,G, + u, (1)
where E__,G, denotes the expected value of period t government
spending based on information available at time t-1; u, is a zero
mean, white noise random variable. Further, for concreteness, we

assume that G, is an AR(2) process:

Ge = gy + 916Gy + 9,6, + & (2)
where we impose g, + g, = 1.° Also, &, is white noise with mean
zero and variance, o:. It follows that E.,G. = g, + ¢,G,.; + 9,G,.,

and thus (9) can be rewritten as:

AC, = o + BAG,; + u, (3)
where o = -yg,and 6 = ¢y(1 -g,). From (2), it also follows that:
AG, = gy + gAG,; + &, or AG.,; = g, + gAG., + & (4)

where g = g, - 1. That is, AG,; = X, is an AR{(1l) process.
Let Y, = AC, . Combining expressions, we get:
Y. = o + OX, + u, (5)

and we assume that Y_ and X,  are stationary.

We now analyze this model in the frequency domain,

8 We note that the assumed nonstationarity (g,+g, = 1) of G,

is consistent with results using time domain techniques. For
example, based on the augmented Dickey-Fuller test, one cannot
reject the null hypothesis that combined real government
consumption expenditure has a unit root over the post-war period.
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ultimately deriving the squared coherency to aid in interpreting
our empirical results. Chatfield (1996) shows that for an AR(1)
process such as that for X,, s,(w) = 05/(2n)(l - 2gcoswe + g?),
where s,(w) denotes the spectrum of Z. Also, since u, is white
noise, its spectrum s (w) = of/ZH as discussed in the appendix.

In our example, the cross covariance function, Yay (K)= COV (X, Y,,,)

= (6g“c,’/(1-g”) and v,, (k) = v, (-k) for k = 0, 1, 2, .... Using
(A6), the cross spectrum, S,y (@), is given by:

S (@) =(1/2m) (8/(1-g*)) o’ [1 + 2gcosw + 2g°cos2w + ...].

In this case, the cross spectrum is real (i.e., the quadrature

spectrum is zero) because of the property of our model that

Yy (K) = yxy(—k).9 This implies that the co-spectrum equals the
cross spectrum and that the gain, from (A8), equals S . (0) /8, (@) .
From (A7), the (squared) coherency for X and Y is:

C(w) = (S,,(0))?*/s,(w)s,(w).

From the appendix we know that the spectrum of Y is given by:
s (0) = (gain)? s, (®) + s,(0) = (S, (w))*/s (@) + s,(0).

Thus, the coherency is given by:

C(w) = 1/(1 + Z) where Z = s,(0)s,(0)/(S,,(w))?

Recalling that 6 = (1 -g;), it follows mainly from the

expression for S, (w) that:

° The symmetry of the cross-covariance function depends on

the assumption that AG, is a stationary AR(1l) process as in
equation (4). If, instead, AG, were a stationary AR(2) process,
the symmetry property would not hold in general and, hence, the
cross spectrum would not be real, making clean closed-form
results difficult to derive.
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1lim C(w) = 0 Yo
-0

This result accords with intuition. If there is very little
substitutability between private consumption and government
spending (v = 0), we would expect that a measure of correlation
between Y, and X, such as the coherency should be very low, as
indeed it is at all frequencies. Technically, the coherency is
zero because, for ¢ = 0, Y, = AC, depends on the random process
u., but not on &, as well (because the AG,,; term has dropped out
of equation (3)). However, perhaps surprisingly, it is not the
case, if the degree of substitutability is quite high (¢ = 1),
that the coherency converges to unity or even to a high value.
This is because Y, and X, are driven by different random
processes: Y, now depends directly on u, and indirectly on &,
through its dependence on X,, while X, depends only on £,.

By substitution of the expressions for s, (w), s, ,(w), and
(Sxy(w))2 into the expression for the squared coherency and by
use of the properties of geometric series, it follows that if
¥ > 0 and g < 0, then C, (0=0) < Cy(0=n1/2) < C, (w=m); for
g > 0, the inequality signs are reversed. This monotonicity
property of the coherency across the three frequencies is useful
for empirical purposes.

To make this result more concrete, we now compute sample
values of the squared coherency at the three frequencies and for

different values of the key parameters. Also it is assumed for

2

simplicity that ¢, = o.°.
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The following table summarizes the results. The first

column shows that the squared coherency is zero when there is no
substitutability between private and government consumption (v =
0). The second column shows low coherencies even if the degree
of substitution is at the high end of the range of time‘domain
estimates (y = .25). Comparing the first two columns suggests
that it will be quite difficult to differentiate empirically
between low and modest rates of substitutability using these

Table: Squared Coherencies

Frequencies Parameter values
g = -.5 g =-.5 g = ~-.5 g = ~-.5
¥y =0 ¥ = .25 ¥ = .5 ¥y =1
(1) (2) (3) (4)
w =0 0 .007 .027 11
w = 1n/2 0 .012 .048 .17
w =1 0 .059 .20 .50

spectral techniques. By contrast, the final two columns, which
show much larger coherencies at higher frequencies, suggest that
it is possible to distinguish between very low and very high
degrees of substitutability. This example is meant to help
interpret cross spectral estimates in terms of an economic model,
but more generally to illustrate how spectral techniques can be
combined with a standard intertemporal optimizing model of a

representative consumer. Of course, other economic models
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presumably would generate different spectral patterns. °

With this in mind, we now turn to our empirical results.
The private consumption variable of our model is proxied by per
capita NIPA real personal consumption expenditures on nondurable
goods and services; this measure omits spending on durables which
has an investment component. Government spending is proxied for
by per capita NIPA real federal plus state and local government
consumption expenditures.!® Each variable is in first
differenced form and the resulting government variable is lagged
one period to conform with the model; examination of the spectra
suggests that each first-differenced variable is stationary.
With the exception of a few isolated frequencies, the squared
coherency is low; indeed, it is quite low at the three key
frequencies examined in the theoretical discussion above (w = 0,
n/2, mn), allowing us to strongly discount the possibility of a
high degree of substitutability. Moreover, as mentioned above,

it is difficult to differentiate between low and moderate degrees

1 The spectral approach also might be useful in analyzing

the relationship of government spending to variables other than
private consumption. For example, future research might examine
the potentially important relationship between government
spending and private investment identified in Baxter and King
(1993). They argue that a higher path of government spending
(financed by current or future lump sum taxes) has a positive
wealth effect on labor supply which in turn raises the marginal
product of capital schedule and, hence, investment demand.

1 Because NIPA government consumption spending includes an
estimate of the consumption services of fixed government capital
(CFC) whereas NIPA private consumption does not include the
service flow from the stock of private durables, we also examine
the relationship between private consumption and government con-
sumption, excluding CFC. The results are essentially the same.
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of substitutability. On the one hand, the coherencies at the
three key frequencies are not significantly different from zero
using the Bloomfield test, suggesting that there is no direct
substitutability between aggregate private and public consumption
expenditures. On the other hand, because the estimated
coherencies are .001, .025, and .069 at frequencies 0, n/2, and
I, respectively, it is tempting to conclude that v is
approximately .25 based on the second column of the above table,
implying that there is a moderate degree of direct substitut-
ability between aggregate private and public consumption.

Intuitively, we might expect greater substitution to
occur between more narrowly specified groups of goods and
services. To examine this possibility, we consider the
relationship between two government transfer-in-kind goods--
Medicare and Food stamps--and their private consumption
counterparts. We compute coherencies using both nominal and real
magnitudes; we use the PCE implicit price deflator for medical
care to deflate Medicare spending and the deflator for food to
deflate Food stamp spending.

The (squared) coherency between the change in real Medicare
spending per population member aged 65 and over and the change in
real personal consumption expenditures on medical care (net of
Medicare outlays) per total population member exceeds 0.5 for low
frequencies corresponding to periods in excess of ten years and
for business cycle frequencies corresponding to periods around 3

years. With the variables expressed in nominal terms, the
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coherency is around 0.5 only at very low frequencies. Although
the results are somewhat mixed, on balance, the evidence in light
of the results from our optimizing model above, although not
strictly applicable, suggests at least a moderate degree of
direct substitutability between Medicare and private health care
expenditures.

Moreover, the (squared) coherency between the change in per
capita real Food stamps and the change in per capita real
personal consumption expenditures on food generally is large
enough to suggest at least a moderate degree of substitution,
although again at most frequencies the coherencies are not
significantly different from zero. Similarly mixed results hold
when Food stamps and private food consumption are expressed in
nominal terms.

IV. Conclusions

This paper characterizes several economically important
properties of government spending and, in the process, shows that
frequency domain techniques can be a useful means of confirming
or refuting standard time domain results. Further, the paper
shows that spectral techniques can be combined with an optimizing
model of the representative consumer; more specifically, this
combination is used to shed light on the proposition that
government spending directly substitutes for private consumption
expenditures. The main empirical findings are as follows.

Defense spending is best modeled as exogenous with respect

to the aggregate economy, and nondefense spending on goods and
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services appears to be white noise. Also, the influence of
demographics, such as the baby-boom, baby-bust cycle on
government transfer payments occurs over too long a period to be
captured by the frequency domain approach applied here to the
post-war period. Further, the unemployment rate has very high
coherency at the business cycle frequencies with unemployment
insurance but far smaller coherency with other transfer payments.
Finally, there appears to be a moderate degree of direct
substitutability between changes in government consumption and
private consumption (excluding durables) expenditures, although
the evidence is decidedly mixed. Stronger evidence of at least a
moderate degree of substitutability exists for the case of
transfer-in-kind goods, such as Medicare and Food stamps, and

private consumption expenditures of the associated good.
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Appendix: Review of the Frequency Domain Approach
A. Introduction

While economists are quite familiar with describing a
stationary stochastic process in terms of its autocovariance or
autocorrelation function, they are less familiar with analysis of
the process in terms of its frequency properties. This section
presents the basic results and intuition of frequency domain
analysis utilized throughout the paper. The section is written
with the practitioner in mind; it draws on more rigorous
presentations in Bloomfield (1976), Brillinger (1975), Chatfield
(1996), Granger and Newbold (1986), Hamilton (1994), Jenkins and
Watts (1968), Priestly (1982),and Sargent (1979). The rest of
this appendix can be skipped by those familiar with spectral
techniques.

The basic idea of frequency domain analysis is that a
covariance stationary process, Y, , can be described as the sum
of uncorrelated sine and cosine waves of differing frequency and
amplitude. The goal is to identify frequencies that contain a
lot of information about the variance of Y. For example, the
variance of an eéonomic variable may be dominated by variations
at the seasonal and business cycle frequencies. Using frequency
domain techniques, Granger (1966) argues that the typical macro-
economic variable in level form, such as real GDP or the
industrial production index, is dominated by low frequency or
trend-like variation; as discussed below, this could reflect a

stable underlying autoregressive process or, alternatively, a
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nonstationary process (for which our basic theory below does not
apply unless the variable is appropriately transformed).

When considering the relationship between two variables,
frequency domain analysis provides a measure of the linear
correlation of the variables frequency by frequency as Well as a
measure that is interpretable as the regression coefficient of
one variable on the other at a given frequency. Moreover, one
can find relationships between corresponding bands or groups of
frequencies of two variables, such as low-frequency groupings or
high-frequency groupings, by the method of band regression, as
developed in economics by Engle (1974, 1979), although this
method is not discussed further here.

B. The Univariate Case

Frequency domain analysis begins by defining the (power)
spectral density function, or spectrum, of Y, at frequency o,
s,(w); the spectrum is the Fourier transform of the
autocovariance function, vy, scaled by 2m:

o0 -iwj

sy(@) = (1/2m) 2 vje = (1/72m) [ & vy; cos(wj)] (A1)

J=-o0 J=—c
where v; = E(Y, - n) (Y., - n) and E (Y.) = n.

The second expression in (1) uses De Moivre's theorem, standard
properties of trigonometric functions, and Y; = Y3 for stationary
time series. This expression shows that the spectrum at

frequency o is real and is an infinite weighted sum of cosine
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terms. Further, as suggested by both expressions in (1), the
theoretical spectrum of Y_ at every frequency o utilizes an
infinite number of leads and lags of the data (since v; is
evaluated for values of j from -« to +).
Alternatively, Hamilton (1994) shows that the auto;ovariance

at lag k is the inverse Fourier transform of the spectral density

function:
II iwk I

Ye = | s, (0)e de = [ s, (w)cos(wk)dw (A2)
-I -1

Together with (1), this implies that the spectrum and the
infinite sequence of autocovariances contain exactly the same
information. Also, from (2) it follows that the variance of Y,

Yy, 1s given by:

so that the area under the spectrum is the variance; so, loosely,
the variance of a series is the sum of the spectra over all
frequencies. Because the spectrum is symmetric about the zero
frequency, it is common to plot s(w) against o only for

0 < w < m. Also, the area between two frequencies, «, and w,, is
the contribution to the variance of the series from frequencies
between ®;, and w,.

The spectrum can take many shapes. If the spectrum is flat
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or constant at all frequencies, then each contributes a like
amount to the variance and the series is called white noise (just
as the color white is formed by an equal contribution from all
colors of the light spectrum); from (1), the spectrum of a white
noise variable is vy,/2n. Chatfield (1996) shows that the
spectrum for an AR(1l) or an MA(l) process with positive
coefficients declines monotonically as frequency increases from 0
to n. If a series is integrated of order 1, and hence is not
stationary, its spectrum is proportional to w™? at low
frequencies (see Engle and Granger (1987)); hence, the spectrum
is not finite at the zero frequency and declines rapidly for
small values of .

A spectrum also can have prominent peaks at frequencies
associated with business and seasonal cycles. Sargent (1979)
specifies business cycles generally as having periods of length 2
to 4 years (NBER short cycles) or 8 years (NBER major cycles).
Baxter and King (1997) consider business cycles with periods
between 6 and 32 quarters. Granger and Newbold (1986) specify a
seasonal as that component of a time series that causes the
spectrum to have peaks at or around seasonal frequencies, i.e.,
frequencies ®, = 2nk/p where k = 1,2,3,... and p is the period of
the principal seasonal, taking the value 4 for quarterly data, 12
for monthly data, and so forth. Thus, for quarterly data the
seasonal peaks in the spectrum would show up at (or near) the
principal and secondary seasonal frequencies n/2 and n (with

corresponding periods, 2n/w, of length 4 and 2 quarters),
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respectively; for monthly data, peaks would show up at (or near)
frequencies n/6, n/3, n/2, 2un/3, 5n/6, and n (with corresponding
periods of length 12, 6, 4, 3, 2.4, and 2 months, respectively).

Further, Chatfield (1996) shows that transforming or
filtering a series will alter the spectrum of the basic series.
For example, a simple moving average of the series, commonly used
in the time domain to reduce high-frequency variation, is a low-
band-pass filter that magnifies the spectrum of the underlying
series at low frequencies and shrinks the spectrum at high
frequencies. Conversely, first-differencing the series is a
high-band-pass filter that filters out most of the low frequency
variation and magnifies high frequency variation (indeed, for a
stationary series, first-differencing completely eliminates the
contribution to the variance at the zero frequency, although this
generally will not be the case for a non-stationary series).
These two filters are not "ideal" in that they do not sharply cut
off or eliminate variation from a specific frequency band.

The empirical estimation of the population spectrum from a
finite sample is known as spectral analysis. Nonparametric or
kernel techniques are used in the text to estimate the spectrum
of several fiscal variables. First, however, it should be noted
that for a sample of size T, the longest period or wavelength
that can be detected in the data is of length T; thus, for
example, one cannot discover a fifty-year baby-boom, baby-bust
demographic cycle in fiscal data that do not span at least a

fifty-year period. Indeed, because the period or wavelength of a
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sinusoidal cycle is 2n/w, the lowest frequency that can be
detected in the data is 2n/T (i.e., a frequency that completes
one cycle in the whole length of the time series). Also, as seen
in (A2) above, the highest frequency considered is o = m, which
implies that the shortest period that can be detected is 2
quarters (assuming quarterly data).

We denote s}(w) as the sample periodogram (even though s, is

a function of frequency rather than period) or sample spectrum

for a sample of size T. Its expression is given by:

~ T-1 ~ -iwj ~ -1 ~

s (0) = (1/2m) 2 v;€e = (1/2o) [y, + 2 % v;cos (wj) ] (A4)
j=-T+1 j=1

A

where vy; is the sample autocovariance.

To provide a bit more insight into periodogram calculations, we
evaluate s,(w) at three different frequencies, using the final
expression above for the sample periodogram (and tEe property
that v; = v;). At the lowest or zero frequency, s,{w=0) is the
sum of the sample variance and all sample autocovariances
(divided by 2m). At the highest frequency, o=, s, (w=m) is the
sum of the sample variance and all the sample autocovariances
alternating in sign (divided by 2m). At an intermediate
frequency, such as the business cycle frequency of n/4
(COfrespondingAto a Eerio? of § quafters with qgaftefly data)

2usy (w=m/4) = vo+2 (. 7y;=.7Y;=.Tyst. Ty . 0) + 2(=Y+Ve=Via+Yigt. - .) .

Thus, at each frequency, the sample periodogram utilizes all
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sample autocovariances--and, hence, utilizes all the data--
although the weights on the sample autocovariances depend on the
frequency.

As Brillinger (1975) shows, the sample periodogram is not a
consistent estimator of the population spectrum (essentially
because the number of parameters to be estimated equals the
number of observations). This problem can bé attenuated by the
use of kernel estimates. This approach assumes that s, (w) is
close to s, (A) when the frequencies o and A are close to each
other. The kernel estimate of the spectrum at frequency w; is a

weighted average of the sample periodograms at frequencies near

w;, where the weights sum to one:
A h A
sy(w;) = T K0y, ©;)s,(0;5,,) where
b=-h
(A5)
h
b§ hK(wj+b/ (‘)3) =1

Here, b is a bandwidth parameter indicating the number of
frequencies used in the estimation of the spectrum at @5 .
Generally h = 4 in the applied work in the text, where the kernel

function k(w,,,, ®;) is given by [h+1-bl]/(h+1)?. As shown in

i
Chatfield (1996), using kernel estimates, the 100(1-«) percent

confidence band for s, (w) is:
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2(2h+1)s (@) < s, (0) < 2(2h+l)s (o)
X%, (4h+2) X%, o/p (40+2)

where X?(d) is a chi-squared variable with d degrees of freedom.

In the applied work in the text, use is made of two
frequency domain tests for white noise. The Fisher-Kappa (FK)
test is designed to detect one sinusoidal component buried in
white noise; the test statistic is the ratio of the largest
periodogram ordinate to the average of all the ordinates. The
Bartlett Kolmogorov-Smirnov (BKS) test is designed to detect
departures from white noise over the whole range of frequencies
and is more powerful than the Fisher-Kappa test. At each
frequency o, the sum of periodogram ordinates from w, to o, is
divided by the sum of all periodogram ordinates; the ratio is
compared to the cumulative distribution function of a uniform

(0,1) random variable.

C. The Bivariate Case
The cross spectrum, s, (w), is utilized when examining the
relationship between two stationary variables. It is defined as
the Fourier transform of the cross-covariance function, Yoy (K) ¢
00 -iwk
Sy (w) = (1/2m) = vy, (k)e (A6)
k=-o

where v, (k)= COV(X., Y.,) = COV(Y., X, ).

In general, the cross spectrum is complex; its real part is
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called the co-spectrum, c(w), and its imaginary part is called
the quadrature spectrum, g(w). These functions are difficult to
interpret and so it is usual to focus on other functions derived
from them. Denoting s, (w) and s,(w) as the spectral density

functions of X and Y, respectively, the (squared) coherency is:
Clo) = [c®(0) + q®(w)]/s,(w)s, (w) . (A7)

This quantity measures the square of the linear correlation
between the two variables at frequency o and is analogous to the
square of the usual correlation coefficient. It is shown in
Brillinger (1975) that 0< C(w) <1. Thus, if the coherency is
near one at frequency o, it means that the w-frequency components
of the two series are highly related, but a value near zero means
that the corresponding frequency components are not closely
related.'® Bloomfield (1976) provides a test of the null
hypothesis that the coherency is zero. If the level of
significance of the test is o, than an estimated coherency less
than 1 - (1-0)% "9 should be regarded as not significantly
different from zero, where
h

g= % [(h+1-bl)/(h+1)?]?

b=-h
Jenkins and Watts (1973) presents the 95 percent confidence

interval for the (squared) coherency. It is given by:

2 Granger and Weiss (1983) point out that if Y and X are

integrated of order one and are cointegrated, then the coherency
between AX, and AY, is one at the zero frequency.
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A

[£{w)-tanh (1.96/v®)]? [ & {o)+tanh (1.96/v°)]17

< C.(w) < )
[1-§,,(w) (tanh(1.96/v°))]1? ¥ [1+&,, (0) (tanh(1.96/v"%))]1?

A

Here, im,(m) denotes the square root of the estimated (squared)
coherency; tanh denotes the hyperbolic tangent; and v denotes the
degrees of freedom equal to 2(2h+1). Note the close analogy
between the confidence interval for the coherency and for the
standard correlation coefficient.

As a practical matter, we see examples in the text in which
the spectrum of a fiscal variable does not have a prominent peak
at the range of frequencies associated with the business cycle
but does have a high coherence with business cycle variables
(such as the unemployment rate) at business cycle frequencies.
Sargent (1979) cautions that lack of a prominent peak in the
spectrum should not be taken to mean necessarily that the series
does not experience any fluctuations associated with the business
cycle; in such cases, one should carefully examine coherencies.

Another useful function is the gain spectrum, defined as:

Gy (@) = [c®(w) + g’ (w) 1'% /s, (@) (A8)

v {

which is interpretable as the regression coefficient of the

process Y, on the process X, at frequency o.
Jenkins and Watts (1968) show that s (w)= G

time-invariant linear system with no noise (i.e., if Y, is a

linear distributed lag (and lead) function of the input, X,.).
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The addition of uncorrelated noise, N,, to the system implies
that s, (w)= Giw(m)sx(w) + sy(w). The first term on the right hand
side is called the output signal and the ratio of the first term
to the second term is called the signal-to-noise ratio, S/N. A
little algebra establishes that C(w)= [1/(1+(S/N)1)]. ‘Thus a

large signal-to-noise ratio implies a large coherency.
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Figure 10.
Growth Rate of Real State and Local Consumption and Investment
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Figure 12.
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