Board of Governors of the Federal Reserve System
International Finance Discussion Papers
Number 695

December 2000

PREDICTABLE UNCERTAINTY IN ECONOMIC FORECASTING

Neil R. Ericsson

NOTE: International Finance Discussion Papers are preliminary materials circulated
to stimulate discussion and critical comment. References to International Finance
Discussion Papers (other than an acknowledgment that the writer has had access to
unpublished material) should be cleared with the author or authors. Recent IFDPs
are available on the Web at www.federalreserve.gov/pubs/ifdp/.



PREDICTABLE UNCERTAINTY IN ECONOMIC FORECASTING
Neil R. Ericsson*

Abstract: This paper provides an introduction to predictable forecast uncertainty in
empirical economic modelling. The sources of both predictable and unpredictable
forecast uncertainty are categorized. Key features of predictable forecast uncertainty
are illustrated by several analytical models, including static and dynamic models,
and single-equation and multiple-equation models. Empirical models of the U.S.
trade account, U.K. inflation, and U.K. real national income help clarify the issues
involved.

Keywords: econometrics, economics, forecasting, models, uncertainty.

JEL classifications: C1, C53.

*Chapter for Companion to Economic Forecasting, Michael P. Clements and David F. Hendry
(eds.), Blackwell Publishers, forthcoming. The author is a staff economist in the Division of In-
ternational Finance, Board of Governors of the Federal Reserve System, Washington, D.C. 20551
U.S.A., and may be reached on the Internet at ericsson@frb.gov. The views in this paper are
solely the responsibility of the author and should not be interpreted as reflecting the views of the
Board of Governors of the Federal Reserve System or of any other person associated with the
Federal Reserve System. I am grateful to Julia Campos, Mike Clements, Clive Granger, David Hen-
dry, Jaime Marquez, and Hayden Smith for helpful discussions and comments; to Jurgen Doornik
for providing me with a beta-test copy of GiveWin Version 2.00; and to the Bank of England
for permission to reprint the fan chart and density function in Figures 4 and 5. All numeri-
cal results were obtained with PcGive Professional Version 9: see Doornik and Hendry (1996).
Data and output listings for this paper’s empirical results are available from the author and at
www.federalreserve.gov/pubs/ifdp/2000/695/default.htm on the WorldWide Web.



1 Introduction

Forecasts of economic variables play a prominent role in business decision-making,
government policy analysis, and economic research. Forecasts often are model-based,
with forecasts from an estimated model being constructed as the model’s fitted val-
ues over a sample not used in estimation. Forecasts typically differ from the realized
outcomes, with discrepancies between forecasts and outcomes reflecting forecast un-
certainty. Depending upon the degree of forecast uncertainty, forecasts may range
from being highly informative to utterly useless for the tasks at hand.

Measures of forecast uncertainty have numerous uses in economic practice. For in-
stance, prior to the realization of outcomes, a measure of forecast uncertainty provides
an assessment of the “expected” or predicted uncertainty of the forecast errors, help-
ing to qualify the forecasts themselves and to give a picture of the expected range of
likely outcomes. That is, a measure of forecast uncertainty helps distinguish between
numerical accuracy and statistical accuracy in forecasts. Information about forecast
uncertainty is important in addition to the forecast itself. Also, once outcomes are
known, the corresponding forecast errors and the anticipated forecast uncertainty can
be used to evaluate the models from which the forecasts were generated.

Thus, this paper considers forecast uncertainty in econometric modelling, analyz-
ing at a general level the sources of uncertainty present in economic forecasting. At
the outset, a distinction is made between predictable uncertainty and unpredictable
uncertainty, with the focus of the paper being on the former. Key features of pre-
dictable forecast uncertainty are illustrated by several analytical models, including
static and dynamic models, and single-equation and multiple-equation models. Em-
pirical models of the U.S. trade account, U.K. inflation, and U.K. real national income
clarify the issues involved.

This paper is organized as follows. Section 2 reviews a taxonomy for the sources
of forecast uncertainty, partitioning those sources into ones that generate predictable
uncertainty and ones that generate unpredictable uncertainty. This section then
sketches a framework for analyzing economic forecasts. Combined, the taxonomy and
the framework guide the choice of models examined in subsequent sections. Sections 3
and 4 analyze the properties of predictable uncertainty associated with forecasts from
single-equation and multiple-equation models respectively. These sections highlight
how predictable forecast uncertainty is affected by the forecast horizon and by the
type of forecast model — whether static or dynamic, and whether a single equation
or a system. Section 5 considers various uses of predictable forecast uncertainty in
economic modelling. Section 6 concludes.

Some preliminary comments will aid following the presentation below. This pa-
per presupposes an understanding of “how economists forecast” on the level of the
discussions in Granger (1989) and Hendry and Ericsson (2001). For the most part,
the current paper restricts itself to time series and econometric models as the tools



Table 1. A Taxonomy of the Sources of Model-based Forecast Error

1. Sources of predictable uncertainty
“what we know that we don’t know”
(a) cumulation of future errors (“shocks”) to the economy
(b) inaccuracies in estimates of the forecast model’s parameters

2. Sources of unpredictable uncertainty
“what we don’t know that we don’t know”
(a) currently unknown future changes in the economy’s structure
(b) mis-specification of the forecast model
(¢) mis-measurement of the base-period data

for forecasting itself, where these models are assumed to be well-specified. Clements
and Hendry (1998), Clements and Hendry (1999), and Ericsson and Marquez (1998)
consider some of the generalizations required and implications for situations in which
the empirical forecast model is mis-specified and for which that mis-specification is
important. Wallis (1999b) inter alia discusses various ways of characterizing fore-
cast uncertainty in macroeconomic modelling. Finally — and at a very practical
level — figures, which are central to the paper’s examples, typically appear as panels
of graphs, with each graph designated by a suffix a, b, c, ..., row by row.

2 Model-based Forecasts and Forecast Errors

This section summarizes a taxonomy of forecast errors (Section 2.1) and a framework
for analyzing economic forecasts (Section 2.2). Together, these set the stage for
discussing predictable uncertainty in economic forecasting (Sections 3, 4, and 5).

2.1 A Taxonomy of Forecast Uncertainty

This subsection examines the determinants of forecast uncertainty, drawing on a tax-
onomy for the sources of model-based forecast error in Clements and Hendry (1998,
Chapter 7.3, especially Table 7.1).! Table 1 summarizes Clements and Hendry’s tax-
onomy, partitioning the sources into “what we know that we don’t know” (Items 1(a)—
1(b)) and “what we don’t know that we don’t know” (Items 2(a)-2(c)), to paraphrase
Maxine Singer (1997, p. 38). In practice, all of the listed sources are important when
analyzing forecast uncertainty.

1Strictly speaking, “forecast uncertainty” should be called “forecast error uncertainty”, as the
forecast error is what is uncertain, not the forecast. However, following common usage in the
literature, and for brevity’s sake, the phrase “forecast uncertainty” is used throughout this paper.



Items 1(a) and 1(b) are predictable in the sense that the degree of uncertainty
arising from them can be anticipated and even calculated. Item 1(a) — the cumula-
tion of future shocks to the economy — captures the uncertainty inherent to future
events. It contains shocks that would be expected to occur, given the model used
in forecasting. Item 1(b) results in “estimation uncertainty”, which is due to using
coefficient estimates in forecasting, rather than the underlying parameter values.

By contrast, Items 2(a), 2(b), and 2(c) are unpredictable and unanticipated. If
their extent and nature were known, they could be incorporated into the model and
they — or at least the uncertainty that they create — would be predictable and
predicted. Interactions between the three sources of unpredictable uncertainty can
be particularly important; see Clements and Hendry (1998, 1999). The current pa-
per focuses on the two sources of predictable uncertainty, and primarily on inherent
uncertainty — Item 1(a). That said, the sources of unpredictable uncertainty are
central to evaluating empirical models; see Section 5 below.

At a more prosaic level, forecast uncertainty depends upon the variable being
forecast, the type of model used for forecasting, the information available for con-
structing forecasts, and the economic process actually determining the variable being
forecast. On the first, some variables may be inherently more difficult to forecast
than others. For instance, imports and exports each might be highly predictable,
and good models might exist for forecasting them. The trade balance — that is, the
value of exports minus imports — might be quite difficult to forecast. In particular,
by being the difference between two relatively large quantities (exports and imports),
the trade balance is itself a relatively small quantity, whereas its forecast error reflects
the forecast errors of both imports and exports. As another example, forecasting the
level of the exchange rate might be relatively easy, in that the exchange rate in (say)
a month’s time is likely to be close to today’s exchange rate. That said, forecasting
the change in the exchange rate over the next month could be quite difficult. So, the
particular variables being forecast and the transformations applied to those variables
can affect the degree of forecast uncertainty present.

Secondly, forecast uncertainty depends upon the model that is being used for
forecasting. Some models may simply be better for forecasting than others. Also, the
particular form of the model determines what the predictable forecast uncertainty is,
as distinct from the actual forecast uncertainty that arises. As Table 1 clarifies, that
distinction exists because a model is a simplified characterization of the economy, not
a reproduction of the economy. Sometimes that characterization is a good one, and
sometimes it is not.

Thirdly, forecast uncertainty depends upon the information available for con-
structing the forecasts. This aspect is closely tied to the design of the forecast model.
More information would seem to be beneficial for forecasting, and it is so in some
situations. That said, when the model is mis-specified and there are structural breaks
in the data, use of additional information can actually increase forecast uncertainty;
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Table 2. Some Issues in Designing Economic Forecasts

Relationship Characteristics
of Interest, and DGP of the Forecast
Dimension Dimension
single equation scalar
multiple equations vector
Completeness Forecasts examined
subsystem subset
full system full set
Temporal form Forecast horizon
static one-step ahead
dynamic multi-step ahead
Distributions Distributional property
error mean (and bias)
coefficient estimates variance (and MSFE)
initial conditions other

see Clements and Hendry (1999, Chapter 2).

Fourthly, the underlying process generating the data plays a role in determining
forecast uncertainty, such as by placing limits on the minimum forecast uncertainty
obtainable from a model. That distinguishes between the predictable forecast uncer-
tainty — that is, the forecast uncertainty anticipated, given the model — and the
actual forecast uncertainty, which is the uncertainty arising from the combination of
the model with the actual behavior of the economic data.

To consider the role of these and other aspects of forecasts per se, the next sub-
section draws on Ericsson and Marquez’s (1998) framework for economic forecasting.

2.2 A Framework for Interpreting Forecasts

Ericsson and Marquez (1998) divide the mechanics of forecasting into three parts:

1. design, in which the characteristics of the forecasts and the relationship(s) of
interest are specified;

2. evaluation, wherein the forecasts and their characteristics are calculated; and

3. post-evaluation analysis, in which the forecasts are presented.
The current paper employs all three aspects. That said, design is most relevant to the
pedagogical approach taken in subsequent sections because forecast design specifies
the relationship of interest for generating the forecasts and the characteristics of the
forecasts being examined. Table 2 lists some details of forecast design.



Table 3. A Guide to the Models Examined

Model class (relationship of interest) Model
static single equation M; : ye = bz +uy
dynamic single equation My: y = by1+w
(generalized) dynamic single equation Ms: y = biy—1+boz +uy

) . Yy = bz +uy

le d t M, :

simple dynamic system 4 { W = v+,
(generalized) dynamic system Ms;: x; = Bxy_i+w;

Design itself is subject to a tripartite division: the relationship of interest, the
data generation process (DGP), and characteristics of the forecast. The relationship of
interest may be classified by its dimension (single equation versus multiple equations),
completeness (subsystem versus full system), temporal form (static versus dynamic),
and distributional assumptions (for the error, for the coefficient estimates, and for the
initial conditions). The underlying DGP may also be described in a similar fashion.
The characteristics of the forecast include its dimension (scalar versus vector), the
set of forecasts examined (subset versus full set), the forecast horizon (one-step ahead
versus multiple-steps ahead), and the distributional property of interest (such as the
forecast’s mean, bias, variance, and mean square forecast error). These characteristics
roughly parallel those for the relationship of interest and the DGP. However, even for
similar categories, the classifications need not match: e.g., a relationship might be a
multiple-equation complete system, while the forecast of interest is scalar.

Each combination of characteristics for the relationship of interest, the DGP, and
the forecasts may imply different properties for the associated predictable uncertainty.
Even the limited classification in Table 2 entails 13,824 (= (2% - 3)*) possible combi-
nations. Extensive analysis of these combinations is not feasible, nor is it necessary.
Rather, a small set of combinations serves to highlight essential interactions between
the various characteristics. Table 3 lists the five models examined in Sections 3 and 4
below: three single-equation models (one static, one dynamic, and one mixed), and
two dynamic systems (one very specific, and the other general). Three issues listed
in Table 2 (dimension, completeness, and temporal form) characterize these models.

Evaluation is the process of generating forecasts and calculating their characteris-
tics, such as their variances. For some models, evaluation is analytic. However, even
for relatively simple models, exact analytical results are not available, so calculation
of forecasts and their characteristics may involve numerical integration, analytical ap-
proximations, Monte Carlo simulation, or bootstrapping. See Ericsson and Marquez
(1998) for a summary.



Post-evaluation analysis concerns the presentation of the forecasts and their char-
acteristics, once calculated. Tables and graphs are common modes — graphs are used
extensively below. Sometimes, the properties of forecasts are summarized through a
statistic, as in the Chow (1960) statistic and the forecast-encompassing statistic; see
Chong and Hendry (1986) on the latter. The purposes of the particular forecasting
endeavor often govern the structure of post-evaluation analysis.

Before proceeding, a few comments are in order. First, the models considered are
kept very simple for expositional reasons. Even so, many features of their forecasts’
predictable uncertainty are characteristic of much more general models. Second, and
relatedly, analytical techniques exist for examining forecast uncertainty from general
linear models, and numerical techniques are available for nonlinear models if analyt-
ical solutions are unknown. Third, in order to simplify the analysis of predictable
uncertainty, the econometric model underlying the relationship of interest is typically
assumed to be the DGP. That said, Section 5 necessarily distinguishes between the
DGP and the model when interpreting tests for the latter’s constancy. Finally, the
taxonomy in Table 1 and the framework above delineate the models in Table 3 and
their forecasts’ properties, which are the focus of the remaining sections.

3 Predictable Uncertainty for Static and Dynamic
Single-equation Models

This section calculates analytically and numerically the predictable forecast uncer-
tainty for some specific static and dynamic single-equation models. The aim is to
characterize how various features listed in Table 2 affect predictable forecast uncer-
tainty. Thus, this section focuses on the effects of static versus dynamic specifications,
of forecast horizon, of parameter values, and of estimation uncertainty. The subse-
quent section (Section 4) examines forecasting from a system of equations. Straight-
forward results follow from simple assumptions, such as univariate or bivariate DGPs,
single-equation or two-equation models, first-order dynamics (at most), stationarity,
and ergodicity. Many — but not all — results carry through or generalize naturally
under weaker restrictions.

Section 3.1 considers a simple static model, Section 3.2 a simple dynamic model,
and Section 3.3 compares and contrasts these results, with further evidence from an
application to forecasting U.K. net national income. Each example proceeds peda-
gogically with the specification of the model, the forecasts, the forecast errors, and
the forecast errors’ properties.



3.1 A Static Single Equation

This subsection describes the model, model-based forecasts, forecast errors, and their
properties for a simple static single-equation model. This model serves as a benchmark
for comparison with other models, and it creates a template for the analysis of other
models. Chow (1960) discusses forecasts from this model in detail.

This first model (denoted M;) is a static single equation:

Mi:  y = by+u u ~NI0,0%) t=1,....,T,T+1,...., T+ H, (1)

where y; is the dependent variable; z; is an exogenous variable; b is an unknown
coefficient; u; is an error term, assumed to be independently and normally distributed
with a zero mean and a variance o?; ¢ is the time subscript; and the estimation and
forecast periods are [1,7T] and [T'+ 1,7 4+ H] respectively, implying T' observations
for estimation and H observations being forecast.

Several types of model-based forecasts are feasible from (1), each with specific
implications for the properties of the corresponding forecasts and forecast errors. For
expositional convenience, consider the forecasts based on least squares estimation of
the coefficient b in model Mj;:

~

9 = bz t=T+1,....T+H, (2)

where 7 is the forecast of y;, and b is the least squares estimator of b, distributed as
N(b,0?(XF, 22)~1). To highlight the distinction between the estimation period [1, T
and the forecast period [T'+1,T + H], it is helpful to rewrite (2) with a different time
subscript:

gT+h - lA)ZT—&—h hzla"'vHa (3)

where h indexes the forecast horizon.

The forecast ¢,y in (3) assumes that zp, is known. That is, in period T, the
value of z at period T+ h (i.e., h periods into the future) is known. While this
assumption is sensible for deterministic variables such as an intercept and a linear
trend, it is unjustified for many variables, particularly when h > 1. Section 3.2
explores that issue further, with z; = y;_1.

The forecast error ey, is the difference between the outcome yr.; and its fore-
cast Yrap:

erih = Yrih — Yrin R
= (bzrin + UT-&-Ah) — bzpyy
= uT+h+(b_b)ZT+h h:17"'7H7 (4)

where the second line of (4) uses the definitions of yy4, and g4y, from (1) and (3)
respectively, and the third line re-arranges terms. So, from (4), the forecast error e,
is comprised of the (unknown) future shock ur,, and (b— B)zTH” which is the error in
forecasting that arises from estimating rather than knowing the coefficient . These
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are the components 1(a) and 1(b) in Table 1, with the two components together
representing “what we know that we don’t know” about the future outcome yr 4.

Many measures exist for summarizing properties of a forecast and its correspond-
ing forecast error, including the bias of the forecast, the variance of the forecast error,
and the mean square forecast error (MSFE), which is a common summary measure
of a forecast error’s properties. The MSFE is defined as the mean of the squared
forecast error, e.g., £(e7.,) for the forecast error ep,), in (4). In general, the whole
distribution of outcomes is of interest when considering forecast uncertainty. That
said, the primary measure of forecast uncertainty in economics is the MSFE, which
simplifies to the variance of the forecast error when the forecast is unbiased. The
variance and MSFE capture important aspects of forecast uncertainty and so are
considered in much of the discussion below. Still, they have substantive limitations
as measures of forecast uncertainty; see Clements and Hendry (1993) for a detailed
analysis.

For the static model (1), the forecast error (4) has easily derivable properties. In
fact, its distribution is normal:

€T+h NN<0a02[1+z%+h(Zg:1 zg)ilD h = 17“'aH7 (5)

as follows immediately from normality and independence of {u;}, and hence the nor-
mality and independence of up.j; and b. Further results depend on the nature of z;.
For the simple case where z is an intercept (i.e., z; = 1), then (5) simplifies:

ersn ~N(0,0°[14 (1/T)]) h=1,... . H. (6)

Because the forecast gy, in (3) is unbiased for the outcome yr,;, the variance of
eryp is also the MSFE.

Figure la (the upper left graph in Figure 1) plots the MSFE for b = 0.5 as a func-
tion of the forecast horizon h, where the units are in terms of 0. Figure la contains
two calculations of the MSFE. The first is the variance in (6) for a large estimation
sample (i.e., T' = 00) and so is denoted the asymptotic MSFE (“no estimation uncer-
tainty”). From (6), the asymptotic MSFE equals o2 for all forecast horizons: hence
it is a flat line at unity in the graph. The second MSFE is the variance in (6) for a
specific estimation sample (here, T = 5) and so is denoted the finite sample MSFE
(“with estimation uncertainty”).? From (6), it numerically equals 1.2002.

In summary, for a static model with only an intercept, the predictable uncertainty
as measured by the MSFE is constant across forecast horizons. The MSFE decreases
as the estimation sample increases, tending to a positive value (the asymptotic MSFE)

2While a sample size of T = 5 seems very small, it may not be so in this context, where only
a single parameter is estimated. In unrestricted vector autoregressive models and autoregressive
distributed lag models, the number of estimated parameters per equation is commonly 10%-30% of
the sample size — similar to the percentage here.
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Figure 1: Asymptotic and finite sample mean square forecast errors (MSFEs) for
static and dynamic models with coefficient values of b = 0.5 and b = 0.7.

for a large estimation sample. For static regression models in general, the asymptotic
MSFE is invariant to the forecast horizon; in finite samples, it may depend on both
h and T' through the component involving estimation uncertainty.

3.2 A Dynamic Single Equation

This subsection describes the model, model-based forecasts, and forecast errors for a
simple dynamic model — specifically, for a univariate first-order autoregressive model.
This model has been extensively studied analytically, numerically, and empirically in
the statistical, econometric, and economic literature; see Orcutt and Winokur (1969),
Hoque, Magnus, and Pesaran (1988), and Clements and Hendry (1998, Chapter 4)
inter alia on the model’s forecast properties. This model highlights the effects of
dynamics on forecasts, and many of its forecasts’ properties generalize readily to
systems of dynamic equations with multiple lags; see Section 4.
The first-order autoregressive model (denoted My) is:

My: y = by—i+u  u ~NI0,0°) t=1,.... T, T+1,....,T+H, (7)

where b is now the unknown coefficient on the lagged dependent variable 3, ;. The
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variable z; in model M; is now y; 1, but the properties of the error term u; and the
notation are otherwise as in model M; (Section 3.1). For expositional convenience, it
is assumed that |b| < 1 and that yo ~ N(0,0%/(1 — b%)).?

The forecasts considered are those based on least squares estimation of the coef-
ficient b in model Ms:

g = by t=T+1,..., T+H, (8)

where b is the least squares estimator of the coefficient b, and is approximately dis-
tributed as N (b, (1 —b%)/T). As with (2), equation (8) may be re-indexed, resulting
in the following sequence of one-step ahead forecasts:

Uryn = [;yT+h—1 h=1,...,H. (9)

Equation (9) may be written more explicitly as:

?]T+1 = l}yT

Ur42 = byri1

?]T+h = l;yT+h—1

UrsH-—1 = l}yTJerQ

?]T+H = byT+H—1 . (10)

Equation (10) highlights a complication when forecasting from dynamic models: the
one-period ahead forecast g1 is easily constructed because yr is known, but forecasts
at longer horizons depend upon future (unknown) outcomes of y. The usual approach
is to replace those future outcomes by their forecasts. Thus, the forecast 9,2 becomes
b- (byr) and, more generally, the h-period ahead forecast g, is:

grn = Vyr h=1,... H (11)

The forecast error ey, is the difference between the outcome yr.; and its fore-
cast Jryp, as in the first line of (4), but the analytics differ from (4). To calculate the
forecast error, it is helpful first to derive yr,j in terms of the observed yr; (for i < h)
and the unobserved future shocks {ur 1, uryo,...,ur.s}. By repeated substitution
from (7), ypip is:

Yr+n = byrin—1+upqy

= b (byryn—2+ urin1) + urin

= bhyT + 2?2—01 biUT_HL_Z- . (12)

3These assumptions imply that y; is integrated of order zero and ergodic. See Banerjee, Dolado,
Galbraith, and Hendry (1993) for details.
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Thus, the forecast error ey, is:

erth = Yrih — Yrin
(bhyT + Z?:_ol biUTJrh,i) — bhyT
Z?:_Ol biuTJrhfz' + (bh — i)h)yT h=1,...,H. (13)

As with the static model, the dynamic model’s forecast error depends upon future
shocks to the economy and upon estimating rather than knowing the coefficient b.
The static and dynamic forecast errors do differ in the form of their dependence on
those two components, as comparison of (4) and (13) clarifies. First, the forecast
error of the static model depends on the future shock in period 1"+ h alone, whereas
the dynamic model’s forecast error contains a weighted cumulation of shocks from
period T+ 1 through period T+ h. Second, the static model’s forecast error depends
on the simple difference between the coefficient b and its estimate b. The dynamic
model’s forecast error depends upon the difference between powers of b and b. For
the one-period ahead forecast, the dynamic model’s forecast error is upyq + (b — 5)yT,
paralleling the static model’s forecast error of up.q + (b — (;)ZT+1. At other horizons,
forecasts errors from the two types of models differ in detail, even while each has the
two components 1(a) and 1(b) from Table 1.

From (13), the properties of the dynamic model’s forecast errors depend upon
the distribution of " b'urip_; and (0" — b"), and upon the initial condition for
forecasting, i.e., yp. While Z?:’Ol b'up,p_; is visually the most complex of the three
terms, its distribution is the most straightforward, as the future shocks {up,, ;} are
normally distributed and serially independent. The mean of Z?:_()l blup.yp_; is zero,
and its variance is the sum of the variances of its components:

bh—l

var(X 0 biupyn ) = var(upyy) + var(bupiy_ 1) + - - - + var( Upi1)

1— b2h
_ 52
The exact distribution of the forecast errors is complicated by the nonlinearity " and
by the dependence of b on y;. However, under one standard set of approximations,
(b — b") is distributed as N(0, [(Rd"1)(1 — b?)/T]), the variable yz has its uncondi-
tional distribution N(0, [¢2/(1—5%)]), and the term (b" —") and yr are independently

distributed. Using these approximations, the forecast error from the dynamic model
has a mean of (approximately) zero and a variance (approximately) equal to:

02 (1 _th) N UQ(hbhfl)Q (15)

1—0? T ’

which is also its (approximate) finite sample MSFE. The first term in (15) is the
asymptotic MSFE in (14). The second term captures the complicated dependence of

11



(b — Bh)yT on four factors: the forecast horizon h, the autoregressive coefficient b,
the estimation sample size T', and the equation error variance o2.

Figure 1b plots the asymptotic MSFE in (14) as a function of the forecast hori-
zon h. From (14), the asymptotic MSFE equals o2 for h = 1, 02 + b%*0? for h = 2,
o2 +b?0? +b'o? for h = 3, and so on, tending to 02 /(1 —b?) for large h. In Figure 1b,
b = 0.5, so these values are o2, 1.2502, 1.310%, and so on, tending to 1.3302. The
(asymptotic) predictable uncertainty increases as the forecast horizon increases; and
that predictable uncertainty is bounded over all forecast horizons.

Figure 1b also plots the (approximate) finite sample MSFE in (15). This MSFE is
larger than (or at least as large as) the asymptotic MSFE: estimation uncertainty adds
to the inherent uncertainty from the future shocks, as for the static model. The finite
sample MSFE is also bounded over all forecast horizons. As Figure 1b demonstrates,
the finite sample MSFE need not increase monotonically in the forecast horizon: as h
increases, the finite sample MSFE may decrease as well as increase. The explanation
for this non-monotonicity turns on the term o?(hb"~1)?/T in (15). That term has a
complicated dependence on the forecast horizon h, but in any case is always positive
for nonzero b and tends to zero as h becomes large. For economic and policy analysis,
non-monotonicity in the MSFE can be worrying: the forecast horizons of greatest
economic or policy interest may have the greatest (predictable) uncertainty.

To summarize, for a dynamic first-order autoregressive model, the predictable
uncertainty as measured by the MSFE tends to increase in the forecast horizon,
although estimation uncertainty may induce non-monotonicity. As with the MSFE
from the static model, the dynamic model’s MSFE decreases as the estimation sample
increases, tending to a positive value (the asymptotic MSFE) for a large estimation
sample. The MSFEs from dynamic and static models differ most notably through
their dependence (or lack thereof) on the forecast horizon. The following subsection,
along with Section 4, examines this issue in greater detail.

3.3 A Comparison

This subsection compares the predictive uncertainty from the static and dynamic
models in the two previous subsections, focusing on the roles of coefficient estimation
and the forecast horizon. To highlight the latter, two empirical models of U.K. net
national income are examined.

Figures 1a and 1b plotted the MSFEs for the static and dynamic models, evaluated
at a specific value of the regression parameter b: b = 0.5. Figures 1c and 1d plot
the comparable graphs for a different value of b: b = 0.7. For the static model
(Figure 1c), both the asymptotic and finite sample MSFEs remain unchanged. In
fact, the MSFEs for the static model are invariant to b, as (5) and (6) imply. For
the dynamic model (Figure 1d), both the asymptotic and finite sample MSFEs have
altered. Each increases more rapidly at small forecast horizons; and they tend to a
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larger MSFE for large h: to 1.9602, rather than to 1.330%. For multi-period ahead
forecasts at a given horizon h, both the asymptotic and finite sample MSFEs increase
in the coefficient b, as follows from the sum in the second line of (14) and from the
second term in (15).

Thus, the static nature of the static model over the estimation (in-sample) period
carries through to the (predictable) properties of its forecasts and forecast errors.
Time dependence characterizes the nature of the dynamic model, both in sample
and over the forecast period. These results show that characteristics of forecasts are
model dependent. Somewhat surprisingly, characteristics of forecasts are relatively
data independent.

To illustrate these results, the remainder of this subsection considers two models
— one static and the other dynamic — that generalize or expand upon the models in
Sections 3.1 and 3.2. The first is a regression model with an intercept and linear trend,
and the second is a random walk model with drift. Both have played important roles
in statistical and economic modelling; see Box and Jenkins (1970), Hendry, Pagan,
and Sargan (1984), Hendry (1995, Chapter 7), and Clements and Hendry (2000) inter
alia. For ease of exposition, uncertainty from coefficient estimation is ignored.

The first model is a static model with both an intercept and a linear trend:

Mi: oy, = by +bt4u  u ~NI0,0%) t=1,...,T,T+1,...,T+H, (16)
where b; is the intercept and b, is the coefficient on the trend ¢. The forecasts are:
Uren = bi+by-(T+h) h=1,... H, (17)
so the forecast errors are:
eryn = upyp h=1,... H, (18)

and the MSFE is:
var(eryp,) = o2 h=1,...,H. (19)

As in the simpler static model with only an intercept, the (asymptotic) MSFE does
not depend upon the forecast horizon h.

The MSFE in (19) is the “predicted” MSFE, in that o2 is the value of the MSFE,
assuming that model M} in (16) is the DGP. With some distributional assumptions
about u, the predicted MSFE can provide the basis for calculating confidence intervals
for the forecasts in (17), as is common in many econometrics software packages. In
general, the predicted MSFE differs from the actual MSFE, as when the assumed
model is not the DGP; see Clements and Hendry (2000).

To illustrate the properties of the predicted MSFE empirically, consider modelling
real net national income in the United Kingdom over 1970-1993 and forecasting it
through 2010. The data are from Ericsson, Hendry, and Prestwich (1998), and the
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Figure 2: Actual, fitted, and forecast values from the trend and random walk models of
annual real net national income for the United Kingdom (in logs), with 95% confidence
intervals for the forecasts.

model is (16), where y is the logarithm of real net national income. Figure 2a shows
the results from estimating this model and forecasting from it. The left half of Fig-
ure 2a plots actual income and the fitted values of income from the estimated model
over 1970-1993. The right half of Figure 2a plots the model’s forecasts through 2010.
The vertical bars around those forecasts represent the anticipated 95% confidence
intervals for income, which are roughly +24 (namely, plus-or-minus twice the esti-
mated equation standard error). While this model for income does include a trend,
that trend is deterministic, implying that its future values are known, as well as its
current and past values. So, in essence, this model is static, and the anticipated
forecast uncertainty is constant across different forecast horizons.
The second model is a random walk with an intercept:
M; : u; ~NI(0,0%) t=1,....,7,T+1,..., T+ H, (20)

Yy = a+ Y1 +u

where a is the intercept, and the coefficient on the lagged dependent variable is
constrained to equal unity.
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Following (11), (13), and the first two lines of (14), the h-step ahead forecasts are:

Uren = ah+ypr h=1,... H, (21)
the forecast errors are:
ervn = Sotupyn h=1,..., H, (22)
and the MSFE is:
var(eryy) = ho®* h=1,... H. (23)

The predicted MSFE increases in the forecast horizon h, and in fact increases linearly
in h, and without bound. The predicted MSFE in (23) assumes that model M} in
(20) is the DGP.

Figure 2b plots the actual, fitted, and forecast values from this random walk model
of income, using the same sample periods for estimation and forecasting as with the
static model in Figure 2a. The confidence intervals for the random walk forecasts in
Figure 2b increase very substantially as the forecast horizon itself increases, contrast-
ing with confidence intervals of fixed width in Figure 2a.

Figures 2a and 2b portray two very different patterns for the anticipated (or
predicted) forecast uncertainty, and their comparison illustrates how model choice
can affect those patterns. Exactly the same series is being modelled and forecast in
Figures 2a and 2b: only the models themselves differ. More generally, static models
often imply predicted forecast uncertainty that is time invariant or nearly so, whereas
dynamic models generally imply time-dependent predicted forecast uncertainty, often
increasing in the forecast horizon.

Models M; and M; present static and dynamic relationships as black and white,
but in practice a whole spectrum of models exists with both static and dynamic
aspects. The simplest example is:

Ms : Y = by + boz +uy (24)

where b; and by are the coefficients of lagged y and current z. Model M3 includes
models M; and Ms as special cases with b; = 0 and b, = 0 respectively. When b,
and by are both nonzero, model M3 has both dynamic and static features. Analytical
examination of model M3’s predictable forecast uncertainty is feasible but reveals
relatively little beyond what has been seen from models M; and M, separately.

This section has considered models and forecasts of individual variables only, and
not of sets of variables. Yet, economics typically is about relationships between vari-
ables, where those variables may interact with each other, either contemporaneously,
or at a lag, or both. The next section thus turns to system forecasts and their associ-
ated predictable uncertainty. In the language of Table 2, the issues are the dimension
and completeness of the relationship of interest and of the forecast.
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4 Predictable Uncertainty for Systems

In Section 3.1 above, future values of the exogenous variable z were assumed to be
known when forecasting y. This assumption is sensible for deterministic variables
such as an intercept or a linear trend. However, for most economic variables, the
variables themselves would need to be forecast when forecasting y. Doing so leads
directly to forecasting from systems of equations. This section first considers a sim-
ple but historically important two-variable system (Section 4.1) and then turns to
a vector autoregressive model (or VAR, Section 4.2), which is the basis for much
empirical forecasting in economics. As in Section 3, the focus is on the inherent pre-
dictable uncertainty. The predictable uncertainty from estimation is calculable, both
analytically and numerically, but it provides less direct insight due to the increased
complexity of the models.

4.1 A Simple Dynamic System

The static model in (1) expresses y; in terms of z; and a disturbance u;. This subsec-
tion augments that model with an equation for z; itself, so that forecasts of y can be
constructed from forecasts of z when the future values of z are unknown.

Many possible models exist for z;. One plausible determinant of z; is 3, 1: that
is, y Granger-causes z. See Granger (1969) for the development of the concept of
Granger causality, and Hendry and Mizon (1999) for reasons why Granger causality
is so prevalent in economic data.

Thus, it is of interest to consider model My:

ye = bz 4wy Uy 0 a2 0
My : ~ NI 25
) {Zt = Y1+ [Ut] ([0]7[0 w? )7 (%)

where c is the coefficient on lagged y in the equation for z; and v; is the disturbance
in that equation. The two disturbances (u; : v;) are assumed to be normally and
independently distributed, having mean zero and (respectively) variances o2 and w?.
The covariance between u; and v; is zero: that is, the equation for y is a conditional
model of y; given z;, and b is the coefficient implied by that conditioning; see Ericsson
(1992a) for an introductory exposition on conditioning and (relatedly) exogeneity.
These assumptions about normality and conditioning are convenient, but are not
central to the properties of the forecasts.

In economics, (25) is known as a cobweb model, which may characterize a market
with lags in the production process, as of agricultural commodities. In the cobweb
model, y and z are interpreted as the logs of price and quantity, respectively. Denoting
those logs as p and ¢, (25) becomes:

_ 2
MZ : P = bqt + Ut Uy ~ NI 0 ’ g 0 , ‘ (26)
G = Cpr1+ Uy 0 0 w
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The cobweb model (26) has the following interpretation. The equation for p; is
derived from a demand equation: the price p; clears the market for a given quantity
q: supplied. The value 1/b is the price elasticity of demand. The equation for ¢; is a
supply equation, capturing (for instance) how much farmers decide to produce this
year (¢ ), depending upon the price that they were able to obtain in the previous year
(pt—1). The value c¢ is the price elasticity of supply. See Tinbergen (1931) and Suits
(1955) for pivotal contributions on the cobweb model, and Henderson and Quandt
(1971, pp. 142-145) for an exposition.

Forecasting from the cobweb model generalizes on the mechanism for forecasting
from the first-order autoregressive model in Section 3.2, so we revert to the (y : z)
notation in (25). Ignoring estimation, the forecasts derive from (25) without the
disturbances, whose future values are by definition unknown:

{y”h = bz h=1,... H. (27)

Zr+h = CYr+h-1

Equation (27) may be written more explicitly as:

Y141 - bzry1
i 2141 ] | CYr
Ury2 - bzryo
| T2 | | CYr41
Ur4h R 27
| ZTth | | CYrin-1
Yr+H-1 . bzrym
i 2riH-1 | CYr+H-2
Yr+u _ bzrym (28)
i 2T H | CYr+H-1

Formally, (28) parallels (10), with the former delineating pairs of forecasts at a given
horizon h, rather than a single forecast at each horizon. All variables except yr
on the right-hand side of (28) are dated in the future and hence unknown, so an
implementable forecasting algorithm is still required.

Consider generating the forecasts for y first. Substituting the second equation of
(27) into the first obtains:

Yrin = beyryn  h=1,... H, (29)

which is identical to (9), except that the autoregressive coefficient is be, rather than
b itself. All H forecasts for y can be generated from (29), employing the approach in
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Section 3.2. The H forecasts for z follow immediately from the second line in (27):

2T+h = CYT+h-1 h = 17 R Ha (30)

using cyp as the forecast for zpry 1, and cgrop_1 (ie., with a forecast of y) as the
forecast for zp,, for h > 1.

For (25), the forecasts for y and z were conveniently solved for y in terms of
its own lag, and then for z in terms of lagged y. Expositionally, this is clearly
convenient. However, for more complicated models, a generic approach is usually
taken. Specifically, the one-period ahead (h = 1) forecasts for both y and z are
derived, as from the first block of rows in (28). The two-period ahead (h = 2) forecasts
are calculated, using the one-period ahead forecasts. The remaining forecasts of y and
z are then solved in this stepwise fashion, period by period.

4.2 A Generalized Dynamic System

The approach to forecasting in Section 4.1 suggests a generic formulation for fore-
casting from dynamic systems. The current subsection discusses that formulation and
summarizes the properties of predictable uncertainty from such systems.

In Section 4.1, the model My in (25) describes y as a function of contemporaneously
dated z. By contrast, the forecasting equation for y, in (29), solves for y in terms of
its lags by substitution with the forecasting equation for z. A similar substitution can
be applied to the model for y, i.e., to the first line of (25). Substituting the second
line of (25) into the first obtains:

Yy = bey—1 + (u, + buy)
= by +u;, (31)

where b* = be, uf = u;+bv,, and b* and uf are the reduced form coefficient and distur-
bance of the equation for y. Combining (31) with the equation for z in (25) produces
a system for (y; : z;) that depends on only their lags and a pair of disturbances:

. x x 2, 12,2 2
sz . yt - b ytfl + ut U’t ~ NI 0 : g 2+ b w b(v; : (32)
2 = CYp1+ ¢ vy 0 bw w
where the “rf” in MY indicates that the model is a reduced form. This model can be
rewritten in matrix form:

=T ] [ (e ) e

Equation (33) can be written symbolically in the form:

o

M5 Xy = BXt,1 + Wi Wi NI (0, Q) 5 (34)
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where bold characters denote vectors or matrices, as required:

Xt = Yt ] ,
L Zt
B — b* 0 ] |
| ¢ 0
w, = | ] , and
L vt
o 4+ b2w?  bw?
Q = )
I bw? w? ] (35)

Equation (34) is the system analog of the first-order univariate autoregressive model
in equation (7), and the algebra for constructing forecasts from (7) generalizes directly
to constructing forecasts from (34); see Clements and Hendry (1998).

Equation (34) provides a remarkably general framework for forecasting, hence
its designation as a separate model — model Ms. The elements in the feedback
matrix B may take a wide range of values, and the covariance matrix €2 need be
only symmetric, positive semi-definite. Equation (34) includes models with multiple
lags, as those lags may be “stacked” in x;, with a given lag of a variable (in x;)
equal to (and defined as) the first lag of that variable with one shorter lag (i.e., in
x; 1) plus a disturbance that is identically zero. Equation (34) also may include
an intercept (i.e., a variable equal to just its own lag, and with a starting value of
unity) and a linear trend (i.e., a variable equal to its own lag plus an intercept).
More generally, (34) may include exogenous variables whose future values are known
through similar deterministic relations. Alternatively, (34) may be viewed as a special
case of a dynamic system with exogenous variables, when those exogenous variables
are restricted to have coefficients of zero. These two complementary views reflect
the two generic systems for forecasting examined in the literature; see Baillie (1979)
and Schmidt (1974), who derive and discuss the properties of forecast errors from
these two systems. Clements and Hendry (1998, 1999) review properties of forecasts
from systems and provide extensions; Watson (1994) summarizes general properties
of VARs.

Several features characterize the predictable uncertainty associated with forecasts
using the univariate first-order autoregressive model (7). Those features also charac-
terize the predictable uncertainty associated with forecasts using the vector autore-
gressive model (34). Specifically, the MSFE depends upon the forecast horizon h and
the feedback matrix B. The asymptotic MSFE increases in h, and the finite sample
MSFE may decrease in h.

Some complications are specific to systems. For instance, linear transformations
of x may change the associated predictable uncertainty. Forecast errors for y and z
in (25) may each have a high degree of predictable uncertainty, yet those for y — z
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may have little (predictable) uncertainty, as when y and z are strongly cointegrated,
with cointegrating vector (41 : —1). Conversely, y and z may be highly predictable,
whereas y — z may be very uncertain, as with the trade balance, which is constructed
from the difference between exports and imports. See Campos (1992) and Clements
and Hendry (1998) for extensive discussions on transformations of forecasts, and some
applications.

5 Uses of Calculated Predictable Uncertainty

Calculations of predictable uncertainty serve important roles, both statistically and
economically. This section illustrates these roles through a few examples, including
forecast confidence intervals, tests of constancy, and fan charts in policy.

Statistically, calculations of predictable uncertainty are the basis for forecast confi-
dence intervals, and for tests of a model’s constancy over time. Prior to the realization
of outcomes, confidence intervals provide an assessment of “expected” or predicted
forecast uncertainty, helping to qualify the forecasts themselves and to give a pic-
ture of the expected range of likely outcomes. That is, information about forecast
uncertainty is important in addition to the forecast itself.

In Section 3.3, the confidence intervals in Figure 2 for both the trend model and
the random walk model were obtained from formulas for the associated predictable
uncertainty. Even in more complicated models, predictable uncertainty still may
be computed, as in Marquez and Ericsson (1993), who examine the one-period and
multiple-period ahead forecasts from various nonlinear, multiple-equation models of
the U.S. trade balance. Figure 3 plots the forecasts, outcomes, and 95% forecast
confidence intervals for two of their models, both one quarter ahead and multiple
quarters ahead.* The forecast period is 1985Q1-1987Q4. For the first, near-static
model, the width of the confidence interval varies only slightly with the forecast
horizon. For the second, highly dynamic model, the confidence interval depends
strongly upon the forecast horizon, with much greater forecast uncertainty at longer
horizons. The multi-period ahead confidence intervals for these two models parallel in
character the confidence intervals in Figure 2 for the trend and random walk models.
In particular, the fan shape of the confidence intervals for the second trade model
and the random walk model suggests the very dynamic nature of the variables being
forecast and of the models being used to forecast it.

Predictable forecast uncertainty also can help evaluate the models from which
the forecasts were generated. For instance, if the forecast errors lie well outside the
range that was anticipated, that indicates specification problems with the model.
Predictable forecast uncertainty thus permits assessing how important unpredictable
forecast uncertainty is in contributing to the realized forecast error — that is, in

In the notation of Marquez and Ericsson (1993), the models are Models M1 and M5.
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Figure 3: Actual and forecast values from two models of the real U.S. trade balance,
both one quarter and multiple quarters ahead, with 95% confidence intervals for the
forecasts.

determining the empirical role of Items 2(a)-2(c) in the forecast error taxonomy of
Table 1. Specifically, Items 2(a)-2(c) reflect discrepancies between the model used for
forecasting and the actual behavior of the economy, with Item 2(a) typically being
primarily responsible for forecast failure in econometric models.

Formal statistical analysis of model-based forecasts in light of predictable forecast
uncertainty — through tests of parameter constancy — has been central to evalu-
ating and improving empirical economic models. Chow (1960) provides the initial
development of these evaluation techniques, building on Fisher (1922), with Hansen
(1992a, 1992b) and Andrews (1993) constructing constancy tests with an unknown
breakpoint. Goldfeld (1973, 1976), Judd and Scadding (1982), and Baba, Hendry,
and Starr (1992) examine constancy tests in their central role in modelling the de-
mand for money. At a more general level, constancy tests are key to evaluating the
Lucas (1976) critique, with constancy tests providing the primary empirical basis for
refuting the Lucas critique; see Hendry (1988), Engle and Hendry (1993), Ericsson
and Irons (1995), and Hendry (2000). Predictable forecast uncertainty is also central
to calculating forecast encompassing test statistics; see Chong and Hendry (1986),
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Granger (1989), Ericsson (1992b), Ericsson and Marquez (1993), and West (1996).

Even as a statistical tool, measures of predictable forecast uncertainty have im-
mediate economic implications. For instance, if the forecast uncertainty for a certain
variable is viewed as being considerable, insurance might be desirable as a mechanism
for protecting against untoward outcomes; and different types of insurance might be
available. Also, forecast uncertainty is inherent to many economic activities, such
as business investment, with the possibility of large successes often being an attrac-
tion of such investment. Forecast uncertainty is ubiquitous in economics, and many
consequences follow from the presence and extent of that uncertainty.

Predictable forecast uncertainty has recently taken a visible role in the economic
policy arena — in the Bank of England’s “fan charts”. For the last few years, the
Bank of England has published its assessment of (predictable) forecast uncertainty
through fan charts for its forecasts of both inflation and GDP growth; see the Bank
of England (2000, Overview and Section 6). Figure 4 reproduces the Bank’s fan chart
(their Chart 6.2, on p. 64) for its November 2000 forecast of inflation. The Bank
describes this graph as follows.

The fan chart depicting the probability distribution for inflation is rather
like a contour map. At any given point during the forecast period, the
depth of shading represents the height of the probability density function
over a range of outcomes for inflation. The darkest band includes the
central (single most likely) projection and covers 10% of the probability.
Each successive pair of bands is drawn to cover a further 10% of the
probability, until 90% of the probability distribution is covered. The bands
widen as the time horizon is extended, indicating increasing uncertainty
about outcomes. Bank of England (2000, Chart 6.2, p. 64)

This fan chart summarizes the Bank’s predicted or anticipated probability distribution
of inflation outcomes. The Bank of England (2000, Chart 6.4, p. 66) also publishes the
density function corresponding to that distribution, which appears in Figure 5. From
Figure 5, the Bank’s 90% confidence interval for annual inflation in the twelve months
2002Q1-2002Q4 is from about 1.2% to 3.9%, as indicated by the shaded area in the
graph. Outcomes for inflation could occur outside that range, but the probability of
those outcomes is believed to be relatively small.

Improvements to the Bank’s fan charts may be feasible; see Wallis (1999a). In
the future, economists also could examine whether the Bank of England’s published
confidence bands reflect what happened in the data, or if those bands were too narrow
or too wide. Such an analysis could benefit the construction of future monetary policy.
Thus, the statistical and economic aspects of predictable uncertainty are often closely
intertwined.
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Figure 4: The Bank of England’s November 2000 fan chart for projections of RPIX
inflation.
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Figure 5: The November 2000 projection by the Bank of England for the probability
density of RPIX inflation in the year to 2002Q4.
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6 Conclusions

Forecast uncertainty reflects the dispersion of possible outcomes relative to the fore-
cast being made. Forecast uncertainty arises both from “what we don’t know that
we don’t know” and from “what we know that we don’t know”. In econometric
models, forecast uncertainty from the latter — predictable forecast uncertainty —
can be calculated numerically. Forecast uncertainty also depends upon the variable
being forecast, the type of model used for forecasting, the economic process actually
determining the variable being forecast, and the forecast horizon.

Calculation of predictable forecast uncertainty has numerous uses in economic
practice. First, prior to the realization of outcomes, it helps in qualifying the fore-
casts themselves and in giving a picture of the expected range of likely outcomes.
Information about forecast uncertainty is important in addition to the forecast itself,
as with the Bank of England’s fan charts. Measures of forecast uncertainty also pro-
vide economists with a tool for assessing the importance of unmodelled features of
the economy, both directly through the calculated forecast uncertainty, and indirectly
through comparison of that calculated uncertainty with the realized distribution of
forecast errors.
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