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1. Introduction

1. Introduction

Rarely do economists compute optimal control rules for large-scale, linear rational expec-

tations models. To do so obliges the researcher to overcome three important hurdles: (1) the

model must be solved for its state-space representation; (2) those variables that are non-predeter-

mined must be identified in advance so that the optimal rule can be solved in terms of those vari-

ables’ costates instead of their states; and (3) iteration usually must be undertaken using large,

sparse matrices. This article describes a technique that when used in conjunction with a particular

method for finding saddle-point solutions of linear rational expectations models, overcomes these

problems. Armed with these tools, a researcher needs only to be able to type a model into a front-

end program and execute. Both the saddle-point solution algorithm--an implementation of the QR

decomposition called AIM--and the optimal control program are downloadable.1

Two examples of the method are shown. The first example uses a simple sticky-price

model of the business cycle. The second uses FRB/US, the Board of Governors’ large-scale ratio-

nal expectations macroeconometric model of the U.S. economy. With FRB/US, we show that sim-

ple rules are not always good approximations of optimal rules, contrary to what is sometimes

claimed.

2. Method

We describe a method for computing the optimal control rule of large, linear rational

expectations models; that is, models that can be written in the following form:

(1)

where  is ann-by-1 vector of endogenous variables, ,  is a matrix of structural

coefficients prior to control;  is the maximum (finite) lag, and  is the maximum lead, and  is

a vector of disturbance terms. The set  defines the information available to decision makers

when they formulate expectations. The policymaker’s loss function is quadratic:

1. The AIM algorithm and was developed in stages by Anderson and Moore (1985) and Anderson (2000).
Versions of AIM are written in C, Matlab, Mathematica and Gauss. At present, the optimal control program
is available only in Matlab. The Matlab version of AIM can be downloaded from the public website of the
Federal Reserve Board at http://www.federalreserve.gov/pubs/oss/oss4/code.html while the optimal control
program--called LQcontrol.m--can be downloaded from the FEDS working papers download site at http://
www.federalreserve.gov/pubs/feds/1999/199951/199951code.zip
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2. Method

(2)

where  is ak-by-1 vector of control variables, and ,  and  are conformable matrices of

coefficients. The solution proceeds by forming the Lagrangian for this problem and solving for

first-order conditions with respect to  where  is a vector of costate vari-

ables:2

(3)

(4)

(5)

where  is a column vector of parameters representing the influence of the control variable(s) on

state variables, and  is that column of  that is associated with contemporaneously dated vari-

ables.

Equations (3) are the structural equations of the model; equations (4) identify each control

variable with a particular costate; and equations (5) describe the laws of motion for each costate.

The matrix  is the matrix of structural coefficients for the model, prior to its extension to allow

for control. Post-optimization,  is extended to include the preference parameters, , ,  and

 to form the (larger) matrix :

(6)

Defining  the system under control can be expressed as:

(7)

2. Using Lagrangians, instead of, say, dynamic programming to solve optimization problems is not new and
has earned a rebirth in Chow (1997). The solution described here follows, in part, the commitment solution
of the methods described by Levine and Currie (1987) and Backus and Driffill (1986), but is much quicker
and more reliable. Extensions to the discretionary solutions would be straightforward to implement.
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At this point, there are  equations and  unknowns:  equations or restrictions are

needed to pin down a unique solution.

With the control problem now cast in the form of equations (7), one needs to compute the

state-space representation of the structural model and the associated transition matrix, :

(8)

As we shall demonstrate, the matrix  contains the same information as  but rearranged to be

conformable with the state-space representation of the (costate-augmented) structural model. It

would be a simple task to compute equations (8) were it not for the problem that the lead matrix

 in (6) is often singular. Solving this problem be done using any of several algebraic decompo-

sitions; we find the AIM algorithm of Anderson and Moore (1985) and Anderson (2000) to be

particularly useful. A complete depiction of the intricacies of the AIM algorithm requires more

space than we can devote here. Accordingly, we limit ourselves to providing an illustrative sketch.

See Anderson (2000) for details.

The solution involves using equations (7) to: (i) find a state-space representation; (ii) com-

pute the eigenvalues and the invariant subspace associated with the unstable eigenvalues; and (iii)

exploit the constraints implied by initial conditions for predetermined variables, auxiliary initial

conditions uncovered in computing the transition matrix, and the vectors of non-predetermined

variables. This last step amounts to finding a system within which there is a matrix equivalent to

, but is non-singular.

The task begins with the algorithm clustering all the zero rows associated with the

block within  in the upper part of the matrix. Too many steps follow to be fully documented

here. At previously noted, AIM uses the QR decomposition to find a transformation of the singu-

lar matrix :3

(9)

3. There are other methods for solving systems of linear equations with singular lead matrices. Some, like
Sims (1995) and Klein (1999) use the QZ, or generalized Schur decomposition. Binder and Pesaran (1995)
advocate a martingale difference method and King and Watson (1995) document what they call a system
reduction method. We have found the AIM algorithm to be very fast and reliable. Anderson (2000) points
out that it is particularly amenable for use with large-scale models.
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3. Remarks

where  is an orthogonal matrix and  is an upper-triangular matrix with the number of non-

zero rows of  equalling the rank of . The algorithm then checks the rank of a suitably modi-

fied . If it is not of full rank, the matrix  is premultiplied by , an orthogonal transforma-

tion of equations (7) which annihilates as many zero rows of  as possible. The process

continues until  is non-singular. When a non-singular lead matrix is found, its inverse is used

to compute:

(10)

which in turn appears at the bottom of the transition matrix  used in equations (8) above:

(11)

As shown here, the dimensionality of  is shown as , the largest it can be; however, the

annihilations mentioned above will usually reduce the size of  resulting in some savings in

computational time.

The remaining steps of the algorithm involve testing the eigenvalues of  to ensure that

they satisfy the Blanchard-Kahn (1980) conditions for the existence of a unique saddlepoint equi-

librium. To speed the inversion of the sort of large, sparse matrices conventionally used in macro-

economic models, the algorithm makes use of sparse matrix code.

3. Remarks

There are three things worth noting about the above. First, notice that the computation of

the solution does not require any hill climbing, nor does it require iteration over matrix Ricatti

equations. Instead, the computation of costate equations does the work. Second, there is no need

to identify and order the non-predetermined variables in advance and no need to write out the

state-space representation. Third, our method of computing optimal control solutions, by exploit-

ing the AIM algorithm, is ideally suited for use with large-scale models. These are advantages

over other methods, including Söderlind (1999).
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4. Two Examples

4.1 A small sticky-price model

As a first, small-scale example of the proposed method, we solved for the optimal rule for

three sets of preferences for a standard sticky-price model of the business cycle, borrowed from

Clarida, Gali and Gertler (1998). The model is very similar to most others in this field, including

King and Wolman (1996), Woodford (1996) and McCallum and Nelson (1999). Prior to control,

the model consists of two equations:

(12)

(13)

where  is the output gap,  is inflation,  is the elasticity of intertemporal substitution,  is

the nominal federal funds rate;. See Clarida et al. (1998) for a detailed discussion of the model;

we use the same parameterization as they do: .

For present purposes, the most notable aspect of this model is that it is entirely forward

looking; that is, it contains no predetermined elements whatsoever. This means that in the absence

of an instrument smoothing motivation or a cross-product term in the objective function, the opti-

mal rule is a function solely of costate variables. We solved for optimal rules with a mild penalty

of 0.1 on the change in the federal funds rate, and with no discounting; i.e., , and three dif-

ferent relative weightings of output stabilization relative to inflation stabilization. Placing a small

penalty on instrument variability prevents the coefficients of the optimal rule from becoming fan-

tastically large and with them, the implied variability of the funds rate itself. The results are

shown in Table 1 below.4

Because the solution method described above augments the original model with costate

equations, the reduced form for the optimal rule--that is, the recalculation of the costates in terms

of lags of state variables--can be easily done.

4. The weights on output gap variability and inflation variability are constrained to sum to unity without loss
of generality. Solutions for preferences that do not include smoothing and substitutions of the costate vari-
ables as functions of lagged state variables are available from the authors on request.
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4.2 The FRB/US model

Our second example is the optimal rule for a linearized version of FRB/US, the Board of

Governors’ large-scale rational expectations model of the U.S. economy.5 With more than 300

equations, the optimal control rule for FRB/US ends up containing more than 350 arguments.

Clearly this is a computational task of substance. It can be solved--from parsing the model code to

the computation of all of the parameters--in 20 minutes on a 300Mhz UNIX SparcStation. While

this is a significant amount of time, it has to be considered in context: Levinet al. (1999) did not

compute optimal control rules with any of the models they compared, including FRB/US and

smaller models, “due to [the] computational costs” associated with the larger models (p. 279). In

fact, we have found the computation of optimal control rules with FRB/US by iterating on matrix

Ricatti equations to be infeasible.

The computed parameters for a rule as complex as the optimal control rule for FRB/US

are not easily interpreted and so we omit any discussion of them here. Instead, we compare the

performance of optimal control rules for FRB/US with so-called “simple optimal rules”--rules

that are optimal conditional on a restricted number of arguments to the rule. Tetlow and von zur

Muehlen (1999), Levin et. al. (1999) and Williams (1999) have all argued, in one context or

another, that adding parameters to a policy rule beyond the best three adds little to the perfor-

mance of policy, on average.

Figure 1 below compares the optimal control rule with the performance of an extended

Taylor rule:

(14)

where  is the nominal federal funds rate,  is the equilibrium real interest rate,  is the output

gap, and  is a four-quarter moving average of the inflation rate, and  is the target rate of infla-

tion. Both  and  can be set equal to zero without loss of generality. Equation (14) is one of

the policy rules explored at length by Williams (1999).

It is important to note that policy rules like equation (14), which contain current dated

arguments, are implicitly including many more than just three state variables. This is because nei-

5. See, Brayton and Tinsley (eds.)(1996), Brayton et al. (1997) and Reifschneider et al. (1999) for discus-
sions on various aspects of the FRB/US model. Bomfimet al. (1997) and Williams (1999) explore some
applications with the model.
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ther  nor  are state variables of the system; by including these variables in the rule, we are

implicitly including all of the state variables that help predict these two variables, albeit in a con-

strained fashion.

The figure shows the two rules’ performance in the form of two efficient policy frontiers;

that is, curves along which it is impossible to find an alternative parameterization of the rule in

question that can decrease the asymptotic standard deviation of inflation without increasing the

standard deviation of the output gap.6 The loss function used to compute the rules is the same one

as in the small-scale example above; performance is measured using the variance-covariance

matrix of model residuals computed over the period from 1966Q1 to 1998Q2.

The difference in performance between the two rules is fairly significant--probably more

than one might have believed given the analysis Williams (1999), Levinet al. (1999) and Tetlow

and von zur Muehlen (2000). For example, points A and A’ on the figure show the performances

of the rules for a ‘strong’ inflation targeter--a policymaker whose loss-function weights on infla-

tion and output variability are 0.95 and 0.05 respectively. Constraining the policy rule to be of the

form of equation (14) increases the asymptotic standard deviation of the output gap by about 0.4

percentage points and the standard deviation of inflation by 0.1 percentage points, relative to the

optimal control solution. Given that the entire length of the optimal rule frontier is only a bit more

than a percentage point in output variability and about half that in inflation variability, this should

be seen as a noteworthy deterioration. At points B and B’, the weights in the loss function on out-

put and inflation variability are both 0.50; points C and C’ represent the preferences of a ‘weak’

inflation targeter, one whose preference weightings are the opposite of the strong authority’s.

Whatever the merits of the graphical representation of the cost of parsimony in Figure 1, it

has the limitation that it covers only two dimensions, inflation and output, when the loss function

contains a third element, the change in the federal funds rate. Figure 2 takes a broader look at the

performance of the two rules by examining the computed loss of each as a function of the weight

on output variability in the loss function (and implicitly of unity minus that weight on inflation

variability). In particular the figure shows theextra loss of the 3-parameter rule relative to the loss

of the optimal rule, measured in percent of the optimal loss. Thus, the height of the line shows

how much more loss than is optimal must be borne by an authority that uses the 3-parameter rule.

6. Or the change in the federal funds rate which is also an argument to the loss function. We do not show the
change in the funds rate here in order to simplify the figure. We return to this issue below.

yt π̃t
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Evidently, if the monetary authority is strong (in the sense described above), the cost of

parsimony in the design of monetary policy rules is not particularly large; however, the more the

authority’s preferences lie toward stabilizing output, the more costly it is to rely on simple rules,

even if those simple rules have been parameterized optimally. The large number and variety of

channels through which shocks affect aggregate demand in FRB/US means that policy operating

on a crude aggregation of these shocks--the output gap itself--is not very efficient for stabilizing

output going ahead.7 Controlling inflation, since it responds largely toaggregate demand, and not

to the disaggregated components of demand, is more straightforward.

The observation that simple rules may do significantly worse than optimal rules suggests

an interpretation for the reluctance of central banks to announce a particular rule: a central bank

that cares about real variability needs to decompose output into the channels and shocks that

determine output variability going ahead. Committing to a simple rule may not be adequate for

this task.

7. This interpretation is buttressed by the fact that for the model of Tetlow and von zur Muehlen (2000),
which uses a simple aggregate IS equation for the determination of output, the curve in Figure 2 slopes
downward rather than upward.
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Table 1
Optimal Policy Rules for the Clarida, Gali & Gertler Model

rule argument
: loss function weight on

0.15 0.50 0.85

0.335 0.238 0.209

2.257 0.934 0.269

0.102 -0.178 -0.464

The loss function is:  with weight
. The corresponding optimal policy rules are of the form:

. Without smoothing, the term in  drops out.
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