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Abstract: In recent months and years both practitioners and regulators have embraced the idea of
supplementing VaR estimates with “stress-testing”.  Risk managers are beginning to place an 
emphasis and expend resources on developing more and better stress-tests.  In the present paper,
we hold the standard approach to stress-testing up to a critical light.  The current practice is to
stress-test outside the basic risk model. Such an approach yields two sets of forecasts -- one from
the stress-tests and one from the basic model.  The stress scenarios, conducted outside the model,
are never explicitly assigned probabilities.  As such, there is no guidance as to the importance or
relevance of the results of stress-tests.  Moreover,  how to combine the two forecasts into a
usable risk metric is not known.  Instead, we suggest folding the stress-tests into the risk model,
thereby requiring all scenarios to be assigned probabilities.
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1. Introduction

In recent months and years both practitioners and regulators have embraced the idea of

supplementing VaR estimates with “stress-testing”.  Risk managers are beginning to place an 

emphasis and expend resources on developing more and better stress-tests.  In this paper, we hold

stress-testing and its implications up to a critical light.

The first question that arises in this context is what exactly is the definition of stress-

testing?  As it stands, the definition is surprisingly vague.  To echo Supreme Court Justice Potter

Stewart, the professional consensus might be described as, “we can’t define it, but we know it

when we see it.”  For example, the 1999 BIS document Framework for Supervising Information

about Derivatives and Trading Activities says that stress scenarios need to cover “a range of

factors that can create extraordinary losses or gains in trading portfolios” and that they should

“provide insights into the impact of such event on positions.”

The original Market Risk Amendment to the Accord contained two full pages on the

importance of stress-testing.   Along with the definition given in the 1999 BIS document, the1

Amendment (p. 46) recommended quantitative and qualitative criteria to “identify plausible stress

scenarios to which banks could be exposed.”  Such criteria should “emphasize that two major

goals of stress testing are to evaluate the capacity of the bank’s capital to absorb potential large

losses and to identify steps the bank can take to reduce its risk and conserve capital.”  Clearly

such exhortations are not specific enough to result in operational stress-testing procedures.

Nor has the private sector gone further in formulating a palpable definition of stress-

testing.  Anecdotal evidence suggests that risk managers pursue stress-testing as a way of

understanding gamma-risk and as a tool for studying portfolio allocation (Kupiec (1999)).  Large

and complex portfolios containing assets with nonlinear payoffs, such as options, may behave very

differently in response to large shocks than would be expected given its valuation in more typical

situations.  If gamma risk is excessive or allocated in an undesirable way across assets, the

portfolio can be modified in response.

Though we lack a formal definition then, it is not really the case that the profession
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disagrees about what constitutes stress-testing.  It is understood that stress-testing means

choosing scenarios that are costly and rare, and then putting them to a valuation model.  

The problem of course is that choosing stress-test scenarios is by its very nature subjective.  This

makes external review of a bank’s stress testing program, for example by regulators, extremely

difficult.

Regulators may be able to identify “bad” stress-tests.  For example, scenarios that feature

one or two standard deviation shocks may be ruled insufficiently stressful on theoretical grounds. 

However, the opposite is not true.  Certifying a stress-test as sound would require the two parties

to agree on the assignment of probabilities to unusual (or unheard of) events.

We propose a unified framework in which stress-test scenarios are incorporated into the

basic risk model used by the firm.  The stress-test scenarios are necessarily assigned (possibly

subjective) probabilities, which imposes additional discipline on risk managers. In this way, the

model produces a single forecasted loss distribution which is internally consistent and amenable to

backtesting. 

The remainder of the paper is organized as follows.  Section 2 proposes a formal definition

of stress-testing couched within the framework of an internal risk model.  Section 3 studies the

theoretical implications of our definition given present practices.  In section 4, we propose an

alternative approach to stress-testing that coheres with the basic internal modeling strategy. 

Section 5 concludes.

2. A Formal Definition

In this section, we propose a formal definition of stress-testing.  Suppose that the firm has

a risk model which is used to forecast the distribution of possible returns, y , on some porftoliot+1 .   

Denote the distribution of returns, g(y ).  In this framework, Value-at-Risk modeling reduces tot+1

estimating a single percentile, say the 99 , of g(y ).th
t+1

Typically such risk models are composed of two parts.  First, the model contains a set of

risk factors, such as interest rates and exchange rates.  Let x  be the Nx1 vector of factor returnst

realized at time t.  These factors are assumed to follow some distribution (e.g. Normal) or shocks

can be resampled from historical observations (historical simulation).  Denote the distribution that
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is utilized, f(x ).  For example, under historical simulation, f(@) assigns probability 1/T to eacht

historical observations, {x ,  x , ...,  x }.1 2 T 

The second component of the model is a set of pricing rules, P(@), which predict asset

values as a function of the underlying factors.  For example, we might price options using Black-

Scholes.  We will call this collection of pricing rules a valuation model.

Once the risk model is constructed, the user generates data, , from f(@) which is then fed

into the valuation model, P(@).  If we denote a draw from f(@) as , then a simulated return can bef

written  = P( ).  This process is repeated a large number of time to build up a forecast oft+1 f

g(y ). For ease of exposition, I will generally refer to the output of the model as the fullt+1

distribution of  .  This should cause no confusion because a VaR estimate could in principle bet+1

any percentile of the distribution.

If stress-testing is supposed to put unusual scenarios through the model, then we can

understand it as one of the following:

1. Simulating shocks which we suspect are more likely to occur than historical observation

suggests.

2. Simulating shocks that have never occurred.

3. Simulating shocks that reflect the possibility that statistical patterns could break down in some

circumstances.

4. Simulating shocks that reflect some kind of structural break that could occur in the future.

Note that a scenario falling under the second category, can be understood as a special

case, albeit extreme, of the first category.  Category three describes structural breaks across states

of the world, such as asset correlations increasing during a crisis (e.g., Boyer, Gibson and Loretan

(1998) and Kodres and Pritsker (1999)).  Category four describes the advent of a systematic

structural break over time, such as a switch from fixed exchange rates to floating.  

Mathematically, all four categories of shocks entail drawing from some new factor

distribution f (@) not equal to the distribution typically used, f(@).  This leads us immediately tostress

the following definition.

Definition Consider a risk model generating a forecast distribution, g(y ) as a function of  at+1
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valuation model, P(@), and a factor distribution f(@).  Then a stress-test of P(x ), is a secondf

forecast distribution, g (y ), generated under a modified factor distribution f (@).stress t+1 stress

According to this definition, stress-tests are conducted through the same valuation model

as the basic risk model.   A typical simulated stress-test return (the result of a stress scenario) can

be written,  = P(x ).t+1 fstress

Most familiar stress scenarios are easily couched within this definition.  For example, we

might be interested in a stock market crash.  The modified distribution f (@) puts a highstress

probability (perhaps equal to one) on unusual behavior by the equity factor.  Since crashes are

rare in the historical data, f (@) is a distortion of any f(@) that is fit to past returns.stress
2

Other types of shocks might change f(@) to allow for unlikely correlations and

comovements among factors.   To formulate more complex shocks, such as a mid-east crisis, the

risk manager might shock oil prices and a subset of bond and exchange rates according to her

subjective beliefs as to what such a crisis would look like.  The severity of the shocks and which

factors to include in the scenario are basically a judgement call.  Kupiec (1999) notes that when

constructing a particular scenario, it is common practice to “zero out” all but the primary factors

of interest.  For example, any exchange rates that are not expected to play a key role in a middle

east crisis scenario would be left unchanged -- unlike the basic running of the risk model in which

all factors move.  In that case, f(@) is changed so that the distribution of some factors is degenerate

(zeroed out).

2b. Implications

Several points emerge from the above description of stress-testing.  First, stress-testing

has no effect on the pricing model.  If scenario analysis has no direct effect on P(@), does that

mean pricing rules cannot be shocked?  They can but such experiments at present come under

“sensitivity analysis” (see, for example, the BIS document, Credit Risk Modeling: Current
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Practices and Applications).  Scenario analyses often involve changes in factor correlations but

apparently in practice never include shocking the pricing models.  To avoid confusion and to

maintain a link with actual practice, we adopt the same distinction in the present paper.

A second point is that, in theory, VaR’s calculated through historical simulation are only

logically consistent with a particular subset of stress-tests.  Under historical simulation, the factor

shocks are drawn from historical realizations -- there is no assumed distribution.  If there has ever

been a market crash, then a crash-like scenario will be fed into the model. There is no parameter

uncertainty if the model is nonparametric!  This logic breaks down if we are interested in

scenarios that have never occurred -- a reasonable possibility.  The problem unfortunately remains

that there is no way to evaluate their relevance or backtest if they have never taken place.

The final and most important implication is that stress-testing is easily embedded within

the VaR framework.  The distinction between the basic risk (perhaps VaR) model and the stress-

tested model is an artificial one.  To see this, note that the basic model’s output (a simulated

distribution) is g( ) tabulated from the simulated returns,t

                                                 = P( (f))                                               (1)t

This is the distribution of portfolio returns, given by a pricing model and factors, , simulatedt

under distribution to f(@).  The stress-test forecast distribution is simply g ( ) tabulated from:stress s,t

                                              = P( (f ))                                           (2)s,t stress

where the factors now have distribution f .stress

At present, the difference between model (1) and (2) is simply that  f (@) is astress

deformation of the basic f(@), which features typical moves in equity markets, interest rates and the

like.  It seems likely that models (1) and (2) could somehow be combined into a single model. 

Such a consolidation would not be a mere mathematical nicety -- it is critical for coherent risk

management.  In the next section, we detail the problems associated with having two separate

forecasted loss distributions.

3. Making Use of Stress-Tests

There is no theoretical reason to distinguish between stress-tests and VaR but perhaps
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there is an operational motive.  Perhaps there is some numerical or operational reason to keep

unusual scenarios outside the basic model.  If this is the case, the regulator or risk manager will

have two predicted returns distributions.  What should she do with these two separate results?

Let’s begin by defining the bank’s and/or regulator’s objective function as follows:

Definition The bank’s objective criterion is U(g(y )), a convex function, U(@), of the expectedt+1

(firm-wide) portfolio return distribution.

This definition would seem to encompass any reasonable objective.  It simply says that the

firm’s goals depend on its expected financial returns in some way.

After stress-testing, we have two such predicted distributions, {g( ), g ( ) }, so thet stress t

bank’s problem becomes:

The firm would like to maximize its objective function but now has two separate forecasts, g( ),t

g ( ) .  Clearly, the solution is some kind of forecast combination -- write this optimalstress t

combination as h(g( ), g ( )).  The function h(@) combines the basic model forecast with thet stress t

results of the stress-test into a single “best” forecast.  What does this function h(@) look like?

The next two propositions show that there is no simple answer to this question.

Proposition 1 Assuming the scenarios built into stress-testing could occur with some non-zero

probability, the best forecast of  cannot in general be described by a linear combination oft+1

g( ) and g ( ) .t+1 stress t+1

Proof See appendix.

The import of this proposition is that, even under the best circumstances, we do not know what to

do with the results of the stress-test.  There may be some nonlinear function of the basic VaR and

the stress-test that could be used -- but we do not even know the form of such a rule.  The form
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depends on the objective function h(@) in a nontrivial way.  Stress-testing separately from the

basic risk model is not a coherent approach to risk management.

Proposition 2  If the scenarios built into the stress-test cannot ever occur, then the optimal rule

is to not stress test.

Proof See appendix.

Proposition 2 does nothing more than formalize the obvious notion that if stress-testing is

comprised of unrealistic scenarios then stress-testing is unnecessary.

Beyond the math, the point here is that we cannot recommend stress-testing because it

does not fit into a coherent risk management framework.  Under current practice, the crisis events

are outside the basic model and hence need not have probabilities assigned.  To make the stress

scenarios useful, they must be assigned probabilities.  Incorporating stress scenarios within the

basic risk model, would then insure that they are associated with probabilities. 

Why are probabilities so important?  Imagine that some stress scenarios are put to the

valuation model.  It is impossible to act on the results without probabilities.  A doomsday scenario

might bankrupt the company, but be so unlikely as to be irrelevant.  Senior management cannot

make responsible decisions based on shocks that may or may not be too unlikely to care about.    3

4. A Unified Framework

Up to this point we have emphasized that a basic problem with stress-testing is that it

results in two competing forecast distributions.  The forecasted distributions are generated under

different assumed factor distributions.  A natural question is whether we could define a meta-

distribution of factors, say f (@), that assigned a positive probability to all scenarios, bothcombined

crashes and more typical moves.  

If so, this new “model” would embed both equations (1) and (2) within it.  In this section,

we argue that such a combination is possible.  Begin by defining a new factor distribution,
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f (x) such that combined

x ~ f(@),       with probability (1-)                                            (3)

x ~ f (@),       with probability stress

where  is the (possibly subjective) probability assigned to a particular stress scenario.  Both f(@)

and f (@) are n-variate distributions describing the joint behavior of the n factors.  For simplicity,stress

we begin by considering only a single stress-test.  The approach is generalized to allow for several

stress tests below.   

It is straightforward to simulate factor realizations under (3) using standard Monte Carlo

techniques.  For example, we might define a random variable ~Uniform(0,1) so that x is drawn

from f(@) if <1-  and from f (@) when >1- .  stress

The remaining steps proceed exactly as within the basic model framework.  That is, we

evaluate the simulated factor shock with the valuation model, P( ), to produce simulated

portfolio returns.  By repeating this many times, we can tabulate a forecast distribution

g (y ).  This distribution incorporates the subjective importance of unusual or unseencombined t+1

scenarios while leaving the remainder of the probability mass on historically typical moves.

It is instructive to verify that the combined distribution can indeed handle all four

categories of stress-tests outlined in section 2.  Scenarios in the first two categories, those that are

composed of unusually large movements in a subset of factors, are trivially embedded within (3). 

We merely define f (@) in such a way as to generate the desired shocks.  Similarly, a stress-teststress

featuring a structural break across states of the world clearly fits into this framework.  For

example, suppose we are interested in a scenario in which correlations between foreign and

domestic equities increases.  If s  and s * are the domestic and foreign equities, then we specifyt t

f (@) such that E (s  s *) =k, the desired stress-test covariance.  Of course, k>E (s  s *), thestress fstress t t f t t

more typical covariance.  To deal with structural breaks over time, we must consider a

distribution f(@) that is inherently dynamic -- one in which today’s factor distribution depends on

past events.  Suppose, for example, that factor s  ~ N( s , ) under f(@).  In other words, t t-1
2

s  =  s +g  ,an AR(1) conditional on the factor’s past realization.  In this case, a structural breakt t-1 t

over time could take various forms.  We might imagine a systematic increase in the factor’s mean

value so that, under f (@),  s  =µ+  s +g , where µ is some positive constant.  Alternatively, westress t t-1 t
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(4)

might be interested in a scenario in which the factor’s persistence increases: s  = (µ+) s +g ,t t-1 t

under f (@).stress

It should be said that the combined factor distribution (3) does not come without costs. 

The risk manager must decide upon a crisis probability, .  We emphasize, however, that such

probabilities should be assigned anyway.  The unified approach imposes discipline in the form of

requiring hard numerical probabilities on the stress-scenarios.  In current practice, such

probabilities may never be formally declared.  This leaves stress-testing in a statistical purgatory.

We have some loss numbers but who is to say whether we should be concerned about them?

In reality, risk-managers are likely to be interested in a set of scenarios, not just one. 

Fortunately, generalizing (3) to multiple stress-tests is straightforward.  Suppose there are m 

stress-tests of interest, each assigned a (subjective) probability, { , ... }.  Then we would like1 m

to construct a combined factor distribution such that:

x ~ f(@),       with probability (1- )                                            (4)i

x ~ f (@),    with probability stress,1 1

...

x ~ f (@),    with probability .stress,m m

Again, we could generate this distribution by defining a “dummy” random variable

~Uniform(0,1) and draw x from f(@) if <1- .  The range between  and one is partitionedi i

into m sections, corresponding to the m stress-tests.  Specifically, we draw x from f (@) if  0stress,1 

(1- ,1- + ).  Draw x from f (@) if  0 (1- ,1- + + ) and so forth.i i 1 stress,2 i i 1 2

4b. Conditioning on Recent Events

Inspection of the combined factor distribution (3), immediately reveals that f (x)combined

assigns a probability to stress events that is constant over time.  If there are times when stress

events are more or less likely, this is an assumption we would like to relax.  One way to allow the

crash probability  to vary over time is to build a statistical model that allows for dependence

upon recent factor movements.  For example, we might specify:
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(5)

where  is the sample mean of x  and g  is a residual.  To insure that the crash probability ist t

between zero and one, equation (4) should be modified by logit or probit transformation. For

example, a logistic distribution would give

Of course, the user must specify the average crash probability, , and persistence, .

Alternatively, we might want  to vary with subjective beliefs or extra-sample information

rather than past factor shocks.  There is nothing to prevent a risk manager from allowing  tot 

change in any way deemed appropriate and then defining

f (x) =   x ~ f(@),       with probability (1- )                                              (6)combined t

x ~ f (@),       with probability .stress t

Constant crash probabilities are of course embedded within (6) as a special case.  There might,

however, be added danger in allowing  to vary arbitrarily over time.  If  is constant or evolvest

according to (4), external model review by regulators or senior management is relatively

straightforward.  The two parties simply need to agree on realistic scenarios and crash parameters. 

With subjectively time-varying , model, no two models are ever the same.  t

These concerns can be addressed to some extent if the model is backtested.  Incorporating

the stress-tests into the basic model, results in a single forecasted loss distribution.  As such, the

standard backtesting tools are immediately applicable.  Indeed, this is a powerful argument in

favor of a unified stress-testing approach.  At present, stress-tests are separate from the basic

model and are therefore not subject to backtesting!

5. Concluding Remarks

The recent rise in prominence of stress-testing coupled with its vague definition could

potentially lead risk managers to view stress-testing as a kind of silver bullet against disaster. 

Such a view might instill a false sense of security because, at present, stress-testing is conducted

without a probabilistic structure.  Management should be skeptical of scenarios that are chosen

subjectively, not given probabilities and not backtested.  Regulators, who cannot know the firm’s
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true objective function nor how the results of stress-tests affect firm behavior, should be all the

more wary.

Certainly, a primary concern of regulators and managers is to understand how well the

predicted distribution of  compares to the actual realized distribution of portfolio returns.  t

However, there seems to be some confusion regarding stress testing as opposed to backtesting. 

Stress-testing is often touted as providing a “check” on the basic VaR or accounting for some of

the model uncertainty in the forecast.  Such a view is mistaken -- stress-testing is not model

validation!  A second loss forecast does not in any way provide information on model

performance.  However, if we incorporate stress-testing into the basic model, we can proceed

with backtesting and examine whether a particular model matches historical data.  Recent

methodological advances in backtesting (e.g., Christoffersen (1998), Berkowitz (1999)) make this

possibility especially attractive.

In addition, unification of stress-testing with the standard risk model imposes much

needed discipline on the risk manager.  It requires that the scenarios that make up stress-testing be

assigned probabilities.  Although one would assume that such probabilities are at least implicitly

attached to the results of stress-tests, it need not be the case under current practice.
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Appendix

Proof of Proposition 1

Let the optimal combination of g( ) and g ( ) be denoted h(g, g ), where h(@) is ant stress t stress

unknown function. By definition we have that dim[ (f,f ) ] < dim[  ], so that the number ofstress t

assets in the portfolio exceeds the number of factors.  

Now consider the set of differentiable rules H.  We can restrict attention to this set of

rules, h(@) 0 H, because H contains all linear and some nonlinear rules.  In general, the

distributional cross-derivatives  M h( )/Mf  Mf  û0, where f  is a VaR factor f is a stress2 i j i j
stress stress 

scenario.  This implies that h(g, g ) cannot be written as a linear combination of g( ) andstress, t

g ( ).  To see this, consider any coefficients a,b.  Then,stress t

M { a g( ) + b g ( ) } /Mf   =a Mg/Mf    t stress t
i i

and so

M  { a g( ) + b g ( ) } /Mf Mf  =0.2 i j
t stress t stress

Proof of Proposition 2 

Let  be the event space on which risk factor i is defined and let T  denote the sigma fieldi i

generated by .  Then the Cartesian product = {T x T x... T } contains the space of alli 1 2 n

possible outcomes for all the risk factors 1 through n.  

An optimal forecast rule assigns to each possible portfolio return, (), 0 , a

probability which is a unique function of the probability measure defined over . That is, the

optimal forecast is a mapping from  to R .1

If the factor shocks built into the stress test are not possible, then f  Ï .  The results ofstress

stress tests are irrelevant.  If stress-testing is at all costly, then the optimal rule is to not stress test.


