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Abstract

I analyze the business cycle implications of noisy economic indica-

tors in the context of a dynamic general equilibriummodel. Two main

results emerge. First, measurement error in preliminary data releases

can have a quantitatively important e�ect on economic 
uctuations.

For instance, under e�cient signal-extraction, the introduction of ac-

curate economic indicators would make aggregate output 10 to 30

percent more volatile than suggested by the post-war experience of

the U.S. economy. Second, the sign|but not the magnitude|of the

measurement error e�ect depends crucially on the signal processing

capabilities of agents. In particular, if agents take the noisy data at

face value, signi�cant improvements in the quality of key economic

indicators would lead to considerably less cyclical volatility.
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1 Introduction

From the GDP to M2, to productivity growth to the index of leading eco-

nomic indicators, preliminary releases of economic data are routinely subject

to sizable revisions as more information becomes available in subsequent pe-

riods. The existence of pure noise in these and other economic indicators

has been the subject of several studies, but the associated literature is pri-

marily statistical and of a partial equilibrium nature.1 In this paper I take a

novel and complementary approach, examining the e�ects of indicator noise

in a fully articulated dynamic macroeconomic model. The model explicitly

features individual decision-making under incomplete information and is rich

enough to allow for a quantitative assessment of its aggregate implications.

This paper can be thought of as a well de�ned sequence of computational

experiments (Kydland and Prescott, 1996). Motivated by the �ndings of the

empirical literature on indicator noise|which are summarized in section 2|

I pose a very simple question: if economic data are as noisy as suggested by

the statistical literature, what are the likely consequences for individual and

macroeconomic behavior?2 The theoretical framework used to answer this

question is a version of the well known real-business-cycle model of Baxter

and King (1991), which I augment to include a noisy productivity indica-

tor. In sections 3 and 4, I describe the model and lay out the solution to

the representative agent's dynamic optimization problem. The solution to

this problem, which assumes that agents use fully e�cient signal extraction

techniques, characterizes the business cycles of the arti�cial economy. Us-

ing the conventional tools of the quantitative approach to macroeconomics

1The work of Oh and Waldman (1990, 1995), which I discuss below, is an important
exception to this rule.

2This paper attempts to extend and quantify the main results derived by Bom�m
(1998), who used a very simple model to discuss the macroeconomic implications of indi-
cator noise under alternative characterizations of agents' expectations.
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(King, 1995), I calibrate the model to the U.S. postwar data and run, in

section 5, a series of experiments designed to quantify the aggregate e�ects

of noisy information. I �nd that that the presence of measurement error

in preliminary data can have a non-trivial e�ect on economic 
uctuations.

In particular, the introduction of more accurate economic indicators would

make aggregate output 10 to 30 percent more volatile than suggested by the

postwar experience of the U.S. economy. The results are supported by a bat-

tery of sensitivity tests on key model parameters. The paper also highlights

the quantitative role played by agents' information processing capabilities in

business cycle 
uctuations. For instance, as discussed in section 6, if agents

are boundedly-rational and take the preliminary data at face value, though

the aggregate e�ect of indicator noise remains sizable, its sign is reversed:

better economic indicators would lead to considerably less cyclical volatility.

Finally, the model is compared to a prototypical real-business-cycle frame-

work, which has thus far suggested only a limited scope for the types of

informational problems discussed here. This comparison and other conclud-

ing remarks are included in section 7.

2 How reliable are preliminary economic data?

Several studies in the statistics and empirical economics literature document

the existence of low signal-to-noise ratios in preliminary releases of key eco-

nomic data. For instance, Diebold and Rudebusch (1991) examined revisions

in the composite index of leading economic indicators and reported a signal-

to-noise ratio of 1.3. Likewise, Mankiw, Runkle and Shapiro (1984) found

signi�cant measurement error in preliminary announcements of the money
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stock, with estimated signal-to-noise ratios as low as 0.56.3

While most professional studies have tended to discuss the statistical

properties of particular economic indicators, little has been done in terms of

assessing the economic signi�cance of the associated degree of informational

imperfection. Indeed, this assessment has been limited, for the most part, to

press accounts, which often attempt to provide a link between some poten-

tially problematic data series and a particular economic issue.4 Nevertheless,

if the economist could be blamed for focusing too much on the numbers, the

opposite could be said of the typical reporter or news analyst, whose analyses

tend to be anecdotal and of a qualitative nature.

Exceptions to the above characterization of the economists' and jour-

nalists' approaches to the measurement error problem do exist both in the

economics literature and in press accounts. For example, a 1994 cover story in

BusinessWeek attempted to provide both a macroeconomic perspective and

a rough quantitative assessment of the e�ects of inaccurate economic data

(BusinessWeek, 1994). In the professional economics literature, the work of

Oh and Waldman (1990, 1995) is especially noteworthy, as they were proba-

bly the �rst to explicitly discuss and try to measure the aggregate e�ects of

indicator noise. Oh and Waldman examined the macroeconomic implications

of the \errors" contained in the initial announcements of the index of lead-

3Other contributions to the indicator noise literature include Diebold and Rudebusch's
(1988) early work on the leading indicators, Kennedy's (1993) study of the industrial
production index, and Mankiw and Shapiro's (1986) analysis of GNP revisions. Of these,
Mankiw and Shapiro were the only ones not to �nd support for the measurement error
hypothesis, though their estimated variance of GNP revisions was quite large relative to
the variance of the �nal numbers.

4For instance, noisy U.S. productivity numbers are often the subject of newspaper edi-
torials on whether or not the Federal Reserve should let the economy exceed its presumed
trend growth rate. Moreover, the growing importance of the service sector|where out-
put is harder to measure than in the manufacturing and agriculture sectors|has only
heightened concerns about measurement error and data reliability.
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ing economic indicators. Based on a series of reduced-form regressions, they

reported that these errors account for as much as 20 percent of the variance

of U.S. industrial production in the postwar period.

This paper follows the Oh-Waldman tradition in that my primary focus

is to measure the aggregate consequences of noisy economic indicators. How-

ever, my approach di�ers a great deal from Oh and Waldman's. Rather than

focusing on reduced-form regressions based on any one indicator, my analysis

is carried out in the context of a fully speci�ed dynamic general equilibrium

model. The main advantage of this approach is that, in addition to pursuing

the same quantitative questions raised by Oh and Waldman, I am also able to

give an explicitly structural interpretation to the results. Moreover, because

the theoretical framework I use is a simple variant of a conventional real-

business-cycle model, my results can be directly and quantitatively compared

to other common speci�cations in the modern macroeconomics literature.

3 The Model

The theoretical framework is an extension of the well-known dynamic gen-

eral equilibrium model of King, Plosser and Rebelo (1988). To the KPR

speci�cation I add two main features. First, as in Baxter and King (1991),

my model allows for the possibility of strategic complementarity in the pro-

duction function.5 Second, instead of the perfectly observable technological

shocks that bu�et the KPR and Baxter-King economies, I assume that agents

have to infer the current state of the world based on a noisy productivity

indicator.6

5However, because of con
icting evidence on the importance of complementarity in the
U.S. economy, I will also analyze a version of the model without production externalities.

6I assume an information structure similar to Kydland and Prescott's (1982).
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3.1 The Production Function

As in Baxter and King (1991), individual output (yt) is a function not only

of labor and capital inputs (nt and kt�1) and a composite productivity index

(At), but also of per capita aggregate output (Yt).

yt = exp(At)k
�k
t�1n

1��k
t Y �

t (1)

The � parameter in equation (1) embodies the complementarity assumption;

it determines the extent to which individual output depends on aggregate

output.7

The state of technology is subject to both persistent and white-noise

shocks, denoted as A1;t and A2;t, respectively:

At = A1;t + A2;t (2)

The persistent component of the technology shifter follows a �rst-order au-

toregression:

A1;t = �A1;t�1 + a1;t (3)

where j�j � 1, and fa1;tg is a zero-mean, normally distributed white noise

process with variance �2a1. The variance of A2;t is similarly denoted as �2a2.

3.2 Evolution of the Capital Stock

Output not consumed constitutes gross investment, it. With kt represent-

ing the capital stock at the end of period t, and assuming that this stock

7Cooper and John (1988) provide a useful description of the role of complementarities
in macroeconomics.
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depreciates at the rate �, 0 � � < 1,

kt = (1� �)kt�1 + it (4)

3.3 Preferences

The momentary utility function of a representative agent is:

u(ct; lt) = log(ct) + �l log(lt) (5)

where ct denotes consumption, and lt is leisure|expressed as a proportion

of the unit time endowment.

3.4 Information Structure

At the beginning of each period, agents observe a preliminary announcement

of the current state of technology. This preliminary announcement (�t) is

subject to measurement error (et):

�t = At + et (6)

where et is white noise with variance �2e .

As in Kydland and Prescott (1982), agents follow a two-stage decision

process. In the �rst stage, they make their factor allocation decisions, which

are based on the preliminary announcement. Once production takes place,

the second stage begins. The representative agent can use its knowledge of

output and inputs to deduce the value of the productivity shock (At), but not

its persistent and transitory components (A1;t and A2;t). Given this larger

information set, agents update their forecasts of future economic conditions

and consumption takes place.
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The assumption that A1;t and A2;t cannot be observed separately is de-

signed to capture the \informational confounding" e�ect described by Kasa

(1996). I include it here not only because it can potentially strengthen

the internal propagation mechanism of the model, but also to allow for a

more interesting, and perhaps more realistic, role for signal extraction in the

decision-making process.8

3.5 Individual Behavior

All agents are in�nitely lived, forward looking, and discount the future at

the rate �. Subject to time and goods constraints,

lt + nt � 1 (7)

ct + it � yt; (8)

as well as to conventional initial and transversality conditions, agents maxi-

mize expected utility over an in�nite horizon. Abstracting from uncertainty,

the objective function can be written as:

1X
t=0

�t
n
u(ct; 1� nt) + �t[ztk

�k
t�1n

1��k
t Y �

t � ct � kt + (1� �)kt�1]
o

(9)

where �t is the discounted Lagrange multiplier and zt � exp(At).

Given the stochastic sequence f�tg
1

t=0, as well as a particular expectation-

formationmechanism for the agents in this economy, the values of fnt; ct; it; �tg
1

t=0

that maximize the expected value of (9) characterize the business cycles of

this arti�cial economy.

8Without the information confounding e�ect, signal extraction would be reduced to the
�rst stage of the decision-making process. Once production takes place, all fundamental
shocks would become immediately observed. For completeness, however, I do present some
results based on a version of the model without information confounding.
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4 Equilibrium Determination

Setting expectational issues aside for the moment, the derivation of the

system of Euler equations that corresponds to the maximization of (9) is

straightforward. This system can be written as follows:9

uC(Ct; 1�Nt)� �t = 0 (10)

uL(Ct; 1�Nt)� (1� �k)�tYt=Nt = 0 (11)

��t+1[�kYt+1=Kt + (1� �)]� �t = 0 (12)

Yt � Ct �Kt + (1� �)Kt�1 = 0 (13)

where all variables are expressed in per capita terms (denoted in upper-case

letters) to re
ect the notion that, given that all agents are identical, the

resulting equilibrium is symmetric.

4.1 Perfect-Foresight Equilibrium Laws of Motion

The perfect-foresight equilibrium paths of consumption, investment, and la-

bor e�ort are given by the solution to the system formed by equations (10)

through (13). It is well known, however, that in general there is no closed-

form solution to this system. I will focus instead on an approximate solution,

obtainable by log-linearizing the system around its steady state.10 The re-

9ui(:) [Fi(:)] corresponds to the �rst derivative of the utility [production] function with
respect to i. Note, e.g., that the private marginal product of labor can be written as:

exp(At)FN (kt�1; nt)Y
�
t = (1� �k)yt=nt

10The log-linear approximation method used here is described in detail in King et al.
(1990).
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sulting (approximate) equilibrium laws of motion take the form

xt+1 = �xxt + ��
~�t +RAt+1 +QAt (14)

	t = Gxxt +G�
~�t (15)

~�t �
1X
j=0

�j(HaAt+j+1 +HbAt+j) (16)

where xt � [K̂t�1; N̂t�1; �̂t�1; K̂t]
0 is the vector of predetermined variables at

time t, and 	t � [N̂t; �̂t]
0.

A \caret" over a symbol denotes that the variable is expressed in percent-

age deviations from the steady state (e.g., Ŷt � log(Yt= �Y )). The matrices

�i, Gi, R, and Q, as well as the � parameter, are all functions of various

steady-state properties of the model, such as the economy's capital-output

ratio and the steady-state labor's share of total income.11

4.2 Decision Rules under Uncertainty

Equations (14) through (16) correspond to the solution to the agents' deci-

sion making problem in the absence of uncertainty. To turn these equilib-

rium conditions into the optimal decision rules that characterize individual

behavior in a stochastic environment, we need to substitute all variables that

are unobserved as of the beginning of time t by their respective prediction

formulae. Essentially, what this step requires is deriving the j-step-ahead

prediction formula for At.

Assuming that the representative agent uses an e�cient signal-extraction

method to deal with the noise component of the productivity indicator, the

prediction formula for At during the �rst stage of the decision-making process

11The derivation of (14) through (16) follows King et al. (1990) and Blanchard and
Kahn(1980) very closely.
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is based on the following state-space form:

�t = D�t�1 + at (17)

�t = B�t + et (18)

where �t � [A1;t; A2;t]
0, D �

2
4 � 0

0 0

3
5, at � [a1;t; a2;t]

0, and B � [1; 1]. Gen-

erating an optimal forecast for At in this case is a straightforward application

of the Kalman �lter. Thus, letting 
t�1 denote the information set just be-

fore the time-t preliminary announcement is made, the j-step-ahead forecast

of At conditional on the announcement is

E[At+jj
t�1; �t] = BDjE[�tj
t�1; �t] (19)

where

E[�tj
t�1; �t] = (I � �1B)DE[�t�1j
t�1] + �1�t; (20)

I is the identity matrix, and the projection coe�cient �1 is a function of the

signal-to-noise ratio ((�2a1 + �2a2)=�
2
e).

Given equations (17) through (20), a general representation of the factor

allocation decision rules is

K̂t = GkkK̂t�1 +GkxE[�t�1j
t�1] +Gkp�t (21)

N̂t = GnkK̂t�1 +GnxE[�t�1j
t�1] +Gnp�t (22)

where it can be shown that the Gij parameters depend not only on the

long-run properties of the economy, but also on the signal-noise ratio of the

productivity indicator. The expression for E[�t�1j
t�1], which denotes the

expected value of [A1;t�1; A2;t�1]
0 conditional on all information available at

the end of t-1, is derived below.
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Once the labor and capital decision rules are made, production takes

place. This allows the agents to deduce the current value of the compos-

ite productivity shock (At). However, agents still face a signal extraction

problem when trying to predict future movements in At because they cannot

break down the composite shock into its persistent (A1;t) and white noise

(A2;t) components. Thus, the second-stage decision making process is based

on the following state-space form,

�t = D�t�1 + at (23)

At = B�t (24)

from which we can derive the prediction formula for �t conditional on all

information available at time t:

E[�tj
t] = (I � �2B)E[�tj
t�1; �t] + �2At (25)

where �2 is a function of the ratio of the variances of a1;t and a2;t. With this

updating rule for the expectation of �t, the general form of the consumption

decision rule, which is based on a larger information set, can be written as:

Ĉt = GckK̂t�1 +GcxE[�t�1j
t�1] +Gcp�t +GcaAt (26)

where it can be seen that knowledge of At is incorporated into the optimal

decision rule for consumption. Equations (21), (22), and (26), along with an

analogous expression for �̂t, correspond to to the solution to the model.
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5 Computational Experiments

The main question asked in this paper is whether measurement error in pre-

liminary economic data can have a quantitatively signi�cant e�ect on macroe-

conomic 
uctuations. To address this question I run a series of computational

experiments.12 Using available data for the U.S. economy, I calibrate all key

parameters of the model and measure the implied time series properties of

the arti�cial economy. Subsequently, I vary the degree of signal-to-noise ratio

in the productivity indicator and assess the quantitative implications for the

stochastic properties of the model. Throughout this section, my emphasis

will be on cyclical volatility, though I will also address some issues related to

persistence generation.

5.1 Model Calibration

With the exception of strategic complementarity parameter, �, and the vari-

ances of the productivity innovations and indicator noise|�2a1, �
2
a2, �

2
e|all

model parameters are calibrated as in King, Plosser and Rebelo (1988). The

�rst panel of table 1 shows this basic parameterization. The parameters

shown in the second panel are discussed below.

Strategic complementarity parameter. The calibration of the strategic com-

plementarity parameter (�) is partly guided by the empirical work of Baxter

and King (1991), Caballero and Lyons (1989, 1992), and Cooper and Halti-

wanger (1993). However, even a casual look at these papers reveal a very

wide range of estimates for �. For instance, Baxter and King and Caballero

and Lyons report estimates that range from from 0.1 to 0.49, and Cooper and

12See Kydland and Prescott (1996) and King (1995) for a discussion of the use of com-
putational experiments in macroeconomics.
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Haltiwanger �nd even larger numbers. For the purposes of this paper, rather

than making a case for any particular estimate of �, I run my experiments

with � set at 0.24, about midpoint between the standard RBC model|which

sets � at zero|and the upper bound of the range of estimates of Baxter and

King (1991) and Caballero and Lyons (1992).13 This parameterization hap-

pens to be very close the the \preferred" estimates reported by Baxter and

King (1991) and Caballero and Lyons (1989); however, to address the con-

cerns raised more recently by Basu and Fernald (1995, 1996), I also report

some results based on lower values of �.

Volatility of shocks. The variance of the productivity indicator, �t, is a

function of three potentially free parameters: �2a1, �
2
a2, and �2e . To reduce

the number of free parameters to 2, I calibrate the variance of �t so that

the model-based measure of output volatility exactly matches the variance

of output in the U.S. economy.

Next, I restrict the magnitude of the signal-to-noise ratio of �t to be com-

parable to estimated signal-to-noise ratios of typical economic indicators of

the real world. Based on the work of Diebold and Rudebusch (1991) and

Mankiw et al. (1984), I run my baseline experiments with (�2a1 + �2a2)=�
2
e

set at 1, again about the midpoint of the range of estimates reported by

these authors. One might correctly argue that Diebold and Rudebusch and

Mankiw and his co-authors studied series that are not quite the empiri-

cal counterpart of the theoretical productivity indicator examined in this

paper|their analyses involved the composite leading indicator (CLI) index

and the money stock, respectively. However, from a functional standpoint,

these two series are very much related to �t. Like the composite productivity

indicator speci�ed in this paper, the CLI and money supply announcements

13In general, values of � that exceed 0.5 lead to indeterminacy and are thus not examined
here.
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were two prominent leading economic indicators widely used for forecasting

future economic activity over the time period covered by the Diebold and

Rudebusch and Mankiw et al. studies. Thus, in the absence of direct esti-

mates of (�2a1 + �2a2)=�
2
e , I attempt to restrict my baseline parameterization

to be in line with the signal-to-noise ratios actually facing individuals in the

U.S. economy.

After the restrictions related to matching the variance of output and esti-

mated signal-to-noise ratios are in place, we are still left with one free param-

eter. As discussed below, this remaining free parameter will be set indirectly

by experimenting with a grid of values for the variance ratio involving the

persistent and white-noise components of the productivity shock.

Persistence parameters. The most obvious persistence parameter is �, the au-

tocorrelation coe�cient of A1;t. However, I will also include in this category

the ratio of the variances of the innovations in the persistent and white-noise

components of the productivity shock (�2a1=�
2
a2). For given �, the higher this

ratio, the greater the relative importance of A1;t in output 
uctuations, and

thus the more persistent these 
uctuations will be. The calibration of the

persistence parameters touches upon a number of outstanding questions in

the empirical and theoretical literatures. First, there is the question of how

to measure At empirically so that its stochastic properties can be adequately

estimated. Two main approaches have been followed here. Prescott (1986)

was one of the �rst to propose measuring the productivity shocks of RBC

models as the series of Solow residuals that falls out of standard decomposi-

tions of output growth into growth in inputs.14 On this basis, the data would

suggest near-unit root processes for At. On the other hand, the work of Hall

(1987) and others has questioned the Solow residual approach, suggesting

14The issue of persistent versus white-noise components of At is not addressed by the
conventional Solow residual approach.
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that the measured residuals capture more than just the technological shocks

implied by theory. Needless to say, this second approach makes calibrating

� and �2a1=�
2
a2 a bit harder.

I this paper I will parameterize � and �2a1=�
2
a2 so that the model roughly

matches the degree of serial correlation in output that is observed in the U.S.

data. This of course implies that one of the parameters is free so below I will

report the results of sensitivity analysis exercises. To retain the information-

confounding e�ect, I set �2a1=�
2
a2 to 2, which means that the innovation to

the persistent component of the productivity shock is twice as volatile as

the white-noise component. Compared to other works in the literature that

feature the information-confounding e�ect, this parameterization is relatively

conservative. For instance, the seminal work of Kydland and Prescott (1982)

set this ratio to 1. Given my parameterization of this variance ratio, setting

� to 0.9 is su�cient to make the model consistent with the degree of output

persistence in the data.15

5.2 Baseline Experiment and Results

Using the parameter values listed in table 1, the basic experiment I run is

a simple one. First, I solve the model with the noisy productivity indicator

and compute the same moments that are listed in the �rst panel of table 2

for the U.S. data. The resulting model moments are shown in the middle

panel of the table. As shown, the model is roughly consistent with the data,

except that investment is more volatile in the model. This \excess" volatility

of investment, however, is not a peculiarity of the indicator noise feature of

the model. As shown in the bottom panel of table 2, a version of the model

15As discussed by Cogley and Nason (1995), this reliance of highly persistent techno-
logical shocks highlights the weak propagation mechanism of this class of models. I will
return to this issue below in the discussion of the sensitivity analysis.
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that allows for full information, which is essentially the model developed by

Baxter and King (1991), also has investment more volatile than in the data.

The similarities between the middle and bottom panels of table 2 are so

striking that one is tempted to wonder why bother to consider the incomplete

information version of the model. The answer is that the two panels are not

really perfectly comparable. In solving the model for each case, the variances

of the stochastic shocks are recalibrated so that the model can exactly match

the output volatility in the data. Suppose, however, that we take the view

that the real world is characterized by noisy economic indicators and imper-

fect information, a picture that corresponds to the middle panel. This takes

us to the second part of the computational experiment. Consider now a new

scenario where the data-collection agency e�ectively manages to eliminate

the measurement error in its productivity indicator. Of course, this should

have no e�ect on the total variance of the \fundamental" shock (At). There-

fore, without recalibrating the model, what happens to cyclical volatility after

the introduction of the more accurate indicator? The results are reported in

table 3. For convenience, the moments of the noisy-indicator economy are

reproduced in the upper panel of the table. The bottom panel shows how

these same moments would look like in the absence of measurement error in

the composite productivity indicator, i.e., after a dramatic improvement in

the quality of the available indicator. The most striking result is a sizable

increase in the volatility of the business cycle of this arti�cial economy. After

the perfect indicator is introduced, the variance of output increases almost 14

percent, and the variances of all macro variables also increase signi�cantly.16

The increase in cyclical volatility after the elimination of the noise com-

16As shown in the table, the version of the model with the noisy indicator has a stronger
internal propagation mechanism for output 
uctuations. The relationship between signal
extraction and persistence is discussed in Kasa (1996).
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ponent of the indicator might, at �rst, appear surprising to some readers.

One might be tempted to reason that a reduction in uncertainty (elimina-

tion of indicator noise) would likely decrease cyclical volatility. As shown

in table 3, this is decidedly not the case. As discussed by Bom�m (1998),

there is a very intuitive explanation to this �nding. When the indicator is

noisy, agents e�ectively discount all preliminary announcements by always

attributing some fraction of each new reading to measurement error.

Perhaps the magnitude of the aggregate e�ect of measurement error is

more surprising than its sign. Especially given that the signal-to-noise error

ratio in this experiment is not really that low, either relative to previous

work|e.g., Kydland and Prescott (1982)|or in relation to estimated signal-

to-noise ratios in typical economic indicators. Furthermore, as discussed in

the next subsection, the 14 percent increase in output volatility reported here

might actually be a conservative estimate of the macroeconomic implications

of noisy economic indicators.

5.3 Sensitivity Analysis

Several factors contribute to the magnitude of the noisy-indicator e�ect re-

ported above. Because some of these factors are not well measured in the

data, I run below additional computational experiments designed to assess

the robustness of the results to variations in selected parameters.

Production Externalities. As discussed above, the baseline experiment is

based on an intermediate value of �, the strategic complementarity parame-

ter. Given the degree of imprecision with which this parameter is estimated,

I also ran the same experiment reported in table 3 for two polar values of �.

For � = 0|a number closer to the views of Basu and Fernald (1995, 1996)|

I �nd that the percentage increase in the variance of output is smaller, but
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still a sizable 10 percent. Thus, though the multiplier e�ects associated with

strategic complementarity do play a role in my model, the baseline value of

the complementarity parameter is not what drives my main result. In fact,

one could argue that the baseline parameterization is perhaps too low. For

instance, with � at 0.49|the upper end of the range of estimates reported by

Baxter and King (1991) and Caballero and Lyons (1992), but still below the

Cooper-Haltiwanger (1993) estimates|output volatility would have surged

nearly 20 percent after the improvement in the productivity indicator.

Persistence Parameters. The composite productivity shock that bu�ets the

model is very persistent, both in terms of the autocorrelation coe�cient of

the persistent component and the variance-ratio of the persistent and white-

noise components. As discussed above, the assumption of strong serial cor-

relation in the underlying shocks is needed to make up for the weak internal

propagation mechanism of most RBC models.

The fact that the composite shock is so persistent attenuates the infor-

mational problems associated with its noisy indicator by e�ectively making

it more forecastable. To illustrate this, I ran two additional experiments. In

the �rst I introduced even more persistence in At by setting the variance-

ratio involving the persistent and white-noise components of the shock to 25,

the same parameterization adopted by Kydland and Prescott (1982). As ex-

pected, the noisy indicator e�ect is smaller than in the baseline case, but still

quantitatively signi�cant: output becomes 9 percent more volatile after the

introduction of the better indicator. More important, if this variance ratio is

reduced to 0.25, so that the variance of the persistent component is only one

fourth of the variance of its transitory counterpart, a better indicator would

increase output volatility by almost one third!17

17Similar results are obtained by varying the autocorrelation coe�cient (�).
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Here again I �nd that though the results are sensitive to variations in the

persistence parameters, they remain, nevertheless, quantitatively important.

Moreover, if one believes that transitory shocks such as A2;t, and not just the

highly persistent ones depicted by A1;t, play an important role in macroe-

conomic 
uctuations, then, again, the case for the aggregate e�ects of noisy

indicators becomes even stronger.

Signal-to-Noise Ratio. Have I under- or overstated the degree of noisiness

in the productivity indicator? How sensitive are my results to variations in

the signal-to-noise ratio? A de�nitive answer to the �rst question is hard

to come by. The signal-to-noise ratio assumed in the baseline experiment

is higher than the estimates obtained by Mankiw et al. (1984) for money

stock announcements, but smaller than the number reported by Diebold and

Rudebusch (1991) for the composite leading indicators. Moreover, the fact

that agents in the real world make decisions based on not just one, but

presumably a gamut of economic indicators, makes it even harder to assess

what would be an appropriate value for the signal-to-noise ratio. Clearly, the

higher this ratio, the closer we get to the case of no measurement error, and

the smaller would be the e�ect of adopting a better indicator. For instance,

if we had started with a signal-to-noise ratio of 5, the aggregate e�ect of

eliminating the indicator's noise would be to increase output volatility by

only 3.8 percent; whereas if we had started with the much lower signal-to-

noise ratio estimated by Mankiw and his co-authors (0.56), the indicator

noise e�ect would be near 20 percent.

To conclude this sensitivity analysis, I �nd that the 14 percent increase in

output volatility after the elimination of measurement error in the baseline

experiment does not seem to be an exaggeration. As we would expect, the

only factor that would have signi�cantly reduced this e�ect to well below 10

percent is the assumed initial signal-to-noise ratio of the indicator.
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6 Expectations: A Testable Implication

It has been argued elsewhere that the potential aggregate e�ects of indicator

noise crucially depend on the signal extraction capabilities of agents (Bom�m,

1998). In particular, the sign of the aggregate e�ect of measurement error

is reversed if we assume that, instead of relying on e�cient signal extraction

methods, the agents follow a bounded rationality strategy by simply taking

the noisy indicator at face value. Under this alternative characterization of

agents' expectations, I then repeat the same computational experiment de-

scribed in section 5.2. Using the baseline parameterization from table 1, the

presence of measurement error in the preliminary announcements of At in-

creases the variance of output in the arti�cial economy by about 13 percent.

Thus, better economic indicators have the potential to reduce cyclical volatil-

ity in a quantitatively important way if agents signal extraction capabilities

are less than fully e�cient.

Taken together, the quantitative signi�cance of indicator noise under both

full and bounded rationality o�ers a potentially valuable opportunity to test

empirically these two views of the world. Simply stated, if we can identify two

time periods|one with superior data, the other more prone to measurement

error problems|the one with better economic indicators should have higher

cyclical volatility, other things being equal, if agents fully satisfy the rational

expectations assumption. I plan to examine this issue in future research.

7 Concluding Remarks

Traditional decompositions of sources of macroeconomic 
uctuations tend to

emphasize the importance of supply versus demand shocks, permanent ver-

sus transitory, monetary versus real, etc. The computational experiments

run in this paper uncovered an additional factor underlying these 
uctua-
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tions: the very nature of the economic indicators on which agents based

their decisions. Under e�cient signal-processing, the presence of noise in key

economic data has a dampening e�ect on business cycle volatility. Accord-

ingly, an appreciable improvement in the accuracy of economic indicators

would likely contribute to signi�cantly larger gyrations in the economy.

Following Bom�m (1998), this paper also highlighted the importance of

agents' information processing capabilities in understanding the aggregate ef-

fects of noisy economic indicators. In particular, given the strikingly di�erent

conclusions that can be drawn from the fully rational and boundedly ratio-

nal characterizations of the model, I outlined a future research plan aimed at

exploring this novel way to empirically distinguish between these two views

of the world.

Moreover, regardless of the way real-world agents form their expectations,

a well-known characteristic of the U.S. economy in the postwar period makes

the quantitative �ndings of this paper especially relevant. I am referring here

to the declining relative importance of sectors such as agriculture, mining,

and manufacturing|for which we currently have more reliable data|and

the growing importance of the harder to measure service sector. What this

trend suggests is that the problem of noisy economic data is unlikely to

disappear soon, making the need to understand its implications for business

cycle 
uctuations that much more important.

Finally, I should caution those who might feel tempted to interpret the

rational-expectations based results to mean that better economic indicators

are bad because they lead to higher macroeconomic volatility. In the model

presented in this paper, all 
uctuations are optimal responses to shifting

opportunities in the leisure-consumption tradeo�. Therefore, there is an

important sense in which noisy data are always bad because they make it

harder for agents to fully identify and respond to these shifts.
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Table 1 | Parameter De�nitions and Baseline Calibration

Parameter De�nition

A. Standard RBC Parametersa

�n = 0:58 long-run share of labor income

� = 0:025 quarterly rate of depreciation

�N = 0:20 steady-state hours (proportion of time spent working)

� = 0:988 utility discount rate

B. Productivity Shock and other Selected Parametersb

� = 0:90 AR(1) coe�cient of persistent technology shock

�2a1 = 0:5809 variance of innovation to persistent technology shock

�2a2 = 0:2904 variance of innovation to white-noise technology shock

�2e = 0:8713 variance of indicator noise

� = 0:24 strategic complementarity parameter

aSource: King, Plosser, and Rebelo (1988).
bSee discussion of baseline parameterization in text.
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Table 2 | Comparing Selected Momentsa

Series Std Dev Rat. SD auto(1) auto(2) auto(3)

A. U.S. Postwar Quarterly Datab

Output 5.62 1.00 .96 .91 .85

Consumption 3.86 0.69 .98 .95 .93

Investment 7.61 1.35 .93 .78 .62

Hours 2.97 0.52 .94 .85 .74

B. Model with Noisy Indicator (Baseline Case)c

Output 5.62 1.00 .91 .86 .81

Consumption 3.79 0.67 .99 .98 .97

Investment 12.45 2.22 .83 .74 .66

Hours 2.51 0.45 .77 .67 .57

C. RBC Model with Perfect Indicatord

Output 5.62 1.00 .94 .89 .83

Consumption 3.90 0.69 .99 .99 .97

Investment 12.10 2.15 .89 .79 .70

Hours 2.45 0.44 .87 .75 .64

aThe �rst column of numbers shows the standard deviation of each series; the second column

shows ratios of standard deviations of each series with output. Columns 3 through 4 show �rst,

second, and third autocorrelation coe�cients.
bSource: King, Plosser, and Rebelo (1988).
cAll other parameters calibrated as shown in Table 1.
dThis is the production externalities model of Baxter and King (1990) with all parameters

set as in table 1, except for the variances of the indicator noise and white-noise component of

At, which are set to zero. In addition, the variance of the (now perfect) indicator is recalibrated

to match the variance of output in the data.
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Table 3 | Measuring the E�ects of Indicator Noisea

Series Std Dev Rat. SD auto(1) auto(2) auto(3)

A. Before improvement in indicator quality. . .

Output 5.62 1.00 .91 .86 .81

Consumption 3.79 0.67 .99 .98 .97

Investment 12.45 2.22 .83 .74 .66

Hours 2.51 0.45 .77 .67 .57

B. After improvement in indicator quality. . .

Output 5.98 1.00 .88 .83 .78

Consumption 4.03 0.67 .99 .98 .97

Investment 13.37 2.23 .77 .69 .61

Hours 2.76 0.46 .73 .63 .54

aTable entries are explained in the �rst footnote of table 2. All parameter values are set

according to table 1, except for �2e , which is set to zero in the panel describing the situation

\after the improvement in indicator quality."
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