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1 Introduction

Job search models have always assumed that people behave optimally. This assumption

leads to the existence of a reservation wage such that any wage offer above it is accepted and any

offer below it is rejected. Efforts to determine that people had a reservation wage have been

inconclusive (see Lancaster and Chesher (1983)). Despite the lack of evidence in its favor, the

optimally determined reservation wage has survived due to its simplicity, its appeal to basic

intuition, and the form it gives to the choice of the unemployed person. As job search models

have progressed, therefore, the question has turned away from whether people have reservation

wages and focused more on determining the definition of optimality that people searching for a

job use when choosing among various offers.

Unfortunately, testing reservation wages or definitions of optimality to determine which one

is the most accurate representation of reality is difficult, if not impossible, using classical

techniques. However, using Bayesian methods and current simulation techniques, it is now

possible to determine which, among a competing set of definitions of optimality, is preferred.

Recent work done by Lancaster (1997), Kiefer and Steel (1998), and Schindler (2000) showed

that the application of Bayesian techniques to job search models was feasible under a broad

range of circumstances, and each paper presented the necessary algorithms for sampling from the

posterior distribution of a job search model. Following up on that work are papers by Koop

(1999), Koop and Poirier (1999), and Schindler (2001), in which Bayesian techniques are used to

compare different job search models.

This paper demonstrates how Bayesian techniques can be used to compare different

definitions of optimality and illustrates how the choice of prior distribution can be used to aid in

the analysis. Specifically, the paper uses the simplest one-sided job search model to examine two
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definitions of optimality -- the traditional income-maximizing definition and an approximation to

the traditional definition-- and a simple alternative.1 The most important part of the paper,

however, is the specification of the prior distributions. Three types of priors are used. The first

type, natural conjugate priors, is used to represent hypothetical samples of data. This allows us to

look at the definitions of optimality in different pre-selected job market scenarios, even when we

do not have data from a particular scenario. The second type of prior used is a literature-based

prior. These are priors constructed from findings in the literature, and hence they represent, in

some ways, the best thinking about the various parameters to which priors are assigned. These

priors are used to combat the notion that prior choice is completely subjective. Finally,

noninformative priors are used in some situations to represent ignorance over the values of the

parameters and to “let the data speak for themselves.”

With the definitions of optimality and the priors specified, samples are drawn from the

posterior distribution of each combination of optimality definition and prior, and Bayes factors

are calculated. The Bayes factors are then interpreted for their evidence for or against the various

definitions of optimality in the scenarios represented by the prior distributions.

The results show that the economic conditions in which job search takes place, can affect the

definition of optimality that is preferred, and this suggests that people who are looking for a job

behave differently in different economic conditions. Interestingly, the traditional income-

maximizing definition of optimality is seldom preferred to the other definitions. However, when

literature-based priors are used, the evidence against the traditional definition is weaker. The

                                                                
1 The results obtained using a simple one-sided model are suggestive of what would be found if the techniques were
applied to modern search models. Koop (1998) and Schindler (2001) investigate more complex job search models
using Bayesian techniques.
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results illustrate the usefulness of Bayesian techniques and the choice of prior distribution for

analyzing job search models.

In the next section of the paper, the simple job search model used throughout this paper is

described, and the definitions of optimality that will be compared are also outlined. In the third

section, the basic Bayesian model and the construction of the various types of prior distributions

are discussed. Section four describes the methodology used to compare the definitions of

optimality. Section five discusses the results of the comparisons, and the final section concludes.

2 The Basic Job Search Model

The goal of the basic job search model is to model the process that an unemployed worker

faces when attempting to get a job. We begin with a few simple assumptions. First, wage offers,

w, come from a distribution known to the worker, call it f(w), although the worker is not assumed

to know which firms are offering which wages. The model we will use is an infinite horizon

model, without layoffs or quits. Hence, once a worker accepts a job, they hold that job forever.

On the other hand, if they do not accept a job in a given period, they still have an infinite number

of periods in which to receive and accept an offer. So the model we are using is stationary. Each

period that the worker is unemployed, we assume that they receive income, b, which can be

considered to be unemployment benefits net of search costs.2 In addition, we will assume that the

worker discounts the future at a rate of β∈[0,1). There is, however, no guarantee that a worker

will receive a job offer in each period, so let p be the probability that an offer is received in any

given period.

2.1 Optimal Reservation Wage

                                                                
2 Unemployment benefits net of search costs, b, is set equal to 1 throughout this paper. Changing this has little effect
on the results unless b is set equal to a value close to the minimum accepted wage in the sample.



4

Using these basic assumptions allows us to derive the optimal search strategy of an

unemployed worker who attempts to maximize the expected present value of their future income

stream. The result is a reservation wage strategy, whereby the job searcher accepts any wage

above the reservation wage, call it ξ, and rejects any offer below it. If we make the additional

assumption that wages are distributed according to the exponential distribution with parameter, γ,

an implicit equation for the optimal reservation wage, ξopt, can be obtained (see Appendix A for a

derivation):3
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Numerically solving this equation for the reservation wage results in what we will refer to as the

optimal reservation wage, and we will refer to a job searcher who has this reservation wage as

behaving according to an exactly optimal strategy.

2.2 Approximately Optimal Reservation Wage

Some researchers have been critical of the definition of the optimal reservation wage and, in

fact, few people believe that people behave according to the exact definition of optimality given

above. However, within the context of the simple job search model, few alternatives have been

proposed.

There are, of course, many reasons why the exact definition may fail in practice, including

the job searcher’s ignorance over the values of the specific parameters, its assumption of worker

homogeneity, and its assumptions about the function that searchers attempt to maximize.

                                                                
3 Because the focus of this paper is on illustrating the Bayesian techniques and the use of different types of priors,
the use of this simple wage offer distribution is not seen as a problem. The exponential distribution is used for the
simplification of calculation, but the techniques illustrated in this paper do not rely upon its use.
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Therefore, since we are testing the imposition of optimality in job search models, it makes sense

to include some definition of optimality that acknowledges these weaknesses in its definition.

One way of doing this is to take the exact reservation wage and add a random error term to it.

The error term would represent the unknown misspecification of the reservation wage equation.

The new reservation wage that results would represent a wage that is approximately optimal

according to the implicit equation, but which tries to account for the fact that the equation is too

simple to account for all of the considerations of a worker searching for a job. Such an

approximately optimal reservation wage would be represented by:
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Many different values of σ could be chosen to represent different levels of departure from exact

optimality. For the purposes of this paper, two different levels of σ were chosen. For every

model (i.e., for each choice of prior distribution), the first value of σ chosen is set equal to one-

third the standard deviation of the distribution of the reservation wage when the reservation wage

is determined exactly. The second level of σ was then set equal to two-thirds of the standard

deviation of the distribution of the reservation wage when the reservation wage is determined

exactly. 4

2.3 Simple Alternative Reservation Wage

                                                                
4 Setting σ equal to values larger than these proved redundant, as the results were not affected.
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The simple alternative, against which the exact and approximate definitions of optimality

will be compared, does not propose a new definition of optimality and it does not alter the

previous definition. Rather, the simple alternative is an estimate of the reservation wage obtained

from the data. The estimate used will be the lowest accepted wage offer, wmin, and will be

denoted ξ  simp. 5 If we assume that people are homogeneous and that they have a reservation

wage, then this alternative is like the alternative hypothesis in a classical hypothesis test. In the

classical sense, if the null hypothesis were that ξ = ξopt or ξ = ξaopt, then this could be

represented as the alternative ξ ≠ ξopt or ξ ≠ ξaopt, respectively.

3 The Bayesian Model

Since the techniques used to compare the different definitions of optimality are Bayesian,

we must specify the likelihood and the prior distributions that will be used. Given the likelihood

function and the prior, then using Bayes’ rule we can determine the posterior, ( )yp θ , as follows:
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y is the data, θ  is the parameter set, l (θ) is the likelihood, and p(θ) is the prior distribution.

3.1 Likelihood Function

The assumptions of the basic job search model outlined earlier lead to the following

likelihood function: 6

( ) ( ) ( ) ( )ξγγξγξ γ −−−−− −= wNNNTN
epepewt 1,l ,

where N is the sample size, T is the sum of the unemployment durations for all individuals in the

sample, w  is the average accepted wage, and ξ is the reservation wage, which could be ξ opt, ξ

                                                                
5 For discussion of this estimate, see Christensen and Kiefer (1996).
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aopt, or ξ simp, depending upon which optimality assumption is used. For this paper, the data

consists of the wage that was eventually accepted by the unemployed worker, w, and the duration

of the completed spell of unemployment, t. The data used in this paper come from Devine

(1988), where N = 44, T = 746 weeks, w  = $3.67, and wmin = $2.18.7

3.2 Prior Distributions8

The remaining part of the Bayesian model is a description of the prior distributions used.

Much of the contribution of this paper lies in the prior distributions that are constructed and the

way in which they are used in the analysis. There will be three types of prior distributions used:

noninformative, natural conjugate, and literature-based. Each of these types is used with a

specific purpose in mind, as explained below.

3.2.1 Noninformative Priors

Noninformative priors, also called ignorance priors, are used when the researcher does not

wish to incorporate any prior knowledge of certain parameters into the model. All possible

values of the parameters are considered equally likely. These priors are used to “let the data

speak for themselves.” Noninformative priors are used in this paper to represent a baseline model

against which other models can be compared. This is particularly important because Bayesian

analysis is frequently criticized for the subjectivity of the choice of prior. Using a noninformative

prior gives results that are asymptotically equivalent to likelihood results, and hence less open to

criticism by researchers who prefer the classical approach. 9

                                                                                                                                                                                                                
6 For a derivation of the likelihood function, see Appendix B.
7 Since this paper is focused on illustrating the uses of the Bayesian techniques and different priors, and because
Bayesian econometrics do not suffer the same small-sample problems that classical econometrics do, this data set is
useful. Its key advantage is the homogeneity of the small sample. For more details, see Devine (1988).
8 See Appendix C for a complete accounting of the form of each type of prior under the various optimality
assumptions, as well as listings of the posteriors.
9 Noninformative priors are not without controversy. Even amongst Bayesians there is debate about their use. For a
discussion of these issues, see Poirier (1995).
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3.2.2 Natural Conjugate Priors

The heart of this paper lies in the use of natural conjugate priors. These priors are unique

among types of prior distributions because the information they contain can be interpreted as

arising from a hypothetical sample of data. This is due to the fact that the functional form of the

prior is identical to that of the likelihood function. 10 Thus, natural conjugate priors can be used to

conduct experiments along the lines of, e.g., “What if the data indicated that the average

unemployment durations was 10 weeks?” or “What if the data indicated that the average

accepted wage was only $2.50?” or some combination of statements about the data.

For the purpose of this paper, the natural conjugate priors will look like:

( ) ( ) ( ) ( )
0

000000

min  ,1,,, wyepepepp wNNNTN
<<−∝ −−−−− ξγξγβ ξγγξγξ ,11

where ξ = ξ opt, ξ aopt, or ξ simp, depending upon which type of optimality is being examined. The

parameters of the natural conjugate prior, called hyperparameters, are N0, T0, 0w , and 
0minw . N0

has been fixed at 200 and can be interpreted as the sample size of the hypothetical data set. The

size was chosen to be significantly larger than the actual data used. That gives the prior

distribution most of the weight in the posterior distribution, and hence the ability to influence the

results. That means that we can look at different scenarios and be assured that we are seeing the

effects of the scenarios and not the data, when we look at the posterior results. In addition to

fixing N0, 
0minw  has been fixed at $2.18, the same value as the minimum accepted wage, minw , in

the data sample used.12

                                                                
10 For a discussion of natural conjugate priors and their interpretation, see Poirier (1995).
11 Note that if the optimal or approximately optimal definitions are being examined then ξ should not appear as a
random variable in the joint distribution because it is a function of the other parameters.
12 Multiple values could have been chosen for 

0minw , but doing so has little value because choosing 
0minw  > minw

has no effect on results. This is because only the minimum of the two values appears in the posterior. Choosing a
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The other two hyperparameters, T0 and 0w , are each allowed to range over five possible

values, giving 25 different natural conjugate priors. This allows us to determine if certain job

market conditions lead us to prefer one definition of optimality to another. The values of T0 and

0w  chosen for the natural conjugate priors are T0 = (200, 2000, 4000, 6000, 8000), and 0w  =

(2.50, 3.00, 3.50, 4.00, 4.50). The values of T0 correspond to average unemployment durations of

1 week, 10 weeks, 20 weeks, 30 weeks, and 40 weeks, respectively. The data set used indicates

an average unemployment duration of about 17 weeks and an average accepted wage of $3.67.

Hence, the range covered by the natural conjugate priors is considerable relative to the data set.13

3.2.3 Literature-Based Priors

One of the primary criticisms of Bayesian analysis centers on the subjectivity of the choice

of prior distributions. Someone who disagrees with the investigator’s choice of prior

distributions, for example, may question a particular set of results. Frequently, an investigator

using Bayesian techniques is asked to justify their choice of prior distribution as reasonable.

Natural conjugate priors are typically good priors for their convenience and tractability, but some

critics may not think the hyperparameters of the natural conjugate prior distribution that were

chosen were reasonable. In order to attempt to answer this criticism, we have used a wide range

of natural conjugate priors and, in addition, we have constructed a set of prior distributions for

the parameters, which we refer to as literature-based priors. These priors were constructed by

collecting results from papers in the job search literature. In that sense, we have taken advantage

of the accumulated knowledge and results to date to construct prior distributions. While priors

                                                                                                                                                                                                                

value of 
0minw  < minw  makes little sense unless you have a strong belief that wage offers are substantially above

the reservation wage, thus making the minimum accepted wage offer a poor estimate of the reservation wage.
13 Models using other values of T0 and 0w  did not yield results that were significantly different, and hence results
from those models are not presented.
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are typically taken to represent the prior beliefs of the investigator, the literature-based priors

constructed here could be interpreted as reflecting the collective prior beliefs of those who have

contributed to the job search literature.

In particular, literature-based priors have been constructed for the discount factor and the

probability of receiving an offer. Literature-based priors have not been constructed for the mean

of the wage offer arrival distribution or the reservation wage. Doing so would be almost

impossible due to the fact that those parameters depend very heavily on the particular data set

used. The other parameters are more universal (though admittedly not completely so), in that

they tend to have very similar values across a wide variety of data sets and are more independent

over time. The values of the discount factor and the offer probability that were collected are

presented in Table 1. Notes on the particulars of the data sets from which they were taken are

also included with the table.14 Having used the literature to get reasonable values for these two

parameters, it was still necessary to choose a distributional form with which to represent them.

The obvious choice for the prior distribution of the discount factor, β , is the beta

distribution, because of the distribution’s support. Thus, we assume β  ~ Beta(a,b). Two things,

then, need to be determined: the parameters of the beta distribution and the quality of the fit of

the beta distribution to the prior beliefs collected from the literature. The parameters of the beta

distribution are determined using the mean and standard deviation of the selected sample values.

These are 0.98 and 0.03 respectively. Using the formulas for the mean and standard deviation of

                                                                
14 Attempts were made to take parameter values from papers that used data sets similar to the one used in this paper,
although perhaps not with complete success. The criteria for selecting values are, admittedly, subjective.
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a beta distribution, it is easy to determine that a = 12.2 and b = 0.2.15 The question, then, is how

well does Beta(12.2, 0.2) fit the data that were collected. The data is graphed in Figure 1 along

with the beta distribution with the parameters just determined. Visual inspection shows that the

two distributions have roughly the same shape, and we know that they have the same mean and

variance. Hence, this looks like a good fit, at least for the purposes of this paper. So, overall this

appears to be an acceptable choice for the prior distribution of the discount factor.

For the probability of receiving an offer, p, we again used a beta distribution to represent the

prior beliefs. The mean of the values selected from the job search literature was 0.13, and the

standard deviation was 0.22. The values of the parameters of the beta distribution that matched

these two moments are a = 0.2 and b = 1.2. The comparison of the collected values and the

appropriate beta distribution appear in Figure 2. Again, the fitted distribution fits the sampled

data reasonably well. The literature-based priors constructed for β  and p as just described will be

referred to hereafter as the LB-1 priors.

While the literature that was sampled in order to get these prior distributions was quite

extensive, some may still object that a particular value that they feel is relevant has been

assigned a very low probability. To combat this objection, another set of priors have been

constructed that are centered around the same mean as the literature-based priors, but which have

a greater variance, and hence give greater probability to other possible values of the discount

factor and the offer probability.

                                                                

15 The formula for the mean of a beta distribution with parameters a and b, is: 
ba

a

+
. The formula for the standard

deviation is : 
( )( )2

1 baba

ab

+++
.
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In order to construct these additional literature-based priors, the parameters of the beta

distribution were chosen to match the mean of the values selected from the literature, but not the

standard deviation. For each parameter, two alternative standard deviation values were used.

These standard deviations were chosen to be larger than the standard deviation obtained by

sampling from the literature, but not so large as to make the beta distribution bimodal. 16 So, the

first alternative was chosen roughly half way between the standard deviation of the values

sampled from the literature and the standard deviation that would cause the prior distribution to

be bimodal. The second alternative standard deviation was chosen to be as large as possible, with

the constraint that the beta distribution remain unimodal for the discount factor prior. For the

offer probability, p, the second alternative standard deviation used causes the prior distribution to

be slightly bimodal. This was done because a number of researchers have found very high values

for the offer probability. This suggests that the collective prior distribution may be bimodal. The

literature-based priors constructed with these alternative standard deviations will be referred to

hereafter as the LB-2 and LB-3 priors, where LB-3 corresponds to the prior with the largest

standard deviation. Table 2 summarizes the literature-based prior distributions.

The literature-based priors will obviously all have the same basic functional form, but will

differ in the values of the parameters chosen. For the models in which the optimal or

approximately optimal definitions are used, the form of the prior distribution will be:

( ) ( ) ( ) .11,, 11111 1 −−−−−− −−∝
− fedcba epppp ββγγβ γ

For the models in which the simple alternative is used, the form of the prior will be:17

                                                                
16 In order for a beta distribution to be unimodal, one or both of the parameters defining the distribution must be
greater than or equal to 1.
17 Because ξ is a parameter in the simple alternative model, it must be assigned a prior distribution. The prior
distribution chosen comes from Kiefer and Steel (1998). It has the advantage of being easy to work with and having
a shape that is intuitively appealing.
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The values of a, b, c, d, e, and f for the each of the literature-based priors can be found in Table

3.

4 Methodology

In order to compare the definitions of optimality for the job search model, we will calculate

Bayes factors. The Bayes factor is defined as the ratio of the marginalized likelihood function of

two models. In order to calculate the Bayes factors, a sample from the posterior distribution is

required. A number of different algorithms can be used to simulate from the posterior

distributions of job search models, including those used in Lancaster (1997), Kiefer and Steel

(1998), Koop (1998), and Schindler (2000). The algorithm used in this paper consists of a Gibbs

sampler with a rejection sampler built into the iterations to sample from conditional distributions

from which observations are not easily drawn. The algorithm is described in detail in Schindler

(2000).

Once a sample has been drawn, calculating estimates of the marginalized likelihood is

straightforward, and there are several formulas that can be used. The formula for the

marginalized likelihood used in this paper is given by:
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where H is the model for which you are calculating the marginalized likelihood and θ are the

simulated parameter values from the posterior distribution. 18 The Bayes factor is then calculated

as the ratio of the estimates of the marginalized likelihood for the two models.

                                                                
18 More about the various ways to calculate marginalized likelihoods and details about this method can be found in
Kass and Raftery (1995).
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Using Bayes factors to compare models is typically very straightforward. If the Bayes factor

is greater than one, that indicates that the model in the numerator is preferred to the one in the

denominator for the data sample used.19 Using Bayes factors to compare different definitions of

optimality in job search models, however, is made more difficult by the fact that the likelihood

function is not altered by the different definitions of optimality. This does not mean that we

cannot use Bayes factors to compare the models. It does, however, mean that understanding why

one definition of optimality is preferred to another is not as straightforward. The key is to focus

on the non-identified parameters of the model. For our model there is only one non-identified

parameter, the discount factor. Note that the discount factor does not appear in the likelihood

function, and hence the data does not tell us anything directly about it. However, the reservation

wage does appear in the likelihood function, and our beliefs about it are updated based upon

information in the data. Since the reservation wage is a function of the discount factor, we can

learn about the discount factor indirectly through the posterior distribution of the reservation

wage.20 Furthermore, since the likelihood function will be the same regardless of the definition

of optimality that we apply, the only difference between the various models will be the way in

which the reservation wage is determined. Koop and Poirier (2000) explain how to interpret

Bayes factors for comparing models with different definitions of optimality. 21 They point out that

given any γ, p, and ξ, you can solve for the value of the discount factor that ensures that the

reservation wage was determined according to a given definition of optimality. Hence, every

reservation wage can be considered optimal given the right discount factor. The question, then, is

                                                                
19 In fact, a Bayes factor greater than one is typically not considered enough evidence in favor of either model.
Scales have been suggested for how large a Bayes factor should be before one model is truly to be preferred to
another. In this paper, Jeffrey’s scale will be made use of, although it should be noted that the results presented in
this paper do not depend crucially on this choice of scale. For details, see Jeffrey (1961).
20 This type of indirect learning about non-identified parameters is the subject of Poirier (1998).
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whether the choice of discount factor required to make the reservation wage optimal is a

reasonable one. Clearly a discount factor greater than one or less than zero would be

unreasonable. However, we can say even more because “reasonable”, in the Bayesian sense, is

determined in relation to our priors. So, if the discount factors implied by the other parameters lie

far out in the tail of the prior distribution, that value would be considered “unreasonable”. The

models whose implied discount factors are more unreasonable relative to their priors would most

likely not be chosen by Bayes factors. Therefore, it should be kept in mind that when the Bayes

factors prefer one model over another, this can be interpreted in terms of the implications of the

reservation wage distribution for the discount factors and how those implications compare to the

prior beliefs for the discount factors.

5 Comparing Definitions of Optimality

While there are only four variations of optimality examined in this paper (exact, two levels

of approximation, and the simple alternative), there are in fact a total of 116 models simulated.

This is because four each type of optimality, 29 different prior distributions are used (25 natural

conjugate, three literature-based, and one non-informative). From each model, a sample of size

2500 was drawn, which was used to calculate the estimate of the marginalized likelihood. Tables

4-7 provide summaries on the samples drawn from each model. Each table contains entries for

only one of the four variations of optimality. Within each table, there are entries for each of the

twenty-nine types of priors used. Tables 8-13 contain the Bayes factors that can be used to

compare the models. Each of the tables contains the Bayes factors used to compare models that

impose a particular type of optimality against models that impose a different type of optimality.

In each table, a Bayes factor greater than one indicates evidence in favor of the model listed first

                                                                                                                                                                                                                
21 We alter their discussion slightly since the model they used also included a risk aversion coefficient. See Koop
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in the table’s title (e.g., A Bayes factor of 59 in the table titled, “Bayes Factors – Simple

Alternative versus Exact Optimality” is evidence in favor of the simple alternative model.).

5.1 Comparing Exact Optimality and the Simple Alternative

The Bayes factors for this comparison are in Table 8. Looking first at the natural conjugate

priors, the evidence against the exact optimality definition is quite compelling. All told, 22 of the

25 comparisons made using natural conjugate priors indicate that the simple alternative model is

preferred. As mentioned above, that means that the posterior distribution of the discount factor is

more reasonable under the simple alternative, then under exact optimality, given the prior beliefs

about the distribution. The exceptions to this preference for the alternative model are found in the

lower left-hand corner of the table. Here there are three models, each with a combination of high

wages and short unemployment durations, which show a preference for the exactly optimal

models. Hence, in economic scenarios that represent good conditions for job searchers, there is a

notable preference for the exactly optimal model.

The preference for the exactly optimal model in the scenarios that represent the best

conditions for job searchers suggests that perhaps in those situations people who are searching

for jobs are more likely to behave like lifetime income maximizers. One could argue that when

conditions are bad, a job searcher is more willing to accept any job that is offered, perhaps at a

wage below the one that will maximize expected future income. This could be done in the hopes

that conditions would improve later, and a new job could be found. When conditions are good,

however, the job searcher can hold out for the income-maximizing offer, knowing that

conditions are favorable. In fact, there are many possible explanations, but most of them lie

outside the scope of the simple model.

                                                                                                                                                                                                                
and Poirier (2000) for details.
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When we look at the literature-based priors, the results are less overwhelming. The Bayes

factor in favor of the simple alternative optimality for the LB-1 prior is just 15.8. While this is

still strong evidence, according to the Jeffrey’s scale, it indicates that an exactly optimal model

that uses reasonably chosen priors may be closer to the truth than one whose priors are chosen by

different means. The LB-2 and LB-3 priors, however, quickly revert to decisive evidence in

favor of the simple alternative model.

5.2 Comparing Approximate Optimality and the Simple Alternative

When we compare the approximately optimal models to the simple alternative, a similar

pattern emerges. Looking at the natural conjugate priors, the two levels of approximate

optimality performed similarly to each other, but with some slight differences. We again find that

the simple alternative is preferred in the majority of the cases, 23 out of 25 for the first level of

approximation and 24 out of 25 for the second level of approximation. As with exact optimality,

the exceptions to the preference for the simple alternative are the models found in the lower left-

hand corner of the table, where wages are high and unemployment durations are low.

For the literature-based priors, the preference is not as clear. There is some evidence that the

simple alternative model is more likely than the first level of approximate optimality for the LB-

1 prior, but the Bayes factor is only 2.3. This is not very strong evidence. The second level of

approximate optimality, however, is clearly not preferred to the alternative optimality for any of

the literature-based priors.

5.3 Comparing Exact Optimality and Approximate Optimality

While the evidence in favor of the simple alternative model is quite strong, another

interesting question is which type of optimality, exact or approximate, is preferred. Bayes factors

comparing those models are presented in Tables 11 and 12. Beginning with the non-informative
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priors, it appears that the approximately optimal models are preferred over the exactly optimal

models. The Bayes factor comparing the optimal model to the first level of approximate

optimality is 0.36, and the Bayes factor comparing the optimal model to the second level of

approximate optimality is 1.2e-6. The former represents weak evidence in favor of approximate

optimality, while the latter represents decisive evidence in favor of approximate optimality. This

suggests that a reformulation of the definition of optimality to incorporate job searchers’

uncertainty over market conditions and unaccounted factors would be helpful

When we look at the literature-based priors, the evidence in favor of approximate optimality

grows. For example, there is very strong evidence that the first approximately optimal model is

more likely than the exactly optimal model for the LB-1 and LB-2 priors, although the opposite

is true for the LB-3 prior. When the optimal model is compared to the second approximately

optimal model, however, the opposite pattern holds -- the exactly optimal model is more likely

than the second approximately optimal model for the LB-1 and LB-2 priors, but not for the LB-3

priors.

For the natural conjugate priors, the exactly optimal models are always preferred to the

approximately optimal models, although the evidence is weakest for the priors with the highest

values of the average accepted wage and unemployment durations. These priors are found in the

lower right-hand corner of the tables. This may reflect the fact that when unemployment

durations and average accepted wages are highest, we are dealing with the ‘choosiest’ of job

searchers. Those searchers appear willing to remain unemployed for long stretches of time in

order to get the wage that they want. In that case then, it seems less likely that they are strictly

following the optimal reservation wage profile, because it seems as though they must have

turned down wages which were higher than the reservation wage in order for the average
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accepted wage to be so high. Thus, while the optimal model is still preferred, perhaps in those

situations, job searcher’s behavior becomes more approximate in the sense that they are not as

concerned with the wages they lose when searching as they are with the wages they earn when

working. This would be the profile of a risk-loving, as opposed to risk-neutral, job searcher, and

optimality can easily be redefined to incorporate different utility functions.22

5.4 Comparing Levels of Approximate Optimality

Finally, when comparing the levels of approximate optimality, the evidence is mixed. For

the noninformative priors, the higher level of approximation model is clearly preferred. That is

also true for the LB-3 prior. That suggests that the greater the dispersion of the prior parameters,

the more likely the second level of approximate optimality. The LB-1 and LB-2 prior models,

however, clearly point to the first approximately optimal level as being more likely. The natural

conjugate prior models point to the first approximate model except for the highest prior values of

the average accepted wage and unemployment duration. The Bayes factors get steadily smaller

(less in favor of the first level of approximate optimality) as the prior values of the average

accepted wage and unemployment duration fall.

6 Conclusions

The comparisons made in this paper led to some interesting results, and those results

illustrate the effectiveness of both the Bayesian approach and, more specifically, the use of

different types of prior distributions. Both the hypothetical samples that the natural conjugate

priors represent and the literature-based priors give researchers new tools to examine job search

                                                                
22 Risk neutrality has been assumed throughout this paper, and, hence, other risk preferences are outside of the scope
of the simple model examined in this paper. However, this assumption can be easily relaxed, as in Koop and Poirier
(2000).
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models from different perspectives. The results presented in this paper show how important the

choice of prior is.

Using the natural conjugate priors to simulate a variety of economic conditions pointed to

the fact that the economic conditions are important in determining which model is preferred. The

vast majority of the simulations pointed to the fact that the traditional income-maximizing

definition of optimality for the basic job search model is rejected in favor of the simple

alternative. The exceptions to this, were the cases where the economic conditions were best from

the unemployed person’s perspective.

Using priors that are constructed based upon findings and assumptions from the job search

literature, the results were somewhat different. The standard definition of optimality performed

better when the priors were chosen in this way. That suggests that the traditional definition of

optimality is better than the natural conjugate prior results would lead one to believe. However,

one could argue that the logic here is circular in the sense that the results used to construct the

literature-based priors were from papers that assumed the standard definition of optimality.

Hence, those priors would be biased towards the optimal models. That notwithstanding, the use

of the literature-based priors is still illustrative of the way in which a Bayesian model could be

constructed that answers some people’s objections to the choice of prior.

In addition to using different types of priors to illustrate some of the power of the Bayesian

approach, this paper examined what the possible shortcomings of the traditional definition of

optimality might be with respect to the simple job search model. The approximation to the

traditional definition of optimality was compared to the simple alternative to see how it

performed. The results were mixed but did indicate that the approximation to optimality was

preferred in some cases. That suggests that while people may be behaving optimally, the
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assumptions of the traditional definition may be too rigid. In particular, the approximation used

suggests that assuming unemployed people know all of the characteristics of the job market in

which they are searching is unrealistic. However, these results are not definitive in and of

themselves. Rather, the results suggest that there is room for improvement to the traditional

definition.

Finally, the results in this paper should by no means be considered the final word on this

issue. The primary purpose of this paper was to illustrate how Bayesian techniques and the

choice of priors could be taken advantage of in the job search literature. Further work is being

done to look at models that are more interesting than the simple job search model examined here.

Koop (2000) and Schindler (2001) are both attempts to look at more complex models.
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Appendix A
Derivation of the Optimal Reservation Wage

The optimal strategy of the worker is determined by looking at the decision that the worker faces
each period. In any given period, V(w) gives the value to the unemployed worker, where w is the
current wage offer. Note that V(w) can be zero because you are not guaranteed to receive an offer
in every period. A person following an optimal strategy will have a value in each period equal to:
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Ve(w) is the value of being employed at wage w, and is monotonically increasing in w, as can
clearly be seen from the rightmost part of the equality. Vu is the value of being unemployed and
it, on the other hand, is not a function of w. EV is the expected value of searching for a job in a
given period. Therefore the optimal strategy for a person to follow is a reservation wage policy.
Define ξ to be that wage such that Ve(w) = Vu, and call it the reservation wage. Hence the
reservation wage is the wage that makes the person indifferent between employment at that wage
and unemployment. Then, the optimal strategy will be to accept any wage offer that is greater
than ξ, and reject all other offers. This reservation wage is defined implicitly by the equation:
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Through some manipulation and the assumption that wages are distributed according to the
exponential distribution with parameter, γ, we obtain the following expression:
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Solving for the value of ξ, such that ( ) 0,,; =ph γβξ , gives us the optimal reservation wage, ξopt.
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Appendix B
Derivation of the Likelihood Function

In our simple model, where offers are received based on a Bernoulli process, durations have a
geometric distribution with parameter:

( )( ),1 ξλ Fp −=

where F is the CDF of f(w), and F(ξ) is the CDF evaluated at ξ.

Therefore, the distribution of durations is given by:

( ) ( ) 11 −−= ttp λλ .

Next, we need the distribution of wages given that the spell of unemployment is ended, or in
other words, the distribution of accepted wages. This is denoted by p(w|t), which is the same as
the distribution of wages, w, such that w is greater than ξ. This looks like:

( ) ( ) ( )
( )

.
1 ξ

ξ
F
wf

wwptwp
−

=≥=

If f(w) is exponential with parameter γ, then the distribution of accepted wages becomes.
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where γ is the parameter of the exponential distribution.

Using p(t) and p(w|t), we get the following likelihood function:
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 (or the sum of all individual unemployment durations), N is the sample size, and

w  is the average of all accepted wages.
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Appendix C
Models

Having outlined the different priors (noninformative, natural conjugate, smart, and semi-smart)
that will be used and having explained the different types of optimality (exactly optimal,
approximately optimal, and the simple alternative) that will be used, each model can now be
written out in terms of its uniquely determined posterior distribution.

1. Noninformative Priors

For the simple alternative model, the noninformative prior will take the form:

( ) ( ) ( ) ( ) ( ) .
1

,,,
γξ

ξγβξγβ ∝= fpfffpp

This gives the posterior distribution the following form:

( ) ( ) ( ) ( ) .  ,1,,, min
11 wbepepepp simpwNNNTN

<=<−∝ −−−−−−− ξξξγξγβ ξγγξγξ

For the optimal and approximately optimal models, the priors have the following form:

( ) ( ) ( ) ( ) .
1

,,
γ

γβγβ ∝= pfffpp

This gives the posterior distribution the following form:

( ) ( ) ( ) ( )
min

1 or    ,1,,, wbepepewtpp aoptoptwNNNTN
<=<−∝ −−−−−− ξξξγγβ ξγγξγξ .

2. Natural Conjugate Priors

The natural conjugate prior will take the form:

( ) ( ) ( ) ( ) , ,1,,, min
000000 wbepepepp wNNNTN

<<−∝ −−−−− ξγξγβ ξγγξγξ

where simpaoptopt ξξξξ or  or  = , depending upon what definition of optimality is used.23

This gives the posterior distribution the following form:

                                                                
23 If the optimal or approximately optimal definitions are used, then ξ should not appear as a parameter in the prior
distribution (i.e., it should be ( )pp ,,γβ  rather than ( )ξγβ ,,, pp .)
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where simpaoptopt ξξξξ or  or  = , depending upon what definition of optimality is used.24

3. Literature-Based Priors25

For the simple alternative model, the literature-based prior will take the following form:
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This gives the posterior distribution the following form:
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For the optimal and approximately optimal models, the priors have the following form:
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This gives the posterior distribution the following form:
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where aoptopt ξξξ or  = , depending upon what definition of optimality is used.

                                                                
24 If the optimal or approximately optimal definitions are used, then ξ should not appear as a parameter in the
posterior distribution (i.e., it should be ( )wtpp ,,,γβ  rather than ( )wtpp ,,,, ξγβ .)
25 The parameters of the literature-based priors, a,b,c,d,e, and f, can be found in Table 3.
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Figure 1
Collected Discount Factors versus Beta(12.2,0.2)
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Figure 2
Collected Offer Probability Values versus Beta(0.2,1.2)
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Table 1
Values used to construct Literature-Based Priors

Author(s)/Year β p

1. Kiefer and Steel (1998) .9209, .8720, .9414 .2555, .3115, .6043

1984 SIPP Public Use Files, 16-19yrs., non-white males, not disabled, not self-employed, not
in agriculture, N=44, b=1, 67.3$=w , wmin=$2.18, T=746

2. Mortensen and Pissarides (1994) .99923 .0065

Values chosen for the purpose of simulation

3. Wolpin (1992) .99907 .11922, .17424

Assumed value of parameters

4. Wolpin and Eckstein (1990) .999 .96125 (avg.), .0625, .0150

Kaplan-Meier Hazards rates and assumed value for discount factor. Other parameters are
model estimates. Data are from NLS of Labor Market Experience Youth Cohort, high school
graduates, from 1979-1981, N=1339.

5. van den Berg (1990a) .99754 .0095, .0112, .0143

Values were estimated from a model. Data is from 400 males in Amsterdam.

6. van den Berg (1990b) .99688, .99798, .99901 .012

Data are from the Netherlands Socio-Economics Panel, 223 men, ages 17-65 who were
unemployed when first interviewed. The discount rates were assumed values.

7. Wolpin (1987) .999 .0110 (avg.), .01, .05, .10

The Kaplan-Meier hazards are from the 1979 NLS Youth Cohort, white males subsample,
while the other values were estimated using his models.

8. Ridder and Gorter (1986) .99798 .0281

Netherlands Institute for Public Opinion, 1983, Amsterdam male population, 30-55yrs old,
428 workers.

9. Narendranathan, et al. (1985) .98615, .99811 .1194, .0940
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Estimated values, Cohort Study of Unemployed, 1978, 2332 men

10. Flinn and Heckman (1982) .99798, .99901 .0510, .0325

Assumed values for discount rate and estimated values for the offer probability. NLS of
Young Men, 1966, 2915 observations

11. Wolpin (1995) .99874

School and Home Parameters taken from Lecture Notes

12. Mortensen (1986) .99923

Assumed values of parameters.

13. Kiefer and Neumann (1979) .99808

Trade Adjustment Assistance Program, 517 male workers in 14 states, October 1975, who
experienced permanent layoffs, accepted wages observed for 327 workers.

14. Holzer (1986) .99444

Estimated values, NBER Survey of Inner City Black Youth, 1979-1980, 2400 males, 16-24
years.

15. Devine (1988) .0465 (avg.), .14 (avg.)

Survey of Income and Program Participation, 1984, 5214 workers

16. Khanker (1988) .0375

EOPP Survey, 1980, 12-14yrs of schooling, 1285 observations, people in their 20s.
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Table 2
Beta Parameters for Literature-Based Priors

Prior Beta Distribution Parameters
(a,b)

Mean Standard Deviation

Discount Factor
LB-1 (12.1655, .1904) .9846 .0337
LB-2 (2.7307, .0427) .9846 .0634
LB-3 (1.0159, .0159) .9846 .0865

Offer Probability
LB-1 (.1847, 1.2244) .1311 .2174
LB-2 (.1511, 1.0019) .1311 .2300
LB-3 (.0986, .6536) .1311 .2550

Table 3
Values of a, b, c, d, e, and f for Literature-Based Priors

LB-1 LB-2 LB-3
a 0.1847 0.1511 0.0986
b 1.2244 1.0019 0.6536
c 11.0000 11.0000 11.0000
d 0.0549 0.0549 0.0549
e 12.1655 2.7307 1.0159
f 0.1904 0.0427 0.0159
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Table 4
Simulation Results for Simple Alternative Model

Sample Means

Natural Conjugate Priors

T0

200 2000 4000 6000 8000

p 0.9960 0.9832 0.9520 0.7227 0.5576
γ 0.7742 1.1520 1.2855 1.2304 1.3975$2.50
ξ 2.1660 2.1576 2.1759 2.1772 2.1693
p 0.9911 0.8650 0.5269 0.3846 0.2968
γ 0.7063 1.0596 1.0202 1.0854 1.0892$3.00
ξ 2.1164 2.1661 2.1467 2.1682 2.1724
p 0.9739 0.4575 0.2634 0.1860 0.1436
γ 0.6664 0.7601 0.7149 0.7526 0.7879$3.50
ξ 2.1225 2.1445 2.1192 2.1499 2.1261
p 0.8842 0.3119 0.1813 0.1268 0.0986
γ 0.5795 0.5853 0.5442 0.5848 0.5973$4.00
ξ 2.1131 2.1235 2.1145 2.1224 2.0949
p 0.7127 0.2465 0.1429 0.1007 0.0798
γ 0.4778 0.4825 0.4358 0.4818 0.4832

0w

$4.50
ξ 2.1079 2.1115 2.0970 2.1058 2.0632

Noninformative and Literature-Based Priors

Non-Inf. LB-1 LB-2 LB-3
p 0.2575 0.2469 0.2497 0.2471
γ 0.6646 0.6542 0.6559 0.6571
ξ 2.1473 2.0608 2.0616 2.0603
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Table 5
Simulation Results for Optimal Model

Sample Means

Natural Conjugate Priors

T0

200 2000 4000 6000 8000

p 0.9956 0.9828 0.9567 0.7222 0.5211
γ 0.7760 1.1721 1.3644 1.3765 1.3750
ξ 1.8161 1.7803 1.6658 1.5812 1.5058

$2.50

β 0.7127 0.8728 0.8870 0.8887 0.8916
p 0.9900 0.8569 0.5425 0.3845 0.2855
γ 0.7089 1.0473 1.0787 1.0769 1.0776
ξ 1.8852 1.8308 1.6934 1.5922 1.5207$3.00

β 0.7001 0.8669 0.8828 0.8858 0.8901
p 0.9715 0.4520 0.2637 0.1861 0.1429
γ 0.6461 0.7526 0.7502 0.7506 0.7489
ξ 1.9348 1.8884 1.7241 1.6254 1.5486

$3.50

β 0.6801 0.8553 0.8726 0.8809 0.8841
p 0.8733 0.3085 0.1797 0.1267 0.0986
γ 0.5690 0.5760 0.5742 0.5738 0.5766
ξ 1.9850 1.9489 1.7672 1.6629 1.5849

$4.00

β 0.6630 0.8423 0.8637 0.8747 0.8796
p 0.7003 0.2419 0.1414 0.1007 0.0708
γ 0.4703 0.4715 0.4667 0.4672 0.4723
ξ 2.0421 2.0016 1.8279 1.7127 1.5625

0w

$4.50

β 0.6455 0.8321 0.8587 0.8699 0.8793

Noninformative and Literature-Based Priors

Non-Inf. LB-1 LB-2 LB-3
p 0.2571 0.2295 0.2381 0.2445
γ 0.6927 0.6735 0.6635 0.6616
ξ 1.2407 1.8489 1.6387 1.4472
β 0.4599 0.8838 0.7879 0.6410
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Table 6
Simulation Results for First Approximately Optimal Model

Sample Means

Natural Conjugate Priors

T0

200 2000 4000 6000 8000

p 0.9957 0.9829 0.9567 0.7227 0.5437
γ 0.7763 1.1725 1.3633 1.3736 1.3744
ξ 1.8220 1.7795 1.6503 1.5836 1.5129

$2.50

β 0.7157 0.8737 0.8837 0.8901 0.8921
p 0.9903 0.8578 0.5412 0.3824 0.2839
γ 0.7081 1.0466 1.0777 1.0790 1.0786
ξ 1.8806 1.8308 1.6749 1.5807 1.5094$3.00

β 0.6987 0.8664 0.8797 0.8846 0.8883
p 0.9704 0.4539 0.2644 0.1864 0.1431
γ 0.6461 0.7516 0.7508 0.7498 0.7489
ξ 1.9360 1.8836 1.7171 1.6199 1.5504

$3.50

β 0.6819 0.8543 0.8714 0.8801 0.8845
p 0.8737 0.3708 0.1799 0.1259 0.0986
γ 0.5698 0.5774 0.5742 0.5740 0.5758
ξ 1.9848 1.9473 1.7661 1.6652 1.5923

$4.00

β 0.6638 0.8435 0.8642 0.8759 0.8817
p 0.6986 0.2416 0.1413 0.1006 0.0695
γ 0.4705 0.4721 0.4663 0.4678 0.4732
ξ 2.0317 1.9988 1.8212 1.7047 1.5486

0w

$4.50

β 0.6439 0.8329 0.8579 0.8694 0.8784

Noninformative and Literature-Based Priors

Non-Inf. LB-1 LB-2 LB-3
p 0.2545 0.2271 0.2384 0.2452
γ 0.6837 0.6721 0.6647 0.6605
ξ 1.2862 1.8417 1.6256 1.5178
β 0.5053 0.8857 0.7870 0.6935
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Table 7
Simulation Results for Second Approximately Optimal Model

Sample Means

Natural Conjugate Priors

T0

200 2000 4000 6000 8000

p 0.9955 0.9824 0.9576 0.7204 0.5561
γ 0.7766 1.1717 1.3670 1.3760 1.3754
ξ 1.8111 1.7762 1.6481 1.5728 1.5100

$2.50

β 0.7148 0.8741 0.8846 0.8886 0.8898
p 0.9910 0.8587 0.5418 0.3812 0.2821
γ 0.7091 1.0457 1.0784 1.0784 1.0780
ξ 1.8701 1.8307 1.6909 1.5835 1.5141$3.00

β 0.6996 0.8681 0.8821 0.8856 0.8908
p 0.9707 0.4521 0.2633 0.1858 0.1433
γ 0.6463 0.7506 0.7502 0.7488 0.7481
ξ 1.9279 1.8844 1.7171 1.6152 1.5439

$3.50

β 0.6830 0.8559 0.8730 0.8795 0.8833
p 0.8743 0.3081 0.1796 0.1267 0.0987
γ 0.5695 0.5771 0.5753 0.5740 0.5755
ξ 1.9758 1.9390 1.7568 1.6522 1.5439

$4.00

β 0.6645 0.8433 0.8646 0.8729 0.8833
p 0.6967 0.2415 0.1417 0.1005 0.0713
γ 0.4700 0.4721 0.4666 0.4664 0.4718
ξ 2.0283 0.9970 1.8107 1.6936 1.5618

0w

$4.50

β 0.6453 0.8337 0.8573 0.8687 0.8787

Noninformative and Literature-Based Priors

Non-Inf. LB-1 LB-2 LB-3
p 0.2593 0.2292 0.2406 0.2443
γ 0.6892 0.6713 0.6619 0.6607
ξ 1.3394 1.8379 1.6455 1.5337
β 0.5193 0.8891 0.7986 0.6946
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Table 8
Bayes Factors – Exact Optimality versus the Alternative

T0

200 2000 4000 6000 8000
$2.50 2.84e+30 3.40e+25 2.08e+30 6.40e+30 8.40e+16
$3.00 8.37e+11 2.50e+20 3.45e+20 1.50e+13 4.13e+7
$3.50 59.14 3.14e+9 2.51e+10 8.65e+6 14352.00
$4.00 0.02 140.71 7.44e+5 14594.00 156.38

0w

$4.50 8.19e-011 0.03 1147.30 1327.00 6.74e+16
LB-1 LB-2 LB-3
15.77 5.14e+20 6.49e+26

Table 9
Bayes Factors – Non-optimal versus Approximately Optimal 1 Models

T0

200 2000 4000 6000 8000
$2.50 1.27e+43 2.08e+34 4.64e+42 5.50e+42 7.83e+23
$3.00 3.86e+23 1.17e+27 1.26e+26 5.70e+17 1.53e+10
$3.50 3.21e+12 2.97e+12 1.38e+13 1.67e+8 99491.00
$4.00 3898.90 34649.00 3.62e+6 52007.00 2234.90

0w

$4.50 1.25e-8 .09 3854.00 2999.40 5.03e+17
LB-1 LB-2 LB-3
2.27 1.01e+19 8.29e+31

Table 10
Bayes Factors – Non-optimal versus Approximately Optimal 2 Models

T0

200 2000 4000 6000 8000
$2.50 3.09e+65 5.45e+47 1.05e+66 2.04e+53 1.26e+32
$3.00 5.06e+38 7.22e+38 1.22e+38 1.65e+26 4.31e+13
$3.50 2.76e+31 1.08e+18 5.70e+16 7.11e+11 4.56e+5
$4.00 1.92e+9 2.00e+6 4.37e+9 2.45e+6 1457.00

0w

$4.50 .0034 1.41 91003.00 27374.00 8.50e+16
LB-1 LB-2 LB-3

5.56e+12 2.78e+24 4.14e+21
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Table 11
Bayes Factors – Exactly Optimal versus Approximately Optimal 1 Models

T0

200 2000 4000 6000 8000
$2.50 4.48e+12 6.14e+8 2.23e+12 8.60e+11 9.31e+6
$3.00 4.61e+11 4.67e+6 3.66e+5 38014.00 371.12
$3.50 5.43e+10 946.81 551.47 19.38 6.93
$4.00 1.82e+5 246.25 4.87 3.56 14.29

0w

$4.50 153.02 3.07 3.36 2.26 7.47
Non-Inf. LB-1 LB-2 LB-3

0.36 0.14 0.02 1.27e+5

Table 12
Bayes Factors – Exactly Optimal versus Approximately Optimal 2 Models

T0

200 2000 4000 6000 8000
$2.50 1.08e+35 1.60e+22 5.05e+35 3.19e+22 1.50e+15
$3.00 6.05e+26 2.87e+18 3.53e+17 1.10e+13 1.04e+6
$3.50 4.66e+29 3.45e+8 2.27e+6 82207.00 31.82
$4.00 9.03e+10 14218.00 5872.80 168.47 9.32

0w

$4.50 4.09e+7 48.57 79.32 20.63 1.26
Non-Inf. LB-1 LB-2 LB-3
1.18e-6 3.52e+11 5415.40 6.38e-6

Table 13
Bayes Factors – Approx. Optimal 1 vs. Approx. Optimal 2 Models

T0

200 2000 4000 6000 8000
$2.50 2.42e+22 2.61e+13 2.26e+23 3.71e+10 1.61e+8
$3.00 1.31e+15 6.16e+11 9.62e+11 2.89e+8 2812.40
$3.50 8.58e+18 3.65e+5 4118.30 4242.00 4.59
$4.00 4.93e+5 57.74 1205.20 47.28 0.65

0w

$4.50 2.67e+5 15.83 23.61 9.13 0.17
Non-Inf. LB-1 LB-2 LB-3
3.29e-6 2.44e+12 2.75e+5 4.99e-11


