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ON THE INVERSE OF THE COVARIANCE MATRIX IN PORTFOLIO ANALYSIS

Guy V.G. Stevens 

 
I. Introduction 

The goal of this study is the derivation and application of a direct characterization of

the inverse of the covariance matrix  central to portfolio analysis. As argued below, such a

specification of the inverse, in terms of a few primitive constructs, provides new and illuminating

expressions for such key concepts as (1) the optimal holding of a given risky asset, (2) the slope of the

risk-return efficiency locus faced by the individual investor, and (3) the pricing of risky assets in the

Capital Asset Pricing Model. The building blocks of the inverse matrix turn out to be the non-

diversifiable part of each asset’s variance of return and coefficients obtained by regressing the asset’s

excess return on the set of excess returns for all other risky assets. 

II. Preliminaries 

It is well known that every optimizing mean-variance investor will choose a portfolio

falling on his or her risk-return efficiency frontier -- the locus of portfolios of minimum variance

conditional on a given expected return. As shown by Mossin (1973) and others, with the existence of

a riskless asset, this frontier is a straight line in mean-standard deviation space, with a slope, dE/dS,

equal to  -- where , the inverse of the matrix of asset variances and covariances, is(m̄  C  1m̄ )1/2

the subject of this paper, and  (and its transpose, ) is the vector of the excess expected return of

each asset over the riskfree rate: . To illustrate this derivation, assume markets for N risky assets,

each with stochastic return  and expected return , along with the opportunity for unlimited lending 
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and borrowing of a riskless asset with return . For an investor with initial wealth W, the expected

return on any portfolio, E(Y), can be defined as:

In addition to previously defined terms,  is the N×1 column vector of nominal security holdings,

(1)E(Y)  Ȳ  rf W   
N

i 1
zi (r̄ i rf )  rf W  z  m̄ .

with elements . The variance of Y is:zi

Minimizing V(Y) subject to a predetermined level of E(Y) yields the following set of first order

(2)V(Y)   
N

i 1
 
N

j 1
zi zj σij  z  Cz.

conditions for points on the risk-return efficiency frontier:

 where λ is the Lagrange multiplier for the constraint.

(3)2Cz  λm̄  0,

Solving this system of equations for  leads to the expression for the vector of optimal

holdings of risky assets along the efficiency frontier: 

Although the level of vector  depends on the unknown λ -- and, therefore, generally

(4)z  λC  1m̄ /2.

on the investor’s utility function and the required expected return -- equation (4) does fix the ratios of

the various risky assets along the efficiency frontier in any optimal portfolio: the famous portfolio

separation theorem discovered by Tobin (1958). These optimal ratios will be preference-free,

depending only on the investor’s estimates of expected excess returns, and, once again, the elements,

, of the inverse of the covariance matrix: c  1
ij
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By combining equations (4), (1) and (2), one derives the investor’s risk-return frontier --

(5)     z i

z j

                  
 
N

k 1
m̄ k c  1

ik

 
N

k 1
m̄ k c  1

jk

.

which happens to be linear in expected return and standard deviation:

Equations (4) and (5) and (6) emphasize the importance of the elements of the inverse of the

(6)E(Y)  rf W    m̄  C  1m̄ 
1/2

    V(Y) .

covariance matrix . Typically in portfolio analysis, however, we do not characterize these elements

directly, but only indirectly, as those elements that map the original covariance matrix, , into the

identity matrix. The purpose of this note is to derive a direct characterization of the elements of ,

one that relies on a few key constructs and that leads to straightforward explanations of the optimal

ratios in (5) and the slope of the risk-return locus in (6).

II. Derivation

The derivation of  below adapts a useful partitioning technique developed by

Anderson and Danthine (1981) for their study of hedging in futures markets. Partition the set of the N

first order conditions (3), above, between the first equation and a N-1 equation block; in matrix

notation, the partitioned system appears as follows: 

The scalars  are the variance, asset level, and expected excess return for asset 1;  is the

(7)

σ11, z1, m̄ 1,

1×N-1 row vector of covariances between the first asset and the N-1 other assets, and  is its

transpose. The matrix CN-1 in the bottom block is the N-1 square submatrix of the covariance matrix
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 formed by eliminating its first row and column; finally,  and  are the N-1 column vectors

made up of all but the first elements of the original z and  vectors, respectively. 

To facilitate the derivation, I shall use familiar econometric notation for the four

submatrices in (7). Let Y be a T×1 column vector of observations on variable 1 (taken around the

mean), and X the T×N-1 matrix of observations on the remaining N-1 variables. The variance of

variable 1, σ11, the scalar in the upper left-hand corner of the covariance matrix in (7), can be

expressed as Y’Y/T;  equals Y’X /T and  is X’Y/T; finally, the bottom N-1 square block,

CN-1, is X’X /T. 

Standard results on partitioned matrix inversion indicate that the inverse can be

partitioned similarly to  in (7).1 If the matrix with submatrices Aij  is indeed C -1 we have the

following: 

System (8) leads to the following four equations sufficient to determine each of the submatrices:2

(8)

Let us initially take the second equation in the set (9) and solve it for A12:

(9)

A
11

(Y  Y/T) A
12

(X  Y/T)  I
A

11
(Y  X/T) A

12
(X  X/T)  0

A
21

(Y  Y/T) A
22

(X  Y/T)  0

A
21

(Y  X/T) A
22

(X  X/T)  I

                                                          

     1 See, for example, Goldberger (l964), pp. 27-28, and Theil (1971), pp. 16-19. 

     2 Recall that A11 and the identity matrix in the first equation in set (9) are both scalars. It should also be

noted that A21 is the transpose of A12, because of the symmetry of .  
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Note that the 1×N-1 matrix A12 equals the (scalar) inverse element -A11 times a term that is the row

(10)

vector of regression coefficients, , the result of regressing the returns from asset 1 on those of all the

other N-1 risky assets. Next substitute (10) into the first equation of set (9) and solve for A11. After

factoring out the number of observations, T, and inverting the resulting matrix, we get: 

Because the product [I - X(X’X)-1X’]Y can be shown to equal the vector of residuals, u, from the

(11)A
11

/T    Y  [I X(X  X) 1X  ] Y
 1

above regression, and because I - X(X’X)-1X’ is idempotent (its square is equal to itself), equation (11)

can be simplified as follows: 

 The multiple regression coefficient, R1
2,  for the regression of returns from the first asset on those for

(12)

all the other assets is defined as 1- u’u/Y’Y; therefore, u’u can be expressed as Y’Y(1-R1
2 ). This leads

directly to the final expressions for the first row and, by symmetry, the first column of C -1 :3

The common factor in these elements of the inverse is , that part of the variance of the first

(13)A
11

         T

u  u
                     T

(1 R2
1 )Y  Y

                   1

σ11(1 R2
1 )

(14)

σ11(1 R2
1 )

return that cannot be explained by a regression on the other risky returns; this is shown in equation

(13) to be equivalent to the estimate of the variance of the residual of that regression and will play an

                                                          

     3 It might be noted that the original version of this paper, Stevens (1995), contains an alternative derivation
of equations (13) and (14) that does not rely on partitioned inversion or the standard econometric notation. 
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important role in the applications below. 

Although equations (13) and (14) are only part of C -1, they are sufficient, in

conjunction with equation (4), to obtain the final expression for the optimal level of the first asset:

A. Alternative  1  for  Completing  C -1
     

(15)z 1  
 
 
 
 

 
 
 
 

                    1

σ11(1  R 2
1 )

        λm̄ 1

2
  

N

j 2

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

                     β 1j

σ11(1  R2
1 )

       λm̄ j

2

In determining the remaining elements of C -1, rather than focusing on solving the last

two equations in set (9) for A22, we shall exploit equation (15) and the fact that the choice of a

particular asset as the first or "Y" variable is clearly an arbitrary one. Let us permute the rows and

columns of C to move the moments of some other asset i to the first row and column, thus forming a

new covariance matrix, C*. By repeating the partitioned matrix inversion steps in equations (9)-(14),

above, we can derive the elements of the first row and column of C* -1, the matrices A*11 and A*12. 

We now have  and A*12 a 1×N-1 vector with elements ; the subscript iA 11  1/σii(1 R2
i )  β ij /σii(1 R2

i )

refers to the regression where the ith variable of C is now taken as the dependent variable.

  The major remaining question is to determine the relationship between the elements of

the first row of C* -1 and the ith row of C -1. Substituting the above elements from the first row of C* -

1 into equation (15), we get one expression for ; further, the ith row of the original optimal solution,z i

equation (4), provides a second expression for , this time in terms of the elements of the ith row ofz i

C -1. The difference between these two alternative expressions for  implies the following:z i

Since the excess expected returns,  and , may assume any value, the only way for

(16)0  
 
 
 
 

 
 
 
 

                   1

σii(1  R2
i )

 c  1
ii

            
λm̄ i

2
  

N

j≠i

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

                    β ij

σii(1  R2
i )

 c  1
ij

             
λm̄ j

2

m̄ i m̄ j

(16) to hold in general is for each term in square brackets to be identically equal to zero. Thus, for any

6



row i in C -1,  must equal the reciprocal of  and  must equal . σii(1  R 2
i )  β ij /σii(1  R 2

i )

The upshot of all of the above is the following direct characterization of C -1 :4 

(17)

                                                          

     4 There are at least two questions on which one might want further verification -- namely, (1) proof that the
inverse (17) is indeed symmetric, and (2) further evidence that CC -1 = I.  Neither is immediately obvious by
multiplying the various rows and columns of the two matrices, because we are forced to multiply estimated
coefficients that relate to different regressions. However, by adapting some results of Johnston (1972), p. 132 ff.,
one can relate the elements in matrix (17) to the determinant, |C |, and the various cofactors of the elements in C,
COFij. Johnston develops his relationships in terms of the correlation matrix, but that can easily be rewritten in
terms of our covariance matrix. Following Johnston’s derivation of his equation (5-34) one can show that a
diagonal element in (17) equals COFii / |C |, where the first term is the cofactor of the diagonal element cii .
Moreover, the regression coefficient, βij ,equals -COFij /COFii. Putting these two results together, the element

 equals COFij / |C |; similarly, we have  = COFji / |C |. However, since C is symmetric COFij = COFji,c  1
ij c  1

ji

and the two elements are equal -- verifying the symmetry of the inverse. (For what it may be worth, the above
equalities posit some possibly interesting relationships between regression coefficients from different regressions).

These expressions for the elements of C -1 facilitate showing that CC -1 = I. Recalling that by
symmetry the columns are identical to the corresponding rows of the inverse, when multiplying the ith row of C
with the ith column of the inverse, one gets the sum of products of the elements in the ith row of C each
multiplied by its corresponding cofactor, all divided by |C | -- the net result being 1. All off-diagonal elements of
CC -1 must be equal to zero, since they involve an expansion by alien cofactors. 
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B. A  Second  Alternative  for  Completing  C -1
     

Consider the fundamental expression for the element, , in C -1 as the ratio of twoc  1
ij

determinants. Where |C | is the determinant of the matrix, COFij is the cofactor of the ijth element of

C, and Mij is the minor of that same element, we have: 5 

The last part of the equality holds because of the symmetry of C. 

(18)

Using (18), consider the expressions for an element, , on the diagonal of C -1 and forc  1
ii

the element , where, as above, C* is formed by moving the ith row and column of C  to the firstc  1
1j

row and column of C *.  Note first that |C | equals |C*|, since the number of permutations of rows

and columns to move from C to C* is even, (-1)2(i-1). Note also that the minor, Mii , in the numerator

of  is identical to M*11 : in forming the matrix C* only the ith row and column have changedc  1
ii

position; but since this row and column is eliminated in forming both of the above minors, all of the

other elements of these two determinants are unchanged, and they must be equal. Finally, in forming

the respective cofactors, the sign attaching to both of these minors must be positive:

(-1)2 = (-1)2i. Applying these results to equation (18), we find that the leading element of C* -1, ,

the value of which has been determined above, equals the diagonal element, , of C -1: 

                                                          

     5 See Goldberger (1964), p.24, for the theorem. For completeness, it might be noted that the (first) minor of
of cij is the determinant formed by eliminating the ith row and jth column of the determinant of C; the cofactor
of cij is the signed minor: (-1)i+j Mij. 
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Continuing with the same C* matrix, for the off-diagonal elements in the first row

(19)c  1
ii             COFii

  C
               ( 1)2iMij

  C
                ( 1)2M ij

  C 
 c  1

11  1/σii(1 R 2
i )

, the story is slightly more complicated, but similar. The complication arises because the minors

of the off-diagonal elements in C*, although containing the same elements, are not identical to those

for the corresponding off-diagonal element in C. Since the ith row of C (the first row of C*) is still

eliminated in forming all of the relevant minors, the permutation of this row continues to pose no

problem; however, the ith column of C does appear in all off-diagonal minors and appears in a

different position in the relevant minors of C*. However, the changes in sign caused by the

permutations of this column are offset by changes in sign in the cofactor of the relevant inverse

elements. We have two cases:

(1) For a given element of the C matrix, cij , if j>i, we have (-1)i-1Mij = M*1j  leading to:

  (2) For a given element of the C matrix, cij , if j<i, we have (-1)i-2Mij = M*1,j+1 leading

(20)c  1
ij                 ( 1)i jMij

  C
                          ( 1)i j( 1)1 iM  

1j

  C
                 ( 1)1 jM  

1j

  C  
 c  1

1j   β ij /σii(1 R 2
i )

to:6

To summarize, we have shown that all the elements in rows 2 through N of C -1 are

(21)c  1
ij                 ( 1)i jMij

  C
                              ( 1)i j( 1)2 iM  

1, j 1

  C
                        ( 1)1 j 1M  

1, j 1

  C  
 c  1

1, j 1   β ij /σii(1 R 2
i )

equal to elements in the first row of an appropriately defined C* -1; these latter elements of course can

                                                          

     6 In equations (20) and (21) the row and column subscripts of the regression coefficient, , refer to theβ ij

rows and columns of the original covariance matrix, C.
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be evaluated by applying the partitioned matrix inversion procedure, equations (9) through (14),

leading again to the inverse matrix (17).

  

IV. Implications

A. Asset  Holdings

On first glance the inverse (17), that is so central in the expressions for the optimal

level (4) and ratios (5) of dollar holdings of risky assets, seems to contain a welter of intriguing but

not particularly illuminating terms. It turns out, however, that these terms combine to yield

understandable and intuitively attractive expressions for the holding of a given asset, both in special

cases and in the general case with arbitrary, non-zero covariances. 

Consider first the special case of independent returns. With all off-diagonal elements

zero in the original variance-covariance matrix, the inverse matrix (17) is also diagonal, with each

element equal to the reciprocal of a given asset’s variance, . Using the implication of equation (4)1 /σii

that asset holdings are proportional to , in the independence case the holding for any asset i isC  1m̄ 

therefore proportional to the ratio of its excess expected return to its variance, . m̄ i /σii

Although considerably more complicated, the general case can be interpreted as a

natural generalization of the independence case. Let us consider in turn the denominator and

numerator of the expression implied by equation (4) and the general form of the inverse matrix (17). 

Since (4) shows that the holding of risky asset i is proportional to the matrix product of the ith row of

 with the column vector of excess expected returns, the denominator of the expressionC  1

becomes  -- instead of  in the independence case. The squared multiple regressionσii(1  R2
i ) σii

coefficient appearing in the denominator, , equals that maximum percentage of the variance of theR2
i

return of asset i that can be explained by a linear combination of the returns of all other available risky
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assets; because the optimal linear combination minimizes the residual variance, it is easily shown that

the denominator is the minimum non-diversifiable part of asset i’s variance.7 The coefficients of this

optimal linear combination are calculated via a least-squares regression; in other contexts, this optimal

combination has also been called the pure hedge or a regression hedge8

The numerator in the general expression, instead of  in the independence case,m̄ i

becomes . This, too, has intuitive appeal, as soon as one recalls that the regression linem̄ i  
k≠ i

β ik m̄ k

to which the s apply passes through the point of the means. Letting  equal the intercept of the

regression for the ith asset, we have therefore that ; hence the numerator of them̄ i αi  
k≠ i

β ik m̄ k  0

general expression is equal to the intercept of this regression equation. As such, the numerator equals

that part of the expected excess return of asset i that cannot be accounted for by the excess expected

return of the same linear combination of assets that minimizes the residual variance of asset i's return -

- i.e., the numerator equals the difference between  and the expected costs of the optimal hedge. r̄ i rf

Thus, as contrasted with the raw or unadjusted expected returns and variances that determine asset

holdings in the independence case, the expression for holdings in the general case uses the same

concepts, but in adjusted form -- adjusted for that part of the asset’s expected excess return and

variance that can be explained by the optimal linear combination of other risky assets: 

                                                          

     7 Consider the "portfolio" formed by a dollar in asset i and the amount  in each of the other assets k, β ik

where  is the appropriate coefficient, appearing in the inverse matrix (17), from the multiple regression of theβ ik

excess return for the ith asset on the excess returns of all the other assets. By definition, for any sample period,
the value or observed return of this "portfolio" will be the residual from the least-squares multiple regression
defined above. Since a property of the regression is the minimization of the variance of this residual over the
sample period, or the maximization of the explanation of the variance of the return of asset i, no other linear
combination of these asset returns can reduce this residual variance further. The variance of this "portfolio" will

be . σii(1  R2
i )

     8 In Anderson and Danthine’s 1981 study of hedging in future’s markets, the optimal linear combination
balancing their "cash" position was denoted as the pure hedge (p.1187). In an international setting, Adler and
Dumas (1980) identify an asset’s currency risk exposure as a coefficient in a particular linear regression. 
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Despite the welter of extra terms, the general expression for the holdings of a given asset is, therefore,

(22)z i  (λ/2)                   
m̄ i  

k≠i
β ik m̄ k

σ2
i (1 R2

i )

a natural generalization of that for the independence case.

B. The  Investor's  Risk-Return  Frontier

Equation (6), above, shows the investor’s optimal tradeoff between risk and return to be

linear with slope . The direct characterization of  in (17) can show us both how to(m̄  C  1m̄ )1/2 C  1

interpret this expression intuitively and how it changes in response to changes in the underlying

structural elements -- the expected returns, variances and covariances. 

In the simplest case, a world with a single risky asset,  collapses to  and theC  1 1/σ11

slope, dE/dS, reduces to , the only possible tradeoff between risk and return in such a world. m̄ 1/    σ11

The second simplest case involves adding a second risky asset, but with a return independent from the

first. This changes  and dE/dS to the square root of . If the investor(m̄  C  1m̄ )1/2 m̄ 2
1 /σ11  m̄ 2

2 /σ22

optimizes -- in this case by taking a diversified portfolio -- the optimal tradeoff becomes a function of

the expected excess returns of the two assets: the square of dE/dS being a weighted average of the

squared excess returns, the weights being the reciprocals of the variances of the respective assets. 

Because of the power of diversification, the investor’s tradeoff between risk and return can easily be

shown to have improved (the slope increased) over the single asset case, irrespective of the second

asset’s expected return or variance; even a negative excess expected return improves the investor’s

opportunity set.9 Because of the diagonality of (17) in the case of independent asset returns, the above

                                                          

     9For the independence case, the numerator of equation (22) shows that a negative expected excess return 
implies an optimal short position for the asset in question. 

12



results are easily generalized to any number of assets. Thus, for N assets:

The most realistic cases of course are those where the asset returns are correlated --

(23)m̄  C  1m̄   
N

i 1
  m̄ 2

i /σii .

where the off-diagonal elements and the multiple correlation coefficients in (17) are non-zero. How

the knowledge of  helps in the analysis can be illustrated by a consideration of the general 2-assetC  1

case. This case is more important than it might seem, because one of the two assets could be the

overall market portfolio. 

After some algebra, the general form of the risk-return tradeoff can be related to that

for the independence case as follows: 

The only new symbol introduced in (24) is the correlation coefficient ρ, the square of which in this

(24)m̄  C  1m̄        m̄ 2
1

σ2
1

       m̄ 2
2

σ2
2

 
 
 
 
 

 
 
 
 

                    1

σ2
1σ

2
2(1 ρ2)

  ρ2(m̄ 1σ2  m̄ 2σ1)
2  2ρm̄ 1m̄ 2σ1σ2(ρ  1) .

two-asset case equals both  and  (both appearing in (17)); for clarity, we also denote variancesR2
1 R2

2

in (24) by the square of the standard deviation,  rather than .σ2
i σii

With (24) one can address two significant questions about the effect of a non-zero

covariance: whether the non-zero correlation between the two risky returns improves or worsens the

investor’s risk-return tradeoff relative to the two-asset independence case; and whether the addition of

the second asset improves the tradeoff over that offered by the first asset alone. Improvement relative

to the independence case depends on the sign of the sum inside the right brackets; improvement

relative to the trade-off offered by the first asset alone depends on whether the product of the terms

within brackets is greater (less in absolute value) than .  m̄ 2
2 /σ2

2

One immediate implication of (24) is that when both expected excess returns are
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positive and the two returns are negatively correlated, the risk-return tradeoff must improve -- in both

senses defined above. In this case, the last term in (24) becomes positive and, since all other terms are

always positive, the difference between the tradeoff in this and the independence case must be

positive. 

For a positive ρ, the analysis of (24) leads to the answer "it depends" for both

questions. For example, consider the case where the expected excess returns and variances of both

assets are equal, causing the squared term in the right hand expression to equal zero. We can then

simplify the whole right hand expression (the difference between the risk-return tradeoff in the general

and the independence cases) into: . In this special case, it is 2ρm̄ 1m̄ 2 /   σ1σ2(1  ρ)   2ρm̄ 2 /   σ2(1  ρ)

first apparent that any positive correlation worsens the risk-return tradeoff relative to the independence

case. Moreover, it can be proved that for ρ < 1, the difference above is greater (less in absolute value)

than ; hence, the addition of a second asset does in this case improve the risk-return tradeoff

over what was available for the first asset alone. However, as ρ approaches its limit of 1, the

contribution of the second asset to the risk-return tradeoff can be shown to approach zero.   

All of the above examples with a positive correlation were for the special case where

both assets had identical means and variances (a more general, but equivalent restriction is that the

ratio of each asset’s mean and variance is equal). That the above result -- that a positive correlation

worsens the tradeoff relative to the independence case -- is not general can be seen by examining a

specific counter-example. Consider the following case where the excess returns of the two assets are

allowed to diverge:  Of the two terms in the rightmostρ  .95, m1 10, m2 2, with σ11 σ22 4.

bracket in equation (24), the positive squared difference between the means (231.04) far outweighs the

last, negative term (-7.6). The explanation for this improvement in the risk-return tradeoff over the

independence case, despite the positive correlation, can be understood by noting that equation (22)

tells us that, for this given set of values, the optimal holding of asset 2 turns negative. With the high
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positive covariance between the two returns, the optimizing investor can control the risk buildup of a

heavy investment in the high-return asset 1 by going short in asset 2. 

C. Linkages  to  the  Capital  Asset  Pricing  Model

Assuming that the above decision framework applies to all investors and, further, that

all share common beliefs with respect to the variance-covariance matrix and expected returns, one can

derive the various results of the Capital Asset Pricing Model (CAPM). Of particular interest for this

paper is the CAPM security market line. Derivable from the summation of equation (3) over all

investors, the excess expected return of any asset, in equilibrium, can be expressed, in a number of

alternative ways, as follows:10

where the subscript M refers to the market portfolio, and a subscripted $ indicates an expected return

(25)r̄ i$ rf  
 
 
 
 

 
 
 
 

               (r̄ M$ rf )

σ2
M$

σiM$  
 
 
 
 

 
 
 
 

                  (r̄ M rfVM )

σ2
M

σiM ,

or variance per dollar of investment -- the absence of an $ referring to an expected value or other

moment for the asset or the market.11 Thus , the expected return on the market portfolio, equalsr̄ M

, where Vi  is the total market value of the ith asset; correspondingly, the expected return perΣ[Vi r̄ i$]

dollar invested in the market portfolio, , equals , where , the total value of ther̄ M$ r̄ M /VM VM  ΣVi

market. Similarly, . Finally, the systematic risk of a marginal dollar in asset i, itsσ2
M$  σ2

M /V 2
M

covariance with the market, is: ,, which is VM times theσiM  E[ r̃ i, rM ]  E[ r̃ i,ΣVj r̃ j ]  ΣVjσij

covariance per dollar of the market portfolio.

                                                          

     10 See, e.g., Copeland and Weston (1983), pp. 187-189 or Elton and Gruber (1987), chapter 11, for good
expositions and derivations of the security market line and its components. For future reference, one can also

derive from the summation of equations (3) that , where the last term is the
summation of each investor’s equilibrium value of λ.

     11 As noted a number of times above, prior to equation (25) all rates of return were returns per dollar of
investment, despite the omission of the subscript $.
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Equation (25) tells the now-standard CAPM story, linking the excess expected return on

a asset to the product of its systematic risk and the market price of risk. On the other hand, a very

different equilibrium expression for  can be derived from equation (22). Given the assumptionsr̄ i rf

of the CAPM, we can add the expression for zi over each investor j, to derive the following:

It was established in the previous section that the term  is the variance of a dollar invested

(26)2Vi[σ
2
i (1 R2

i )]  ( 
N

j 1
λ j ) [m̄ i  

k≠i
β ik m̄ k] .

σ2
i (1  R2

i )

in asset i when optimally hedged by going short βik in each other asset k; thus, if all of asset i is

hedged in this way, its variance would be Vi
2 times the term in brackets. The left hand side of (26),

therefore, is the derivative of this variance, the marginal change in the variance caused by an added

dollar’s investment in asset i.

Since , and the sum of the Lagrange multipliers equals the reciprocal of them̄ i  r̄ i rf

market price of risk,12 (26) can be rewritten like (25), with the expected excess return on the left hand

side:

Unlike (25), however, the excess return on asset i is now (also) shown to equal the sum of expected

(27)r̄ i  rf  [( r̄ M  rf VM) /σM
2 ]Vi [σ

2
i (1 R2

i )]   
k≠i

β ik m̄ k .

costs due to the marginal increase in risk and to the use of the optimal hedge. Equating the right-hand

sides of (27) and (25) shows the relationship between these two notions of marginal cost and risk: 

On the left hand side, from (25) and expressed in units of risk, is the traditional measure of systematic

(28)σiM  Vi [σ
2
i (1 R2

i )]  [σM
2 / (r̄ M  rfVM)]  

k≠i
β ik m̄ k

                                                          

     12 Summing equations (3) over all investors, and premultiplying the resulting equation by the row vector of

market values of all assets, Vi ,  we get .2σM
2  Σλ j ( r̄ M  rfVM)
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risk. Because all alternative ways of increasing the holding of asset i must, in equilibrium, bear the

same cost, this systematic risk must equal the sum of the marginal risk costs and hedging costs of the

combination investment of a dollar’s increase in i balanced by the various changes in the other

holdings that constitute the optimal hedge.

 

V. Summary and Conclusions

This paper derives and applies the inverse of the covariance matrix central to portfolio

analysis. As shown in equation (17) the inverse is composed of two key elements: (1) the non-

diversifiable part of each asset’s variance of return [ ] and (2) the set of coefficients obtainedσi
2 (1  R 2

i )

by regressing the expected excess return for a given asset on the expected excess returns of all other

available assets. It is of some interest to note that everything in  relates to the characteristics ofC  1

the N regressions that minimize each asset’s residual variance -- which, for good reason, may be

termed the optimal hedge regressions. 

Knowledge of the inverse matrix leads to equation (22), an illuminating expression for

the optimal holding of any given asset i. The numerator is proportional to the difference between

asset i’s expected excess return and the expected excess return of its optimal hedging combination (the

intercept of its optimal hedge regression). The denominator is that part of asset i’s variance that

cannot be diversified away (the residual variance of the optimal hedge regression). 

The inverse of the covariance matrix was also shown to be a central element in the

expression for an investor’s risk-return frontier and instrumental in providing an alternative expression

for the CAPM’s security-market line. Knowledge of  was shown to be useful for analyzing shiftsC  1

in the former, either because of changes in the underlying covariances or because of the introduction

of new assets. The derivation of equation (22) led both to alternatives to traditional CAPM equations

and to a clarification of the relationship between an asset’s non-diversifiable risk and the traditional
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measure of its systematic risk. 
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