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A: Summary of the Model Equations

The model equations

Below, we summarize the equations that describe the equilibrium in our model:
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The stochastic processes for the shocks are described in the main text. The term ACt in the first equation
denotes the total adjustment costs. The term λt denotes the marginal utility of one unit of goods’wealth.
The term ωt determine the marginal utility of one unit of services. We can thus interpret λt/ωt as the price
of goods in terms of services.

The steady state

The first-order conditions for fixed capital in the goods sector and input inventories imply that in the steady
state, the capital-to-output ratio in the goods sector, kg = Kg/Yg, and the input-inventories-to-output ratio,
m = Mg/Yg, can be written as
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These conditions state that the capital-to-output ratio and the input-inventory-to-output ratio are increasing
in their relative weights in production, σ and 1 − σ, respectively. At the same time, the different factor
intensities depend on the degree of substitutability. When the ratios in large parentheses are larger than one
(a condition that holds in the data since input inventories are much smaller than capital), then capital is
decreasing in ν and input inventories are increasing in ν.
The optimality conditions for goods consumption and output inventories imply:
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where cg = Cg/Yg and f = F/Yg. The ratio of consumption to output inventories is increasing in α, while
it is decreasing (increasing) in µ when the term in parentheses is larger (smaller) than one. Using the linear
homogeneity of the CES aggregators and the first-order conditions for Ks, Cg, and Cs, we derive the following
expression for ks = Ks/Yg:
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This equation says that capital in the services sector is higher when the relative price of goods in terms of
services (λ/ω) is low, when the weight to services in utility, 1−γ, is high, or when the production function for
services is capital intensive (θs high). Using the first-order conditions for labor and the linear homogeneity of
the production functions, the relative price of goods is:

λ
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Finally, the market-clearing condition for the goods sector is

cg + δF f + δKgkg + δKsks + δMm = 1 . (28)

For given parameter values, equations 23 to 28 above can be jointly solved for f, cg, ks, kg, m and λ/ω.
The first-order conditions for Lg, Ls, Cg, and Ys, together with the production functions, can be solved for
Lg, Ls, Yg, Ys, ω, and λ. (Details for all the derivations are given below.)
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Matching steady-state ratios through choices of α, θg, θs, σ, and γ

For each estimated value of ν, φ, µ, δF , and δM , and given calibrated values for β, δKg, and δKs, our estimation
procedure aims at exactly matching the following steady state ratios that we take to be the average values
obtained from the data (denoted with a bar):

f = output inventories over goods output

m = input inventories over goods output

kg = capital stock in goods industries over goods output

ks = capital stock in service industries over goods output

y′s = services output over goods output.

where y′s = ωYs
λYg

= ω
λ ys measures services output in units of goods output.

Given β, δKs, δKs, φ, µ, ν, δF , and δM , simple algebra shows that there is a unique set of values of
α, θg, θs, σ, γ that satisfies the five ratios above. These values are obtained as follows. Given the

(
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The formula for kg/yg can be used to derive
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Finally, we need to choose γ and θs to match the values of ks and y′s. From the formula for ks/y′s , we derive
an expression for θs

θs =
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β
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y′s
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Last, we need to obtain γ. Using the expressions for ks/f and ks/y′s above, we obtain
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where ω/λ can be calculated from expression 27 above.
Summarizing: (1) for given observed values in the data of kg, ks, m, cg, f, and y′s; and (2) for any possible

combination of (β, δKs, δKs, φ, µ, ν, δF , and δM ) , the values of α, θg, θs, σ, and γ that satisfy expressions
29 to 33 are consistent with the the steady-state values of the ratios kg, ks, m, cg, f, and y′s.

Calculating steady-state hours, output, and prices

The optimal labor supply schedules satisfy

τ = λ (1− θg)
Yg
Lg

(34)

τ = ω (1− θs)
Ys
Ls
. (35)
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From the first-order conditions for Cg and YS , after some algebra, we obtain the following formula:
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By the same token, we find that:
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From the production functions, we know that:

Yg = Lg
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(
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Equations 34 through 39 can be then be solved for Lg, Ls, Yg, Ys, ω, and λ using a non-linear equation solver.

5



B: Data

Most of the data come from the national income and product accounts (NIPA) produced by the U.S. Bureau
of Economic Analysis (BEA) and obtained from Haver Analytics. All NIPA data are quarterly and real data
are in chain-weighted $2000. Table B.1 lists the variable names, Haver mnemonics, and variable descriptions.
Our model and data exclude government spending. We used the Tornquist approximation for chain-weighted
data when constructing the actual model-consistent data, as recommended by Whelan (2002). For simplicity,
the formulas in this appendix abstract from the notational details associated with chain weighting.
The NIPA data classify output by sectors called goods (g), structures (t), and services (s):

Y = Yg + Yt + Ys.

In contrast, inventory investment, ∆V , is classified by industry (goods inventories include the agriculture,
mining, and manufacturing industries; structures inventories include the construction industry; and the services
sector includes utilities and trade). Thus, the NIPA output and inventory data do not correspond to the
inventory-based sectors of our model definitions of goods and services.
To obtain model-consistent data, we condense the three NIPA sectors into two by redefining and combining

the NIPA sector variables as follows. First, write the components of private domestic aggregate output as

Y = (Cg + Ig + ∆Vg +NXg) + (It + ∆Vt) + (Csg + Css + Is + ∆Vs +NXs) ,

where NX = X − IM is net exports and government spending is excluded. Household consumption of
structures (Ct) does not exist because construction of residential structures is investment, which we assume is
installed in the services sector. Household consumption of services, Cs = Csg +Css, includes two components,
distinguished by a second subscript indicating the appropriate model sector to which the services consumption
data should belong. Thus, Csg represents the consumption of services from industries that distribute goods
(utilities and trade), which we redefine as goods consumption. Also, Css includes the service flow from housing.
Given these definitions, model-consistent goods output is

Yg = (Cg + Csg) + (Ig + It + Is +NXg +NXs) + (∆Vg + ∆Vt + ∆Vs) ,

and model-consistent services output as

Ys = Css.

Following Cooley and Prescott (1995), we include net exports in investment because there is no foreign sector
in the model; instead, net exports are viewed as the net claims of foreigners on the domestic capital stock.
The remainder of this appendix explains how each of the relevant variables is defined and constructed.

Consumption

NIPA consumption data are classified by the type of good consumed by households:

C = Cgn + Cgd + Cs .

In this equation, goods consumption includes nondurables (gn) plus durables (gd); consumption of services (s)
includes the service flow obtained from housing. Theoretically, it would be preferable to construct the service
flow from other consumer durable goods besides housing, rather than use actual expenditures, but this is not
done in the NIPA data (except for automobile leasing, which is implicitly a service yield). Because we are
ultimately trying to explain the volatility, and the change in volatility, of actual GDP data, we use the raw
NIPA data instead.
To construct model-consistent consumption data, we must reclassify a portion of the NIPA services con-

sumption data (Csg) as goods consumption because the industries associated with those services are in the
model’s goods sector. The NIPA consumption data treat energy consumption (such as electricity) as a service.
However, because this household energy service is output attributed to the utilities industry, which holds
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Variable Mnemonic Description
C C Consumption
Cgn CN Consumption of nondurable goods
Cgd CD Consumption of durable goods
Cs CS Consumption of services
Cse CSE Consumption of energy services
I F Fixed investment, total
Ir FR Fixed investment, residential
In FN Fixed investment, nonresidential
IM M Imports
P JC Consumption chain-weighted price index
Ps JCS Consumption of services chain-weighted price index
Pse JCSE Consumption of energy services chain-weighted price index
Vga SF Farm inventories
Vgm SNM Manufacturing inventories
Vsw SNW Wholesale trade inventories
Vsr SNR Retail trade inventories
VSIC,o SNO2 Other inventories, SIC (fixed-weight $1996)
VMUC SNB Mining, utilities, and construction inventories
VNAICS,o SNT Other inventories, NAICS
VCW RES513 Inventory chain-weighted residual
X X Exports

Table B.1: Variable Names and Data Definitions

Note: These Haver mnemonics are for the nominal data; the real data have an ‘H’added at the end and,
unless otherwise noted, are in chain-weighted $2000.
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inventories, it belongs in the model’s goods sector.1 So, we must define household energy (e) consumption
services as model-consistent goods consumption, Csg = Csge.
Thus, model-consistent data (denoted by a double tilde) for domestic services consumption are

˜̃
Cs = Cs − Csg ,

and model-consistent data for domestic goods consumption are

˜̃
Cg = Cgn + Cgd + Csg .

Because the underlying NIPA data are based on the type of good consumed, Cgn and Cgd already contain
the output of the retail-trade industry and any output of the wholesale-trade industry that is classified as
consumption (i.e., a final sale to consumers rather than an intermediate input into retail trade or manufac-
turing).2

Investment

Capital is a good, so it follows that investment is output of the goods sector. However, our model has two
sectors that each accumulates a sector-specific capital stock, so the model requires classification of investment
data by the type of sector (or industry) in which the capital is installed. Although the NIPA data do not classify
investment by the sector in which it is installed, the BEA provides other annual data source on investment by
industry that does, and we use this source to divide total fixed non-residential investment into sector-specific
domestic investment.3

Before dividing investment into sectors, we first add net exports to the sum of nonresidential (n) and
residential (r) fixed investment, as advocated by Cooley and Prescott (1995):

˜̃
I = In +NX + Ir

where NX = NXg + NXs. We are forced by the data to combine the net exports of the two sectors here,
rather than keeping net exports of goods and net exports of services separate in constructing Ig and Is.
During the second half the sample, net exports of goods become negative and large in absolute value so that
(Ig +NXg) < 0; net exports of services are positive but relatively small. From a theoretical perspective, it
may also be preferable to use NX because it is not clear that the net claims of foreigners defined by NXg and
NXs map directly to the measures of Ig and Is, or even to the sectoral components of the installed U.S. capital
stock. In any case, by including net exports in investment the data reflect the influences of foreign trade
(exports and imports), which changed during the data sample, on inventory investment in the econometric
model, albeit in a reduced-form manner. Residential investment is netted out before the following calculations
because it is classified as capital installed entirely in the services sector, and will be added back in later.
Next, the share of non-residential fixed investment for the goods sector includes data for the seven inventory-

holding industries: agriculture, mining, utilities, construction, manufacturing, wholesale trade, and retail
trade. Using annual BEA data on investment by industry (denoted by a double hat), the share (ω) of goods
investment is ̂̂ω =

̂̂
Iĝ̂
I
.

The “real estate and rental and leasing”industry, which is classified as a service industry by the BEA, rents
and leases capital to the rest of the economy, a practice that has increased in frequency over time and now
represents a large fraction of total capital services in production (especially for structures). Because these
data do not identify the sector to which the real estate industry leases its capital, we apply the seven-industry

1We assume that all types of energy are measurable goods distributed (a task of the model goods sector) to consumers. In
this regard, electric and natural gas utility firms are similar to firms specializing in wholesale and retail trade, which distribute
finished goods from their producers to their final consumers.

2One way to think of the different types of “goods” is in terms of their depreciation rates: 0 < δsh < δd < δn < δso = 1,
where subscript sh denotes housing services and so denotes other services (that is, not a flow from a durable stock).

3These data can be obtained from http://bea.gov/bea/dn/FA2004/Index.asp.
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share above to partition real estate and rental and leasing industry investment into both of the two sectors.
Finally, these annual share data are interpolated to obtain a quarterly frequency.
Using the constructed shares of investment by sector, foreign-trade adjusted goods-sector investment is

˜̃
Ig = ̂̂ω (In +NX) ,

and foreign-trade adjusted services-sector investment is

˜̃
Is =

(
1− ̂̂ω) (In +NX) + Ir .

In each case, the interpolated investment share data is applied to the actual quarterly data on domestic,
non-residential fixed investment.

Inventories

According to the NIPA definitions, each output sector is associated with at least one inventory-holding industry,

Vg = Vga + Vgn + Vgm

Vt = Vtc

Vs = Vsu + Vsw + Vsr ,

with industries defined as agriculture (a), mining (n), manufacturing (m), construction (c), utilities (u),
wholesale trade (w), and retail trade (r). Thus, to construct model-consistent inventories, we redefine the
goods sector as the holder of all inventories:

˜̃
Vg = Vg + Vt + Vs ;

as discussed in the main text, the services sector holds no inventories (˜̃Vs = 0) by assumption.4

We further divide total inventories into two types,

˜̃
Vg = M + F ,

where M denotes input and F denotes output. Economic theory provides no clear categorical definition of
input and output inventories in general equilibrium. We view goods as being produced and distributed along
a supply and distribution chain, so one (but not the only) logical definition of output inventories for our model
is simply the last link of the chain, which is the retail industry:

˜̃
M = Vsr .

In this case, input inventories are

F̃ = Vga + Vgn + Vgm + Vtc + Vsu + Vsw .

In general, all non-retail inventory stocks can be considered inputs into production along the supply chain.
According to the Census of Construction, Vtc certainly is input inventory (raw materials) and does not in-
clude unsold finished structures. In actuality, some fraction of the remaining stocks may be sold directly to
consumers, and hence should be classified as output inventories, but we assume this fraction is small.
To obtain a long time series of inventory data, we combine non-farm stocks constructed under two dif-

ferent industry classifications: SIC (1947—1997) and NAICS (1987—present).5 At this high level of industry
definition, the manufacturing, wholesale, and retail inventory data are generally consistent across industry

4The NIPA make this same assumption, equating output and final sales in both the structures and services sectors, and
associating all inventory investment with the goods sector.

5Farm, or agricultural, inventory stocks on a consistent industry classification are already available for the full sample period
(1947—present).
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classification schemes, so we splice these data series without further manipulation. The inventories for all
remaining industries (∗), however, are defined as follows:

VSIC,∗ = VSIC,o

VNAICS ,∗ = VMUC + VNAICS,o + VCW ,

where o denotes “other”industries in each classification system; MUC denotes mining, utilities, and construc-
tion. CW denotes the chain-weighted residual for real data (real data on an SIC basis are in fixed-weight
$1996, and thus have no residual). In splicing the data, we use the SIC stocks through 1997, and then use the
growth rates of the NAICS from 1997 on to extend the SIC data.
Unfortunately, unlike the NIPA consumption and investment data, it is impossible to identify separately

the foreign and domestic components of NIPA inventory stocks from existing data. Rather than make ad hoc
adjustments, we use the actual inventory data as published.

Consumption Prices

The prices of goods and services consumption are constructed analogously to the respective quantities of
consumption. Let wse be the nominal expenditure weight for energy services, and ws̃ = (1−wse) be the nom-
inal expenditure weight for model-consistent (non-energy) services. Then, having calculated the appropriate
Tornquist index on the data, the model-consistent price of services consumption is

˜̃
Ps = (1/ws̃) [Ps − wsePse] .

Likewise, let ws̃ be the nominal expenditure weight for model-consistent services, and wg = (1− ws̃) be the
nominal expenditure weight for model-consistent goods. Then the model-consistent price of goods consumption
is ˜̃

Pg = (1/wg)

[
P − w˜̃s˜̃Ps] .

The ratio of the consumption prices, ˜̃
Pg˜̃
Ps

=
λ

ω
,

equals the ratio of Lagrange multipliers from the model’s first-order conditions.
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C: Another Look at Output Inventories in the Utility Function

In this appendix, we illustrate the result that there exists a functional equivalence between entering output
inventories in the utility function and an alternative formulation that motivates output inventories using
the argument that they reduce shopping costs. To keep the notation simple, we abstract from endogenous
labor supply, from consumption of services and from capital and input inventories, and consider the problem
of a planner that has to allocate an exogenous stream of goods Yt to either consumption or finished good
inventories. Consider the following two alternative models.
Problem 1. In the first formulation, the planner’s problem is:

max

∞∑
t=0

βtV (Ct, Ft) subject to Yt = Ct + Ft − (1− δF )Ft−1

where utility V depends on the goods purchased Ct and the stock of inventories Ft. This is essentially the
barebones formulation and notation of our model in the main text.
Problem 2. In the second formulation, the problem is:

max

∞∑
t=0

βtu (Gt) subject to Yt = Gt + φ (Gt, Ft) + Ft − (1− δF )Ft−1

where the term in the budget constraint φ (Gt, Ft) denotes the real resource cost of purchasing goods, which
is assumed to be a decreasing function of the amount of output inventories Ft available and an increasing
function of the amount of goods consumed Gt.
Following Feenstra (1986) the two problems are equivalent if V (Ct, Ft) = u (Gt), and Ct = Gt+φ (Gt, Ft).

We therefore interpret Ct as gross consumption including both net consumption Gt and shopping costs
φ (Gt, Ft) .Feenstra focused on justifying the inclusion of money in the utility function and to show the con-
dition for equivalence between that model and one in which liquidity costs are introduced in the budget Our
cases is isophorphiic to his, once money balances are replaced with finished good inventories.
Consider our momentary utility function and budget constraint in the paper. Abstracting from services,

endogenous labor and capital and input inventories, it reads as

log
(
αC−µ + (1− α)F−µ

)−1/µ
subject to

Yt = Ct + Ft − (1− δF )Ft−1.

This utility function and budget constraint yield the same first-order conditions and equilibrium conditions of
a model where momentary utility is given by:

logGt

and the budget constraint is
Yt = Gt + φt + Ft − (1− δF )Ft−1.

We can find φ by setting Gt =
(
αC−µt + (1− α)F−µt

)−1/µ
, solving for Ct and it in φ (Gt, Ft) = Ct −Gt.This

yields:

φ (Gt, Ft) =

((
1

α
− 1− α

α

(
Gt
Ft

)µ)− 1
µ

− 1

)
Gt.

One can easily verify that the two problems yield the same first order conditions. The result also holds
when one allows for consumption of services and leisure in the utility function, provided they enter utility
in an additively separable way, so that the optimality condition with respect to consumption and inventories
are not affected. Additive separability of leisure has been assumed from the outset. Approximate additive
separability of consumption of services is suggested by our empirical estimates.
Of course, what differs across models is the structural interpretation of the parameters. In our model,

α measures the relative weight in utility of goods consumption relative to finished good inventories. In the
transaction cost model, α measures the size of the transaction cost: the higher α, the lower the transaction cost
(in the limiting case of α = 1, there are no transaction costs for purchasing goods, φ = 0 and no inventories are
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held in equilibrium, just like in our model). In our model, µ measures the elasticity of substitution between G
and F. In the transaction cost model, µ measures the way in which more inventories of finished goods reduce or
increase the shopping cost of obtaining a given amount of consumption goods. In particular, a higher estimate
of µ in the transaction cost model implies: (1) lower average transaction costs on average; (2) a more convex
transaction cost function itself.
Below, we plot how our estimates of µ (.3) and α (.9668) map in the resulting φ function. We also

assume that G/F is at its steady state value and that measured consumption in the data corresponds to net
consumption G As can be seen in the figure, the transaction cost function is decreasing (and convex) in F .
At our estimates (given the calibrated value for F/Yg), the function implies transaction costs equal to 2% of
total goods output (see the figure below). The other two lines plot the transaction cost function under the
assumption that µ = −0.9 and µ = 3 respectively.
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D: A Model of Input Inventories with Usage Only

Here we sketch a version of the model in the paper where we allow for a treatment of input inventories that
ignores their convenience service but models explicitly their usage.
Assume that (1) only input inventories that are “used up”augment society’s ability to produce more; and

that (2) the usage of inventories depends upon the beginning of period stock. This specification leads to a
gross production function of the form:

Ygt = (AgtLgt)
1−θg

(
σ (zgtKgt−1)

−ν
+ (1− σ) (εMtzMtMt−1)

−ν
)−θg/ν

where zMt ∈ (0, 1) is the utilization rate of inventories, so that mt = zMtMt−1 is the amount of inventories
that are used (and used up) in production. We assume that higher utilization of the stockM leads to a higher
depreciation in a convex fashion, and that depreciation rate and utilization rate are equal in a neighborhood
of the steady state. These considerations lead us to write a “depreciation function”for inventories as follows:

dMt = δM + zMt + aMt (zMt)

where: δM is a fixed component of the depreciation rate unrelated to usage and reflecting wastage and/or
linear holding costs; zMt captures the usage of materials (proportional to the stock); and the term aMt

describes the additional component of wastage that depends upon utilization in a convex fashion: this
component reflects the idea that, at the margin, a higher or faster usage might provoke collateral dam-
age to the remaining parts of the stock that are not directly used in production. Namely, we assume that

aMt = RM

(
ζM
2 − 1 + (1− ζM ) zMtzM

+ ζM
2
z2Mt
z2M

)
, where RM = 1

β = 1 − δM . The function aMt is convex in

zMt and is normalized so that it equals zero when zMt equals the optimal, steady-state choice zM .6 The
assumption of convexity has two appealing properties: first, it allows us to solve the model using standard
perturbation methods; second, it captures the idea that, at the margin, a higher utilization rate leads to a
higher depreciation. This is reflected in the functional form of aMt. The good’s sector resource constraint is
now:

Ygt = Cgt +Kgt −
(
1− δKg

t

)
Kg
t−1 +Kst −

(
1− δKs

t

)
Ks
t−1 + Ft − (1− δF )F−1 (40)

+Mt − (1− δM − zMt − aMt (zMt))M−1 + zMtMt−1 +ACt.

This equations illustrates how, at the optimal utilization rate, the total “depreciation” of the stock of in-
ventories is now larger, since usage “subtracts” from the stock of inventories that can be carried into next
period.
The optimality condition for accumulation of Mt (previously equation 8 in Appendix A) becomes now:

λt

(
1 +

ψM
δM + zM

∆Mt

Mt−1

)
= βλt+1

(
1 +

ψM
2 (δM + zM )

∆M2
+1

M2
t

− δMt +
θg (1− σ)Ygt+1H

ν
t+1

ενMt+1z
ν
MtM

1+ν
t

)
(41)

where ∆Mt = Mt −Mt−1. The equation for the optimal usage of inventories (which implicitly pins down the
optimal value of zMt) satisfies:

θg
(1− σ)YgtH

ν
t

z1+νMt M
ν
t−1

=

(
1 +RM

(
1− ζM
zM

+
ζM
z2M

zMt

))
Mt−1. (42)

Relative to the baseline model spelled out in Appendix A, this new model features one additional equation
(equation 42 above) and one additional endogenous variable (zMt).

6The assumption of convexity has two appealing properties: first, it allows us to solve the model using standard perturbation
methods; second, and most importantly, it captures the idea that, at the margin, a higher utilization rate leads to a higher
depreciation. Note that there are some analogies with the way we write down the utilization function for fixed capital. For fixed
capital, we assume that the optimal (steady state) utilization rate of capital is unity, and normalize the utilization function so
that no resources are wasted at the optimal utilization rate. Instead, here we normalize the function aMt so that the optimal
steady state utilization rate is less than unity.
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