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Abstract

We develop a parsimonious bivariate model of inflation and unemployment that
allows for persistent variation in trend inflation and in the non-accelerating inflation
rate of unemployment. The model, which consists of five unobserved components
(including the trends) with stochastic volatility, implies a time-varying vector au-
toregression model for changes in the rates of inflation and unemployment. The
implied backwards-looking Phillips curve has a time-varying slope that is steeper in
the 1970s than in the 1990s. Pseudo out-of-sample forecasting experiments indicate
improvements upon univariate benchmarks. Since 2008, the implied Phillips curve
has become steeper and the the non-accelerating inflation rate of unemployment has
increased.
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1 Introduction

Recent research on inflation forecasting in the postwar United States suggests empirical

support for four conclusions. First, it is difficult to improve over univariate time series

models, at least on average. This point was made most dramatically by Atkeson and

Ohanian (2001), who showed that a random walk model for the annual rate of inflation

beat multivariate models using measures of economic activity as predictors (Phillips

curve models). Second, when multivariate models do improve upon univariate models,

they tend to do so episodically. For example, Stock and Watson (2009, 2010) and

Dotsey, Fujita, and Stark (2011) find that Phillips curve models improve upon univariate

models during periods of slack, but typically not otherwise. Ball and Mazumder (2011)

suggest that the time variation in the Phillips Curve slope occurs at a decadal, not

business cycle, frequency, although they only consider contemporaneous relations, not

forecasting specifications. Third, it is not clear whether the apparent episodic

predictability is better modeled as a stationary nonlinear model, as suggested by Barnes

and Olivei (2003), Fuhrer and Olivei (2010), and Stock and Watson (2010), or as a result

of time variation (or, relatedly, state dependence with time-varying unobserved states) as

in Cogley and Sargent (2002, 2005), Cogley, Primiceri, and Sargent (2010), D’Agostino,

Gambetti and Giannone (2010), Levin and Piger (2004), Stock and Watson (2007), and

Ball and Mazumder (2011), or both as in Granger and Jeon (2011). Fourth, predictors

other than activity measures appear to be generally unreliable and unpromising (for a

survey, see Stock and Watson (2009)). One reason for this murky state of affairs is that

there is limited variation in the data with which to identify the nature of the time

variation and/or nonlinearity, and that models with many parameters tend to be

overwhelmed by estimation uncertainty and thus produce poor forecasts.

This paper takes up the challenge of developing a tightly parameterized model that is

capable of capturing the time-variation in the inflation-activity predictive relation. The
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specific model proposed here builds on two streams of literature. The first stream is

papers that model the trend component of inflation, which can be thought of as target

inflation, as a latent random walk; recent examples of papers that take this approach

include Stock and Watson (2007), Cogley and Sbordone (2008), Sbordone, Tambalotti,

Rao, and Walsh (2010), Cogley, Primiceri, and Sargent (2010), and D’Agostino,

Gambetti and Giannone (2010). Specifically, we follow Stock and Watson (2007) by

adopting a stochastic volatility model that allows the variance of trend inflation to

change over time, in effect allowing the degree of anchoring of inflation expectations to

vary over time. The second literature stream is work on estimating the natural rate of

unemployment, in which the natural rate (typically interpreted as the non-accelerating

inflation rate of unemployment, the NAIRU) is modeled as a latent random-walk trend

in the rate of unemployment. This latent time-varying NAIRU is modeled as a random

walk in Staiger, Stock, and Watson (1997) and Gordon (1998), and we adopt that

specification here with the extension that the innovation variance to the NAIRU also can

evolve over time as a stochastic volatility process. The only paper we are aware of that

merges both a time-varying trend in inflation and a time-varying NAIRU is Harvey

(2011). Relative to Harvey (2011), we extend the model to include time-varying

volatility, so that the projection coefficients (the Phillips Curve in terms of the

observables) vary over time in a parsimonious specification.

In the model of this paper, the deviations of the inflation and unemployment rates from

their trends - that is, the inflation and unemployment gaps - are linked through a

common cyclical component, and the inflation and unemployment rates are both

potentially measured with error. The variances of the disturbances to the latent

components are modeled as stochastic volatility processes. Given the innovation

variances of the latent components, the model implies a vector autoregressive (VAR)

representation of the changes of the rates of inflation and unemployment, the inflation

equation of which is a forecasting Phillips curve. Because the innovation variances evolve
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over time, the implied VAR parameters also evolve, which implies a backwards-looking

Phillips curve forecasting relation with time-varying coefficients. Our base model has

three parameters to be estimated, plus three tuning parameters which are weakly

identified and are therefore fixed.

Other than Harvey (2011), the models most closely related to ours are those in Cogley,

Primiceri, and Sargent (2010), D’Agostino, Gambetti and Giannone (2010) and in

Granger and Jeon (2011). Cogley, Primiceri, and Sargent (2010) specify a trivariate VAR

of the rates of inflation, unemployment, and interest, with 21 time-varying VAR

coefficients and 24 stochastic volatility processes; D’Agostino, Gambetti and Giannone

(2010) use the same model, but with only 3 stochastic volatility processes. With an eye

towards forecasting, we focus on a much tighter parameterization, with two time-varying

parameters (the trends), and, in our base model, three stochastic volatility processes.

Granger and Jeon (2011) consider time-varying parameter models without stochastic

volatility for the inflation equation (the Phillips curve), but (like Cogley, Primiceri, and

Sargent (2010)), their specifications fix the lag length at 2 whereas the VAR

representation implied by our model is infinite-order with time-varying coefficients at all

lags, thereby allowing for time-varying dependence.

Because our model nests and extends existing work, some of our results connect with the

existing literature. Consistent with Stock and Watson (2007, 2010), we find considerable

time variation in the innovation to the permanent component of inflation, consistent

with drifting expectations in the 1970s and anchored expectations in the 2000s.

Consistent with Staiger, Stock, and Watson (1997) and Gordon (1998), we find low

frequency variation in the NAIRU, with the NAIRU highest in the 1970s and early

1980s, and lowest in the 1990s. The novel aspects of our results are the implied

time-varying projections and simulated forecasting performance. The base model

estimates considerable time variation in the slope of the predictive Phillips curve, which

is measured as the sum of the coefficients on unemployment in the linear projection of
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inflation on current and past changes of unemployment, after subtracting estimated

target inflation and the NAIRU. The empirical time variation is at a lower frequency

than the cyclical variation suggested in Stock and Watson (2009, 2010) and Dotsey,

Fujita, and Stark (2011), and the pattern is also different than the decadal swings of Ball

and Mazumder (2011): according to the estimates in Section 4, the Phillips Curve slope

is moderate in the 1960s, steeper in the 1970s and early 1980s, flat for the Great

Moderation period. In the most recent data, the predictive Phillips Curve is estimated

to be as steep in 2010 as it was in the 1970s and the NAIRU is rising.

We also report the results of a pseudo out-of-sample forecasting comparison of the

performance of this model, relative to the Atkeson-Ohanian (2001) random walk forecast

and the Stock-Watson (2007) univariate unobserved components-stochastic volatility

model. The base model generally outperforms these two univariate benchmarks,

particularly at short forecasting horizons. This finding is robust to various modifications

of the base model. The model is estimated using a Bayesian Gibbs sampling procedure;

since the posterior distribution of the model is rather complex and hard to sample from,

we draw the parameters and latent variables sequentially from tractable conditional

posterior distributions.

The rest of this paper is organized as follows. The model and identification are discussed

in Section 2. Section 3 discusses estimation by Bayesian Markov Chain Monte Carlo

methods, and Section 4 presents the results. Section 5 concludes.

2 The Model

We model unemployment and inflation symmetrically as the sum of a random walk

trend, a common cyclical component and serially uncorrelated measurement error, so

that the two observed series are represented in terms of five unobserved components. In

the most general model the variances of the innovations of the unobserved components
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all follow stochastic volatility processes, with latent variance processes that evolve over

time. This multivariate unobserved components stochastic volatility (UC-SV) model is:

Inflation


















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









πt = τt + λδt + ηt, ηt = ση,tξη,t

τt = τt−1 + ǫt, ǫt = σǫ,tξǫ,t

ln(σ2
η,t) = ln(σ2

η,t−1) + νη,t

ln(σ2
ǫ,t) = ln(σ2

ǫ,t−1) + νǫ,t

(1)

Unemployment


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ut = τ̃t + δt + η̃t, η̃t = ση̃,tξη̃,t

τ̃t = τ̃t−1 + ǫ̃t, ǫ̃t = σǫ̃,tξǫ̃,t

ln(σ2
η̃,t) = ln(σ2

η̃,t−1) + νη̃,t

ln(σ2
ǫ̃,t) = ln(σ2

ǫ̃,t−1) + νǫ̃,t

(2)

Common cyclical component











δt = α1δt−1 + α2δt−2 + ζt, ζt = σζ,tξζ,t

ln(σ2
ζ,t) = ln(σ2

ζ,t−1) + νζ,t

(3)

where ξt = {ξη,t, ξǫ,t, ξη̃,t, ξǫ̃,t, ξζ,t} is i.i.d. N(0,I) and νt = {νη,t, νǫ,t, νη̃,t, νǫ̃,t, νζ,t} is i.i.d.

N(0, γI) and ξt and νt are independent.

With λ = 0, the inflation block of the model is the same as in Stock and Watson (2007);

with λ 6= 0, the inflation block can be interpreted as a Phillips curve. The unemployment

block parallels the inflation block.

The multivariate UC-SV model can be interpreted in various ways. The trend in

inflation τt can be thought of as representing inflation expectations (which makes (1)

akin to a New Keynesian Phillips Curve (NKPC); this is the interpretation given in
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Stock and Watson (2007, 2010)) or as a Central Bank’s inflation target (e.g. as in Cogley

and Sbordone (2008) and Sbordone, Tambalotti, Rao, and Walsh (2010)). The trend in

the unemployment rate, τ̃t, provides a time-varying NAIRU, in the sense that δt is the

unemployment gap that potentially affects inflation. The random walk specification for

the NAIRU is the same specification as in Staiger, Stock and Watson (1997) and Gordon

(1998), extended to allow for stochastic volatility. The assumption that the innovations

to inflation expectations and to the NAIRU are independent reflects the distinct

institutional and economic processes that underpin a Central Bank’s long-term inflation

target and credibility on the one hand, and, on the other hand, the changes in

productivity and labor market composition that are generally considered to drive the

NAIRU. The independence of the serially uncorrelated disturbances ǫt and ǫ̃t is

motivated by viewing these as measurement error arising from the independent surveys

from which the series are constructed. The common cyclical component δt links the

inflation and unemployment gaps over business cycle frequencies, and λ plays the same

role in this model as does the coefficient on the activity variable in the NKPC, when the

NKPC is specified in terms of an activity gap or the unemployment rate.

From a statistical perspective, the model provides a parsimonious parameterization of

time variation in the joint process for inflation and unemployment, with four parameters

(λ, α1, α2, γ). Given fixed values of the innovation variances, that is, at a given point in

time, the unobserved components model implies specific joint autocovariances of (∆πt,

∆ut), which in turn implies a vector autoregression (VAR) representation of (∆πt, ∆ut).

The parameters of the VAR representation depend on the innovation variances because

the VAR coefficients essentially arise from a multivariate signal extraction problem,

which in turn depends on the various signal-to-noise ratios.1

Assuming α1, α2, γ are nonzero, the model is identified. The likelihood, however, turns

out to be quite flat in some of the parameters. We therefore imposed the following three

1See Koopman and Harvey (2003) for a discussion of the relevant issues.
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restrictions:

i γ = 0.2;

ii σ2
ǫ̃ = 0.01; and

iii σ2
η̃ = 0.2.

Restriction (i) is taken from Stock and Watson (2007), extended here to the multivariate

system. Restriction (ii) eliminates stochastic volatility in the NAIRU. This restriction is

consistent with the previous work cited above on unobserved components models of the

NAIRU in which there was no evidence of time-varying low frequency variances.

Restriction (iii) is imposed to resolve an empirical problem of separately estimating the

measurement error and the cyclical component of the unemployment rate. Section 4

reports sensitivity analysis for various alternative treatments of σ2
η̃ , including

time-varying estimation. With these three restrictions imposed, the model has three

estimated parameters, α1, α2, and λ.

3 Estimation Strategy

The model is estimated using a Gibbs sampling procedure. The parameters and latent

variables are divided in three blocks. In the first block, we draw the latent variables τ̃ , δ

and τ conditioning on the inflation and unemployment series, the parameters, α1, α2,

and λ, and the stochastic volatilities. We first determine the joint posterior distribution

of inflation, unemployment and the three latent variables conditional on the parameters

and the stochastic volatilities; we then sample from the conditional distribution of the

latent variables. Next, we condition on the latent variables and the stochastic volatilities

and we sample from the posterior of the parameters. We assume normal conjugate priors

for the parameters, with zero mean and variance equal to 100. Also, α1 and α2 are
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constrained to be in the triangle −1 ≤ α2 ≤ 1− |α1| so that the cyclical process δt is

stationary. Finally we draw the stochastic volatilities a la Kim et al. (1998),

conditioning on the latent variables and the parameters.2

4 Data Description and Empirical Results

The data set is quarterly from 1960Q1 to 2011Q3. Inflation is measured by the GDP

deflator and the unemployment rate is the quarterly average of the monthly total civilian

unemployment rate. The data are plotted in Figure 6.1.

4.1 In-Sample Results on Historical Time Variation

Figures 6.2 and 6.3 plot the estimated time paths of the volatilities that are not fixed

under the base model; these and the following estimated time paths are posterior means

and 95% intervals from the nonlinear, non-Gaussian smoother and are conditional on the

full data set. The variance of the permanent innovation to inflation has an estimated

time path that is similar to the one in Stock and Watson (2007), with the variance of the

permanent component large in the 1970s and early 1980s and smaller in the 1960s, 1990s

and early 2000s; these latter periods correspond to periods of relatively well-anchored

inflation expectations. The variance of the transitory innovation in inflation shows more

variability than in Stock and Watson (2007). The variance of the cyclical component

follows a recognizable time path: it was large before the mid-1980s, it diminished during

the Great Moderation, and it increased substantially since 2007 to pre-Great Moderation

levels. It must be noted that the confidence intervals around the stochastic volatilities

are wide, which means that there is considerable uncertainty on the conclusions

2Harvey and Renault (1995) and Shephard (2005) provide an excellent literature review of the econo-
metrics of stochastic volatilities. Bos and Shephard (2006) discuss some of the issues involved in estimating
unobserved component models with stochastic volatilities.
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regarding the time-varying patterns of volatility.

Estimates of the trend and common cyclical components are plotted in Figure 6.4. As in

Stock and Watson (2007) and Cogley, Primiceri, and Sargent (2010), trend inflation

closely tracks the low-frequency swings in inflation. The estimated NAIRU (Figure 6.5a),

fluctuates through a range of just over one percentage point. The NAIRU is estimated to

be greatest during the 1970s, to be lowest during the early 2000s, and to be rising

recently. Figure 6.5b shows the estimated NAIRU when we relax restriction (iii).

Estimating σ2
η̃ does not change the low frequency properties of the estimated NAIRU,

but it adds considerable high frequency noise to it. When we allow σ2
η̃ to be unrestricted,

the estimation attributes all the high frequency noise in the unemployment rate to τ̃ ,

rather than to the measurement error η̃. We think that this result is due to weak

identification and we therefore fix σ2
η̃ to 0.2. The forecasting performance of the model is

only marginally affected by this restriction, as shown later in the paper.

Figure 6.6 presents the posterior distributions of the parameters. Most notably, the

posterior for λ has essentially all its mass less than zero, with a posterior mean of -0.37

and a 95% Bayesian credible set of (-0.58, -0.17). The posteriors for all three parameters

are much tighter than the priors, with different means.

One aim of this model is to allow for the possibility of time-varying VAR coefficients, in

particular for a time-varying slope of the Phillips curve. Figure 6.7 plots the slope of the

Phillips curve, as measured by the time-varying sum of the coefficients on lagged

unemployment in the implied VAR for detrended inflation and unemployment, (πt − τt,

ut − τ̃t ). The Phillips curve slope κ is steepest (the implied sum-of-coefficients is most

negative) in the 1970s, is the flattest in the 1990s, and has increased in steepness since

2007. It must be noted that there is considerable uncertainty around the estimate of κ,

as shown by the 95% confidence intervals
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4.2 Pseudo out-of-sample Forecast Evaluation

This section reports the results of a pseudo out-of-sample inflation forecasting exercise.

Specifically, the model parameters were estimated using Gibbs sampling3, with a

quarterly expanding estimation sample starting with 1960Q1 - 1979Q4. The analysis

focuses on the base model of Section 2 and one variant described below. We also

consider three univariate benchmark models, the Stock-Watson (2007) univariate UC-SV

model and two versions of the Atkeson-Ohanian (2001) quarterly random walk model.

The first AO model (AO(i)) forecasts h-quarter ahead inflation using lagged four-quarter

inflation; the second AO model (AO(ii)) forecasts h-quarter ahead inflation using lagged

h-quarter inflation. For horizons greater than one quarter, the object being forecast is

the multi-period percentage rate of inflation at annual rates, for example at 4-quarters

the object of interest is 100ln(PT+4/PT ). This pseudo out-of-sample exercise uses the

most recent vintage of data with no real-time data adjustments.

The results are summarized in Table 1 through 4. The first row of each block reports the

pseudo out-of-sample root mean squared forecast error (RMSFE) of the univariate

UC-SV model, and the remaining rows report RMSFEs relative to the UC-SV

benchmark. Results are reported for 1, 2, 4, and 8-quarter ahead forecasts, and for

various subsamples.

Over the full sample, the base model provides modest improvements over the UC-SV and

AO models, particularly at the one- and two-quarter horizons. Table 1 also reports

results for three variants of the base model. The first variant provides a different

treatment of σ2
η̃ (see (iii) in Section 2), allowing σ2

η̃ to be estimated. This change

generally makes little difference to the pseudo out-of-sample forecast RMSFEs, a result

that is consistent with the difficulty we found in identifying this parameter using the full

data set; a notable exception is represented by the 2000s, when the model with

unrestricted σ2
η̃ does better. The second and third variants allow for a more flexible

3The model was simulated 25,000 times after a burn-in period of 5,000 draws.
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specification for how δt enters the inflation equation (1), in particular, the term λδt in (1)

is replaced by the distributed lag, λ1δt + λ2δt−1 + λ3δt−2; σ
2
η̃ is fixed to 0.2 in the second

variant and estimated in the third. The model with a distributed lag does slightly better,

above all in the 1990s.

5 Conclusions

We consider these results to be encouraging. The multivariate UC-SV model captures

several of the features found in the inflation forecasting literature, most notably a

time-varying state-dependent Phillips curve. The time-varying latent variables have

natural interpretations as inflation expectations (or target inflation), the NAIRU, and a

common cyclical component. The pseudo out-of-sample forecasting exercise suggests

that this tightly parameterized model can improve upon the forecasts of what we

understand to be the best univariate models.
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6 Figures and Tables

Figure 6.1: U.S. GDP deflator inflation and unemployment rates, quarterly, 1960Q1-
2011Q3
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Figure 6.2: Posterior mean and 95% interval of time-varying variances of innovations
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Figure 6.3: Posterior mean and 95% interval of time-varying variances of innovations
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Figure 6.4: Posterior mean and 95% interval of unobserved components
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Figure 6.5: Posterior mean and 95% interval of unobserved components
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Figure 6.6: Full-sample posterior and diffuse prior distributions of parameters

1.3 1.4 1.5 1.6 1.7 1.8 1.9
0

10

20

30

40

50

60

70

80

90

100

(a) α1

−0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3
0

10

20

30

40

50

60

70

80

90

100

(b) α2

−0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0
0

10

20

30

40

50

60

70

80

90

100

(c) λ

22



Figure 6.7: Slope of the Phillips curve κ for (πt − τ) and 95% interval
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Table 1: Pseudo out-of-sample forecasting performance

1980:I-1989:IV
Model h =1 h = 2 h = 4 h = 8

SW 2007 1.1375 1.1144 1.1813 1.5171
Relative RMSFE

SW 2007 1.0000 1.0000 1.0000 1.0000

AO (i) 1.0652 1.0880 1.1172 1.0939
AO (ii) 1.0292 0.9994 1.1172 1.2821
No Lags - σ2

η̃ = 0.2 0.9893 0.9904 0.9997 1.0330
No Lags - σ2

η̃ estimated 0.9894 0.9939 1.0079 1.0600
2 Lags - σ2

η̃ = 0.2 0.9902 0.9861 0.9885 1.0502
2 Lags - σ2

η̃ estimated 0.9897 1.0004 1.0141 1.0737

NOTES: Entries are RMSFEs, relative to the Stock and Watson (2007) univariate UC-SV.
Bold entries are the smallest relative RMSFE for the indicated series/period/horizon.

Table 2: Pseudo out-of-sample forecasting performance

1990:I-1999:IV
h =1 h = 2 h = 4 h = 8

SW 2007 0.5818 0.5019 0.5083 0.6252
Relative RMSFE

SW 2007 1.0000 1.0000 1.0000 1.0000
AO (i) 0.9948 0.9972 1.0470 1.0278
AO (ii) 1.0988 1.0401 1.0470 1.1325
No Lags - σ2

η̃ = 0.2 0.9555 0.9186 0.9027 0.9603
No Lags - σ2

η̃ estimated 0.9547 0.9205 0.9022 0.9701
2 Lags - σ2

η̃ = 0.2 0.9652 0.9048 0.8491 0.9160

2 Lags - σ2
η̃ estimated 0.9543 0.9149 0.8864 0.9633

NOTES: see the notes in Table 1
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Table 3: Pseudo out-of-sample forecasting performance

2000:I-2011:III
h =1 h = 2 h = 4 h = 8

SW 2007 0.8884 0.7906 0.7637 0.8175
Relative RMSFE

SW 2007 1.0000 1.0000 1.0000 1.0000
AO (i) 1.0104 1.0114 1.0133 1.0021
AO (ii) 1.1190 1.0230 1.0133 1.0760
No Lags - σ2

η̃ = 0.2 1.0021 1.0060 1.0068 0.9832
No Lags - σ2

η̃ estimated 0.9691 0.9501 0.9384 0.9420

2 Lags - σ2
η̃ = 0.2 1.0402 1.0733 1.1109 1.0720

2 Lags - σ2
η̃ estimated 0.9508 0.9260 0.9207 0.9448

NOTES: see the notes in Table 1

Table 4: Pseudo out-of-sample forecasting performance

Whole Sample
h =1 h = 2 h = 4 h = 8

SW 2007 0.8980 0.8384 0.8612 1.0602
Relative RMSFE

SW 2007 1.0000 1.0000 1.0000 1.0000

AO (i) 1.0367 1.0539 1.0817 1.0689
AO (ii) 1.0714 1.0117 1.0817 1.2276
No Lags - σ2

η̃ = 0.2 0.9895 0.9875 0.9911 1.0151
No Lags - σ2

η̃ estimated 0.9776 0.9719 0.9777 1.0277
2 Lags - σ2

η̃ = 0.2 1.0051 1.0061 1.0093 1.0398
2 Lags - σ2

η̃ estimated 0.9713 0.9675 0.9754 1.0373

NOTES: see the notes in Table 1
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