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1 Introduction

In open economy models with incomplete asset markets the deterministic steady state de-
pends on the initial conditions of the economy and the steady state is compatible with any
level of net foreign assets. In a stochastic environment the model generates non-stationary
variables as net foreign assets follow a unit root process.1

Several modifications of the standard model have been proposed in order to induce sta-
tionarity among which are an endogenous discount factor (Uzawa-type preferences), a debt
elastic interest rate premium or convex portfolio costs. Schmitt-Grohé and Uribe (2003)
present quantitative comparisons of these alternative approaches and find that all of them
deliver virtually identical dynamics. However, their analysis is restricted to the case of a
small open economy, and therefore further scrutiny is justified. Nevertheless, their work has
been cited extensively by others to claim irrelevance of the chosen approach that induces
stationarity in a specific model even in multi-country setups.2

In this paper, I investigate the theoretical differences between several stationarity in-
ducing approaches in a standard two-country model with limited substitutability between
traded goods. If goods are highly substitutable across countries, the stationarity inducing
approaches that I investigate have very similar properties. However, for low values of the
elasticity of substitution between traded goods there are important nonlinearities which give
rise to substantial differences across methods.
Each of the two countries produces one good. These imperfectly substitutable goods are

traded in a frictionless goods market. International financial markets are incomplete as the
only asset that is traded between countries is one non-state-contingent bond. I consider three
approaches to obtain stationarity: an endogenous discount factor, a debt elastic interest rate
premium and convex portfolio costs. While I focus on these three most popular approaches,
there are other approaches. Ghironi (2003) solves the stationarity problem by introducing
an overlapping generations structure.3 Huggett (1993) solves the stationarity problem by

1Obviously, this problem is not unique to international economics. The same issues occur in models with
heterogeneous agents and incomplete asset markets.

2See also Kim and Kose (2003) for a related study in a small open economy framework. Lubik (2003)
analyses some additional approaches that induce stationarity and finds substantial qualitative differences.
Hence, the implicit generalization of the results in Schmitt-Grohé and Uribe (2003) by many researchers
is not even appropriate for the case of a small open economy. Boileau and Normandin (2005) extend the
analysis to a two-country model with one homogeneous good. Interesting quantitative differences can occur
in their setup depending on the persistence of technology shocks.

3In the technical appendix to this paper, which is available upon request, I study the overlapping gen-
erations structure of Ghironi (2003). The mathematical properties of his approach turn out to be closely
related to the models with convex portfolio costs or a debt elastic interest rate premium.
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introducing explicit limits on the level of asset holdings.4

In the standard model with incomplete markets the steady state is undetermined since
the growth rate of marginal utility does not depend on the allocation of net foreign assets.
Absent arbitrage opportunities, the price of the non-state-contingent bond is equalized across
countries implying that expected marginal utility growth is equalized across countries. In
the deterministic steady state, this condition contains no information about the steady state
values of the system and the system of equilibrium conditions becomes underdetermined.
Any level of net foreign asset holdings is a steady state.
If stationarity is induced by convex portfolio costs, there is a unique stable steady state

only if the elasticity of substitution between the domestic and foreign traded goods ε is
sufficiently large, i.e., ε is above some threshold level ε̄. For lower values of the elasticity
of substitution, however, I find three steady states two of which are locally stable, but the
third one is not. It is important to note that this multiplicity of steady states is unrelated to
the aforementioned indeterminacy in the non-stationary model. I also analyze the dynamic
implications of shocks under different values of the elasticity of substitution ε. For a high
value of the elasticity of substitution, there is a unique impulse response function for a small
technology shock. If ε < ε̄ this finding no longer holds true. Assume that the economy is
in one of the two stable steady states. For a small technology shock there are two paths
that lead the economy back into the original steady state. However, for the same shock,
the economy can also converge to the other stable steady state. For example, if the shock
improves country 1’s technology, the real exchange rate may either depreciate on impact by
a small, an intermediate or a large amount relative to the original steady state. The model
with a debt elastic interest rate shares these features with the model of convex portfolio
costs.
If, following Uzawa (1968), the discount factor is assumed to be endogenous, an agent’s

rate of time preference is strictly decreasing in the agent’s utility level.5 In this setup
there is always a unique and stable steady state irrespective of the value of the elasticity of
substitution between foreign and domestic goods ε. Ironically, the unique and stable steady
state in the model with endogenous discounting features the same allocations as the unstable
steady state in the model with portfolio costs for ε ≤ ε̄. In response to a technology shock a
high elasticity of substitution ε implies a unique adjustment path of the economy. However,
if ε is below the critical value ε̄ I find three different impulse response functions for a given
small technology shock. If the shock raises country 1’s technology the real exchange rate

4Models with occasionally binding constraints, however, cannot be solved reliably using local approxima-
tion techniques. This complicates the analysis and explains why Huggett’s approach is typically avoided in
international macroeconomics.

5If the discount factor is increasing in the agent’s utility level, the dynamics around any steady state are
explosive.
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may either appreciate on impact by a small or a large amount relative to the magnitude of
the shock or it may depreciate by a large amount on impact.
The reason for the striking differences between the models lies in the nonlinearities that

arise for low values of the elasticity of substitution. Absent international financial markets,
there are multiple equilibria if ε is below ε̄. Consider an endowment economy with two
countries and two traded goods that are imperfect substitutes.6 Assume that the countries
are just mirroring each other with respect to preferences and endowments.7 Then, there is
always one equilibrium with the relative price of the traded goods equal to unity. However,
there can be two more equilibria. If the price of the domestic good is very high relative
to the price of the foreign good, domestic agents are very wealthy compared to the foreign
agents. If the elasticity of substitution is low, foreigners are willing to give up most of their
good in order to consume at least some of the domestic good, and domestic agents end up
consuming most of the domestic and the foreign good. The reverse is true as well. Foreign
agents consume most of the goods, if the foreign good is very expensive in relative terms. Of
course, these last two scenarios cannot be an equilibrium for high values of the elasticity of
substitution. In the limiting case of perfect substitutability the unique equilibrium features
each country consuming its own endowment.
In the dynamic economy with incomplete asset markets, the equilibria of the economy

without international financial markets are the candidate steady states. Consider the case
of a low elasticity of substitution, i.e., ε < ε̄. Under the assumption that portfolio costs
are zero if and only if net foreign assets are zero, all three candidate steady states are in
fact steady states of the bond economy with convex portfolio costs. Similarly, if the debt
elastic interest rate premium is zero if and only if net foreign assets are zero, there are three
steady states. However, if the discount factor is endogenous, absence of arbitrage requires
that the discount factors are equalized across countries in any steady state. As the discount
factor is assumed to be strictly decreasing in the agent’s utility level, this condition uniquely
determines the steady state allocations (provided a strictly concave utility function and a
convex technology).
In the simple model presented in this paper, the critical value of the elasticity of sub-

stitution ε̄ lies in the range of 0.4− 0.7 for reasonable choices of the remaining parameters.
However, the value of ε̄ is sensitive to changes in the model. For example, if the model is
extended along the lines of Corsetti and Dedola (2005) to allow for non-traded goods and a
strong complementarity between traded and non-traded goods, ε̄ can easily assume values

6This static example has been subject to numerous studies in general equilibrium theory, see Kehoe (1991)
and Mas-Colell et al (1995).

7By mirroring I mean, that good 1 (2) enters the utility function of country 1 agents the same way that
good 2 (1) enters the utility function of country 2 agents. The same holds for the agents’ endowments with
goods 1 and 2.
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larger than 1 for reasonable parameterizations of the model.
The empirical literature reports a wide range of trade elasticities at the aggregate level

from 0 to 1.5.8 Whalley (1985) reports an elasticity of 1.5. In a recent study, Hooper,
Johnson and Marquez (2000) estimate trade elasticities for the G7 countries. They report
a short-run trade elasticity of 0.6 for the U.S., and values ranging between 0 and 0.6 for
the remaining G7 countries. Earlier studies by Houthakker and Magee (1969) and Marquez
(1990) also suggest trade elasticities between 0 and 1. In his study, Taylor (1993) estimates
an import demand equation for the US and finds a short-run trade elasticity of 0.22 and a
long-run trade elasticity of 0.39.9

The remainder of the paper is organized as follows. Section 2 presents the model and
analyses it under the assumption that there are no international financial markets. In sec-
tion 3, agents have access to one non-state-contingent bond. I analyze the characteristics
of the steady states under the different stationarity inducing approaches. The impulse re-
sponse functions for the model with endogenous discounting and convex portfolio costs are
investigated in section 4. Finally, section 5 offers concluding remarks.

2 The model

In the remainder of this section, I analyze the simple two-country model under the assump-
tion of balanced trade, i.e., there are no international financial markets. Absent capital
accumulation this assumption allows me to present the issues of multiple equilibria without
the additional complications that occur in a dynamic model. Furthermore, under financial
autarchy the model is stationary.10

In Section 3 the simple model is augmented by the assumption that agents have access to
international financial markets. I first present the standard model with incomplete markets in
order to illustrate the stationarity problem. Three different approaches to induce stationarity
are studied: convex portfolio costs, debt elastic interest rate, and endogenous discount factor.
The analysis is guided by two questions. How does the number of steady states in the closed

8Obviously, these marco estimates are in sharp contrast to the micro evidence where mean estimates vary
between 4 and 6. See, e.g., Broda and Weinstein (2005).

9One of the most comprehensive empirical study on trade elasticities is Bayoumi (1999), who uses data on
420 bilateral trade flows between 21 industrialized countries. Under the restriction (not rejected statistically)
that elasticities are identical for all country pairs, the estimated long-run price elasticity ranges between 0.38
and 0.89 depending on the model specification.
10Introducing capital into the model is unlikely to change the results presented in this paper. It is straight-

forward to show, that in financial autarchy multiple equilibria also occur in a model with capital if the
elasticity of substitution is sufficiently low. The nonlinearities underlying this finding are very likely to cause
the same differences between the approaches that induce stationarity as in the model without capital.
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model relate to the number of equilibria in the model with financial autarchy? How are the
dynamic properties of a steady state related to the slope of the excess demand function for
the different stationarity inducing approaches?

2.1 Financial autarchy

There are two countries, each populated by an infinite number of households with a total
measure of one. Each country produces only one good that can be traded without frictions
in the international goods market. The two goods are assumed to be imperfect substitutes
in the household’s utility function. Labor, which is supplied endogenously, is the sole input
into the production process.
Time is discrete and each period the economy experiences one of finitely many events

st. st = (s0, ..., st) denotes the history of events up through and including period t. The
probability, as of period 0, of any particular history st is π (st). The initial realization s0 is
given.
Households maximize their expected lifetime utility subject to the budget constraint

max
ci1(st),ci2(st)
ci(st),li(st)

∞X
t=0

X
st

βtU
¡
ci
¡
st
¢
, li
¡
st
¢¢

π
¡
st
¢

(1)

s.t.

P̄1
¡
st
¢
ci1
¡
st
¢
+ P̄2

¡
st
¢
ci2
¡
st
¢
≤ P̄i

¡
st
¢
wi

¡
st
¢
li
¡
st
¢
+ P̄i

¡
st
¢
Πi

¡
st
¢
+ dWi

¡
st
¢
,(2)

where ci is given by the CES aggregator ci (st) =
£
α1−ρi1 cρi1 (s

t) + α1−ρi2 cρi2 (s
t)
¤ 1
ρ with αii ≥

αij > 0 for j 6= i and ρ < 1. 1
1−ρ is the elasticity of substitution between traded goods. In

appendix A, I generalize the model to allow for any linear-homogeneous aggregator of the
form ci (s

t) = Hi (ci1 (s
t) , ci2 (s

t)).
The strictly concave period utility function U (c, l) is assumed to satisfy the following

sign conditions:
Uc > 0, Ul < 0 and Ucc < 0, Ull < 0, Ucl ≤ 0.

These assumptions are satisfied by almost all utility functions that are commonly used in
macroeconomics. ci denotes final consumption, li labor, cij is the consumption of good j
by a household located in country i, P̄i is the price at which good i is traded and wi is the
wage in country i denoted in units of country i’s traded good. Real profits are Πi. dWi is an
arbitrary lump sum transfer to agents in country i, with dW1 (s

t) + dW2 (s
t) = 0 for all st. I

introduce this transfer to make the following derivations general enough to be of use for the
case with international financial markets.
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Agent i chooses consumption of the two traded goods such that

ci1 (s
t)

ci2 (st)
=

αi1

αi2

µ
1

q̄ (st)

¶ 1
ρ−1

, (3)

where q̄ is the relative price of good 2 to good 1, P̄2
P̄1
. Let Pi denote the price of the final

consumption basket, which is related to q̄ by

Φ1
¡
q̄
¡
st
¢¢
≡ P̄1 (s

t)

P1 (st)
=

"
α11

µ
1

q̄ (st)

¶ ρ
ρ−1

+ α12

# 1−ρ
ρ

1

q̄ (st)
with Φ01

¡
q̄
¡
st
¢¢

< 0,

Φ2
¡
q̄
¡
st
¢¢
≡ P̄2 (s

t)

P2 (st)
=

"
α21

µ
1

q̄ (st)

¶ ρ
ρ−1

+ α22

# 1−ρ
ρ

with Φ02
¡
q̄
¡
st
¢¢

> 0.

I normalize the price of the consumption basket in country 1 to unity, P1 = 1. Therefore, P2
is equal to the consumption-based real exchange rate, q. Obviously, q and q̄ are related as
follows

q
¡
st
¢
= q̄

¡
st
¢ Φ1 (q̄ (st))
Φ2 (q̄ (st))

.

Using the budget constraint, (2), and equation (3), the demand functions for good 2 are

c12
¡
st
¢
=

1µ
α11
α12

³
1

q̄(st)

´ 1
ρ−1
+ q̄ (st)

¶ ∙w1 ¡st¢ l1 ¡st¢+ 1

Φ1 (q̄ (st))
dW1

¡
st
¢¸

, (4)

c22
¡
st
¢
=

1µ
α21
α22

³
1

q̄(st)

´ ρ
ρ−1
+ 1

¶ ∙w2 ¡st¢ l2 ¡st¢+ 1

q̄ (st)Φ1 (q̄ (st))
dW2

¡
st
¢¸

. (5)

Similar expressions can be derived for the demand of good 1. This provides expressions for
aggregate consumption ci, i = 1, 2:

c1
¡
st
¢
= Φ1

¡
q̄
¡
st
¢¢

w1
¡
st
¢
l1
¡
st
¢
+ dW1

¡
st
¢
, (6)

c2
¡
st
¢
= Φ2

¡
q̄
¡
st
¢¢

w2
¡
st
¢
l2
¡
st
¢
+

Φ2 (q̄ (s
t))

q̄ (st)Φ1 (q̄ (st))
dW2

¡
st
¢
. (7)

The optimal allocation of labor relative to consumption is determined from

Ul (ci (s
t) , li (s

t))

Uc (ci (st) , li (st))
= −Φi

¡
q̄
¡
st
¢¢

wi

¡
st
¢
. (8)
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Firms in country i produce the traded good i using a linear production technology,
yi (s

t) = Ai (s
t) li (s

t). Appendix A.1 shows that equations (6) - (8) can be used to express
ci and li as functions of the prices w1, w2 and q̄ (and dW1) only.

Definition 1 (Competitive Equilibrium in Financial Autarchy) A competitive equi-
librium is a collection of allocations ci1 (st), ci2 (st), ci (st), li (st), yi (st) and prices q̄ (st),
wi (s

t), i = 1, 2, such that (i) for every household the allocations solve the household’s max-
imization problem for given prices, (ii) for every firm profits are maximized and (iii) the
markets for labor and for the two traded goods clear.

Perfect competition and the linear technology imply that the equilibrium wage equals
the productivity parameter, i.e. wi (s

t) = Ai (s
t). As shown in appendix A.2 the equilibrium

conditions for this model can be fully summarized by the excess demand function for good
2:

z2
¡
q̄
¡
st
¢
, dW1

¡
st
¢
, dW2

¡
st
¢¢
= c12

¡
st
¢
+ c22

¡
st
¢
− y2

¡
st
¢

=
A1 (s

t) l1 (q̄ (s
t) , dW1 (s

t)) + 1
Φ1(q̄(st))

dW1 (s
t)

α11
α12

³
1

q̄(st)

´ 1
ρ−1
+ q̄ (st)

+
A2 (s

t) l2 (q̄ (s
t) , dW2 (s

t)) + 1
q̄Φ1(q̄(st))

dW2 (s
t)

α21
α22

³
1

q̄(st)

´ ρ
ρ−1
+ 1

−A2
¡
st
¢
l2
¡
q̄
¡
st
¢
, dW2

¡
st
¢¢

. (9)

An equilibrium is a relative price q̄∗ (st), s.t. z2 (q̄∗ (st) , dW1 (s
t) , dW2 (s

t)) = 0. Appendix
A.2 proves the existence of the competitive equilibrium.
Figure 1 plots the excess demand for good 2 as a function of q̄

1+q̄
for different values of

the elasticity of substitution ε. In plotting z2, I assume the following utility function

U (c, l) =
c1−γ

1− γ
− χ0

l1−χ

1− χ
. (10)
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The parameter values are

parameter value explanation of the parameter
χ −2.75 − 1

χ
is the Frisch labor supply elasticity

χ0 7.00
γ 3.00 coefficient of relative risk aversion
α11 = α22 0.90 weight on domestic good in CES aggregator
α21 = α12 0.10 weight on foreign good in CES aggregator
A1 = A2 1.00 technology level

Table 1: parameterization

Unless noted otherwise these are the parameters for all figures in this paper. Furthermore,
I assume dW1 = dW2 = 0.

0 0.2 0.4 0.6 0.8 1
−0.02

0

0.02
ε=0.48309

q/(1+q)

z
2

0 0.2 0.4 0.6 0.8 1
−2

0

2
x 10

−3 ε=0.48

q/(1+q)

z
2

0 0.2 0.4 0.6 0.8 1
−0.4

0

0.4
ε=1

q/(1+q)

z
2

Figure 1: Excess demand for good 2 for different values of ε.
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For a given parameterization of the remainder of the model I distinguish three cases for
the elasticity of substitution, ε = 1

1−ρ :

1. If ε is sufficiently high, as in the first panel, the excess demand function has exactly
one zero. Hence, the equilibrium is unique and it features q̄

1+q̄
= 1

2
. Furthermore, the

slope of the excess demand function at q̄
1+q̄

= 1
2
is negative.

2. If ε is sufficiently low, as in the second panel, the excess demand function has three
zeros. While the excess demand function is downward sloping at the first and third
equilibrium, it is upward sloping in the second one (counted from left to right).

3. There is a critical value ε̄ (here ε̄ = 0.48309) of the elasticity of substitution such that
there is a continuum of equilibria because the slope of the excess demand function is
zero around q̄

1+q̄
= 1

2
.

Multiple equilibria arise at low values of the elasticity of substitution for the following
reason. Consider the first equilibrium in the second panel. If the price of good 1 is high
relative to the price of good 2, q̄

1+q̄
<< 1

2
, agents of country 2 produce more of their good than

agents of country 1. As the elasticity of substitution between the goods is very low, country
2 agents are willing to pay the high price for good 1 and country 1 ends up consuming most
of the two goods. The same logic applied in the third equilibrium, q̄

1+q̄
>> 1

2
, with the roles

of country 1 and 2 being reversed. The second equilibrium is the symmetric equilibrium
featuring q̄

1+q̄
= 1

2
. If the elasticity of substitution is high, equilibria 1 and 3 cannot exist. In

fact, if the elasticity of substitution is infinite, agents in both countries only consume their
own goods and the relative price in the unique equilibrium has to be equal to 1.

2.2 More about multiple equilibria

The above findings are not surprising. The analogous endowment economy with a CES
aggregator has been used extensively in general equilibrium theory to study equilibrium
multiplicity. For instance see Mas-Colell (1991), Kehoe (1991), Gjerstad (1996) and Bela
(1997). In appendix A.3, I summarize some of the findings of general equilibrium theory in
the context of the model presented here in this paper. In general, the number of equilibria
is odd. If the excess demand function is upward sloping in an equilibrium, there have to be
at least two more. Unfortunately, nothing can be said with certainty about the number of
equilibria unless one can prove that the equilibrium is unique.
To gain an idea about the relationship between the critical value ε̄ and the remaining

model parameters, consider the case of α11 = α22 ≥ 1
2
, α12 = α21 and identical preferences

over consumption and leisure in the two countries. Irrespective of the value of the elasticity
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of substitution, q̄ = 1 is an equilibrium. As shown more generally in appendix A.3, the
critical value ε̄ is given by

2α11ε̄+ (1− 2α11)−
∂l1
∂q̄

q̄

l1
+

∂l2
∂q̄

q̄

l2
= 0,

where ∂li
∂q̄

q̄
li
is the general equilibrium elasticity of labor with respect to q̄. With additive

separable preferences as in (10), ∂li
∂q̄

q̄
li
= 1−γ

γ−χ (1− αii) (−1)i, i = 1, 2, (γ > 0, χ < 0) and

ε̄ =
2α11 − 1
2α11

+
γ − 1
γ − χ

1− α11
α11

.

This implies:

• Even without home bias in consumption, i.e., α11 = 1
2
, ε̄ > 0 if agents are sufficiently

risk averse (γ > 1).

• ε̄ is strictly increasing in γ.

• If γ + χ < 2, ε̄ is increasing in the home bias. Otherwise, ε̄ is decreasing in α11.

• If γ > 1, ε̄ is increasing in the Frish labor supply elasticity η = − 1
χ
. Otherwise, ε̄ is

decreasing in α11.

• If γ →∞ and χ→ 0, ε̄ = 1
2α11

.

If the household’s preferences over consumption and leisure are Cobb-Douglas the ap-
pendix shows that ∂li

∂q̄
q̄
li
= 0, i = 1, 2 and

ε̄ =
2α11 − 1
2α11

.

In this case, ε̄ does not depend on the preference parameters over c and l.
As these examples show, the critical value of ε̄ (and therefore the presence of multiple

equilibria) is greatly affected by certain model choices. In the technical appendix to this
paper, which is available upon request, I also show the following:

• In a model with endogenous capital formation, ε̄ also depends on the elasticity of
substitution between labor and capital. Relative to the model without capital, ε̄ can
be lower or higher for otherwise identical parameters.

12



• In a model with non-traded goods, ε̄ can be very high (much larger than unity) for
reasonable parameter choices if there is some complementarity between traded and
non-traded goods as in Corsetti, Dedola and Leduc (2005).

The value of ε also has an important impact on the comparative static properties of
the model. Consider a small increase in the productivity level of country 1. Such a change
deforms the excess demand function and shifts it upwards. Figure 2 shows the excess demand
function for ε = 0.5 > ε̄ (upper panel) and ε = 0.48 < ε̄ (lower panel) for two technology
shocks of different magnitude. The solid line depicts the original excess demand function
with A1/A2 = 1.00. The dashed line shows the case of A1/A2 = 1.0025 and the dashed-
dotted line is the case of A1/A2 = 1.005. If the elasticity of substitution is large (ε > ε̄)
the increase in A1 leads to a small increase in the equilibrium value of the relative price of
traded goods irrespective of the magnitude of the shock.
The situation is quite different if the elasticity is low (ε < ε̄). For a small relative increase

in A1 all three equilibria are preserved. While the price of traded goods rises in the first and
third equilibrium relative to the original equilibrium, A1/A2 = 1.00, q̄ drops in the second
equilibrium. However, if the technology shock is sufficiently large, the first two equilibria
disappear. Only the third equilibrium survives. The dashed-dotted line in panel 2 has only
one zero, which occurs around q̄

1+q̄
= 0.92.

3 Bond economies

In contrast to the last section agents are now assumed to have access to international financial
markets. Following the standard assumption in international macroeconomics, financial mar-
kets are exogenously incomplete in the sense that the only asset that is traded internationally
is one non-state-contingent bond. This bond is in zero net supply, i.e., B1 (st) +B2 (s

t) = 0.
In order to illustrate the stationarity problem, I begin with the standard incomplete

markets setup without stationarity-inducing features.
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Figure 2: Equilibria for small changes in A1/A2.

3.1 The non-stationary model

In the standard two-country model a household faces the following maximization problem

max
ci(st),li(st),
ci1(st),ci2(st),

Bi(st)

∞X
t=0

X
st

βtU
¡
ci
¡
st
¢
, li
¡
st
¢¢

π
¡
st
¢

s.t.

Pi

¡
st
¢
ci
¡
st
¢
≤ P̄i

¡
st
¢
wi

¡
st
¢
li
¡
st
¢
+ P̄i

¡
st
¢
Πi

¡
st
¢
+Bi

¡
st−1

¢
−Q

¡
st
¢
Bi

¡
st
¢
.

Pici are the household’s total consumption expenditures which are equal to P̄1ci1+ P̄2ci2. In
order to make use of the above derivations, notice that I have replaced the lump-sum transfer
between countries dWi (s

t) by Bi (s
t−1)−Q (st)Bi (s

t). Bi (s
t−1) denotes the (nominal) bond

holdings that agent i has inherited from period t− 1. Q is the price of bonds.
Given the assumptions on technology, preferences, and trade stated in the previous section

the equilibrium dynamics are fully summarized by
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1. the excess demand function for good 2

z2
¡
q̄
¡
st
¢
, B1

¡
st−1

¢
−Q

¡
st
¢
B1
¡
st
¢¢

=
A1l1 (q̄ (s

t) , B1 (s
t−1)−Q (st)B1 (s

t))

α11
α12

³
1

q̄(st)

´ 1
ρ−1
+ q̄ (st)

−
α21
α22

³
1

q̄(st)

´ ρ
ρ−1

A2l2 (q̄ (s
t) ,−B1 (st−1)−Q (st)B1 (s

t))

α21
α22

³
1

q̄(st)

´ ρ
ρ−1
+ 1

+

⎡⎢⎣ 1

α11
α12

³
1

q̄(st)

´ 1
ρ−1
+ q̄ (st)

− 1

α21
α22

³
1

q̄(st)

´ ρ
ρ−1
+ 1

⎤⎥⎦ 1

Φ1 (q̄ (st))

£
B1
¡
st−1

¢
−Q

¡
st
¢
B1
¡
st
¢¤
,

(11)

where

Q
¡
st
¢
=
X
st+1|st

β
Uc (c1 (s

t+1) , l1 (s
t+1))

Uc (c1 (st) , l1 (st))
π
¡
st+1|st

¢
,

and z2 (q̄ (s
t) , B1 (s

t−1)−Q (st)B1 (s
t)) = 0 in equilibrium,

2. the familiar risk sharing equation, states that expected marginal utility growth is equal-
ized across countries:X

st+1|st
β

∙
Uc (c1 (s

t+1) , l1 (s
t+1))

Uc (c1 (st) , l1 (st))
− Uc (c2 (s

t+1) , l2 (s
t+1))

Uc (c2 (st) , l2 (st))

q (st)

q (st+1)

¸
π
¡
st+1|st

¢
= 0,

(12)

where q (st) = q̄ (st)
Φ1(q̄(st))
Φ2(q̄(st))

.

I have used the assumption that bonds are in zero net supply. As shown in appendix A.1,
consumption and labor choices can be expressed as functions of the relative price q̄. Moreover,
this system of difference equations has to satisfy the appropriate initial and transversality
conditions.
Unfortunately, the deterministic steady state of this model is not unique. With ci = ci (q̄)

and li = li (q̄) as shown in Appendix A.1, equations (11) and (12) have to solve for the steady
state values of q̄ and B1. However, in a steady state, equation (12) collapses to an identity
and contains no information about the endogenous variables. Hence, there is one equations
but two unknowns.
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Admittedly, it is possible to choose a particular steady state amongst the set of feasible
solutions to (11). It is common practice see, e.g., Baxter and Crucini (1995) to assume
B1 = B2 = 0. Although this choice pins down the original steady state, the dynamic system
that describes the behavior of the economy in the neighborhood of the steady state is not
stationary. Even a completely temporary shock has long lasting effects on the economy:
whatever the level of bond holdings materializes in the period immediately following a shock
becomes the new long-run position until a new shock occurs.
This problem is easily seen by looking at the linear approximation of the dynamic system

around a candidate steady state with B1 = B2 = 0. For simplicity assume that preferences
are additive-separable in consumption and leisure, i.e.,

U (c, l) =
c1−γ

1− γ
− χ0

l1−χ

1− χ
.

Using equations (6) − (8) with dW1 = B1 (s
t−1) − Q (st)B1 (s

t), consumption in country 1
can be expressed as

c1
¡
st
¢
= χ

1
χ

0

£
Φ1
¡
q̄
¡
st
¢¢

A1
¡
st
¢¤χ−1

χ
£
c1
¡
st
¢¤ γ

χ +B1
¡
st−1

¢
−Q

¡
st
¢
B1
¡
st
¢
.

Log-linearization around a steady state deliversµ
1− γ

χ

¶
ĉ1,t =

χ− 1
χ

Φ01 (q̄) q̄

Φ1 (q̄)
q̄t +

1

c1
(b1,t−1 − βb1,t) ,

where ĉ1,t and q̄t are the percentage deviation of consumption and the relative price from
their respective steady state values. b1,t is the absolute deviations of bond holdings from 0.
Notice that the log-linearized excess demand function implies

∂z2
∂q̄

q̄q̄t +
∂z2
∂dW1

[b1,t−1 − βb1,t] = 0.

Hence, ĉ1,t can simply be expressed as a function of q̄t. Similar reasoning applies for ĉ2,t,
which can also be expressed as a function of q̄t only.
Finally, the log-linear approximation of equation (12) is given by

−γ ((ĉ1,t+1 − ĉ2,t+1)− (ĉ1,t − ĉ2,t)) =

∙
1 +

Φ01 (q̄) q̄

Φ1 (q̄)
− Φ02 (q̄) q̄

Φ2 (q̄)

¸
(q̂t − q̂t+1) .

The findings for ĉi,t (and ĉi,t+1) imply

q̂t = q̂t+1.
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The dynamics of the system can therefore be approximated by

µ
q̄t+1
bt

¶
=

⎛⎝ 1 0

1
β

∂z2
∂q̄

q̄
∂z2
∂dW1

1
β

⎞⎠µ q̄t
bt−1

¶

The two eigenvalues that are associated with this system are 1 and 1
β
. This implies that a

purely transitory shock to technology in country 1 at time t permanently raises the relative
price q̄, and turns country 1 into a borrower. There is no internal mechanism that leads q̄
and B1 back to the original steady state values. q̄ and B1 only change if new shocks occur.

3.2 Bond economy with convex portfolio costs

Similar to Heathcote and Perri (2002), and Schmitt-Grohé and Uribe (2003) let agents face
a convex cost for holding/issuing bonds. The collected fees are reimbursed to the agents by
a lump-sum transfer. Φ

¡
Bi/P̄i

¢
denotes the portfolio costs in terms of country i’s traded

good, where Φ0 (0) = 0 and Φ0 > 0 otherwise. The representative household in country i
solves

max
ci(st),li(st),
ci1(st),ci2(st),

Bi(st)

∞X
t=0

X
st

βtU
¡
ci
¡
st
¢
, li
¡
st
¢¢

π
¡
st
¢

s.t.

Pi

¡
st
¢
ci
¡
st
¢
≤ P̄i

¡
st
¢
wi

¡
st
¢
li
¡
st
¢
+ P̄i

¡
st
¢
Πi

¡
st
¢
+Bi

¡
st−1

¢
−Q

¡
st
¢
Bi

¡
st
¢

− P̄i

¡
st
¢
Γ

µ
Bi (s

t)

P̄i (st)

¶
+ Ti

¡
st
¢
,

where Ti is the lump-sum reimbursement of the portfolio costs.
The equilibrium dynamics are fully summarized by z2 (q̄ (st) , B1 (st−1)−Q (st)B1 (s

t)) =
0 with z2 given by equation (11),

Q
¡
st
¢
=
X
st+1|st

β
Uc (c1 (s

t+1) , l1 (s
t+1))

Uc (c1 (st) , l1 (st))
π
¡
st+1|st

¢
− Γ0

µ
B1 (s

t)

P̄1 (st)

¶
,
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and the risk sharing conditionX
st+1|st

β

∙
Uc (c1 (s

t+1) , l1 (s
t+1))

Uc (c1 (st) , l1 (st))
− Uc (c2 (s

t+1) , l2 (s
t+1))

Uc (c2 (st) , l2 (st))

q (st)

q (st+1)

¸
π
¡
st+1|st

¢
(13)

= Γ0
µ
B1 (s

t)

P̄1 (st)

¶
− Γ0

µ
B2 (s

t)

P̄2 (st)

¶
.

As Γ0 = 0 for Bi = 0 and larger than zero otherwise, equation (13) implies that in a
steady state B1 = B2 = 0. Although the steady state value of bond holdings is uniquely
determined, there can still be multiple steady states if z2 (q̄, 0) = 0 has multiple solutions in
q̄. Hence, any steady state of the financial autarchy model is also a steady state of the model
with convex portfolio costs. Consequently, for ε < ε̄ the portfolio cost model has multiple
steady states.
The global equilibrium dynamics in an economy with perfect foresight are depicted in

figures 3 and 4 in a phase diagram. The dashed lines are the B1,t − B1,t−1 = 0 locus and
the q̄t+1− q̄t = 0 locus of the dynamic system, respectively. Each intersection of the two loci
corresponds to a steady state. The manifold which has been computed by a reverse shooting
algorithm is depicted by the solid line.11 If the elasticity of substitution is high (ε > ε̄), there
is a unique and stable steady state, see figure 4.
However, there are three steady states if the elasticity of substitution is low (ε < ε̄) as

depicted in figure 5. As indicated by the arrows the first and the third steady state are locally
stable, but the second one

³
q̄
1+q̄

= 1
2
, B1 = 0

´
is not. For intermediate values of initial bond

holdings the economy converges either to the first or to the third steady state. Convergence
to a steady state is unique only if the initial bond holdings are sufficiently high in absolute
value.
The (local) dynamic properties of the model with convex portfolio costs are summarized

in the following theorem.

Theorem 1 Assume that agents face convex portfolio costs for holding/issuing bonds as
described above. If the slope of the excess demand function is negative in a steady state,
then this steady state is a saddle point. If the slope of the excess demand function is positive
in a steady state, then such a steady state is unstable if Γ00 (0) is sufficiently small, i.e.,
Γ00 (0) < ∆P . Otherwise this steady state is a saddle point.

Appendix B.3 provides an exact definition of∆P and a proof of the above theorem. Γ00 (0)
measures how sensitive the portfolio costs are in the steady state with respect to changes in
11See Judd (1998). In plotting the stable manifold I have assumed that the portfolio costs are quadratic,

i.e., Γ = 1
2γ
³
Bi
P̄i

´2
with γ = 0.05.
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the bond distribution. To keep the model with convex portfolio costs close to the original
model, the portfolio costs need to be small and quite insensitive to changes in the allocation
of assets. In fact, if Γ is quadratic as in Heathcote and Perri (2002), Γ00 (0) is sufficiently
small for portfolio costs that are of realistic magnitude.
If portfolio costs are chosen to be very large, the model becomes similar to the model

with financial autarchy. Under financial autarchy, any steady state is locally stable in this
set-up.
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Figure 3: Stability of the steady state for ε = 1 with convex portfolio costs.
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Figure 4: Stability of the steady state for ε = 0.48 with convex portfolio costs.

3.3 Bond economy with debt elastic interest rate

In the setup of this paper the portfolio cost approach is very similar to a model with a debt
elastic interest rate. The latter approach assumes that the consumers in countries 1 and 2
face different prices for the bond, and that the spread between the prices is a function of the
net foreign asset position. This approach appears among others in Boileau and Normandin
(2005), Devereux and Smith (2003), and Schmitt-Grohé and Uribe (2003). The households
budget constraint is given by

Pi

¡
st
¢
ci
¡
st
¢
≤ P̄i

¡
st
¢
wi

¡
st
¢
li
¡
st
¢
+ P̄i

¡
st
¢
Πi

¡
st
¢
+Bi

¡
st−1

¢
−Qi

¡
st
¢
Bi

¡
st
¢
,

20



where Qi (s
t) is the price of the bond in country i. Similar to Devereux and Smith (2003),

the interest rate differential is of the form

R1
¡
st
¢
= R2

¡
st
¢
Ψ
¡
B1,t+1 − B̄1

¢
, (14)

where the function Ψ (B1,t+1) satisfies Ψ (0) = 1 and Ψ0 < 0. B̄1 is a reference level of debt
for country 1. For simplicity, I assume B̄1 = 0. When country 1 is a net borrower, it faces an
interest rate that is higher than the interest rate in country 2. When country 1 is a lender, it
receives an interest rate that is lower. In equilibrium, interest rates and bond prices satisfy

1

R1 (st)
= Q1

¡
st
¢
=
X
st+1|st

β
Uc (c1 (s

t+1) , l1 (s
t+1))

Uc (c1 (st) , l1 (st))
π
¡
st+1|st

¢
,

1

R2 (st)
= Q2

¡
st
¢
=
X
st+1|st

β
Uc (c2 (s

t+1) , l2 (s
t+1))

Uc (c2 (st) , l2 (st))

q (st)

q (st+1)
π
¡
st+1|st

¢
.

Furthermore, equation (14) implies

R1 (s
t)

R2 (st)
=

P
st+1|st β

Uc(c2(st+1),l2(st+1))
Uc(c2(st),l2(st))

q(st)
q(st+1)

π (st+1|st)P
st+1|st β

Uc(c1(st+1),l1(st+1))
Uc(c1(st),l1(st))

π (st+1|st)
= Ψ

¡
B1,t+1 − B̄1

¢
. (15)

As ci, li and q can be expressed as functions of q̄ only, the dynamics of the economy are fully
described by (15) and the condition that the excess demand for good 2 has to be zero, i.e.,
z2 (q̄, B1 (s

t−1)−Q1 (s
t)B1 (s

t) , B2 (s
t−1)−Q2 (s

t)B2 (s
t)) = 0.

In a steady state equation (15) implies B1 = B2 = 0 given the assumption Ψ (0) = 1.
Hence, in the model with a debt elastic interest rate all the steady states of the financial
autarchy model are preserved.
As in the model with convex portfolio costs the stability of a steady state can be linked

to the slope of the excess demand function.

Theorem 2 Assume that the interest rate differential between the two countries is debt
elastic as described above. If the slope of the excess demand function is negative in a steady
state, then this steady state is a saddle point. If the slope of the excess demand function is
positive in a steady state, then this steady state is unstable if Ψ0 (0) is sufficiently large, i.e.,
0 > Ψ0 (0) > ∆D. Otherwise this steady state is a saddle point.

Appendix B.3 provides an exact definition of ∆D. Similar to the model with convex
portfolio costs, the condition Ψ0 (0) > ∆D implies that the interest rate does not react too
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strongly to changes in the bond holdings. Hence, to the extent that the model with a debt
elastic interest rate is supposed to behave close to the original model, any steady state with
an upward-sloping excess demand function is unstable.12

3.4 Bond economy with endogenous discounting

In this section agents’ discount factors are assumed to be endogenous as in Mendoza (1991),
Corsetti, Dedola and Leduc (2005), and Schmitt-Grohé and Uribe (2003).13 This concept
of preferences with intertemporal dependences was introduced by Uzawa (1968) and it has
been extended and clarified by Epstein (1983, 1987). Uzawa-Epstein preferences fall into
the broader class of recursive preferences. The subjective discount factor is assumed to be a
decreasing function of the period utility level, i.e., agents become more impatient as current
utility rises. For most of the analysis, I assume that agents do not internalize the effect that
their current consumption and labor choices have on their discount factor. As the model is
solved by a backward shooting algorithm, this assumption simplifies the analysis drastically
because it reduces the number of state variables from three to just one.
The problem of the representative household is given by

max
ci(st),li(st),
ci1(st),ci2(st),

Bi(st)

∞X
t=0

X
st

θi
¡
st
¢
U
¡
ci
¡
st
¢
, li
¡
st
¢¢

π
¡
st
¢

s.t.

θi
¡
st+1

¢
= βi

£
U
¡
ci
¡
st
¢
, li
¡
st
¢¢¤

θi
¡
st
¢

Pi

¡
st
¢
ci
¡
st
¢
≤ P̄i

¡
st
¢
wi

¡
st
¢
li
¡
st
¢
+ P̄i

¡
st
¢
Πi

¡
st
¢
+Bi

¡
st−1

¢
−Q

¡
st
¢
Bi

¡
st
¢
.

The equilibrium dynamics are fully summarized by z2 (q̄ (s
t) , B1 (s

t−1)−Q (st)B1 (s
t)) = 0

with z2 given by equation (11), where

Q
¡
st
¢
=
X
st+1|st

β1
£
U
¡
c1
¡
st
¢
, l1
¡
st
¢¢¤ Uc,1 (c1 (s

t+1) , l1 (s
t+1))

Uc,1 (c1 (st) , l1 (st))
π
¡
st+1|st

¢
12Before I move to the case of a bond economy with endogenous discounting, a short comment about

Ghironi’s (2003) overlapping generations structure seems to be appropriate. Like the model with a debt
elastic interest rate, Ghironi’s framework preserves all the candidate steady states that occur in the model
without international financial markets. Therefore, it is not surprising, that in his framework a steady state
is dynamically unstable (saddle-path stable) if the excess demand function is upward (downward) sloping in
the steady state.
13Mendoza (1991) uses the endogenous discount factor approach in a small open economy model. Corsetti,

Dedola and Leduc (2005) employ this technique in a two country model of the international business cycle.
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and the risk sharing conditionX
st+1|st

∙
β1
£
U
¡
st
¢¤ Uc (c1 (s

t+1) , l1 (s
t+1))

Uc (c1 (st) , l1 (st))
− β2

£
U
¡
st
¢¤ Uc (c2 (s

t+1) , l2 (s
t+1))

Uc (c2 (st) , l2 (st))

q (st)

q (st+1)

¸
π
¡
st+1|st

¢
= 0,

(16)
where ci = ci (q̄) and li = li (q̄) as shown earlier. This system of difference equations has to
satisfy the appropriate initial and transversality conditions.
Equation (16) implies that in a steady state the discount factors are equalized across

countries
β1
£
U
¡
c1
¡
st
¢
, l1
¡
st
¢¢¤

= β2
£
U
¡
c2
¡
st
¢
, l2
¡
st
¢¢¤

. (17)

As βi is strictly decreasing in Ui, the utility function is strictly concave, and the technology
is concave, there is a unique allocation and a unique price q̄ that solves (17). The initial
allocation of bond holdings is then determined from the excess demand function. The steady
state of the model with endogenous discounting is therefore unique irrespective of the value
of the elasticity of substitution between traded goods. Furthermore, this steady state does
not necessarily feature zero bond holdings. However, the functional forms of β1 and β2 can
always be calibrated such that the unique steady state features B1 = B2 = 0.
The following theorem about the stability of the steady state is proven in the appendix

Theorem 3 Assume that the agents’ discount factors are endogenous and strictly decreasing
in the current utility level. Furthermore, assume that agents do not internalize the effects of
their choices on their discount factors. Then any steady state is a saddle point irrespective
of the sign of the slope of the excess demand function.

If the discount factor is assumed to be strictly increasing in the utility level, the model
dynamics are always explosive irrespective of the slope of the excess demand function.
Using a phase diagram, figures 5 and 6 illustrate the global dynamics for the model with

endogenous discounting.14 The dashed lines are the B1,t−B1,t−1 = 0 and q̄t+1− q̄t = 0 locus,
respectively.
The unique steady state is always saddle-path stable for both high and low values of the

elasticity of substitution. However, if ε is low the path to the steady state given an initial
wealth distribution is not unique. For initial bond holdings close enough to 0 the initial
value of q̄ determines the starting point on the stable manifold.

14The stable manifold is calculated using a reverse shooting algorithm. The endogenous discount factor is
assumed to be of the form β (U) = 1

1+ψ(U(c,l)−Ũ) , where the constant ψ is chosen such that β = 0.99 in the

steady state. Ũ is a constant that ensures that ψ > 0.
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Figure 5: Stability of the steady state for ε = 1 with an endogenous discount factor.

If agents internalize the effects of their consumption and labor decisions on the discount
factor, the risk sharing condition is given byX

st+1|st

∙
β1
¡
st
¢ Uc,1 (s

t+1)− η1 (s
t+1)βc,1 (s

t+1)

Uc,1 (st)− η1 (s
t)βc,1 (s

t)

¸
π
¡
st+1|st

¢
(18)

=
X
st+1|st

∙
β2
¡
st
¢ Uc,2 (s

t+1)− η2 (s
t+1)βc,2 (s

t+1)

Uc,2 (st)− η2 (s
t)βc,2 (s

t)

q̄ (st)

q̄ (st+1)

Φ1 (q̄ (s
t))

Φ1 (q̄ (st+1))

Φ2 (q̄ (s
t+1))

Φ2 (q̄ (st))

¸
π
¡
st+1|st

¢
.

ηi is the Lagrangian multiplier on the law of motion for the discount factor in country i and
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Figure 6: Stability of the steady state for ε = 0.48 with an endogenous discount factor.

it evolves according to

ηi
¡
st
¢
=
X
st+1|st

£
−Ui

¡
st+1

¢
+ βi

¡
st+1

¢
η
¡
st+1

¢¤
π
¡
st+1|st

¢
. (19)

Again, a steady state requires that the discount factors are equalized across countries, i.e.,
β1 (U (s

t)) = β2 (U (s
t)). Therefore, the model with internalization always has a unique

steady state.
A weaker version of theorem 3 applies if agents internalize the effects of their choices on

the discount factor.

Theorem 4 Assume that the agents’ discount factors are endogenous and that agents in-
ternalize the effects of their choices on their discount factors. Irrespective of the sign of the

25



slope of the excess demand function, any steady state is a saddle point if the discount factor
does not react too strongly to changes in bond holdings.

To the extent that the model with endogenous discounting is supposed to be close to the
original model, the discount factor should not change excessively as the utility level deviates
from its steady state level. Note, that the (in-)stability of the steady state is not at all
related to the slope of the excess demand function, but merely to the parameterization of
the endogenous discount factor itself.

3.5 Discussion and intuition

Table 2 summarizes the above results:

Model portfolio cost debt elastic endog. dcf. endog. dcf.
interest rate (no internalization) (internalization)

ε > ε̄
# steady states 1 1 1 1
dynamics (saddle) stable (saddle) stable (saddle) stable (saddle) stable
ε < ε̄
# steady states 3 3 1 1
dynamics #1, 3 (saddle) #1, 3 (saddle) (saddle) stable (saddle) stable

stable, stable,
#2 unstable #2 unstable

Table 2: summary of results

Multiplicity of steady states If there are no international financial markets in the
model as in section 2, international bond holdings are zero by definition. In the model with
convex portfolio costs, the risk sharing equation imposes the restriction that bond holdings
are zero in the steady state. Hence, any equilibrium of the financial autarchy model is a
steady state in the bond economy with convex portfolio costs. The same result occurs if the
interest rate is assumed to be debt elastic.
With an endogenous discount factor (both with and without internalization), however, the

risk sharing condition implies a unique value of the relative price q̄ in the steady state. Bond
holdings are determined as the residual from the excess demand function. This difference
manifests itself in the q̄t+1 − q̄t = 0 locus being a horizontal line in the first two cases and a
vertical line in the remaining two cases.
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To illustrate the intuition behind these differences consider the simplified model with
fixed labor supply. Furthermore, focus on the case ε < ε̄. There are three equilibria in
the model without international financial markets. These three equilibria are the candidate
equilibria for the bond economies, with case I featuring q̄

1+q̄
<< 1

2
, case II q̄

1+q̄
= 1

2
, and

case III q̄
1+q̄

>> 1
2
. In situation I, country 1’s consumption is much higher than country

2’s, and vice versa in case III.
Consider the candidate steady state I for the economy with endogenous discounting.

Agents in country 1 consume more and they are substantially less patient, i.e., β1 is smaller
than β2. Country 1 agents are willing to borrow resources at an interest rate of

1
β1
while

country 2 agents only demand 1
β2
. Hence, country 1 finds it optimal to borrow from country

2. With B1 < 0, case I cannot be an equilibrium. For the same reason case III is not an
equilibrium with the roles of the two countries reversed.
In the portfolio cost model the steady state interest rate is independent of the allocations

and always equals 1
β
. Hence, there are no incentives to borrow and lend in any of the three

candidate steady states. All candidate steady states with B1 = 0 are steady states of the
model with convex portfolio costs. Again, the same applies under a debt elastic interest rate.

Stability of steady states Theorems 1 and 2 show that under reasonable parame-
terizations of the convex portfolio cost and the debt elastic interest rate the stability of the
dynamic system in the neighborhood of a steady state depends on the sign of the slope of
the excess demand function in this steady state. Whenever the excess demand function is
upward-sloping in a steady state, the steady state is locally unstable.
Under endogenous discounting (theorems 3 and 4) the stability of the system in the

neighborhood of a steady state does not depend on the slope of the excess demand function
in the steady state. The stability depends solely on the parameterization of the endogenous
discount factor.
The logic behind the stability of the steady state in the model with endogenous discount-

ing is closely related to the argument about its uniqueness. Assume that q̄ is below its steady
state value. This implies that consumption in country 1 (2) is above (below) its steady state
value. Suppose, that the relative price is even lower in the next period, suggesting that
the economy moves away from the steady state. This implies an increasing (decreasing)
consumption profile in country 1 (2). In addition, the discount factor in country 1 (2) falls
(rises). Hence, the price of the non-state-contingent bond falls in country 1 but rises in
country 2. Obviously, the opposite movement of bond prices is inconsistent with the absence
of arbitrage dictated by the risk sharing condition, equation (16). Hence, if q̄ is below its
steady state value at time t, q̄ must rise in t + 1 and the economy converges to its unique
steady state.
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Consider the case of a low elasticity of substitution in the bond economy with convex
portfolio costs. All equilibria of the financial autarchy model are also steady states in this
setup. However, only cases I and III are stable. The intuition behind the instability of case
II is as follows. The price of bonds consists of two pieces: the intertemporal marginal rate
of substitution and the derivative of the portfolio costs. Consider the neighborhood of any of
the three steady states. If q̄ is slightly below its steady state value, consumption in country
1 (2) is above (below) its corresponding steady state value. Stability of a certain steady
state requires q̄ to rise and c1 to fall over time. As a result, the intertemporal marginal
rate of substitution in country 1 (2) rises (falls), which leads to a divergence of bond prices.
However, when q̄ rises, bond holdings and, due to the convexity of the portfolio costs, the
derivative of the portfolio costs fall. The effect on bond prices is negative in both countries.
However, it is stronger in country 2 since portfolio costs are measured in terms of each
country’s good. This second effect operates towards a rise of the bond price in country 2
relative to country 1. If this effect is strong enough, bond prices can be prevented from
drifting apart. In cases I and III, small changes in q̄ imply relatively large changes in bond
holdings and therefore relatively large changes in the derivative of the portfolio costs. In case
II, however, the change in bond holdings is small owing to the fact that the excess demand
function is fairly flat around this steady state. Hence, bond prices drift apart and case II is
unstable.
Although conceptually different, these results are related to the concept of tâtonnement

stability by Samuelson (1947). In the model without international financial markets and
ε < ε̄, the second equilibrium is locally totally unstable as relative prices diverge. The first
and third equilibrium are locally stable since for an initial price vector that is sufficiently
close to the equilibrium the dynamic trajectory causes relative prices to converge. As in
the case of convex portfolio costs or a debt elastic interest rate, stability of a steady state
is related to the slope of the excess demand function. However, it is not really clear what
is the concept of "time" used in the tâtonnement analysis. In sharp contrast to the models
presented in this paper, it cannot be real time as the economy is not in equilibrium along
the tâtonnement path and thereby violates feasibility.

4 Technology shocks

4.1 Impulse response functions

This section studies the dynamic response to a technology shock in the model with an endoge-
nous discount factor (without internalization) and with convex portfolio costs, respectively.
To keep the discussion simple I do not discuss the cases of a debt elastic interest rate or the
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endogenous discount factor with internalization. Not surprisingly, though, the results in this
section for the debt elastic interest rate are similar to the ones for convex portfolio costs.
The case of endogenous discounting with internalization behaves close to the case without
internalization.
At time 1 country 1 experiences an unexpected 1% rise in its technology. The shock

follows an AR(1) process with a persistence parameter of 0.9. Once the shock is realized,
agents perfectly foresee the future path of the economy. The economy is assumed to be in a
steady state prior to the shock.

High elasticity of substitution Consider first the case of a large value of the elasticity
of substitution, i.e., ε > ε̄. The steady state is unique and stable for both approaches. Figure
7 plots the impulse response functions in the two economies for different variables of interest.
The impulse responses for the endogenous discount factor model are given by the solid lines,
and are given by the dashed lines for the portfolio cost model. All variables are shown in
levels rather than deviations from the steady state. In the example shown, the steady state
values are q̄

1−q̄ =
1
2
, c1
c2
= y1

y2
= 1 and B1 = 0. The impulse responses are strikingly similar

for the two approaches. Only the dynamics of bond holdings differ, but apparently this has
almost no impact on the remaining variables given that bond holdings are small.
The increase in country 1’s productivity reduces the costs of production in country 1.

Therefore, output in country 1 rises relative to country 2. So does consumption, however,
its rise is smaller since country 2 borrows from country 1. The price of good 2 relative to
good 1 increases, reflecting the relative abundance of good 1 in the world market. Despite
the modelling differences, the impulse response functions look very much alike for the two
models. Given the remaining parameters of the models, changes in ε do not substantially
change the picture as long as ε > ε̄.

Low elasticity of substitution However, once ε drops below ε̄, the two models differ
drastically owing to the potential multiplicity of steady states. Figures 8 and 9 show the
impulse response functions in the two models for ε = 0.48.
In the model with endogenous discounting (figure 8) there are three possible impulse

response functions for a 1% technology shock (I dashed, II solid and III dashed-dotted
line). As the steady state is unique and globally stable, the economy converges back in each
case to the old steady state with q̄

1−q̄ = 0.5,
c1
c2
= y1

y2
= 1 and B = 0.

In the first case (dashed line) the technology shock leads to a fall in the relative price,
q̄. As the elasticity of substitution between traded goods is low, production in country 2
rises relative to country 1 to generate more income in order to prevent a too strong fall in
income. With country 1 increasing its consumption relative to country 2, but lowering its
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Figure 7: Impulse response functions for a 1% technology innovation in country 1 and ε = 1.
All variables are plotted in levels. Solid line shows the response for endogenous discounting,
dashed line for convex portfolio costs.

relative use of labor, β1 falls relative to β2. The resulting borrowing by country 1 shifts
additional resources to country 1 and reinforces the effects. The second case (solid line)
behaves qualitatively like the first case. However, the effects are considerably smaller.
However, in the third case (dashed-dotted line) the shock leads to a rise of the relative

price of good 2, but to an increase of y1 relative to y2. As the price effect is not compensated
by the increased production of good 1, consumption in country 1 declines relative to country
2. Furthermore, agents in country 2 become less patient which leads to increased borrowing
by country 2 and this reinforces the effects.
If the model is closed by introducing convex portfolio costs, there are two locally stable

steady states with q̄
1+q̄

= 0.12 and 0.88. The third one, featuring q̄
1+q̄

= 1
2
, is unstable. In

figure 9, I assume that the economy is originally in the steady state with q̄
1+q̄

= 0.12. In
the first two cases (solid and dashed lines) the economy reverts to its original steady state.
However, in the third one, the economy moves into a different regime: after an initial massive
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Figure 8: Impulse response functions for a 1% technology innovation in country 1. All
variables are plotted in levels. Agents’ discount factors are endogenous and ε = 0.48.

depreciation of q̄ the economy converges to the other stable steady state with q̄ = 0.88. All
three cases have in common that higher productivity in country 1 leads to an increase in
the production of good 1 and a relative decline of its price. Consumption drops below its
(new) steady state value. Given the low substitutability between traded goods, the decline
in the price of good 1 is too large to be compensated by the additional income that is due to
the rise in production of good 1. Even as agents in country 1 borrow from country 2, they
cannot prevent their consumption from falling relative to consumption in country 2 starting
from the original steady state.
The multiplicity of the impulse response functions is closely related to the multiplicity

of steady states in the model of financial autarchy. Consider the model with endogenous
discounting and ε < ε̄. Although, there is a unique steady state in this model, the corre-
sponding model without financial markets has three steady states. For simplicity, consider a
permanent shock to technology. This situation is depicted in figure 10. Before the shock, the
stable manifold is given by the solid line and the unique steady state features q̄

1−q̄ = 0.5 and
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Figure 9: Impulse response functions for a 1% technology innovation in country 1. All
variables are plotted in levels. Agents face convex portfolio costs and ε = 0.48.

B1 = 0. In response to the shock, the manifold shifts upwards as indicated by the dashed
line. In the new steady state — labeled by the small circle — q̄

1−q̄ = 0.5 and B1 = 0.01. How
does the transition occur? As bond holdings are predetermined, the economy has to start in
a point on the new manifold with B1 = 0. There are three points that satisfy this condition,
each marked by a little square and an arrow. The arrows indicate the movements of q̄ and
B1 along the new manifold. Absent other restrictions on the adjustment path, each of the
points I-III can be the starting point of the transition dynamics.
Note, that if the technology shock is too large, there is only one impulse response function.

In figure 10 a large enough shock to technology can shift the manifold (and the new steady
state) sufficiently up such that points I and II disappear. The unique starting point of the
transition dynamics is then point III.
In the case of figures 8 and 9 technology shocks larger than 5%, would imply unique

impulse response functions for this very reason. The unique response resembles case III,
the dashed-dotted line. The economy with portfolio costs converges to a new steady state
after the effects of the shock are foregone. While a 5% rise in technology seems large, this
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Figure 10: Shift of the stable manifold for a permanent technology shock.

threshold number can be very close to 0 for more persistent shocks or for ε closer to ε̄.
In the above discussion I have presented examples for which the endogenous variables do

not oscillate along the equilibrium path. However, if the eigenvalues that go along with the
linear approximation of the dynamic system around a steady state are complex there can
be other interesting equilibria. For example, it is straightforward to show that in the case
of convex portfolio costs there can be parameterizations of the cost function such that for
ε < ε̄ the middle steady state is an unstable focus. In this case, there are most likely more
than three impulse response functions. However, to the extent that these additional impulse
responses exist, they would not be directly related to the fact that there are multiple steady
states under financial autarchy. For this reason, I omit the analysis of such cases.15

15Only in the model with endogenous discounting without internalization can it be shown that the steady
state cannot be a focus. In all other models oscillations can occur for appropriate parameterizations if ε < ε̄.
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4.2 Implications for applied modelling

One lesson from applied general equilibrium modelling is that it is practically impossible to
find all the equilibria of a given model unless it can be proven that the equilibrium is unique.
As illustrated in this paper, failing to detect equilibrium multiplicity and its associated
nonlinearities renders an incomplete description of the model’s dynamics.
In particular, equilibriummultiplicity implies that the model dynamics cannot be reliably

captured by a log-linear approximation around a given steady state. In the endogenous
discount factor model, for example, only the second impulse response function in figure 8
is detected if the model is solved by linearization. For larger shocks, the predicted impulse
response function is merely an amplified version of the response under small shocks (case
II). Obviously, for larger shocks such a prediction is far off the true impulse responses which
resemble case III. This failure to recover the correct dynamics of the model is very different
from the typical approximation error for large shocks.
In practice, researchers often calibrate their models to a specific steady state and log-

linearize around it, thereby assuming away the issues addressed in this paper. Since different
methods of closing open economy models can have diverse dynamic implications — in par-
ticular with respect to the stability of certain steady states — applied general equilibrium
researchers may find it instructive to solve their models for various stationarity-inducing
methods.
However, for the purpose of inducing stationarity into the model with incomplete in-

ternational financial markets, the endogenous discount factor approach can be misleading.
This approach forces the model to have a unique and stable steady state irrespective of the
number of steady states that occur under other approaches that can be used to close open
economy models. Important nonlinearities may remain undetected. As shown in this paper,
convex portfolio costs or a debt elastic interest rate allow for multiple steady states whenever
there are multiple solutions to the excess demand function under financial autarchy. These
approaches at least do not rule out by construction the ability to detect steady state mul-
tiplicity. If the excess demand function is upward-sloping in a steady state — which proves
the existence of multiple steady states — these two models turn out to be unstable in the
neighborhood of this steady state

5 Conclusions

This paper analyzes different approaches that resolve the stationarity problem in models with
incomplete asset markets. If stationarity is induced by an endogenous discount factor, there
is always a unique saddle stable steady state. However, despite the uniqueness of the steady
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state, the equilibrium may not be unique away from the steady state. If the analogous model
without international financial markets has multiple equilibria, there are multiple paths that
lead the economy back to its steady state in response to a technology shock.
If stationarity is induced by a convex portfolio cost or a debt elastic interest rate, the

number of steady states coincides with the number of equilibria in the analogous model with-
out international financial markets. If the excess demand function in the financial autarchy
model has multiple zeros not all steady states are saddle stable: a steady state in which
the excess demand function is upward sloping is typically unstable. Similar to the model
with endogenous discounting, there can be multiple impulse responses to a technology shock.
However, in the case of convex portfolio costs or a debt elastic interest rate the economy may
or may not converge back to its former steady state but to one of the other steady states of
the model.
In the present paper, the differences across stationarity inducing methods hinge on the

value of the elasticity of substitution between traded goods, ε, as the elasticity governs the
multiplicity of equilibria in the financial autarchy model. Although the critical value ε̄ for
which these differences become an issue depends on the specific model, the relevance of the
findings in this paper goes further.
In applied macroeconomic studies it is common to chose values between 1 and 1.5 (see

e.g. Backus and Smith (1995), Chari, Kehoe and McGrattan (2003), and Heathcote and
Perri (2002)). Recently, however, various authors have argued in favor of low values of
the trade elasticity. In straightforward extensions of the model presented in this paper
Heathcote and Perri (2002) and Collard and Dellas (2004) argue that they improve their
models’ performance in accounting for features of the international business cycle like the
volatility of the terms of trade when moving to elasticities in the range of 0.5. In Benigno and
Thoenissen (2006) the model with an elasticity of 0.5 outperforms their baseline calibration
with a value of 2.
Other researchers have refrained from assuming such low elasticities directly. Instead,

they augment the standard model by distribution costs in nontraded goods to obtain a low
implied elasticity of substitution. Representative work is by Burstein, Neves and Rebelo
(2003), Burstein, Eichenbaum and Rebelo (2003), Corsetti and Dedola (2005), and Corsetti,
Dedola and Leduc (2005). Corsetti, Dedola and Leduc build a two country general equi-
librium model with distribution costs in nontraded goods. Only for a low implied value of
the elasticity of substitution does their linearized model successfully address two important
puzzles in international economics: the high volatility of the real exchange rate relative to
fundamentals and the observed negative correlation between the real exchange rate and rel-
ative consumption (Backus and Smith (1993)). Corsetti and Dedola (2005) show that this
framework admits multiple equilibria in the absence of international borrowing and lending
even if the direct elasticity of substitution between traded goods is larger than 1.
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As Kollmann (2005) shows, a low elasticity of substitution may also be responsible for the
apparent home bias in equity holdings. Rabanal and Tuesta (2005) estimate a DSGE model
with sticky prices using a Bayesian approach. Their median estimates for the elasticity of
substitution range from 0.01 to 0.91 for different specifications of their model. Lubik and
Schorfheide (2005) estimate the elasticity of substitution to be around 0.4.
This list of papers indicates that low values of trade elasticities at the aggregate level

may be behind many of the puzzles in international macroeconomics. However, to the extent
that the assumption of low (implied) trade elasticities gives rise to multiple equilibria and
important nonlinearities, the choice of how to induce stationarity in a model with incomplete
international asset markets is no longer innocuous.
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A A formal analysis of existence and multiplicity

This appendix shows the existence of the equilibrium in the model with financial autarchy.
In addition, I discuss conditions under which multiple equilibria arise. The appendix ends
by discussing different parameterizations for which multiple equilibria occur.

A.1 A more general setup

I assume that ci is given by the linear homogenous aggregator ci = Hi (ci1, ci2).16 Hi is
assumed to satisfy

Hij =
∂Hi

∂cij
> 0, Hiii =

∂2Hi

∂c2ii
< 0, Hiji =

∂2Hi

∂cij∂cii
> 0,

16An aggregator that satisfies the restrictions imposed on Hi is given by the straightforward extension of
the CES aggregator which has been suggested by Dotsey and King (2005):

αi1
(1 + η) ρ

∙
(1 + η)

αi1

µ
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− η

¸ρ
+

αi2
(1 + η) ρ
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¸ρ
=

1

(1 + η) ρ
.

This aggregator allows for the elasticity of substitution to be non-constant.
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and the Inada conditions

lim
ci1→0

Hi1 (ci1, ci2) = lim
ci2→0

Hi2 (ci1, ci2) =∞,

lim
ci1→∞

Hi1 (ci1, ci2) = lim
ci2→∞

Hi2 (ci1, ci2) = 0.

The strictly concave period utility function U (c, l) is assumed to satisfy the following con-
ditions

Uc > 0, Ul < 0 and Ucc < 0, Ull < 0, Ucl ≤ 0.
The optimal choices for ci1 and ci2 can be found from the following optimization program:

max
ci1,ci2

Hi (ci1, ci2)

s.t.

P̄1ci1 + P̄2ci2 = P̄iwili + dWi.

Linear homogeneity of Hi implies that the first order conditions can be written as

Hi1

µ
ci1
ci2

, 1

¶
= λiP̄1,

Hi2

µ
ci1
ci2

, 1

¶
= λiP̄2.

Given the properties of Hi1 and Hi2, this can be summarized as

ci1
ci2
= H̃i

µ
1

q̄

¶
,

where q̄ is the relative price of good 2 to good 1, P̄2
P̄1
. The aggregator Hi is said to allow

for home bias in goods if H̃1

³
1
q̄

´
> H̃2

³
1
q̄

´
for all q̄. Let Pi denote the price of the final

consumption basket, which turns out to be given by

Φ1 (q̄) ≡
P̄1
P1
=

q̄H1

³
H̃1

³
1
q̄

´
, 1
´

q̄
h
H̃1

³
1
q̄

´
+ q̄
i with Φ01 (q̄) < 0,

Φ2 (q̄) ≡
P̄2
P2
=

q̄H2

³
H̃2

³
1
q̄

´
, 1
´

h
H̃2

³
1
q̄

´
+ q̄
i with Φ02 (q̄) > 0.
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I normalize the price of the consumption basket in country 1 to unity, P1 = 1, and denote
P2 by q, which is simply the real exchange rate. Obviously, q and q̄ are related as follows

q = q̄
Φ1 (q̄)

Φ2 (q̄)
.

Using the budget constraint and ci1
ci2
= H̃i

³
1
q̄

´
, the demand functions for good 2 are

c12 =
1³

H̃1

³
1
q̄

´
+ q̄
´ ∙w1l1 + 1

Φ1 (q̄)
dW1

¸
,

c22 =
1³

H̃2

³
1
q̄

´
1
q̄
+ 1
´ ∙w2l2 + 1

q̄Φ1 (q̄)
dW2

¸
,

z2 =
w1l1 +

1
Φ1(q̄)

dW1³
H̃1

³
1
q̄

´
+ q̄
´ +

w2l2 +
1

q̄Φ1(q̄)
dW2³

H̃2

³
1
q̄

´
1
q̄
+ 1
´ −A2l2.

Similar expressions can be derived for the demand of good 1 and an expression for ci =
Hi (ci1, ci2) can be provided:

c1 = Φ1 (q̄)w1l1 + dW1, (20)

c2 = Φ2 (q̄)w2l2 +
Φ2 (q̄)

Φ1 (q̄) q̄
dW2. (21)

Combining ci with the intratemporal Euler equation for consumption-leisure choices,

Ul (ci, li)

Uc (ci, li)
= −Φi (q̄)wi, (22)

allows to express li and ci as functions of w1, w2 and q̄ (and dWi). li and ci are functions of
the price vectors, if each price vector maps into a unique allocation. Keeping prices fixed,
(22) and the assumptions on U imply

dc

dl
= − [Φi (q̄)AiUlc + Ull]

[Ulc + Φi (q̄)AiUcc]
< 0

for every price vector. Since the relationship between consumption and labor is strictly
positive in equations (20) and (21), the mapping from prices into quantities ci and li, i = 1, 2
is unique.
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A.2 Existence of the equilibrium

In the following I closely follow Kehoe (1980, 1985 and 1991). Let Li be the time endowment
of agents in country i. Kehoe defines the excess demand for a good as the difference between
the demand for a specific good and the aggregate endowment with this good. The economy’s
endowment with goods 1 and 2 is zero, while the leisure endowments are L1 and L2. I denote
the excess demand for goods 1 and 2 by dc,i = c1i + c2i, i = 1, 2. The excess demand for
leisure is given by dl,i = (Li − li)− Li = −li. Furthermore, let d = (dc,1, dc,2, dl,1, dl,2).
The production side of the economy is given by a 4 × 6 activity analysis matrix A.

Each column of A represents an activity, which transforms inputs taken from the vector of
aggregate initial endowments or from the outputs of other activities into outputs, which are
either consumed or further used as inputs. Positive entries in an activity denote quantities
of outputs produced by the activity; negative entries denote quantities of inputs consumed.
Aggregate production is denoted by Ay0, where y is a 6 × 1 vector of nonnegative activity
levels:

A =

⎡⎢⎢⎣
−1 0 0 0 A1 0
0 −1 0 0 0 A2
0 0 −1 0 −1 0
0 0 0 −1 0 −1

⎤⎥⎥⎦ ,
with the first 4 columns of this matrix being free disposal activities.
An equilibrium of this economy is a price vector p̂ =

¡
P̄1, P̄2, w1, w2

¢
that satisfies the

following three properties: first p̂0A ≤ 0; second there exists a nonnegative vector of activity
levels ŷ such that Aŷ0 = d (p̂); and third P̄1 = 1. The first condition requires that there be
no excess profits available. The second one requires that supply equals demand. The third
one is simply a price normalization.
Existence of an equilibrium follows directly from Theorem 1 in Kehoe (1985). Notice,

how Kehoe’s presentation of the problem can be reduced to the presentation in the main
text. Let the activity vector be y0 = (0, 0, 0, 0, l1, l2). Then

d (p)−Ay0 =

⎛⎜⎜⎝
c11 + c21
c12 + c22
−l1
−l2

⎞⎟⎟⎠−
⎛⎜⎜⎝

A1l1
A2l2
−l1
−l2

⎞⎟⎟⎠ .
Using Walras’ Law, an equilibrium is a price vector such that z2 (p) = c12 (p) + c22 (p) −
A2l2 (p) = 0. As profit maximization implies wi = Ai, all that needs to be found is the
relative price q̄ = P̄2.
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A.3 Multiplicity of equilibria

If all the equilibria of an economy are locally unique, the economy is referred to as regular.
Kehoe (1980) provides general conditions that ensure regularity. In addition, he shows that
the number of equilibria in a production economy is odd. Let the index of an equilibrium p̂
be defined as

index (p̂) = sgn

µ
det

∙
−J̄ B̄
−B̄0 0

¸¶
.

J̄ is formed by deleting the first row and the first column from Dd (p̂), the matrix of deriv-
atives of the excess demand functions with respect to each price, if good 1 is the numeraire.
B̄ is formed by deleting the first row from B (p̂), where B (p̂) is the submatrix of A whose
columns are all those activities that earn zero profits at p̂.
Theorem 2 in Kehoe (1985) states that the sum of the indices across all equilibria equals

+1, i.e.,
P

j index (p̂
j) = +1. Hence the number of equilibria in a regular economy is finite

and odd. If it cannot be proven that there is a unique equilibrium, this is usually all that
can be said about the number of equilibria. Although there has been substantial progress in
the development of fixed point algorithms, it is in general impossible to find all the equilibria
of an economy if there is no guarantee that there is only one.
What can be said about the equilibria in the model presented in this paper? Using

Kehoe’s approach,

J̄ =

⎡⎣ ∂dc,2/∂q̄ 0 0
∂dl,1/∂q̄ 0 0
∂dl,2/∂q̄ 0 0

⎤⎦ , B̄ =
⎡⎣ 0 A2
−1 0
0 −1

⎤⎦ ,
since wi = Ai. It turns out that

det

∙
−J̄ B̄
−B̄0 0

¸
= −∂dc,2

∂q̄
+A2

∂dl,1
∂q̄

= −∂z2
∂q̄
.

If the excess demand function as defined in the main text, z2, is downward sloping in each
equilibrium, the equilibrium is unique. However, if an equilibrium with ∂z2

∂q̄
> 0 is found

then there must be at least two more equilibria.

In order to find calibrated economies with multiple equilibria for the model presented in
this paper, I search for parameters such that the slope of the excess demand function is zero

43



in equilibrium. Totally differentiating equation (9) delivers

∂z2
∂q̄

=
A1l1

q̄
h
H̃1

³
1
q̄

´
+ q̄
i
⎡⎣H̃ 0

1

³
1
q̄

´
1
q̄
− q̄

H̃1

³
1
q̄

´
+ q̄

+
∂l1
∂q̄

q̄

l1

⎤⎦

+
H̃2

³
1
q̄

´
A2l2

q̄
h
H̃2

³
1
q̄

´
+ q̄
i
⎡⎢⎢⎣

H̃0
2( 1q̄ )

H̃2( 1q̄ )
+ q̄h

H̃2

³
1
q̄

´
+ q̄
i − ∂l2

∂q̄

q̄

l2

⎤⎥⎥⎦ .
Let the (possibly variable) elasticity of substitution between traded goods in country i be
denoted by εi (q̄) . Hence, equation (3) implies

εi (q̄) =
∂
³
ci1
ci2

´
(q̄)

∂ (q̄) ci1
ci2

= −
H̃ 0

i

³
1
q̄

´
1
q̄

H̃i

³
1
q̄

´ . (23)

The slope of z̃2 in equilibrium (z̃2 (q̄
∗) = 0) can then be expressed as

∂z2
∂q̄
|q̄=q̄∗ = −

A1l1

q̄
h
H̃1

³
1
q̄

´
+ q̄
i
⎡⎣ε1 (q̄) H̃1

³
1
q̄

´
1
q̄
+ 1

H̃1

³
1
q̄

´
1
q̄
+ 1

+
ε2 (q̄)− 1

H̃2

³
1
q̄

´
1
q̄
+ 1
− ∂l1

∂q̄

q̄

l1
+

∂l2
∂q̄

q̄

l2

⎤⎦ .
∂li
∂q̄

q̄
li
is the general equilibrium elasticity of labor with respect to the relative price q̄.
To find an expression for ∂li

∂q̄
q̄
li
notice that equations (4) and (5) together with (3) and

the consumption aggregators, Hi (ci1, ci2), imply ci = Φi (q̄)Aili. Total differentiation of
ci = Φi (q̄)Aili and (8) yields

∂li
∂q̄

q̄

li
= −

⎡⎣−ηi
h
U2lc,i
Ucc,i

Uc,i
Ul,i
− Ull,i

Uc,i
Ul,i

i
+
h
Ulc,i − Ul,i

Uc,i
Ucc,i

i
h
Ulc,i − Ull,i

Uc,i
Ul,i

i
+
h
Ulc,i − Ul,i

Uc,i
Ucc,i

i
⎤⎦ Φ0i (q̄) q̄

Φi (q̄)
,

where ηi is the Frisch labor supply elasticity.
17 From the definition of Φi (q̄),

17The Frisch (or constant marginal utility of wealth) labor supply elasticity is defined as

η =
dl

dw

w

l
|λ =

Ul

lUll − lU2
lc

Ucc

.
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q̄
Φ01 (q̄)

Φ1 (q̄)
= − 1

H̃1

³
1
q̄

´
1
q̄
+ 1

, (24)

q̄
Φ02 (q̄)

Φ2 (q̄)
=

H̃2

³
1
q̄

´
1
q̄

H̃2

³
1
q̄

´
1
q̄
+ 1

. (25)

To gain additional insights, I define the share of imports in GDP of country 1 to be 1−α1 =
c12

1
q̄
A1l1

. Since trade is balanced in the model with financial autarchy, dWi = 0, it is c11
A1l1

= α1.

From the definition of H̃1 follows H̃1

³
1
q̄

´
1
q̄
= α1

1−α1 . Analogously, it is H̃2

³
1
q̄

´
1
q̄
= 1−α2

α2
. Let

the relative country size, A1l1
A2l2

, be denoted by θ. The relative price is then given by q̄ = θ 1−α1
1−α2 .

With these definitions at hand

∂z2
∂q̄
|q̄=q̄∗ = −

A1l1

q̄
h
H̃1

³
1
q̄

´
+ q̄
i ∙ε1 (q̄)α1 + ε2 (q̄)α2 + (1− α1 − α2)−

∂l1
∂q̄

q̄

l1
+

∂l2
∂q̄

q̄

l2

¸
,

and Φ01(q̄)q̄
Φ1(q̄)

= − (1− α1),
Φ02(q̄)q̄
Φ2(q̄)

= 1− α2.
I consider the following three classes of utility functions:

1. Additive separable in consumption and leisure (labor)

U (c, l) = v1 (c)− v2 (l) ,

and
U (c, l) = v1 (c)− v2 (1− l) .

Since Ucl = 0,
∂li
∂q̄

q̄

li
=
1− σ
1
η
+ σ

Φ0i (q̄) q̄

Φi (q̄)
,

where σ = −Uccc
Uc
, the relative risk aversion, and η is the Frisch labor supply elasticity.

2. Preferences without wealth effects

U (c, l) = v1 (c− v2 (l)) ,

and
∂li
∂q̄

q̄

li
= η

Φ0i (q̄) q̄

Φi (q̄)
.
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3. Cobb-Douglas aggregator

U (c, l) = V
³
cξ (1− l)1−ξ

´
,

where V (·) is strictly monotone in its argument. In this case

∂li
∂q̄

q̄

li
= 0.

To obtain an idea, how likely it is to observe multiple equilibria in a calibrated economy,
I proceed as follows. For the case of additive-separable preferences, assume that the two
countries share the same constant values for the elasticity of substitution, the Frisch labor
supply elasticity and the relative risk aversion. The critical value ε̄ that separates the case
of a unique equilibrium from the case of multiple equilibria is then determined by setting
∂z2
∂q̄
|q̄=q̄∗ = 0,

ε̄ =
α1 + α2 − 1
α1 + α2

+

1−σ
1
η
+σ

α1 + α2
[α1 + α2 − 2] .

α1 and α2 are less than unity by definition. Furthermore, with home bias, i.e. H̃1

³
1
q̄

´
>

H̃2

³
1
q̄

´
for all q̄, α1 + α2 − 1 > 0. It is easy to see that with a completely inelastic labor

supply (η = 0), ε̄ = α1+α2−1
α1+α2

. If η > 0 and σ > 1, ε̄ > α1+α2−1
α1+α2

and less or equal for σ ≤ 1.
ε̄ is increasing in σ and η. An upper bound for ε̄ is given by limσ→∞,η→∞ ε̄ = 1

α1+α2
< 1 if

α1 + α2 > 1.
Figure 11 plots ε̄ as a function of η and σ for α1 = α2 = 0.8. For the most appropriate

choices of σ and η, ε̄ lies around 0.5. For example, ε̄ ≈ 0.48 for σ = 3 and η = 1
2
.

Figure 12 shows ε̄ as a function α1 and α2 for σ = 3 and η = 1
2
. Since σ > 1, ε̄ is

increasing in α1 and α2 (or decreasing in the import share in GDP).

B Stability and the slope of the excess demand func-
tion

This appendix proves theorems 1-4 in the main text. Section B.1 provides the algebraic
derivations needed for these proofs. Section B.2 provides the proofs themselves. All deriva-
tions and proofs are based on the more general model described in appendix A.
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Figure 11: ε̄ as a function of risk aversion, σ, and the Frisch labor supply elasticity, η, for
given α1 = α2 = 0.8.

B.1 Preliminaries

In this section I derive a log-linear approximation of the model’s dynamics solely in terms
of the relative price q̄ and bond holdings B1. I assume that the model is parameterized such
that in any steady state bond holdings are zero.

Consumption and labor With constant technology, equations (20)− (22) imply

l̂1,t = ωq,1
Φ01 (q̄) q̄

Φ1 (q̄)
q̄t − ωb,1

1

c1
[b1,t−1 − βb1,t] , (26)

l̂2,t = ωq,2
Φ02 (q̄) q̄

Φ2 (q̄)
q̄t + ωb,2

Φ2 (q̄)

q̄Φ1 (q̄)

1

c2
[b1,t−1 − βb1,t] , (27)

ĉ1,t = [1 + ωq,1]
Φ01 (q̄) q̄

Φ1 (q̄)
q̄t + [1− ωb,1]

1

c1
[b1,t−1 − βb1,t] , (28)

ĉ2,t = [1 + ωq,2]
Φ02 (q̄) q̄

Φ2 (q̄)
q̄t − [1− ωb,2]

Φ2 (q̄)

q̄Φ1 (q̄)

1

c2
[b1,t−1 − βb1,t] , (29)

where q̄t denotes the percentage deviation of the relative price q̄ from its steady state value
at time t. b1,t is the absolute deviation of country 1’s bond holdings. If b1,t > 0, country 1
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Figure 12: ε̄ as a function of α1 and α2 for σ = 3 and η = 1
2
.

is lending to country 2 in period t. ωb,i and wq,i are given by

ωb,i =

h
Ulc,i − Ul,i

Uc,i
Ucc,i

i
h
Ulc,i − Ul,i

Uc,i
Ucc,i

i
+
h
Ucl,i − Uc,i

Ul,i
Ull,i

i ,
τ i =

−Uc,i
1
lih

Ulc,i − Ul,i
Uc,i

Ucc,i

i
+
h
Ucl,i − Uc,i

Ul,i
Ull,i

i ,
ωq,i = −ωb,i + τ i.

With the assumptions on the utility function U (c, l), which are satisfied by almost all utility
functions that are commonly used in macroeconomics, one obtains 0 < ωb,i < 1 and τ i > 0.

Excess demand function Using equations (26) − (29) the log-linear approximation
of the excess demand function in equilibrium, z2 (q̄, dW1) = 0, can be written as

∂z2
∂q̄

q̄q̄t +
∂z2
∂dW1

[b1,t−1 − βb1,t] = 0 (30)
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with

∂z2
∂q̄

q̄ =
A1l1h

H̃1

³
1
q̄

´
+ q̄
i
⎡⎣H̃ 0

1

³
1
q̄

´
1
q̄
− q̄

H̃1

³
1
q̄

´
+ q̄

+
∂l1
∂q̄

q̄

l1

⎤⎦+ H̃2

³
1
q̄

´
A2l2

q̄
h
H̃2

³
1
q̄

´
+ q̄
i
⎡⎢⎢⎣

H̃0
2( 1q̄ )

H̃2( 1q̄ )
+ q̄

H̃2

³
1
q̄

´
+ q̄
− ∂l2

∂q̄

q̄

l2

⎤⎥⎥⎦
= c12

⎧⎨⎩
∙
ε1 (q̄) H̃1

µ
1

q̄

¶
1

q̄
+ 1 + ωq,1

¸
Φ01 (q̄) q̄

Φ1 (q̄)
+

⎡⎣1− ε2 (q̄)

H̃2

³
1
q̄

´
1
q̄

− ωq,2

⎤⎦ Φ02 (q̄) q̄

Φ2 (q̄)

⎫⎬⎭ ,

∂z2
∂dW1

=
A1l1h

H̃1

³
1
q̄

´
+ q̄
i ∂l1
∂dW1

1

l1
+

H̃2

³
1
q̄

´
1
q̄
A2l2

H̃2

³
1
q̄

´
1
q̄
+ 1

∂l2
∂dW2

1

l2
+

1
Φ1(q̄)h

H̃1

³
1
q̄

´
+ q̄
i − 1

qΦ2(q̄)

H̃2

³
1
q̄

´
1
q̄
+ 1

= − 1

q̄Φ1 (q̄)

½
1 + [1− ωb,1]

Φ01 (q̄) q̄

Φ1 (q̄)
− [1− ωb,2]

Φ02 (q̄) q̄

Φ2 (q̄)

¾
.

In simplifying the expressions for ∂z2
∂q̄
q̄ and ∂z2

∂dW1
, I use the definitions of Φ0i(q̄)q̄

Φi(q̄)
, i = 1, 2

(equations (24) and (25)) and the country demand functions for good 2. Furthermore, εi (q̄)
denotes the elasticity of substitution between the two traded goods in country i as defined
in equation (23).

B.2 Linearized models

Convex portfolio costs Using equations (26)−(29) and the log-linearized risk sharing
condition, that is derived from equation (13), delivers the following system of linear difference
equations µ

q̄t+1
bt

¶
=

⎛⎜⎜⎝ 1 +
∂z2
∂q̄

q̄
∂z2
∂dW1

dq−∂z2
∂q̄

q̄db
Γ̌

∂z2
∂dW1

∂z2
∂dW1

dq−∂z2
∂q̄

q̄db
Γ̌

1
β

∂z2
∂q̄

q̄
∂z2
∂dW1

1
β

⎞⎟⎟⎠µ q̄t
bt−1

¶
,

49



where

Γ̌ =
Γ00 (0)

β2Φ1 (q̄)

∙
1 +

1

q̄

¸
,

db = −
∙
Ucc,1c1
Uc,1

−
µ
Ucc,1c1
Uc,1

+
Ucl,1l1
Uc,1

¶
ωb,1

¸
Φ01 (q̄) q̄

Φ1 (q̄)

1

q̄Φ1 (q̄) c12

+

∙
Ucc,2c2
Uc,2

−
µ
Ucc,2c2
Uc,2

+
Ucl,2l2
Uc,2

¶
ωb,2

¸
Φ02 (q̄) q̄

Φ2 (q̄)

1

q̄Φ1 (q̄) c12
,

dq = −q̄Φ1 (q̄) c12db + 1 + [1− ωb,1]
Φ01 (q̄) q̄

Φ1 (q̄)
− [1− ωb,2]

Φ02 (q̄) q̄

Φ2 (q̄)
.

Note that db < 0 as −Ucc,ici
Uc,i

+
³
Ucc,ici
Uc,i

+
Ucl,ili
Uc,i

´
ωb,i = −

Ull,iUcc,i−U2lc,i
Ulc,i−

Ul,i
Uc,i

Ucc,i + Ucl,i−
Uc,i
Ul,i

Ull,i

li
Uc,i

> 0.

The original (non-stationary) model is obtained for Γ = 0
¡
Γ̌ = 0

¢
.

Debt elastic interest rate The model with a debt elastic interest rate is very similar
to the model with portfolio costs. Following the standard assumption that agents do not
internalize the effects of their decisions on the interest rate, it is

µ
q̄t+1
bt

¶
=

⎛⎜⎜⎝ 1− Ψ0(0)
β

∂z2
∂q̄

q̄
∂z2
∂dW1

dq−∂z2
∂q̄

q̄db
−Ψ0(0)

β

∂z2
∂dW1

∂z2
∂dW1

dq−∂z2
∂q̄

q̄db

1
β

∂z2
∂q̄

q̄
∂z2
∂dW1

1
β

⎞⎟⎟⎠µ q̄t
bt−1

¶
.

Endogenous discounting without internalization If agents do not internalize the
effects of their consumption and leisure choices on the discount factor, the risk sharing
condition, equation (16), implies the following system of difference equations

µ
q̄t+1
bt

¶
=

⎛⎜⎜⎝ 1 +
∂z2
∂dW1

gq−∂z2
∂q̄

q̄gb
∂z2
∂dW1

dq−∂z2
∂q̄

q̄db
0

1
β

∂z2
∂q̄

q̄
∂z2
∂dW1

1
β

⎞⎟⎟⎠µ q̄t
bt−1

¶
,

where

gb =

∙
Uc,1c1

β01
β1

Φ01 (q̄) q̄

Φ1 (q̄)
− Uc,2c2

β02
β2

Φ02 (q̄) q̄

Φ2 (q̄)

¸
1

q̄Φ1 (q̄) c12
,

gq = −q̄Φ1 (q̄) c12gb.

db and dq are as defined above and gb > 0 as β
0
i < 0 by assumption.
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Endogenous discounting with internalization In this last model, agents take into
account the effects of their consumption and leisure choices on the discount factor. As
equations (18) and (19) reveal this implies two additional state variables. In addition to bt,
η̂1,t and η̂2,t are also state variables of the linearized system:

⎛⎜⎜⎝
q̄t+1
η̂1,t+1
η̂2,t+1
bt

⎞⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
1 −zm1 zm2 0
aφ1
m1

h
1
β1
− zaφ1

i
zaφ1

m2

m1
0

aφ2
m2

−zaφ2m1

m2

h
1
β2
+ zaφ2

i
0

1
β

∂z2
∂q̄

q̄
∂z2
∂dW1

0 0 1
β

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎝

q̄t
η̂1,t
η̂2,t
bt−1

⎞⎟⎟⎠ ,

where

z =

∂z2
∂dW1

³
1− 1

β

´
∂z2
∂dW1

(dq + gq + hq)− ∂z2
∂q̄
q̄ (db + gb + hb)

,

a =

"
1 +

∂z2
∂q̄
q̄

∂z2
∂dW1

1

q̄Φ1 (q̄) c12

#
,

φi = Uc,ici
β0i
βi

Φ0i (q̄) q̄

Φi (q̄)
,

mi =
ηiβ

0
i

1− ηiβ
0
i

,

for i = 1, 2 and

hb =

½
Uc,1c1

η1β
0
1

1− η1β
0
1

β001
β01

Φ01 (q̄) q̄

Φ1 (q̄)
− Uc,2c2

η2β
0
2

1− η2β
0
2

β002
β02

Φ02 (q̄) q̄

Φ2 (q̄)

¾
1

q̄Φ1 (q̄) c12
,

hq = −q̄Φ1 (q̄) c12hb.

Important sign restrictions Before I study the local stability in the next section, it
is useful to find the signs of the following expressions:

∂z2
∂dW1

dq −
∂z2
∂q̄

q̄db = − 1

q̄Φ1 (q̄)

µ
1 + [1− ωb,1]

Φ01 (q̄) q̄

Φ1 (q̄)
− [1− ωb,2]

Φ02 (q̄) q̄

Φ2 (q̄)

¶2
+Υc12db < 0,

∂z2
∂dW1

gq −
∂z2
∂q̄

q̄gb = Υc12gb > 0,
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where Υ =
½
−τ 1Φ

0
1(q̄)q̄

Φ1(q̄)
+ τ 2

Φ02(q̄)q̄
Φ2(q̄)

− ε1 (q̄) H̃1

³
1
q̄

´
1
q̄

Φ01(q̄)q̄
Φ1(q̄)

+ ε2(q̄)

H̃2( 1q̄ )
1
q̄

Φ02(q̄)q̄
Φ2(q̄)

¾
> 0.

The sign of
∂z2
∂dW1

(gq + hq)−
∂z2
∂q̄

q̄ (gb + hb) = Υc12 (gb + hb)

depends on the sign of β01
β1
+ η1β

0
1

1−η1β01
β001
β01
. Without imposing more structure on the functional

form of the discount factor nothing can be said about the sign of this expression.

B.3 Stability of the steady states

As most of the dynamic systems that are studied in this section are systems with two
variables, consider

xt+1 =Mxt

whereM is the 2×2 matrix of coefficients and x0t = (q̄t, bt−1)
0. In order to study the dynamic

properties of such a system, I study the roots of the characteristic equation that is associated
with M ,

P (λ) = λ2 − λtr (M) + det (M) .

For convenience, I summarize the necessary and sufficient conditions such that none, exactly
one or both eigenvalues λ lie in the unit circle:

i. if |det (M) | < 1 and |tr(M) | < 1 + det (M), the modulus of all eigenvalue is smaller
than 1,

ii. if | det (M) | > 1 and |tr(M) | < 1 + det (M), the modulus of all eigenvalues is larger
than 1,

iii. if | det (M) | < 1 and |tr(M) | > 1 + det (M) or | det (M) | > 1 and |tr(M) | > 1 +
det (M), the modulus of one eigenvalue is larger than 1, while the other one is smaller
than 1.

With these results in mind I proof theorems 1-4 in the main text:
Proof of Theorem 1. The coefficient matrix in the model with convex portfolio costs
described in section 3.1 is given by

MP =

⎛⎜⎜⎝ 1 +
∂z2
∂q̄

q̄
∂z2
∂dW1

dq−∂z2
∂q̄

q̄db
Γ̌

∂z2
∂dW1

∂z2
∂dW1

dq−∂z2
∂q̄

q̄db
Γ̌

1
β

∂z2
∂q̄

q̄
∂z2
∂dW1

1
β

⎞⎟⎟⎠ .
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The determinacy and the trace are det (MP ) =
1
β
and tr(MP ) =

∂z2
∂q̄

q̄
∂z2
∂dW1

dq−∂z2
∂q̄

q̄db
Γ̌ +

³
1 + 1

β

´
,

respectively. Since β < 1, | det (MP ) | > 1. Furthermore, in any steady state ∂z2
∂dW1

dq −
∂z2
∂q̄
q̄db < 0, irrespective of the sign of the excess demand function, ∂z2

∂q̄
.

If ∂z2
∂q̄

< 0, tr(MP ) > 1+
1
β
> 0 and the modulus of one eigenvalue is larger than 1, while

the other one is smaller than 1. Given that bond holdings are the only state variable, the
system is saddle-path stable.
If ∂z2

∂q̄
> 0, the modulus of each eigenvalue is larger than 1 for

|tr (MP ) | < 1 + det (MP )

∆P ≡ −2β (1 + β)Φ1 (q̄)

q̄
h
1 + 1

q̄

i ∂z2
∂dW1

dq − ∂z2
∂q̄
q̄db

∂z2
∂q̄

> Γ00 (0) > 0.

Otherwise, the modulus of exactly one of the eigenvalues is larger than 1, while the other
one is smaller than 1. Hence for ∆P > Γ00 (0) the system is unstable whenever ∂z2

∂q̄
> 0.

Γ00 (0) measures the sensitivity of the portfolio costs in the neighborhood of the steady
state. In most applications, this sensitivity is low. If Γ00 (0) is assumed to be very large, the
economy is very similar to the economy in financial autarchy. In the latter, any steady state
is saddle-path stable. Hence, any steady state can be turned into a saddle point in the model
with portfolio costs if the marginal costs of portfolio holdings increase strongly enough as
the economy deviates from the steady state.
However, given that the model with convex portfolio costs is supposed to behave closely

to the original (non-stationary) model, it is common practice to specify portfolio costs that
are small and that do not change dramatically in the neighborhood of the steady state. Such
specifications are also in line with actual portfolio costs.

Prrof of Theorem 2. If the interest rate is debt elastic as described in section 3.2, the
proof follows the same steps as for theorem 1 with the difference that ∆P is replaced by
∆D where

∆D ≡ 2 (1 + β)

∂z2
∂dW1

dq − ∂z2
∂q̄
q̄db

∂z2
∂q̄
q̄

< Ψ0 (0) < 0.
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Proof of Theorem 3. The coefficient matrix ME for the model with endogenous dis-
counting and no internalization (section 3.3) is given by

ME =

⎛⎜⎜⎝ 1 +
∂z2
∂dW1

gq−∂z2
∂q̄

q̄gb
∂z2
∂dW1

dq−∂z2
∂q̄

q̄db
0

1
β

∂z2
∂q̄

q̄
∂z2
∂dW1

1
β

⎞⎟⎟⎠ .
The determinacy and the trace are det (ME) =

1
β

∙
1 +

∂z2
∂dW1

gq−∂z2
∂q̄

q̄gb
∂z2
∂dW1

dq−∂z2
∂q̄

q̄db

¸
and tr(ME) = −1−ββ

∂z2
∂dW1

gq−∂z2
∂q̄

q̄gb
∂z2
∂dW1

dq−∂z2
∂q̄

q̄db
+

1 + det (ME), respectively. Since
∂z2
∂dW1

gq−∂z2
∂q̄

q̄gb
∂z2
∂dW1

dq−∂z2
∂q̄

q̄db
< 0 irrespective of the sign of the slope of

the excess demand function, the modulus of exactly one eigenvalue is smaller than 1. With
bond holdings being the only state variable, the dynamic system is saddle-path stable.
Notice that it is crucial to assume that the endogenous discount factor is decreasing in

the utility level. Otherwise ∂z2
∂dW1

gq − ∂z2
∂q̄
q̄gb < 0 and |tr(ME) | < 1+det (ME) irrespective of

the slope of the excess demand function. In this case, both eigenvalues would be larger than
1.

If agents internalize the effects of their choices on the endogenous discount factor, only
a weaker theorem can be proven since the sign of db + hb + gb cannot be determined. In
preparation for this theorem, consider an increase in the wealth of agents in country 1. I
am interested in the change of the intertemporal marginal rate of substitution under the
assumption that current and future prices as well as future allocations remain unchanged.
The only variables that are allowed to change are current consumption and leisure and
therefore also utility in the current period. I refer to this experiment as the direct impact of
a wealth increase.
The intertemporal marginal rate of substitution in country 1 is given by

IMRS
¡
st+1

¢
= β

¡
U1
¡
st
¢¢ 1− η1 (s

t+1)β0 (U1 (s
t+1))

1− η1 (s
t)β0 (U1 (st))

Uc,1 (s
t+1)

Uc,1 (st)
.

Equation (19) in the main text reveals that η1 (s
t) is nothing but the negative of the expected

discounted lifetime utility of agents of country 1 from t+ 1 onwards. Therefore η1 (s
t) does

not depend on any time t variables. Under the assumption that future allocations and prices
are held constant, the following equations are relevant for the experiment:

Ul (c1 (s
t) , l1 (s

t))

Uc (c1 (st) , l1 (st))
= −A1Φ1

¡
q̄
¡
st
¢¢

c1
¡
st
¢
= Φ1

¡
q̄
¡
st
¢¢

A1l1
¡
st
¢
+ dW1

¡
st
¢
.
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The first equation states the familiar equilibrium condition that the marginal rate of substi-
tution between labor and consumption equals the real wage. As shown earlier, the second
equation can be derived straight from the intertemporal budget constraint of the agents.
dW1 (s

t) denotes the wealth transfer to country 1. Under the assumption that prices are
kept unchanged for all st+j, j ≥ 0, the marginal rate of substitution between labor and
consumption is held constant.
The direct impact of a wealth increase on the intertemporal marginal rate of substitution

is given by

∂IMRS (st+1)

∂dW1 (st)
|direct

=

∙
−Ucc,1 (s

t) c1 (s
t)

Uc,1 (st)
+

µ
Ucc,1 (s

t) c1 (s
t)

Uc,1 (st)
+

Ucl,1 (s
t) l1 (s

t)

Uc,1 (st)

¶
ω1b
¡
st
¢¸ 1

c1 (st)
IMRS

¡
st+1

¢
+

µ
β0 (U1 (s

t))

β (U1 (st))
+

η1 (s
t)β0 (U1 (s

t))

1− η1 (s
t)β0 (U1 (st))

β00 (U1 (s
t))

β0 (U1 (st))

¶
Uc,1

¡
st
¢
IMRS

¡
st+1

¢
. (31)

The first term in equation (31) measures the direct impact of the wealth transfer on the
marginal utility of consumption under the assumption that the marginal rate of substitution
between leisure and consumption is held constant. Under the assumptions on the utility
function the first term is positive. In the experiment the increase in the wealth of the agents
of country 1 lowers the labor supply and increases consumption. Consequently, the marginal
utility of consumption, Uc,1 (s

t), rises. This effect operates towards a rise of IMRS1.
The second term measures the effect of the wealth increase on IMRS1 through the

endogeneity of the discount factor. There are two effects. First, as consumption and leisure
rise in the current period, so does utility U1 (st). As the discount factor is decreasing in the
utility level this effect operates towards a decline of the IMRS1. Furthermore, the change
in the discount factor effects the IMRS1 also through its impact on the discounted future
utility summarized in η1 (s

t). Absent assumptions on β00 this expression cannot be signed.

If the discount factor is constant,
∂IMRS1(st+1)

∂dW1(st)
|direct > 0. Hence, if the discount factor βi

does not react too strongly to changes in Ui, the effect will still be positive.

Given the original questions this restriction is not too restrictive and
∂IMRS1(st+1)

∂dW1(st)
|direct is

most likely to be positive. Endogenous discounting is introduced to obtain stationarity in the
model with incomplete asset markets. To the extent that the stationary model is supposed
to behave closely to the original non-stationary model it is desirable that the discount factor
does not move around too much.
Under the assumption that

∂IMRSi(st+1)
∂dWi(st)

|direct > 0, i = 1, 2, theorem 4 can be proven.
Proof of Theorem 4. The linearized dynamic system for the model with endogenous
discounting and internalization is given by xt+1 = MIxt and x0t =

¡
q̄t, η̂1,t, η̂2,t, bt−1

¢0
. The
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4× 4 coefficient matrix MI is given by

MI =

⎛⎜⎜⎜⎜⎜⎜⎝
1 −zm1 zm2 0
aφ1
m1

h
1
β1
− zaφ1

i
zaφ1

m2

m1
0

aφ2
m2

−zaφ2m1

m2

h
1
β2
+ zaφ2

i
0

1
β

∂z2
∂q̄

q̄
∂z2
∂dW1

0 0 1
β

⎞⎟⎟⎟⎟⎟⎟⎠ .

The characteristic equations that is associated with MI simplifies to

−
µ
λ− 1

β

¶2µ
λ2 −

∙
1

β
+ 1 + za [φ2 − φ1]

¸
λ+

1

β

¶
= 0,

with

za [φ2 − φ1] =
1
β
(1− β)Υq̄Φ1 (q̄) c12gb³

1 + [1− ωb,1]
Φ01(q̄)q̄
Φ1(q̄)

− [1− ωb,2]
Φ02(q̄)q̄
Φ2(q̄)

´2
−Υq̄Φ1 (q̄) c12 (db + hb + gb)

,

where Υ > 0 irrespective of the sign of the slope of z2 as shown above. With three state
variables, η̂1,t, η̂2,t and bt−1, the dynamic system is saddle-path stable if the modulus of
exactly three eigenvalues is larger than 1. Since two of the four eigenvalues are equal to 1

β
,

stability of the system requires:
za [φ2 − φ1] > 0

or

za [φ2 − φ1] < −2
µ
1 +

1

β

¶
.

A sufficient condition for stability isΦ1 (q̄) c12 (db + hb + gb) < 0 as it implies that za [φ2 − φ1] >
0:

(db + hb + gb) q̄Φ1 (q̄) c12

=

∙
−Ucc,1c1

Uc,1
+

µ
Ucc,1c1
Uc,1

+
Ucl,1l1
Uc,1

¶
ωb,1 +

µ
β01
β1
+

η1β
0
1

1− η1β
0
1

β001
β01

¶
Uc,1c1

¸
Φ01 (q̄) q̄

Φ1 (q̄)

−
∙
−Ucc,2c2

Uc,2
+

µ
Ucc,2c2
Uc,2

+
Ucl,2l2
Uc,2

¶
ωb,2 +

µ
β02
β2
+

η2β
0
2

1− η2β
0
2

β002
β02

¶
Uc,2c2

¸
Φ02 (q̄) q̄

Φ2 (q̄)

Under the assumption that
∂IMRSi(st+1)

∂dWi(st)
|direct > 0, i = 1, 2, each of two the expressions in

brackets is positive and therefore Φ1 (q̄) c12 (db + hb + gb) < 0.
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Obviously the assumption that
∂IMRSi(st+1)

∂dWi(st)
|direct > 0 for each i = 1, 2 is unnecessarily

strong. However, this expression is somewhat more intuitive than other possible restrictions.

Most notably theorems 3 and 4 show that under endogenous discounting the stability of
the system in the neighborhood of a steady state does not depend on the slope of the excess
demand function in the steady state. The stability depends solely on the parameterization
of the endogenous discount factor. This is very different from the economies studied in
theorems 1 and 2. With convex portfolio costs or a debt-elastic interest rate the stability
of the system around a steady state depends very much on the slope of the excess demand
function in this steady state.18

18One notable exception to this statement are the cases of very sensitive portfolio costs or debt elastic
interest rate. In these cases the model behaves like the economy under financial autarchy and every steady
state is stable in the simple model without capital.
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