The Federal Reserve Board eagle logo links to home page

Markov Switching GARCH Models of Currency Turmoil in Southeast Asia

Celso Brunetti (Johns Hopkins University), Roberto S. Mariano (Singapore Management University), Chiara Scotti (Federal Reserve Board), Augustine H.H. Tan (Singapore Management University)*

NOTE: International Finance Discussion Papers are preliminary materials circulated to stimulate discussion and critical comment. References in publications to International Finance Discussion Papers (other than an acknowledgment that the writer has had access to unpublished material) should be cleared with the author or authors. Recent IFDPs are available on the Web at http://www.federalreserve.gov/pubs/ifdp/. This paper can be downloaded without charge from the Social Science Research Network electronic library at http://www.ssrn.com/.


Abstract:

This paper analyzes exchange rate turmoil with a Markov Switching GARCH model. We distinguish between two different regimes in both the conditional mean and the conditional variance: "ordinary" regime, characterized by low exchange rate changes and low volatility, and "turbulent" regime, characterized by high exchange rate movements and high volatility. We also allow the transition probabilities to vary over time as functions of economic and financial indicators. We find that real effective exchange rates, money supply relative to reserves, stock index returns, and bank stock index returns and volatility contain valuable information for identifying turbulence and ordinary periods.

Keywords: Currency crises; Financial markets; Banking sector; Regime switching; Volatility.

JEL classification: C13; C22; C52; F31; F34.


1  Introduction

The decade of the nineties witnessed several bank and currency crises.1 The severity of the crises has motivated researchers to develop early warning systems in order to forestall similar crises. Such early warning systems typically involve some precise definition of a crisis and a mechanism for predicting it. A currency crisis is usually identified as an episode in which there is a sharp depreciation of the currency, a large decline in foreign reserves, a dramatic increase in domestic interest rates or a combination of these elements.

This paper studies exchange rate turmoil, that is, we focus on episodes of extensive exchange rate changes, and we analyze which variables trigger the move from a tranquil period to a turbulent time. Since a currency crisis is not necessarily a turbulent period, and vice versa, our approach identifies currency crises only when they manifest with large exchange rate devaluations. Our modeling strategy relies on the empirical evidence that i) small exchange rate changes are associated with low volatility (ordinary regime) and large exchange rate movements go together with high volatility (turbulence), and ii) exchange rate volatility is not constant in the two regimes. This calls for a GARCH regime switching approach, in which we furthermore allow the transition probabilities to vary over time as functions of economic and financial indicators. Switching volatility models have been used for modeling equity markets (Hamilton and Susmel, 1994; Dueker, 1997; Susmel, 2000), short-term interest rates (Cai, 1994; Gray, 1996; Kalimipalli and Susmel, 2006), emerging equity markets (Susmel, 1998), and exchange rates (Klaassen, 2002; Calvet and Fisher, 2004). However, to the best of our knowledge, this paper is the first application to currency turmoil.

The analysis is applied to four Southeast Asian countries: Thailand, Singapore, the Philippines, and Malaysia. Estimation results support our intuition for modeling exchange rate volatilities. Our results, in fact, show that signals of the July 1997 crisis become apparent in Thailand as early as January, and the probability of getting into a crisis jumps to as much as 82 percent in June 1997.

The literature on financial/currency crises is vast, and it mainly focuses on trying to predict crises in developing countries. There are three methods or approaches for predicting currency crises that have been developed in the literature.

One class of models is the probit regression approach of Frankel and Rose (1996). They use probit analysis on a panel of annual data for 105 developing countries from 1971-92. The hypothesis tested is that currency crashes are positively linked to certain characteristics of capital inflows, such as low shares of foreign direct investments (FDI); low shares of concessional debt or debt from multilateral development banks; and high shares of public-sector, variable short-term, and commercial bank debt. The finding is that currency crises are more likely when foreign interest rates are high, domestic credit growth is high, the real exchange rate is overvalued, the current account deficit and fiscal deficit are large (as a share of GDP), external concessional debt is small, and FDI is small in relation to the total volume of external debt. However, when the model is used to generate out-of-sample predictions for the 1997 Asian Crisis, the forecasts are not successful (Berg and Patillo, 1999a).2 More recently Bussiere and Fratzcher (2006) develop a new early warning system model based on a multinomial logit with three outcomes (tranquil, pre-crisis and post-crisis) showing that such a specification leads to a better out-of-sample forecast and solves what they call the `` post-crisis bias.''

A second class of models (Tornell, 1999; IMF, World Economic Outlook, 1998; Radelet and Sachs, 1998; Corsetti Pesenti and Roubini,1999) follows Sachs, Tornell and Velasco (1996) who use cross-country regressions to explain the Tequila (Mexican) crisis of 1995. Using a crisis index defined as the weighted sum of the percentage decrease in foreign reserves and the percentage depreciation of the peso, they conclude that countries have more severe attacks when they have low foreign reserves, their banking systems are weak and their currencies overvalued. Berg and Patillo (1999a) extend the data to 23 other countries and conclude that the Sachs, Tornell and Velasco (1996) model proved to be largely unstable. Specification uncertainty appeared to be as important as parameter uncertainty.

The third class of models, attributed to Kaminsky, Lizondo and Reinhart (1998), is the `` signals approach.'' A crisis is defined as a situation in which a weighted average of monthly percentage depreciations in the currency and monthly percentage declines in reserves exceeds its mean by more than three standard deviations. They use 15 monthly variables to monitor for unusual behavior during a 24-month window prior to a crisis. Threshold levels, beyond which signals would be generated, are specified. Using variants of the signals approach, Kaminsky (1998a and 1998b), Kaminsky and Reinhart (1999), and Goldstein, Kaminsky and Reinhart (2000) claim some success in predicting the Asian crisis.

These approaches have some limitations. For example, the signal approach requires the ex-ante definition of a threshold and the transformation of the variables into binary variables, with a significant loss of information; the logit/probit approach requires the definition of a crisis dummy, with potential misclassifications.

We use a Markov switching approach in which we account for the presence of two potential regimes: ordinary and turbulent. We also recognize the fact that, even within each regime, the volatility of exchange rate returns is not constant, and we therefore include a GARCH specification. The probabilities of switching between the two regimes are time-varying. The attractiveness of this approach is that we do not need to distinguish ex-ante between ordinary and turbulent times, but we let the estimation results supply us with this information. We differ from Mariano et al. (2002) in that we recognize the importance of volatility dynamics, and we enlarge the set of potential explanatory variables to include the M2-reserve ratio, real domestic credit, real effective exchange rate, stock market returns and volatility, and banking sector returns and volatility.

The model can be used for out-of-sample forecasting. Unfortunately, the short sample does not allow us to do so in the current paper (GARCH models require long datasets). Therefore, we only limit our study to understanding the variables and modeling specifications which play a role in comprehending currency turmoil, leaving the out-of-sample forecast exercise to future assessment.

This paper proceeds in Section 2 by motivating the use of a Markov switching GARCH model. Section 3 presents the model. Section 4 illustrates the data used in the estimation. Section 5 presents the estimation results toghether with an analysis of the estimated time-varying transition probabilities. Section 6 concludes the paper.

2  Motivating our Approach

The goal of the paper is to study episodes of high (low) risk and high (low) exchange rate movements.

Our approach consists in modeling the conditional mean and the conditional variance of the exchange rate devaluation. The first and the second order moments of exchange rate devaluation are driven by the same Markov process governed by an unobservable state variable. The underlying assumption is quite simple: low mean values of exchange rate devaluation are associated with low volatility of the exchange rate devaluation, and high devaluation is associated with high volatility. We refer to the latter regime as `` turbulence'' and the former as describing `` ordinary'' market conditions. In addition, the transition probabilities in the Markov process are functions of macroeconomic and/or financial variables. This captures the idea that large exchange rate devaluations and high risk might be driven by exogenous variables.

This approach might lead to identify currency crises. In fact, there is empirical evidence (see below) showing that, at least for the four Southeast Asian countries analyzed in this paper, high risk and high exchange rate devaluation correspond indeed to the 1997 currency crises.

The countries considered are Thailand, Singapore, Malaysia and Philippines. The sample period runs from November 1984 to December 2001.

A difference of our approach from the previous literature is the emphasis on the volatility process of exchange rate movements. To motivate our accent on the volatility of exchange rate returns, we compute a volatility proxy: the range,3 which is defined as the difference between the maximum value of the (log of the) price process over a given interval of time and the minimum value of the (log of the) price process over the same interval

$\displaystyle l=\max_{0\leq n\leq N}\left[ \ln(P_{n})\right] -\min_{0\leq n\leq N}\left[ \ln(P_{n})\right]$ (1)

Our data set is composed of monthly observations. The use of monthly data is due to the fact that many macroeconomic data used as explanatory variables for the time varying Markov probabilities, are available only at monthly frequencies. However, nominal exchange rate data is also available at daily frequencies. For each month and for each exchange rate analyzed we selected the highest (log) price and the lowest (log) price to compute the monthly range (see Chou, 2005). Therefore, the time interval $ 0\leq n\leq N$ in our set up corresponds to a month. Finally, the volatility (standard deviation) proxy is computed as

$\displaystyle \widehat{\sigma}_{i,t}=\sqrt{\frac{\pi}{8}}l$ (2)

where $ i$ indicates the four different exchange rates analyzed in the paper and $ t$ refers to the monthly observation.

Figure 1 graphs the volatility proxy for the Thai baht. Figures for the other three countries look very similar.

2.1  Time-Varying Volatilities Approach

Since Mandelbrot (1963a, 1963b) and Fama (1965) it has been a well know fact that asset return volatility is not constant over time. Moreover, there is a large empirical evidence (among others see Brunetti and Lildholdt, 2002b) showing volatility clustering: large (small) changes in the nominal exchange rate tend to be followed by large (small) changes of either sign. These features are confirmed by our data. Figure 1 shows that volatility changes over time and evolves in clusters.

The GARCH model is able to capture both time varying volatility and volatility clustering. Baillie and Bollerslev (1989) shows that the GARCH class of models is able to capture the volatility dynamics of exchange rates at daily, weekly and monthly frequencies. Even if the GARCH effect dissipates as the length of the sampling interval increases, there is still heteroskedasticity and volatility clustering at monthly frequencies. GARCH(1,1) models have proved to adequately describe exchange rate volatility dynamics.4 This is the approach we follow in this paper.

2.2  Markov Regime Switching Approach

As already stated, we model jointly the conditional mean and the conditional variance (volatility) of exchange rate devaluations. The Markov switching regime model adopted relies on two assumptions: i) the volatility process is characterized by two regimes, high volatility and low volatility; ii) the high volatility regime is associated with large exchange rate deviations (high values of the mean process) and the low volatility regime is associated with small exchange rate movements (low values of the mean process). The first assumption is confirmed by Figure 1. For all of the four countries analyzed, the volatility process exhibits periods of very low volatility and periods of very high volatility. Interestingly, the highest volatilities coincide with the 1997 crisis which is the major currency crisis that took place during our sample. Therefore this crisis represents our benchmark.

The onset of the crisis in Thailand, the first country to be hit by the crisis, was on July 1997. The average monthly volatility (standard deviation) in the 12 months after the crisis (July 1997 - June 1998) was more than seven times bigger than in the previous 12 months (July 1996 - June 1997). Similar results also apply to Singapore and Malaysia. For the Philippines the volatility in the twelve months subsequent the beginning of the crisis increased by a factor of 55.

The second assumption simply implies that the same Markov process drives both the mean and the variance of exchange rate returns. Figure 2 displays the scatter plot of exchange rate devaluation and the volatility proxy for Thailand. It is evident that periods of zero or low exchange rate devaluation/appreciation are associated with low risk and periods of severe devaluations are associated with very high exchange rate risk. In the twelve months after the onset of the 1997 crisis the level of the exchange rate devaluation increased by a factor of 8 compared to the 12 months before. Similar results apply to the other three countries. The exchange rate devaluation increased by a factor of 12, 59 and 54 in Singapore, the Philippines and Malaysia respectively, when comparing the twelve months before and after the crisis.

It is interesting to note the asymmetry of exchange rate devaluation and volatility: in periods of high risk the currency devaluates. The largest outliers in Figure 2 refer to the 1997 crisis.

The presence of two regimes - low devaluation and low volatility versus high devaluation and high volatility - motivates the Markov switching approach adopted. It is also evident that within the two regimes volatility is not constant. Hence the need for a GARCH approach.

2.3  Turbulence and Crisis

The modeling strategy adopted is able to identify turbulent periods. Do turbulent periods correspond to currency crises?

A currency crisis is not necessarily a turbulent period, and vice versa. There can be a crisis without any exchange rate devaluation (and of course without any volatility of the exchange rate devaluation). In fact, the government might be able to absorb exchange rate pressures using foreign reserves, interest rates, etc. On the same base the exchange rate might experience turbulence without being in a crisis.

Citing Kaminsky and Reinhart (1999): `` Most often, balance-of-payments crises are resolved through a devaluation of the domestic currency or the flotation of the exchange rate. But central banks can and, on occasion, do resort to contractionary monetary policy and foreign-exchange market intervention to fight speculative attack'' (p.475-6).

Figures 1 and 2 provide overwhelming evidence that the 1997 crisis resolved in a large exchange rate devaluation and high volatility. Our modeling approach distinguishes between turbulent and ordinary periods and identifies currency crises only to the extent that they manifest with large exchange rate devaluations.

3  Time varying probabilities Markov switching GARCH models

Let $ y_{t}$ be the first difference of the log nominal exchange rate. The simple GARCH(1,1) model may be written as follows:

$\displaystyle y_{t}$ $\displaystyle =\mu+\sum_{i=1}^{k}\theta_{i}X_{i,t}+u_{t}$ (3)
$\displaystyle u_{t}$ $\displaystyle =\sigma_{t}\varepsilon_{t},\;\varepsilon_{t}\sim nid(0,1)$ (4)
$\displaystyle \sigma_{t}^{2}\vert\Omega_{t-1}$ $\displaystyle =\omega+\alpha u_{t-1}^{2}+\beta\sigma _{t-1}^{2}$ (5)

where $ X_{i}$ are the exogenous and/or lagged variables for the mean of the returns, $ \theta$ is the corresponding parameter vector and $ \Omega_{t-1}$ is the information set available at time $ t-1$. For simplicity we are assuming that the innovation term follows a normal distribution. The model is very flexible, and many extensions have been proposed in the literature.

As shown in the previous section, in periods of currency turbulence, exchange rate volatility is often very high ,and we may distinguish between two regimes: a `` ordinary'' regime and a `` turbulence'' regime. The approach we adopt here is similar to Gray (1996) and Dueker (1997). Equations 3 -5 can be written as

$\displaystyle y_{t}$ $\displaystyle =\mu_{t}+\sum_{i=1}^{k}\theta_{i}X_{it}+u_{t}$ (6)
$\displaystyle u_{t}$ $\displaystyle =\sigma_{t}\varepsilon_{t},\;\varepsilon_{t}\sim nid(0,1)$ (7)
$\displaystyle \sigma_{t}^{2}\left( S_{t},S_{t-1}...S_{0}\right)$ $\displaystyle =\omega\left( S_{t}\right) +\alpha\left( S_{t-1}\right) u_{t-1}^{2}+\beta\left( S_{t-1}\right) \sigma_{t-1}^{2}\left( S_{t-1}...S_{0}\right)$ (8)

The constant, $ \mu_{t}$, in the conditional mean equation is allowed to switch between two regimes - high mean $ \left( \mu_{1}\right) $ and low mean $ \left( \mu_{0}\right) $,

$\displaystyle \mu_{t}$ $\displaystyle =\mu_{1}S_{t}+\mu_{0}\left( 1-S_{t}\right)$ (9)
$\displaystyle S_{t}$ $\displaystyle \in\left\{ 0,1\right\} ,$  $\displaystyle \forall t$ (10)
$\displaystyle \Pr\left( S_{t}=0\vert S_{t-1}=0\right)$ $\displaystyle =p$ (11)
$\displaystyle \Pr\left( S_{t}=1\vert S_{t-1}=1\right)$ $\displaystyle =q$ (12)

where $ S_{t}$ is the latent Markov chain of order one. We are assuming that the parameter vector $ \theta$ in the conditional mean equation is constant (i.e. it does not switch according to the Markov process), but this assumption can be easily relaxed. The innovation term, $ u_{t}$, follows a normal distribution.

The conditional variance, $ \sigma_{t}^{2}$, is a function of the entire history of the state variable. This is due to the autoregressive term, $ \sigma_{t-1}^{2}$, in the conditional variance equation - see Dueker (1997), Cai (1994) and Hamilton and Susmel (1994). Obviously, it is very demanding to account for all the past history of the state variable. Following Dueker (1997), we adopt an approximation procedure that seems not to cause any problems in the evaluation of the likelihood function. This procedure implies that the conditional variance is a function of only the most recent values of the state variable. Dueker (1997) shows that in a GARCH(1,1) model we need to consider only the most recent four values of the state variable. This means that the conditional variance, $ \sigma_{t}^{2}$, is function only of the current state $ \left( S_{t}\right) $ and the previous state $ \left( S_{t-1}\right) $: $ \sigma_{t}^{2}\left( i,j\right) =\sigma_{t}^{2}\left( S_{t}=i,S_{t-1}=j\right) $ . By integrating out $ S_{t-1}$, the conditional variance can be written as

$\displaystyle \sigma_{t}^{2}\left( i,j\right) =\omega\left( S_{t}=i\right) +\alpha\left[ u_{t-1}^{2}\left( j\right) \right] +\beta\left[ \sigma_{t-1}^{2}\left( j\right) \right]$ (13)

Equation (13) implies that the constant in the conditional variance equation is allowed to switch. In the GARCH(1,1) specification, the unconditional variance is given by $ \frac{\omega}{1-\alpha-\beta}$. Therefore, equation (13) allows two unconditional variances: high unconditional variance in `` turbulence'' regimes and low unconditional variance in `` ordinary'' regimes. Following Dueker (1997), $ \omega\left( S_{t}\right) $ is parameterized as $ g\left( S_{t}\right) \omega$ such that $ g\left( S=0\right) $ is normalized to unity.

In this setup the transition probabilities are constant. This seems over-restrictive. Transition probabilities may depend on economic variables. For this reason we introduce time varying probabilities. In our setup transition probabilities are probit functions of economic variables denoted by $ Z_{t}$

$\displaystyle \Pr\left( S_{t}=0\vert S_{t-1}=0\right)$ $\displaystyle =p=\Phi\left( Z_{t-1}^{^{\prime} }\zeta\right)$ (14)
$\displaystyle \Pr\left( S_{t}=1\vert S_{t-1}=1\right)$ $\displaystyle =q=\Phi\left( Z_{t-1}^{^{\prime}} \nu\right)$ (15)

where $ \Phi$ denotes the $ cdf$ of the normal distribution. A Markov switching regime GARCH model with time varying probabilities is also developed in Gray (1996).

This approach allows forecasting the conditional probability of being in a given regime $ \left( i,j\right) $ at time $ t+1$ given the information available at time $ t$.

Denote $ \overset{\symbol{94}}{\xi}_{t\vert t}$ the $ \left( N\times1\right) $ vector of conditional probabilities of being in state $ \left( 0,1\right) $ conditional on the data until date $ t$. Define $ \eta_{t}$ as the $ \left( N\times1\right) $ vector of the density of $ y_{t}$ conditional on $ S_{t}$. Following Hamilton (1994), the optimal forecast for each $ t$ is computed by iterating the following two equations

$\displaystyle \widehat{\xi}_{t\vert t}$ $\displaystyle =\frac{\left( \overset{\symbol{94}}{\xi}_{t\vert t-1} \odot\eta_{t}\right) }{\mathbf{1}^{\prime}\left( \overset{\symbol{94}}{\xi }_{t\vert t-1}\odot\eta_{t}\right) }$ (16)
$\displaystyle \widehat{\xi}_{t+1\vert t}$ $\displaystyle =\mathbf{P}_{t+1}\mathbf{\cdot}\overset{\symbol{94} }{\xi}_{t\vert t}$ (17)

where $ \mathbf{1}$ is the unit vector, $ \mathbf{P}_{t+1}$ is the $ \left( N\times N\right) $ Markov transition probability matrix and $ \odot$ denotes the element-by-element multiplication.

Recall that $ \mathbf{P}_{t}$ is time varying and depends on the previous period values of explanatory variables. We are mainly interested in the turbulent regime. Our approach allows us to compute the probability of moving to a turbulence regime in period $ t+1$ given all the available information at time $ t$.

The log-likelihood function is given by

$\displaystyle \ln L_{t}\left( i,j\right) =-\frac{1}{2}\ln\left[ \sigma_{t}^{2}\left( j\right) \right] +\ln\left[ \frac{u_{t-1}^{2}\left( i\right) }{\sigma _{t}^{2}\left( j\right) }\right] -\ln\left[ \sqrt{2\pi}\right]$ (18)

where $ i\in\left\{ 0,1\right\} $ relates to $ S_{t}\in\left\{ 0,1\right\} $ and $ j\in\left\{ 0,1\right\} $ relates to $ S_{t-1}\in\left\{ 0,1\right\} $. The function is maximized following Hamilton (1994).

4  Data Description

Currency crises/turmoil most often reveal themselves in an actual devaluation of the domestic currency or the flotation of the exchange rate. Nevertheless, there are occasions in which central banks wind up adopting contractionary policies. In these cases, crises manifest themselves in interest rate hikes, depletion of reserves, etc. Also, currency crises are sometimes linked to banking/financial sector distresses.5

To take into account all facets of currency turmoil, we consider a number of macroeconomic and financial variables: M2/reserves, real domestic credit, real effective exchange rate, banking sector stock index returns and volatility, general stock market index returns and volatility.6 In order to get a clearer view of the evolution of turbulent periods we use monthly data, from November 1984 to December 2001.7

Exchange rates devaluation/appreciation is simply computed using end of the month log-first difference.

Real effective exchange rate (REER) and interest rate differentials (IRDIFF) are external sector indicators. In particular, the percentage deviation of the REER from a trend is a current account indicator, while the domestic-US real interest rate differential on deposits represents an indicator associated with the capital account. REER is considered as deviation from a trend because not all real appreciations/depreciations necessarily reflect disequilibrium phenomena.

M2/reserves (M2 ratio) together with real domestic credit/GDP (RDC) are financial sector indicators. Both variables are considered in deviation from a trend. In fact, not all the changes in those indicators are symptomatic of a troublesome situation.8

Stock index returns (GENRET) and volatility (GENVOL) are indicators of the real sector9 linking currency turmoil to economic activity.

In order to stress the link between currency crises and banking problems we introduce returns and volatility of a stock index based on a portfolio (weighted by the capitalization) of banks listed on the stock market (BANKRET and BANKVOL, respectively).10 We believe these variables could be important indicators for the Southeast Asian crisis we study in this paper.

Citing Kaminsky and Reinhart, `` Of course, this is not an exhaustive list of potential indicators'' (p.481). We have considered only some of the indicators that they suggest and add some others, based on the empirical evidence of the countries that we analyze. However, Edison (2000) suggests that a marked appreciation of the real exchange rate, a high ratio of short-term debt to reserves, a high ratio of M2 to reserves, substantial losses of foreign exchange reserves, and sharply declining equity prices represent the more important indicators of vulnerability.

Figure 3-6 display the evolution of the above indicators for Thailand, Singapore, Philippines and Malaysia.

In all the countries the real effective exchange rate is appreciating relative to its trend during the period before the onset of the 1997 crisis, showing evidence of overvaluation. (Note that the real effective exchange rate follows the UK quotation - i.e. US Dollars per local currency.) For Thailand, the Philippines and Malaysia the REER is 9-10% above the trend in the 12 months preceding the crisis. This is in line with previous literature on currency crises. Domestic-US real interest rate differentials do not indicate any rising expectations of devaluation as the 1997 currency crisis approaches. For all the countries analyzed, in the 12 months before the crisis, IRDIFFs are flat.

Turning now to the financial sector variables, it is possible to note that in Thailand and Malaysia the M2/reserves deviation from trend is positive and significative in size during the period before the onset of the 1997 crisis. This is in line with both a large expansion in M2 and a sharp decline in foreign currency reserves as also pointed out in Kaminsky and Reinhart (1999) for banking and currency crises. In Singapore and Philippines the M2 ratio does not display any considerable deviation from trend.

RDC is above its trend before the 1997 crisis in the Philippines and Malaysia but it is around trend in Thailand and Singapore.

The returns on the stock market index in the 12 months before the 1997 crisis are, on average, negative for all the markets considered. Particularly severe is the drop in the general stock market index in Thailand: the monthly return averages to -7%. Stock market volatility is also very high. The stock market represents the real sector; therefore, the stock market returns volatility may be interpreted as the uncertainty/risk related to the real sector. In the twelve months before the crisis, stock market volatility in Thailand doubles with respect to the average value over the whole sample. Also for Singapore, the Philippines and Malaysia stock market volatility increases.

Currency crises are sometimes evidence of banking sector distress. For this reason we use the banking sector index. In Thailand, the average monthly return of the banking sector is -8% in the 12 months before July 1997. Evidence of banking sector distress is also present in Singapore and Malaysia. In Thailand, the volatility of the banking index return more than doubles in the months before the crisis. Similar results hold for Singapore and Malaysia, but not for the Philippines.11

5  Empirical Results

For each country we estimated several models. To distinguish among models we use the number of explanatory variables in the time varying Markov probabilities. We started from the Switching Regime GARCH with constant transition probabilities. This is `` Model(1,1)'' because it includes only a constant for each probability. The model including an explanatory variable in the time varying Markov probability of the `` ordinary'' state ($ p$) is referred to as `` Model(2,1)'' because there is a constant plus an explanatory variable in $ p$ and only a constant in $ q$.

To select among the different models we use the following criteria:

  1. Analysis of the statistical properties of the estimated parameters - i.e. parameters should be well-determined. In this regard, it is important to note that GARCH models, to work properly, require many data points. Unfortunately, the use of monthly frequencies is problematic in this respect. For this reason we consider 90% significance level.
  2. The estimated coefficients in the probit representation of the time varying probabilities should have the right sign so that they can have a proper economic interpretation;
  3. Transition probabilities: if the model delivers an increase in the probability of getting into the turbulent regime before the onset of the turbulence, we will consider the model as satisfactory. All the turbulent periods in the data set will be considered. However, we will pay particular attention to the 1997 crisis;
  4. Models will be compared in terms of the value of the Akaike (AIC) and Schwartz (SIC) information criteria.

In what follows we analyze the estimation results and the transition probabilities of the estimated models.12 We report both the graph of the filtered transition probabilities and tables showing the behavior of these probabilities over turbulent periods. Providing a formal definition of turbulent periods is beyond the scope of this paper. We identify turbulent periods with severe devaluations. Tables reporting the time-varying probabilities aim to provide evidence about the performance of the estimated models.

Our analysis of the empirical results starts from Thailand, the first country involved in the 1997 crisis.

5.1  Thailand

5.1.1  Estimation Results

Table 1 reports the selected models for Thailand. For comparison we also report the simple Model(1,1) where the Markov probabilities are constant. The simple Model (1,1) reveals the average exchange rate devaluation during `` ordinary'' market conditions is not statistically different from zero and it is associated with a very low volatility (variance) level. In the `` turbulence'' state the average devaluation jumps to 9% (per month) which is associated with a volatility level which is more than 500 times bigger than the `` ordinary'' state. The GARCH parameters, $ \alpha$ and $ \beta$, are statistically well-defined and in line with the values reported in the literature on exchange rate volatility. In the third column of Table 1 we report the estimated parameters for Model(2,1). This model is characterized by the fact that REER is added as an explanatory variable in $ p$, the probability of being in the ordinary state at $ t+1$ given the information available at time $ t$. As for the simple Model(1,1) the two regimes are evident: low devaluation goes with low volatility and high devaluation goes with high volatility. Interestingly, in the conditional variance equation, $ \alpha$ is negative. Nevertheless the conditional variance is always positive13 - this is also true for Model (3,1). REER is significant and has the correct sign. Well before the onset of the crises the REER is moving as to anticipate the forthcoming exchange rate devaluation.

Model (3,1) contains REER and M2 ratio as explanatory variables in $ p$ while $ q$ contains only a constant. Both indicators have the correct sign and are significant. For this model, the volatility in the turbulent regime shifts by a factor of 715. Finally, the two indicators in the last model are REER and the banking index returns. BANKRET has a positive sign. In fact, when the banking sector is performing well (positive returns), the probability of staying in the ordinary state increases. Notice that, for the last model, we were forced to use less observations because the data on the banking index starts in February 1987. AIC and SIC select Model(3,1) with REER and BANKRET as explanatory variables in $ p$.

5.1.2  Time-Varying Transition Probabilities

For Thailand, in the period analyzed, the major turbulence was due to the 1997 crisis, which started in July. Table 2 contains the transition probabilities of getting into a turbulent period at time $ t+1,$ given the available information up until time $ t$ (equation 17), for the selected models - see Table 1.

The second row shows the average of that probability during ordinary periods. The simple Model(1,1) is able neither to anticipate nor to provide any warning of the 1997 crisis. The situation changes when considering Model(2,1). In June 1997, Model (2,1) gives a 14% probability of getting into a crisis in the next month. In absolute terms, the value of 14% is not high. However, in relative terms - i.e. when compared to the average probability in tranquil periods - 14% represents a noticeable jump in the probability level. When we include the M2 ratio and the BANKRET the June 1997 probability of getting into a crisis in the next period jumps to 34% and 82%, respectively.

Figure 7 shows the transition probabilities of the last two models in Table 1. Signals of the 1997 crisis are already apparent in January 1997. We consider this a very good result.

For Thailand the indicators that proved to be important are REER, M2 ratio and bank index returns. It is interesting to note that all the models selected contain the REER as an explanatory variable. Moreover, all models have just a constant in $ q$ - the probability of moving from turbulence to ordinary regime - while all the action is in $ p$ - the probability of moving from an ordinary regime to a turbulent one.

5.2  Singapore

5.2.1  Estimation Results

Table 3 reports the five selected models for Singapore. The simple Model(1,1) reveals that the exchange rate devaluation exhibits two regimes. In the ordinary regime the currency is, on average, appreciating and the volatility is low. In the turbulent regime the currency is depreciating and the volatility shifts by a factor of 6. The parameter $ \beta$ in the GARCH specification is not significantly different from zero. Therefore, all the models in Table 3 follow an ARCH(1) specification. Model(2,1) includes REER in $ p$. All the parameters are well-defined. If REER is appreciating, the probability of being in the ordinary period decreases while the probability of being in the turbulent regime increases. This is the reason why in Model (2,2) the REER coefficient is negative in $ p$ and positive in $ q$. For Singapore, both the banking index returns and the banking index return volatility are important indicators (jointly with REER). They indeed display the expected sign and are significant. AIC selects Model(3,1) with REER and banking index returns as explanatory variables in $ p$, while SIC selects Model(2,1) with REER only as an explanatory variable in $ p$.

5.2.2  Time-Varying Transition Probabilities

Transition probabilities of the selected models for Singapore are reported in Table 4. We identify three periods of turbulence. The more severe turbulent period coincides with the 1997 crisis, which started in August. The other two turbulent periods are April and October 2001.

Model(2,1) shows that the June 1997 probability to move to a turbulent period in $ t+1$ (July) is 35%. This probability is 57% in the next period. Model(2,2) performs even better: in June 1997 the probability of getting into turbulence in $ t+1$ is 55%. Models which include the banking return index and the banking return index volatility perform well in detecting all turbulent periods.

Figure 8 graphs the transition probabilities of Model(2,2) with REER in both $ p$ and $ q$, and Model(3,1) with REER and BANKVOL in $ p$. It is evident how both models are able to reveal signs of the turbulent periods experienced by the Singapore dollar. Model(3,1) with REER and BANKVOL already shows symptoms of the 1997 crisis in February 1997.

Real effective exchange rate, bank index returns and volatility are the important indicators for Singapore. Model(2,2) indicates that REER is important in modeling both the probability of being in the ordinary regime and staying in that regime and the probability of being in a turbulent regime and staying in that regime. This is the only model, for all the countries analyzed, where it is important to model $ q$ - i.e. $ q$ is not constant but varies over time. Combining REER and banking indicators in modeling $ p$ produces very interesting results.

5.3  The Philippines

5.3.1  Estimation Results

For the Philippines, the parameter $ \beta$ in the conditional variance equation is not statistically important; therefore, the models analyzed reduce to an ARCH specification. Table 5 contains the three selected models. In Model(1,1) all the coefficients are significant at standard significance level. The only two indicators that are important for this country are REER and general stock index returns. The real effective exchange rate in Model(2,2) has the expected negative sign, but it is not statistically important. REER is also not significant in Model(3,1). However, model(1,1) is selected by both AIC and SIC.

5.3.2  Time-Varying Transition Probabilities

The transition probabilities of the three selected models for the Philippines are reported in Table 6. We distinguish four turbulence periods: November 1990, the 1997 crisis that started in July, July 2000, and April 2001. The simple Model(1,1) performs as well as the other models in identifying the turbulent periods.

Figure 9 shows the transition probabilities for the last two models in table 5. The exchange rate devaluation of the Philippine peso is very volatile and shows several periods of appreciation/depreciation. The probabilities exhibit a similar pattern.

Despite sound economic fundamentals (see Figure 5 ) both REER and GENRET are gathering signs of the forthcoming turmoil.

5.4  Malaysia

5.4.1  Estimation Results

The last country analyzed is Malaysia. The data sample is shortened to account for the pegging regime that started in November 1998. Table 7 reports the four selected models. Model(2,1) shows that REER has the correct sign and is significant. This is in line with the evidence provided for the other countries. The M2 ratio14 reveals to be an important indicator, and the bank index return standard deviation also provides very interesting results. AIC and SIC select Model(3,1) with REER and BANKVOL as explanatory variables in $ p$.15

5.4.2  Time-Varying Transition Probabilities

We identify three periods of turbulence: January 1994, August 1997,16 and May 1998. All models, but Model(1,1), already show in June 1997 the limbo of the crisis. The performance in anticipating the 1997 crisis is spectacular for two models: Model(3,1) with REER and M2 ratio, and Model(3,1) with REER and BANKVOL. These results are confirmed by Figure 10.

5.5  Summary of the Empirical Results

The results for all the countries analyzed show interesting common features. First, modeling $ p$ as time varying produces the best results. Our intuition relies on the fact that $ \left( 1-p\right) $ gives the probability of getting into turbulence from the ordinary regime. In our methodology $ \left( 1-p\right) $ represents the first channel through which changes in the explanatory variables affect the transition probabilities.

Real effective exchange rate displays an enormous explanatory power in all the countries. In addition, M2 ratio, BANKRET, BANKVOL, GENRET contain valuable information which improves the performance of the models.

6  Conclusions

In this paper we adopt a GARCH Markov switching regime model. The approach consists of jointly modeling the conditional mean and the conditional variance of exchange rate changes. The estimated parameters confirm the importance of modeling volatility dynamics. Stock market and banking sector indexes, together with real effective exchange rates and M2 ratios, play an important role in understanding exchange rate turbulence.

Our approach exhibits several limitations. It is not applicable to countries that are pegging their exchange rate. In fact, in this case, there will not be any variation of the exchange rate and any volatility of the exchange rate. Moreover, we are only able to distinguish turbulent and ordinary regimes. As already discussed, turbulence does not always coincide with currency crises. Finally, we consider only four countries and a major currency crisis. It remains to validate how this methodology would work with other countries and other currency crises. However, an advantage of this approach is that it could be easily used for out-of-sample forecasting, which we leave for further research.

7  Appendix

7.1  Data

We created a data set for Malaysia, the Philippines, Singapore and Thailand composed of five variables: exchange rate return/devaluation, M2 ratio, real domestic credit/GDP, real effective exchange rate devaluation, domestic-US real interest rate differential on deposits, stock index returns and volatility, banking sector return and volatility.

All data, with the exception of the real effective exchange rate and stock index and banking sector index, are retrieved from the International Financial Statistics (IFS) database. The real effective exchange rate is from JP Morgan, while stock data are from Bloomberg.

All the variables are constructed accordingly with the literature on currency crises. See Kaminsky and Reinhart (1999).

M2 ratio is given by the sum of M1 (IFS line 24) and quasi money (IFS line 25) divided by Reserves (IFS line 1l.d) converted into national currency.

Real domestic credit is domestic credit (IFS line 52) divided by CPI (IFS line 64) to obtain domestic credit in real terms and then divided by GDP (IFS line 99b.p.). Monthly GDP is obtained by interpolating quarterly data.

Interest rate differentials are computed as the difference between domestic and US real interest rates on deposits. Real rates are deposit rates (IFS line 60) deflated using consumer prices (IFS line 64).

The real effective exchange rate is a measure of competitiveness and rises if for example domestic inflation exceeds that abroad and the nominal exchange rate fails to depreciate to compensate.

General stock index returns are first difference of the natural logarithm of the stock index.

General index returns volatility is computed using equations (1) and (2).

Banking index returns are first difference of the natural logarithm of the banking index.

Banking index returns volatility is computed using equations (1) and (2).

References

[1] Baillie, R.T. and Bollerslev, T. (1989), `` The Message in Daily Exchange Rates: A Conditional Variance Tale,'' Journal of Business and Economic Statistics, 7, 297-305.

[2] Bera, A. K., and M. L., Higgins (1993), `` ARCH Models: Properties, Estimation and Testing,'' Journal of Economic Surveyes, 7, 305 - 362.

[3] Berg, A. and Pattillo, C. (1999a),`` Are Currency Crises Predictable? A Test,'' IMF Staff Papers, 46-2, 107-138.

[4] Berg, A. and Pattillo, C. (1999b),`` Predicting Currency Crises: The Indicators Approach and An Alternative,'' Journal of International Money and Finance, 18-4, 561-586.

[5] Bollerslev, T., Engle, R.F. and Nelson, D.B. (1994), `` ARCH Models,'' in Handbook of Econometrics, Volume IV, 2959-3038, eds. R.F. Engle and D. McFadden, Amsterdam: North-Holland.

[6] Brunetti, C. and Lildholdt, P. (2002a), `` Return-based and range-based (co)variance estimation - with an application to foreign exchange markets,'' Mimeo, Univeristy of Pennsylvania.

[7] Brunetti, C. and Lildholdt, P. (2002b), `` Time Series Modeling of Daily Log-price Ranges for the SF/USD and USD/GBP,'' PIER Working Paper 02-017.

[8] Bussiere, M. and Fratzscher, M. (2006), `` Towards a new early warning system of financial crises,'' Journal of International Money and Finance, 25, 953-973

[9] Cai, J. (1994), `` A Markov model of switching-regime ARCH,'' Journal of Business & Economic Statistics, 12, 309-316.

[10] Calvet, L., and Fisher A. (2004), `` How to Forecast Long-Run Volatility: Regime-Switching and the Estimation of Multifractal Processes," Journal of Financial Econometrics 2, 49-83.

[11] Chou, R. (2005), `` Forecasting financial volatilities with extreme values: The conditional autoregressive range (CARR) model,'' Journal of Money, Credit, and Banking, 37, 561-582.

[12] Corsetti, G., Pesenti, P. and Roubini, N. (1999), `` Paper Tigers? A Model of the Asian Crisis,'' European Economic Review, 43, 1211-1236.

[13] Ding, Z., Granger, C. and Engle, R. (1993), `` A long memory property of stock returns and a new model,'' Journal of Empirical Finance 1, 83-106.

[14] Dueker, M.J. (1997), `` The Econometrics of Ultra-High Frequency Data,'' Journal of Business and Economic Statistics, 15-1, 26-34.

[15] Edison, H.J. (2002), `` Do Indicators of Financial Crises Work? An Evaluation of An Early Warning System,'' International Journal of Finance and Economics, 8, 11-53.

[16] Eichengreen, B., Rose, A. and Wyplosz, C. (1994), `` Speculative Attacks on Pegged Exchange Rates: An Empirical Exploration With Special Reference to the European Monetary System,'' NBER Working Paper, Cambridge, Massachusetts: National Bureau of Economic Research,No.4898.

[17] Eichengreen, B., Rose, A. and Wyplosz, C. (1995), `` Exchange Market Mayhem: The Antecedents and After-math of Speculative Attacks,'' Economic Policy, October, 249-312.

[18] Eichengreen, B., Rose, A. and Wyplosz, C. (1996), `` Contagious Currency Crises: First Tests,'' Scandinavian Journal of Economics, 98, 463-484.

[19] Fama, E.F. (1965), `` The Behaviour of Stock Market Prices,'' Journal of Business, 38, 34 - 105.

[20] Feller, W. (1951), `` Two Singular Diffusion Problems,'' Annals of Mathematics 54, 173-182.

[21] Frankel, J. and Rose, A. (1996), `` Currency Crashes in Emerging Markets: An Empirical Treatment,'' International Finance Discussion Papers, Board of Governors of the Federal Reserve System, 534.

[22] Goldstein, G., Kaminsky, L. and Reinhart, C.M. (2000), `` Assessing Financial Vulnerability: An Early Warning System for Emerging Markets,'' Washington: Institute for International Economics.

[23] Gray, S.F. (1996), `` Modeling the conditional distribution of interest rates as a regime-switching process,'' Journal of Financial Economics, 42, 27-62.

[24] Hamilton, J. (1994), Time Series Analysis, Princeton University Press, Princeton.

[25] Hamilton, J.D. Susmel, R. (1994), `` Autoregressive Conditional Heteroskedasticity and Changes in Regime,'' Journal of Econometrics, 64(1-2), 307-33.

[26] Hansen, P.R. and Lunde, A. (2005), `` A Forecast Comparison of Volatility Models: Does Anything beat a GARCH(1,1)?,'' Journal of Applied Econometrics, 20, 873-889.

[27] IMF (1998),`` World Economic Outlook,'' Washington D.C.: International Monetary Fund, May.

[28] Kalimipalli, M., and Susmel, R. (2006), `` Switching Stochastic Volatility and the Short-Term Interest Rates," Journal of Empirical Finance, forthcoming.

[29] Kaminsky, G. (1998a), `` Currency and Banking Crises: A Composite Leading Indicator,'' IMF Seminar Series, 6.

[30] Kaminsky, G. (1998b), `` Financial Crises in Asia and Latin America: Then and Now,'' American Economic Review, Papers and Proceedings, 88, 44-48.

[31] Kaminsky, G., Lizondo, S. and Reinhart, C.M. (1998), 'Leading Indicators of Currency Crises', IMF Staff Papers, March.

[32] Kaminsky, G. and Reinhart, C.M. (1999), `` The Twin Crises: The Causes of Banking and Balance-of-Payment Problems,'' American Economic Review, 89, 473-500.

[33] Kaminsky, G. and Schmukler, S. (1999), `` What triggers market jitters? A chronicle of the Asian crisis,'' Journal of International Money and Finance, 18, 537-560.

[34] Klaassen, F. (2002), `` Improving GARCH Volatility Forecasts with Regime-Switching GARCH," Empirical Economics, 27, 363-394.

[35] Kumar, M.S., Moorthy, U. and Peraudin, W. (2003), `` Predicting Emerging Market Currency Crashes,'' Journal of Empirical Finance, 10, 427-454.

[36] Mandelbrot, B. (1963a), `` The Variation of Certain Speculative Prices,'' Journal of Business, 36, 394 - 419.

[37] Mandelbrot, B. (1963b), `` New Methods in Statistical Economics,'' Journal of Political Economy, 71, 421 - 440.

[38] Mariano, R.S., Abiad, A.G., Gultekin, B., Shabbir, T. and Tan, A. (2002), `` Markov Chains In Predictive Models of Currency Crises - With Applications to Southeast Asia,'' PIER Working Paper 02-013.

[39] Nelson, D.B. and Cao,C.Q. (1992), `` Inequality Constraints in the Univariate GARCH Model,'' Journal of Business and Economic Statistics, 10, 229 - 235.

[40] Parkinson, M. (1980), `` The Extreme Value Method for Estimating the Variance of the Rate of Return,'' Journal of Business, 53, 61-65.

[41] Radelet, S. and Sachs, J. (1998), `` The East-Asian Financial Crisis: Diagnosis, Remedies, Prospects,'' Brookings Papers on Economic Activity, 1, p.1-90.

[42] Sachs, J., Tornell, A. and Velasco, A. (1996), `` Financial Crises in Emerging Markets: The Lessons From 1995,'' Brookings Papers on Economic Activity, 1, 147-215.

[43] Susmel, R. (1998), `` Switching Volatility in Latin American Emerging Markets," Emerging Markets Quarterly, 2, 44-56.

[44] Susmel, R. (2000), `` Switching Volatility in International Equity Markets," International Journal of Finance and Economics, 5, 265-283.

[45] Tan, A.H.H. (1999), `` The Asian Economic Crisis: The Way Ahead For Singapore,'' Chapter 2 in Singapore Inc., Public Policy Options In The Third Millennium, edited by Linda Low & Douglas Johnston, Asia Pacific Press, Singapore, 2001, pp.17-34.

[46] Tornell, A. (1999), `` Common Fundamentals in the Tequila and Asian Crises,'' NBER Working Paper, No. 7139.

Table 1: Thailand - Estimation Results (Standard Error in Parenthesis)

Thailand Model(1,1)

Model(2,1)

REER

Model(3,1)

REER

M2ratio

Model(3,1)

REER

BANKRET

$ \mu_{0}$ -0.002 (0.036) -0.005 (0.042) -0.119 (0.039) 0.010 (0.042)
$ \mu_{1}$ 9.380 (2.291) 6.983 (2.424) 6.773 (2.425) 4.227 (2.90)
$ \omega$ 0.023 (0.007) 0.04 (0.006) 0.034 (0.005) 0.049 (0.014)
$ g$ 597.844 (414.207) 525.816 (103.844) 715.100 (164.832) 488.721 (323.025)
$ \alpha$ 0.093 (0.045) -0.047 (0.027) -0.0509 (0.021) 0.168 (0.092)
$ \beta$ 0.804 (0.046) 0.849 (0.027) 0.873 (0.018) 0.6182 (0.072)
$ p-const$ 2.364 (0.268) 2.378 (0.314) 2.852 (0.538) 6.839 (3.856)
$ p-REER$ -0.117 (0.066) -0.168 (0.084) -0.332 (0.216)
$ p-M2ratio$ -0.725 (0.695)
$ p-BANKRET$ 0.189 (0.121)
$ q-const$ 1.809 (0.755) 0.929 (0.499) 1.362 (0.539) 0.226 (0.870)
$ \theta$ 0.237 (0.064) 0.298 (0.062) 0.272 (0.065) 0.282 (0.074)
AIC 2.6010 2.6058 2.5873 2.2849
SIC 2.7469 2.7680 2.7656 2.4636

Table 2: Thailand - Transition Probabilities
Thailand ERDEV

Model(1,1):

Transition Probabilities $ (P_{t\vert t-1})$

Model(2,1)

REER: Transition Probabilities

$ (P_{t\vert t-1})$

Model(3,1)

REER

M2ratio: Transition Probabilities

$ (P_{t\vert t-1})$

Model(3,1)

REER

BANKRET: Transition Probabilities

$ (P_{t\vert t-1})$

ordinary period average 0.078 0.02 0.03 0.03 0.02
Jun-1997 -0.35 0.01 0.14 0.37 0.82
Jul-1997 16.22 0.96 0.82 0.91 0.53
Aug-1997 6.88 0.92 0.54 0.77 0.62
Sep-1997 11.12 0.94 0.77 0.88 0.40
Oct-1997 2.99 0.83 0.50 0.72 0.17
Nov-1997 4.96 0.77 0.37 0.62 0.08
Dec-1997 14.19 0.93 0.68 0.80 0.26
Jan-1998 17.24 0.95 0.75 0.85 0.27

ERDEV - Exchange Rate Devaluation

Table 3: Singapore - Estimation Results (Standard Error in Parenthesis)

Singapore Model(1,1)

Model(2,1)

REER

Model(2,2)

REER

REER

Model(3,1)

REER

BANKRET

Model(3,1)

REER

BANKVOL

$ \mu_{0}$ -0.141 (0.078) -0.156 (0.081) -0.192 (0.078) -0.148 (0.077) -0.135 (0.772)
$ \mu_{1}$ 0.348 (0.377) 0.375 (0.370) 0.450 (0.301) 0.229 (0.291) 0.208 (0.315)
$ \omega$ 0.725 (0.123) 0.698 (0.120) 0.677 (0.110) 0.591 (0.105) 0.626 (0.113)
$ g$ 6.37 (2.375) 5.723 (2.102) 4.710 (1.388) 5.741 (1.679) 5.906 (1.866)
$ \alpha$ 0.153 (0.147) 0.191 (0.146) 0.239 (0.126) 0.222 (0.129) 0.190 (0.133)
$ p-const$ 2.067 (0.336) 2.615 (0.775) 2.950 (0.895) 4.683 (3.789) 3.656 (1.794)
$ p-REER$   -0.523 (0.365) -0.590 (0.406) -0.932 (-0.943) -0.662 (0.508)
$ p-BANKRET$       0.369 (0.295)  
$ p-BANKVOL$         -0.182 (0.110)
$ q-const$ 1.294 (0.453) 1.275 (0.431) 2.182 (1.507) 1.004 (0.335) 1.108 (0.379)
$ q-REER$     0.481 (0.487)    
$ \theta$ 0.267 (0.074) 0.256 (0.074) 0.240 (0.073) 0.282 (0.073) 0.276 (0.073)
AIC 3.1961 3.1727 3.1805 3.1668 3.1815
SIC 3.3258 3.3186 3.3426 3.3290 3.3436

Standard error in parenthesis

Table 4: Singapore - Transistion Probabilities

Singapore ERDEV

Model(1,1):

Transition Probabilities $ (P_{t\vert t-1})$

Model(2,1)

REER:

Transition Probabilities $ (P_{t\vert t-1})$

Model(2,2)

REER

REER:

Transition Probabilities $ (P_{t\vert t-1})$

Model(3,1)

REER

BANKRET:

Transition Probabilities $ (P_{t\vert t-1})$

Model(3,1)

REER

BANKVOL:

Transition Probabilities $ (P_{t\vert t-1})$

Ordinary Period Average 0.15 0.04 0.14 0.15 0.09 0.13
Jun-1997 -0.70 0.03 0.35 0.55 0.37 0.30
Jul-1997 1.39 0.08 0.57 0.57 0.56 0.50
Aug-1997 3.39 0.55 0.85 0.85 0.79 0.82
Sep-1997 1.32 0.42 0.73 0.73 0.62 0.66
Oct-1997 2.60 0.80 0.87 0.87 0.84 0.84
Nov-1997 1.27 0.66 0.75 0.75 0.67 0.68
Dec-1997 4.34 0.90 0.90 0.90 0.84 0.87
Jan-1998 5.88 0.89 0.87 0.87 0.85 0.85
Mar-2001 1.71 0.11 0.24 0.23 0.98 0.42
Apr-2001 2.23 0.17 0.33 0.35 0.83 0.49
Sep-2001 -0.57 0.61 0.68 0.88 0.87 0.73
Oct-2001 3.37 0.90 0.90 0.95 0.84 0.87

ERDEV - Exchange Rate Devaluation

Table 5: The Philippines - Estimation Results (Standard Error in Parenthesis)

The Philippines Model(1,1)

Model(2,1)

REER

Model(3,1)

REER

GENRET

$ \mu_{0}$ 0.089 (0.038) 0.088 (0.038) 0.077 (0.041)
$ \mu_{1}$ 0.634 (0.304) 0.637 (0.300) 0.508 (0.254)
$ \omega$ 0.119 (0.026) 0.119 (0.026) 0.098 (0.026)
$ g$ 46.545 (12.717) 45.962 (12.529) 41.347 (12.713)
$ \alpha$ 0.429 (0.168) 0.421 (0.167) 0.517 (0.176)
$ p-const$ 1.453 (0.205) 1.511 (0.238) 1.558 (0.328)
$ p-REER$   -0.020 (0.034) -0.027 (0.051)
$ p-GENRET$     0.002 (0.038)
$ q-const$ 1.240 (0.253) 1.271 (0.253) 1.675 (0.389)
$ \theta$ 0.404 (0.058) 0.402 (0.0597) 0.458 (0.068)
AIC 3.2166 3.2254 3.2726
SIC 3.3463 3.3712 3.4507

Table 6: The Philippines - Transition Probabilities

The Philippines ERDEV

Model(1,1):

Transition Probabilities $ (P_{t\vert t-1})$

Model(2,1)

REER:

Transition Probabilities $ (P_{t\vert t-1})$

Model(3,1)

REER

GENRET:

Transition Probabilities $ (P_{t\vert t-1})$

ordinary period average 0.06 0.08 0.07 0.08
Oct-1990 1.57 0.61 0.61 0.76
Nov-1990 8.38 0.89 0.90 0.95
Jun-1997 0.04 0.08 0.11 0.12
Jul-1997 4.77 0.89 0.90 0.95
Aug-1997 5.83 0.82 0.83 0.92
Sep-1997 9.92 0.86 0.87 0.93
Oct-1997 6.19 0.78 0.79 0.89
Nov-1997 0.17 0.74 0.74 0.92
Dec-1997 7.40 0.89 0.90 0.95
Jan-1998 13.78 0.83 0.84 0.92
Jun-2000 1.99 0.66 0.66 0.85
Jul-2000 3.89 0.88 0.89 0.95
Aug-2000 1.26 0.76 0.77 0.89
Sep-2000 1.85 0.87 0.88 0.92
Oct-2000 5.05 0.89 0.90 0.95
Mar-2001 0.37 0.80 0.81 0.91
Apr-2001 3.49 0.82 0.83 0.90
May-2001 0.69 0.70 0.71 0.84
Jun-2001 1.86 0.81 0.82 0.87
Jul-2001 3.30 0.86 0.87 0.92

ERDEV - Exchange Rate Devaluation

Table 7: Malaysia - Estimation Results (Standard Error in Parenthesis)

Malaysia Model(1,1)

Model(2,1)

REER

Model(3,1)

REER

M2ratio

Model(3,1)

REER

BANKVOL

$ \mu_{0}$ -0.20 (0.074) 0.015 (0.072) -0.040 (0.076) -0.025 (0.076)
$ \mu_{1}$ 1.101 (0.992) 1.370 (1.071) 1.232 (0.962) 2.133 (1.542)
$ \omega$ 0.424 (0.160) 0.531 (0.147) 0.528 (0.147) 0.445 (0.116)
$ g$ 37.66 (15.48) 37.716 (16.390) 34.084 (14.618) 65.055 (23.434)
$ \alpha$ 0.238 (0.137) 0.201 (0.140) 0.195 (0.122) 0.000 (0.000)
$ \beta$ 0.155 (0.142) 0.157 (0.175) 0.129 (0.166) 0.376 (0.129)
$ p-const$ 1.885 (0.326) 2.498 (0.519) 3.442 (1.086) 4.166 (1.571)
$ p-REER$   -0.101 (0.057) -0.124 (0.095) -0.189 (0.099)
$ p-M2ratio$     -21.184 (10.326)  
$ p-BANKVOL$       -0.117 (0.077)
$ q-const$ 0.925 (0.448) 1.209 (0.388) 1.101 (0.345) 1.462 (1.180)
$ \theta$ 0.261 (0.088) 0.259 (0.087) 0.271 (0.085) 0.269 (0.269)
AIC 3.3701 3.3653 3.3724 3.2960
SIC 3.5381 3.5520 3.5778 3.5148

Table 8: Malaysia - Transition Probabilities

Malaysia ERDEV

Model(1,1):

Transition Probabilities $ (P_{t\vert t-1})$

Model(2,1)

REER:

Transition Probabilities $ (P_{t\vert t-1})$

Model(3,1)

REER

M2ratio:

Transition Probabilities $ (P_{t\vert t-1})$

Model(3,1)

REER

BANKVOL:

Transition Probabilities $ (P_{t\vert t-1})$

Ordinary Period Average 0.05 0.05 0.01 0.01 0.005
Dec-1993 0.78 0.04 0.02 0.01 0.33
Jan-1994 5.30 0.82 0.88 0.86 0.93
Jun-1997 0.40 0.04 0.20 0.18 0.25
Jul-1997 1.96 0.15 0.45 0.94 0.49
Aug-1997 6.41 0.82 0.88 0.86 0.92
Sep-1997 9.40 0.78 0.86 0.84 0.91
Oct-1997 8.89 0.70 0.81 0.78 0.89
Nov-1997 2.99 0.53 0.66 0.61 0.74
Dec-1997 10.62 0.82 0.89 0.86 0.91
Jan-1998 15.68 0.77 0.86 0.84 0.92
Apr-1998 -0.53 0.37 0.50 0.45 0.63
May-1998 2.38 0.34 0.44 0.46 0.49
Jun-1998 4.35 0.57 0.69 0.71 0.67

ERDEV - Exchange Rate Devaluation

Figure 1: Thai baht Volatility

Figure 1 - Data for figure immediately follows

Data for Figure 1: Thai baht Volatility (Percent)

Date Volatility
1-Nov-84  
12-Dec-84 0.533131108
3-Jan-85 0.504816187
1-Feb-85 2.135899004
29-Mar-85 1.678346349
22-Apr-85 1.212405937
16-May-85 1.179411127
20-Jun-85 0.755155505
17-Jul-85 2.550633818
23-Aug-85 2.593750516
5-Sep-85 3.359144941
3-Oct-85 1.038551492
26-Nov-85 2.14847915
2-Dec-85 1.443919638
3-Jan-86 0.328954597
28-Feb-86 0.543997097
19-Mar-86 0.355719253
29-Apr-86 0.830021497
9-May-86 0.667169721
16-Jun-86 0.545025655
23-Jul-86 0.454014733
25-Aug-86 0.33652551
19-Sep-86 0.239823128
16-Oct-86 0.502956969
14-Nov-86 0.286254203
31-Dec-86 0.478366497
29-Jan-87 0.602907353
2-Feb-87 0.338342471
3-Mar-87 0.557678766
28-Apr-87 0.634471299
8-May-87 0.463921242
11-Jun-87 0.437543563
2-Jul-87 0.531682924
31-Aug-87 0.750206648
9-Sep-87 0.267750563
30-Oct-87 0.705620152
30-Nov-87 0.491305589
29-Dec-87 0.769828153
5-Jan-88 0.896306677
1-Feb-88 0.321807616
30-Mar-88 0.496955078
19-Apr-88 0.248871284
2-May-88 0.149322645
13-Jun-88 0.766789481
26-Jul-88 0.417363743
1-Aug-88 0.343240254
12-Sep-88 0.294205737
28-Oct-88 0.814011968
28-Nov-88 0.523151456
2-Dec-88 0.473138918
3-Jan-89 0.669167555
16-Feb-89 0.468853705
1-Mar-89 0.418347133
6-Apr-89 0.319285107
1-May-89 1.143167048
6-Jun-89 0.627869753
5-Jul-89 0.484655988
3-Aug-89 0.897144808
29-Sep-89 0.991834633
3-Oct-89 0.46015605
24-Nov-89 0.218052167
29-Dec-89 0.413636531
29-Jan-90 0.731799366
20-Feb-90 0.438734862
1-Mar-90 0.579794793
26-Apr-90 0.240836987
29-May-90 0.532093336
28-Jun-90 0.193711767
17-Jul-90 0.560062503
29-Aug-90 0.588414716
18-Sep-90 0.443914774
22-Oct-90 1.070809045
7-Nov-90 0.474269713
11-Dec-90 0.720160689
25-Jan-91 0.570030135
13-Feb-91 0.721877098
1-Mar-91 0.98571764
15-Apr-91 0.883667383
28-May-91 0.342436409
3-Jun-91 0.462659351
4-Jul-91 0.389683071
9-Aug-91 0.43839383
30-Sep-91 0.956746933
17-Oct-91 0.58933701
29-Nov-91 0.541073044
6-Dec-91 0.32028935
8-Jan-92 0.618620096
5-Feb-92 0.864027767
2-Mar-92 0.415897297
21-Apr-92 0.269004423
26-May-92 0.466100575
29-Jun-92 0.394590564
2-Jul-92 0.445668699
31-Aug-92 0.546651187
2-Sep-92 0.744551811
19-Oct-92 0.844832
3-Nov-92 0.665744639
22-Dec-92 0.29501368
26-Jan-93 0.294782387
19-Feb-93 0.31916002
22-Mar-93 0.246424647
26-Apr-93 0.645787871
31-May-93 0.422830347
11-Jun-93 0.696016593
1-Jul-93 0.621072545
3-Aug-93 0.398353074
7-Sep-93 0.323083876
8-Oct-93 0.644765632
1-Nov-93 0
16-Dec-93 0.615460721
26-Jan-94 0.270058312
16-Feb-94 0.394901389
30-Mar-94 0.322189434
29-Apr-94 0.347179319
4-May-94 0.273486955
29-Jun-94 0.648099802
12-Jul-94 0.301036801
24-Aug-94 0.300555525
21-Sep-94 0.225822611
27-Oct-94 0.426555007
1-Nov-94 0.351350498
1-Dec-94 0.199811112
18-Jan-95 1.655370197
23-Feb-95 0.350788559
31-Mar-95 0.707808974
19-Apr-95 0.408413384
9-May-95 0.635431391
12-Jun-95 0.203130508
3-Jul-95 0.304080048
1-Aug-95 0.830021497
4-Sep-95 0.473892181
24-Oct-95 0.274576331
23-Nov-95 0.348420237
5-Dec-95 0.124509691
1-Jan-96 0.396776676
26-Feb-96 0.372198918
6-Mar-96 0.173899001
3-Apr-96 0.223053968
9-May-96 0.346767642
19-Jun-96 0.173075647
23-Jul-96 0.370877233
1-Aug-96 0.223053968
4-Sep-96 0.29652598
1-Oct-96 0.246037642
20-Nov-96 0.295245337
6-Dec-96 0.293860829
3-Jan-97 0.874758464
26-Feb-97 0.627144718
3-Mar-97 0.217212373
1-Apr-97 0.554034459
30-May-97 2.672246072
17-Jun-97 6.304017893
1-Jul-97 17.03113386
8-Aug-97 6.378284486
9-Sep-97 4.484438288
2-Oct-97 8.0037271
10-Nov-97 5.255523037
8-Dec-97 8.377333192
1-Jan-98 10.41726004
11-Feb-98 12.17126557
30-Mar-98 9.963089046
29-Apr-98 3.812459986
5-May-98 2.801880044
19-Jun-98 4.249899765
17-Jul-98 2.570485848
4-Aug-98 2.428798112
25-Sep-98 3.33899045
30-Oct-98 4.524486265
26-Nov-98 1.985749865
11-Dec-98 2.17539173
5-Jan-99 1.967284876
15-Feb-99 1.735909788
16-Mar-99 0.819608544
30-Apr-99 1.683184924
11-May-99 0.997801867
22-Jun-99 0.850294007
6-Jul-99 1.04642179
2-Aug-99 1.903872831
6-Sep-99 4.444027048
29-Oct-99 3.05515265
4-Nov-99 1.132056458
23-Dec-99 2.509259239
3-Jan-00 1.10737464
10-Feb-00 1.292805738
23-Mar-00 0.710709291
3-Apr-00 0.61073344
1-May-00 2.053206945
5-Jun-00 0.690848016
3-Jul-00 3.244596529
4-Aug-00 0.903001754
1-Sep-00 2.78693343
2-Oct-00 2.339791511
6-Nov-00 1.327743196
25-Dec-00 2.455500408
31-Jan-01 1.816524488
1-Feb-01 1.218273213
1-Mar-01 2.527414548
2-Apr-01 0.786522555
17-May-01 0.468479322
5-Jun-01 0.512804178
2-Jul-01 0.701720155
31-Aug-01 2.318113533
17-Sep-01 0.947676871
1-Oct-01 0.420294713
30-Nov-01 1.116914134
13-Dec-01 0.854934227

Figure 2: Thai baht - Returns and Standard Deviations

Figure 2 - Data for figure immediately follows

Data for Figure 2: Thai baht - Returns and Standard Deviations (Percent)

Date ERDEV Volatility
1-Nov-84
1-Dec-84 1.900560281 0.533131108
1-Jan-85 0.882034384 0.504816187
1-Feb-85 2.243219966 2.135899004
1-Mar-85 0.392787507 1.678346349
1-Apr-85 -2.270776972 1.212405937
1-May-85 0.291226999 1.179411127
1-Jun-85 -0.437159166 0.755155505
1-Jul-85 -1.50821325 2.550633818
1-Aug-85 -0.632089853 2.593750516
1-Sep-85 0.891205304 3.359144941
1-Oct-85 -1.978783997 1.038551492
1-Nov-85 -1.099537144 2.14847915
1-Dec-85 1.626052087 1.443919638
1-Jan-86 -0.037516414 0.328954597
1-Feb-86 -0.677713437 0.543997097
1-Mar-86 -0.264800609 0.355719253
1-Apr-86 0 0.830021497
1-May-86 -0.30349037 0.667169721
1-Jun-86 0.227704083 0.545025655
1-Jul-86 -0.722848877 0.454014733
1-Aug-86 -0.382555937 0.33652551
1-Sep-86 0.076628356 0.239823128
1-Oct-86 0 0.502956969
1-Nov-86 0.610922099 0.286254203
1-Dec-86 -0.190512536 0.478366497
1-Jan-87 -0.99655865 0.602907353
1-Feb-87 -0.154202035 0.338342471
1-Mar-87 -0.774597211 0.557678766
1-Apr-87 -0.194590449 0.634471299
1-May-87 -0.194969841 0.463921242
1-Jun-87 0.544960477 0.437543563
1-Jul-87 0.696327765 0.531682924
1-Aug-87 -0.154321018 0.750206648
1-Sep-87 -0.658534241 0.267750563
1-Oct-87 0.155339837 0.705620152
1-Nov-87 -1.170973567 0.491305589
1-Dec-87 -0.946752634 0.769828153
1-Jan-88 0 0.896306677
1-Feb-88 0.31658119 0.321807616
1-Mar-88 -0.356224402 0.496955078
1-Apr-88 -0.277943399 0.248871284
1-May-88 0 0.149322645
1-Jun-88 0.436422038 0.766789481
1-Jul-88 0.945633524 0.417363743
1-Aug-88 0.156739844 0.343240254
1-Sep-88 -0.039161935 0.294205737
1-Oct-88 -0.668110168 0.814011968
1-Nov-88 -0.950878797 0.523151456
1-Dec-88 0.119355495 0.473138918
1-Jan-89 0.594649919 0.669167555
1-Feb-89 0.236873384 0.468853705
1-Mar-89 0.472070113 0.418347133
1-Apr-89 0.156862777 0.319285107
1-May-89 0.897216863 1.143167048
1-Jun-89 0.658024437 0.627869753
1-Jul-89 -0.464037956 0.484655988
1-Aug-89 0.193610903 0.897144808
1-Sep-89 0.54012477 0.991834633
1-Oct-89 -0.54012477 0.46015605
1-Nov-89 0.038677239 0.218052167
1-Dec-89 -0.426274623 0.413636531
1-Jan-90 -0.077700082 0.731799366
1-Feb-90 -0.077760502 0.438734862
1-Mar-90 0.77489733 0.579794793
1-Apr-90 0.346754345 0.240836987
1-May-90 -0.501254182 0.532093336
1-Jun-90 -0.038662285 0.193711767
1-Jul-90 -0.698489452 0.560062503
1-Aug-90 -0.468384931 0.588414716
1-Sep-90 -0.74612559 0.443914774
1-Oct-90 -1.030120044 1.070809045
1-Nov-90 -0.239234564 0.474269713
1-Dec-90 0.557326283 0.720160689
1-Jan-91 0.119024017 0.570030135
1-Feb-91 -0.397298894 0.721877098
1-Mar-91 1.30514014 0.98571764
1-Apr-91 0.470404631 0.883667383
1-May-91 0.234375107 0.342436409
1-Jun-91 0.467108673 0.462659351
1-Jul-91 -0.038842494 0.389683071
1-Aug-91 -0.116618089 0.43839383
1-Sep-91 -0.389712107 0.956746933
1-Oct-91 -0.273704961 0.58933701
1-Nov-91 -0.195963222 0.541073044
1-Dec-91 -0.43247561 0.32028935
1-Jan-92 -0.236686501 0.618620096
1-Feb-92 0.47281412 0.864027767
1-Mar-92 0.666016174 0.415897297
1-Apr-92 0.078064016 0.269004423
1-May-92 -0.390930912 0.466100575
1-Jun-92 -0.549883554 0.394590564
1-Jul-92 -0.434182644 0.445668699
1-Aug-92 -0.118741356 0.546651187
1-Sep-92 -0.237906536 0.744551811
1-Oct-92 0.198294731 0.844832
1-Nov-92 0.828570532 0.665744639
1-Dec-92 0.078554599 0.29501368
1-Jan-93 0.235294226 0.294782387
1-Feb-93 -0.156801287 0.31916002
1-Mar-93 -0.274995263 0.246424647
1-Apr-93 -0.750250311 0.645787871
1-May-93 -0.039643212 0.422830347
1-Jun-93 -0.039658934 0.696016593
1-Jul-93 0.395883336 0.621072545
1-Aug-93 -0.514954594 0.398353074
1-Sep-93 0.039706175 0.323083876
1-Oct-93 0.277502656 0.644765632
1-Nov-93 0.395101265 0
1-Dec-93 0.354261343 0.615460721
1-Jan-94 0.313848826 0.270058312
1-Feb-94 -0.589276897 0.394901389
1-Mar-94 -0.35524016 0.322189434
1-Apr-94 -0.158290496 0.347179319
1-May-94 -0.19821612 0.273486955
1-Jun-94 -0.238379136 0.648099802
1-Jul-94 -0.678509887 0.301036801
1-Aug-94 0.200040075 0.300555525
1-Sep-94 -0.160000034 0.225822611
1-Oct-94 -0.08009612 0.426555007
1-Nov-94 0.08009612 0.351350498
1-Dec-94 0.479234144 0.199811112
1-Jan-95 -0.119593397 1.655370197
1-Feb-95 -0.199640713 0.350788559
1-Mar-95 -1.044605722 0.707808974
1-Apr-95 -0.811034454 0.408413384
1-May-95 0.406339446 0.635431391
1-Jun-95 0.040543281 0.203130508
1-Jul-95 0.283343642 0.304080048
1-Aug-95 0.845245523 0.830021497
1-Sep-95 0.67905194 0.473892181
1-Oct-95 -0.039816843 0.274576331
1-Nov-95 0.198925866 0.348420237
1-Dec-95 0 0.124509691
1-Jan-96 0.515362885 0.396776676
1-Feb-96 -0.197902301 0.372198918
1-Mar-96 -0.039627502 0.173899001
1-Apr-96 0.158415875 0.223053968
1-May-96 0.039564788 0.346767642
1-Jun-96 0.276516076 0.173075647
1-Jul-96 -0.039455514 0.370877233
1-Aug-96 -0.276625349 0.223053968
1-Sep-96 0.355520817 0.29652598
1-Oct-96 0.393546356 0.246037642
1-Nov-96 -0.039285013 0.295245337
1-Dec-96 0.392157365 0.293860829
1-Jan-97 0.624270463 0.874758464
1-Feb-97 0.852057827 0.627144718
1-Mar-97 0.077101006 0.217212373
1-Apr-97 0.384615859 0.554034459
1-May-97 -0.6933772 2.672246072
1-Jun-97 -0.348499869 6.304017893
1-Jul-97 16.22085633 17.03113386
1-Aug-97 6.881695452 6.378284486
1-Sep-97 11.1193226 4.484438288
1-Oct-97 2.985296315 8.0037271
1-Nov-97 4.955381445 5.255523037
1-Dec-97 14.18617387 8.377333192
1-Jan-98 17.23730659 10.41726004
1-Feb-98 -15.37790708 12.17126557
1-Mar-98 -11.00916242 9.963089046
1-Apr-98 -4.579441396 3.812459986
1-May-98 -0.839379213 2.801880044
1-Jun-98 7.88040983 4.249899765
1-Jul-98 -2.800901229 2.570485848
1-Aug-98 0.942377398 2.428798112
1-Sep-98 -2.854200334 3.33899045
1-Oct-98 -5.781367892 4.524486265
1-Nov-98 -4.504783092 1.985749865
1-Dec-98 -0.550056392 2.17539173
1-Jan-99 0.987933392 1.967284876
1-Feb-99 1.194368161 1.735909788
1-Mar-99 1.206934324 0.819608544
1-Apr-99 0.23964863 1.683184924
1-May-99 -1.662682444 0.997801867
1-Jun-99 -0.297901371 0.850294007
1-Jul-99 0.48701395 1.04642179
1-Aug-99 2.321032564 1.903872831
1-Sep-99 4.914171981 4.444027048
1-Oct-99 -0.95863499 3.05515265
1-Nov-99 -1.867778488 1.132056458
1-Dec-99 -1.483050468 2.509259239
1-Jan-00 -2.280056354 1.10737464
1-Feb-00 0.960776006 1.292805738
1-Mar-00 0.529802564 0.710709291
1-Apr-00 0.18476975 0.61073344
1-May-00 2.525847078 2.053206945
1-Jun-00 0.333718703 0.690848016
1-Jul-00 2.879714019 3.244596529
1-Aug-00 1.654562995 0.903001754
1-Sep-00 2.419668012 2.78693343
1-Oct-00 3.130035494 2.339791511
1-Nov-00 1.220510257 1.327743196
1-Dec-00 -1.452475103 2.455500408
1-Jan-01 0.046436035 1.816524488
1-Feb-01 -1.143936835 1.218273213
1-Mar-01 2.89271587 2.527414548
1-Apr-01 3.518570247 0.786522555
1-May-01 0.06604293 0.468479322
1-Jun-01 -0.529568757 0.512804178
1-Jul-01 0.815251844 0.701720155
1-Aug-01 -1.548018529 2.318113533
1-Sep-01 -1.323631215 0.947676871
1-Oct-01 0.876902752 0.420294713
1-Nov-01 -0.673856997 1.116914134
1-Dec-01 -1.15608224 0.854934227

ERDEV - Exchange Rate Devaluation

Figure 3: Thailand

Figure 3 - Data for figure immediately follows

These panels show the evolution of a number of Thai indicators over the period November 1984 to July 2001 (stock market and banking sector data start in January 1987). REER is the percentage deviation of real effective exchange rate from its trend; IRDIFF is the domestic/U.S. interest rate differential on deposits; ERDEV is the exchange rate change computed using end of the month log-first difference; RDC is the deviation of the ratio between real domestic credit and GDP from its trend; M2ratio is the deviation of the ratio of M2 over reserves from its trend; GENRET and GENVOL are stock index returns and volatility, respectively; BANKRET and BANKVOL are returns and volatility of a stock indexed based on a portfolio of banks listed in the stock market.

Data for Figure 3: Thailand

OBS ERDEV REER M2ratio (Right axis) RDC IRDIFF Bank Index General Index BANKRET GENRET BANKVOL (Right axis) GENVOL (Right axis)
1984:11 14.46648374 -1.3853586 -2.051477026 -0.251588333 8.109624393 0 0        
1984:12 1.900560281 -0.17081391 -0.920540801 0.025550582 8.786429846 0 0        
1985:01 0.882034384 0.94382703 -0.082617139 -0.018169663 8.754341559 0 0        
1985:02 2.243219966 2.5586722 0.752380688 0.040037482 8.613109511 0 0        
1985:03 0.392787507 2.7737642 0.569949235 0.091988943 8.589186997 0 0        
1985:04 -2.270776972 3.8889679 0.235568692 -0.005260849 8.592532387 0 0        
1985:05 0.291226999 4.8039554 0.275045659 -0.120993306 9.214002523 0 0        
1985:06 -0.437159166 5.3181289 -0.887372053 0.016401749 9.225828913 0 0        
1985:07 -1.50821325 5.3305569 0.079667448 0.063519795 9.251384123 0 0        
1985:08 -0.632089853 5.2399387 0.595243454 0.181433399 9.204810032 0 0        
1985:09 0.891205304 5.9446033 -0.8260283 0.018650429 9.15643929 0 0        
1985:10 -1.978783997 3.4425159 0.605786643 0.049557555 9.096684283 0 0        
1985:11 -1.099537144 4.2312288 1.653767138 0.257407999 9.203386455 0 0        
1985:12 1.626052087 1.5080553 -0.015325377 0.336559663 9.249890388 0 0        
1986:01 -0.037516414 1.0700149 0.083528803 0.386081913 6.272815153 0 0        
1986:02 -0.677713437 -0.88597777 0.241237245 0.435906992 6.244179769 0 0        
1986:03 -0.264800609 -2.5630823 -0.021423309 0.284002675 4.547397797 0 0        
1986:04 0 -2.7643966 -0.105839643 0.194036971 5.199768315 0 0        
1986:05 -0.30349037 -4.3928409 -0.070225159 -0.046616084 5.169674992 0 0        
1986:06 0.227704083 -3.3511433 0.323094293 -0.05200365 5.229040837 0 0        
1986:07 -0.722848877 -4.5417267 0.567416238 -0.072166379 5.231798313 0 0        
1986:08 -0.382555937 -4.6667815 0.522602664 -0.126381635 6.579669257 0 0        
1986:09 0.076628356 -4.5281827 0.150383698 -0.21262893 6.574244333 0 0        
1986:10 0 -4.6274811 0.114724912 -0.176953894 6.524249362 0 0        
1986:11 0.610922099 -3.6659129 0.297775325 -0.089245042 6.545851983 0 0        
1986:12 -0.190512536 -2.9443934 0.246150022 -0.01479624 6.580118422 0 0        
1987:01 -0.99655865 -4.0635829 -0.026346693 -0.01505476 6.598252533 96.91 0     3.117515167  
1987:02 -0.154202035 -3.9239375 0.662289803 0.042887675 6.642286956 94.67 0 -2.338555261   3.168515461  
1987:03 -0.774597211 -2.6256308 -0.066073703 0.03505898 6.661071529 99.08 0 4.553044448   3.860135373  
1987:04 -0.194590449 -3.9685642 -0.359363748 -0.000888236 6.644356333 105.87 0 6.628432173   4.489865845  
1987:05 -0.194969841 -3.9524567 -0.435663125 -0.165296915 6.597783668 111.75 0 5.405230714   5.726283553  
1987:06 0.544960477 -2.8767516 -0.574593502 -0.165667972 6.546145866 120.36 0 7.422301827   4.572324912  
1987:07 0.696327765 -1.7406178 -0.696855425 -0.225495091 6.549060849 123.92 313.93 2.914894435   9.167127735 7.332808862
1987:08 -0.154321018 -1.0430245 -0.556358161 -0.238385387 6.508848255 139.72 353.15 12.00042238 11.77228647 5.607760848 6.398757706
1987:09 -0.658534241 -0.98281978 -0.079990415 -0.24321139 5.80222396 155.11 428.19 10.44941227 19.26741265 6.043421132 11.49823407
1987:10 0.155339837 -0.55877953 -0.195917654 -0.152977674 5.848888664 118.39 299.83 -27.01502832 -35.63513749 22.4443779 28.54947549
1987:11 -1.170973567 -1.1696113 0.375423231 -0.135313832 5.741455618 120.81 292.385 2.023480411 -20.01600573 8.506044981 19.83354246
1987:12 -0.946752634 -2.5139838 0.528725074 0.083008185 5.738328718 114.69 284.94 -5.198622716 -4.396873971 7.624034969 11.11760943
1988:01 0 -1.9904846 0.303861297 0.074041037 5.798268068 122.23 318.78 6.367167941 11.22225779 7.470137738 9.534440176
1988:02 0.31658119 -1.0975266 0.0750819 0.021219858 5.701173558 135.96 374.83 10.6456209 16.19713802 8.067198763 10.88363919
1988:03 -0.356224402 -1.8333846 0.218158557 0.02835559 5.671210972 130.87 388.9 -3.815626076 3.684965131 4.53450572 5.079911155
1988:04 -0.277943399 -1.596257 0.339222235 -0.000361194 5.673059944 132.64 413.91 1.343422732 6.232631773 2.273086276 5.188669018
1988:05 0 -1.684215 0.23840796 -0.018868684 5.672911373 131.71 424.93 -0.703615538 2.627589059 1.402018099 2.136868813
1988:06 0.436422038 -0.095219001 0.214070199 -0.001110467 5.681155904 132.7 452.7 0.748840533 6.330520497 1.501721271 4.674720794
1988:07 0.945633524 1.3728877 0.267954682 0.007351202 5.713847195 135.32 457.01 1.955140257 0.947561805 4.421006566 2.507316769
1988:08 0.156739844 2.1222684 0.194203537 -0.065992405 5.030487397 131.31 436.55 -3.008140404 -4.580235624 4.433626067 5.499214618
1988:09 -0.039161935 2.7549908 0.126848652 -0.131568155 4.961475954 130.18 444.61 -0.864283173 1.829457715 1.951517773 1.77631253
1988:10 -0.668110168 1.2729757 -0.045588412 -0.126452322 4.94126386 126.98 418.74 -2.48885144 -5.994729115 1.646244427 4.064551949
1988:11 -0.950878797 -0.62204793 -0.024698989 -0.023848282 4.984793075 121.63 392.86 -4.304594411 -6.379688795 3.06412132 4.735587124
1988:12 0.119355495 -0.52843916 0.135291993 0.146296505 5.022416973 119.89 386.73 -1.440899391 -1.572653918 4.254627843 5.77952905
1989:01 0.594649919 0.15548598 -0.153105036 0.056718572 4.978769375 127.03 433.68 5.784862332 11.45801598 5.13603716 6.658687805
1989:02 0.236873384 0.43144819 -0.337459988 0.040422124 4.22916996 124.04 435.78 -2.38191848 0.483059389 1.903269668 2.161616625
1989:03 0.472070113 1.3011574 -0.398535212 0.031285265 4.2793706 120.57 440.88 -2.83735971 1.163520073 2.418120847 1.69258328
1989:04 0.156862777 0.66629347 -0.346453899 0.059049752 4.30056441 125.68 500.21 4.150849682 12.62552807 3.813519601 7.814602409
1989:05 0.897216863 2.5284461 -0.318241767 0.008934422 4.256448771 122.92 522.54 -2.220525669 4.367352569 1.432306094 5.997309256
1989:06 0.658024437 4.4891585 -0.192350704 -0.050966421 4.218247702 122.01 606.21 -0.743072868 14.85249248 1.469735018 5.542063834
1989:07 -0.464037956 2.8497984 -0.185962847 -0.183342249 4.058351291 127.63 624.13 4.503244441 2.913221931 3.208680572 2.25684887
1989:08 0.193610903 3.0114218 -0.265809342 -0.311774775 3.95066524 123.16 681.92 -3.565112994 8.855366891 2.239013017 6.385072321
1989:09 0.54012477 2.8748868 -0.351416757 -0.287273962 3.922285945 127.53 689.51 3.486730798 1.106885148 3.813273709 3.411504814
1989:10 -0.54012477 1.3408424 -0.186260373 -0.269970973 3.898062671 127.38 695.01 -0.11768861 0.794503356 2.365589449 4.049088863
1989:11 0.038677239 0.5097378 -0.088493472 -0.176875649 3.940969357 129.72 769.83 1.82035365 10.22434773 2.097405828 7.617923801
1989:12 -0.426274623 -0.11807078 -0.082898982 -0.015736583 4.019624434 132.5 870.49 2.120436399 12.28865602 1.356608101 7.756965733
1990:01 -0.077700082 -1.1422625 -0.263267799 0.05395971 4.029373776 130.59 853.72 -1.452000119 -1.945300032 3.050692537 5.163390551
1990:02 -0.077760502 -1.2625085 -0.319099683 -0.064253636 3.940439505 128.74 813.67 -1.426777761 -4.804839278 2.991100711 6.637506754
1990:03 0.77489733 0.8215997 -0.259420217 0.040669759 5.874348891 125.36 851.53 -2.660526858 4.547985303 2.501907867 5.763219745
1990:04 0.346754345 0.810558 -0.118160741 0.142499774 6.443779665 124.38 855.97 -0.784820237 0.520059737 1.718087041 1.809533006
1990:05 -0.501254182 -0.095194662 -0.10272812 0.137397826 6.361964122 136.73 1000.71 9.466678265 15.62296983 11.29533638 10.1367527
1990:06 -0.038662285 -0.19527563 -0.14804166 0.116445174 6.369378853 165.62 1060.22 19.16878293 5.776668569 11.96643835 5.030957514
1990:07 -0.698489452 -0.68929565 -0.194013923 0.169564039 7.628693666 224.57 1114.61 30.4491455 5.002813418 18.40985775 6.440284573
1990:08 -0.468384931 -1.6768519 -0.199684263 0.190860517 7.65147276 204.29 862.75 -9.464690959 -25.61348849 23.06491908 30.90825155
1990:09 -0.74612559 -1.6574937 0.03425744 0.316155052 8.908716575 154.52 641.56 -27.92170152 -29.62222515 19.28063043 24.07559561
1990:10 -1.030120044 1.8693461 -0.044588561 0.1993943 9.238510895 150.66 649.37 -2.52978954 1.209995164 7.98713867 6.611758126
1990:11 -0.239234564 1.4043496 0.071650029 0.249530857 9.797387614 135.91 544.3 -10.30327404 -17.65020967 7.524752248 13.30605477
1990:12 0.557326283 1.8480695 0.210703528 0.390892294 11.68589402 144.26 612.86 5.962432511 11.86359594 4.505666643 8.061829622
1991:01 0.119024017 1.5009604 0.026514509 0.297540627 11.69938153 153.86 658.47 6.442587096 7.17824372 6.533024318 7.685278335
1991:02 -0.397298894 0.76334905 -0.022736962 0.273907278 11.54132544 179.83 769.13 15.59688621 15.53410439 13.82025948 12.45954712
1991:03 1.30514014 2.8354577 0.142319439 0.277925413 10.94057885 183 863.54 1.747419266 11.57802137 3.076769949 7.357775814
1991:04 0.470404631 2.9174557 0.068618355 0.137569772 10.06603315 180.76 876.01 -1.23159683 1.433728678 3.819467788 3.935143671
1991:05 0.234375107 2.4093154 0.011522222 0.0100885 9.96951662 169.53 808.19 -6.414028223 -8.0580327 4.886447235 6.519919476
1991:06 0.467108673 3.3108066 -0.06886975 -0.106427742 11.15500672 158.67 765.21 -6.620332856 -5.464687343 4.516951759 5.739606335
1991:07 -0.038842494 3.5215319 -0.193470282 -0.083746468 11.83210272 154.81 728.7 -2.462801519 -4.888818128 5.176419476 9.23601808
1991:08 -0.116618089 2.5408638 -0.113313288 -0.144817394 12.30371379 145.76 705.65 -6.023712504 -3.214276082 6.173938889 9.247945879
1991:09 -0.389712107 1.2679303 -0.147981647 -0.190696872 9.164675007 138.7 670.79 -4.964810619 -5.06632416 3.910077929 5.64920504
1991:10 -0.273704961 0.30168303 0.014915405 -0.238946918 7.900327096 140.11 638.84 1.011450106 -4.880209048 2.115057507 5.079641284
1991:11 -0.195963222 -0.65901452 0.067147254 -0.186144384 8.511918172 154.19 671.07 9.57577798 4.921942165 9.110949007 4.422414911
1991:12 -0.43247561 -1.6153198 0.088560636 -0.056498012 9.663408021 191.97 711.36 21.91535016 5.830517734 13.01412754 4.34104516
1992:01 -0.236686501 -1.8683444 0.050598503 -0.1327985 7.848976662 195.27 763.45 1.704410643 7.066900385 5.949396083 5.863659076
1992:02 0.47281412 -1.0190878 0.02318559 -0.171717179 7.816462977 230.39 782.85 16.53903088 2.509347213 16.55370563 4.213120306
1992:03 0.666016174 -0.16841982 0.160805358 -0.098633946 6.702515859 247.08 822.72 6.993864573 4.967481732 8.59603008 3.075178652
1992:04 0.078064016 -0.51713938 0.072950215 -0.229843197 4.919038038 229.06 760.97 -7.572819286 -7.802198881 6.0194627 5.957624784
1992:05 -0.390930912 -1.1660338 -0.009472867 -0.430357879 4.796984503 228.26 688.84 -0.349864784 -9.958491183 8.128167945 9.301297521
1992:06 -0.549883554 -1.5158543 -0.058929617 -0.462232057 5.342889298 232.07 751.45 1.655372017 8.699564994 4.180355839 6.988345557
1992:07 -0.434182644 -2.5672715 0.101424007 -0.514536277 7.013204349 230.55 744.42 -0.657129164 -0.93992817 1.966590463 2.448414212
1992:08 -0.118741356 -3.3208503 0.037040484 -0.545514152 6.93764835 237.97 746.51 3.167685665 0.280362105 2.956094138 1.749486253
1992:09 -0.237906536 -3.5769777 0.012680933 -0.622275939 6.938775884 285.86 847 18.33575652 12.62916819 12.12033897 9.105192743
1992:10 0.198294731 -3.1358098 0.003265896 -0.602628967 6.966310618 356.02 940.35 21.94847286 10.45514517 12.40739696 5.62060753
1992:11 0.828570532 -0.59725448 0.139235894 -0.452538798 7.024201599 349.08 865.21 -1.968578675 -8.327989435 4.819309632 9.001762442
1992:12 0.078554599 -0.36100178 0.18820416 -0.328019077 7.633026146 365.7 893.42 4.651220286 3.208454302 2.550004381 3.915891285
1993:01 0.235294226 -0.026700278 0.07444027 0.003093955 7.612993288 458.66 974.48 22.64958697 8.684720034 16.23523389 7.40441948
1993:02 -0.156801287 0.40602651 0.159546082 0.453550114 7.5362063 468.85 937.65 2.197369303 -3.852725035 7.531133719 3.931470212
1993:03 -0.274995263 -0.16244308 0.105342192 1.040483232 7.547328956 429.54 865.23 -8.756801923 -8.03813775 6.575368274 5.186901069
1993:04 -0.750250311 -0.83175889 0.109351643 0.598349539 7.470796905 465.57 845.29 8.054759272 -2.33156038 8.621124284 4.017750414
1993:05 -0.039643212 -1.0015595 0.083213106 0.180470024 7.446648935 443.17 825.71 -4.930901774 -2.343614146 4.653219001 4.102857296
1993:06 -0.039658934 -0.071425688 0.013058759 -0.024898738 7.414383416 459.22 877.52 3.557595445 6.085612482 6.274723712 6.637455577
1993:07 0.395883336 0.65913125 0.046844951 -0.324145898 7.348805818 471.02 928.2 2.53711579 5.61474797 2.726615058 2.961135431
1993:08 -0.514954594 0.19060502 0.094612756 -0.221497799 5.122859737 474.48 963.18 0.731891157 3.699308341 2.357204801 1.644005392
1993:09 0.039706175 -0.57655643 -0.007075595 -0.34415829 5.057798117 480.37 971.44 1.233717277 0.853919653 2.627660999 2.156323087
1993:10 0.277502656 0.45808158 0.026848892 -0.003504828 5.077964185 604.45 1268.34 22.97623134 26.66847311 13.76611045 15.37806717
1993:11 0.395101265 2.3949938 0.151341026 0.592165098 5.100869637 645.16 1309.95 6.51793944 3.228000967 7.966455122 4.511164335
1993:12 0.354261343 2.2346231 0.213337185 1.076518938 4.512307701 761.11 1682.85 16.5279546 25.04998161 8.963588915 14.21381498
1994:01 0.313848826 2.9772461 0.158390393 0.52396626 3.956045318 705.65 1493.45 -7.56585302 -11.9399905 12.76648067 14.19301402
1994:02 -0.589276897 2.0229843 0.070845095 0.061637975 3.906249271 622.38 1372.93 -12.55685252 -8.414173747 7.415181491 5.317270958
1994:03 -0.35524016 0.97175229 0.011298427 -0.393364293 4.393022667 566.78 1239.99 -9.357961729 -10.18438272 7.910441331 8.392554536
1994:04 -0.158290496 0.52332425 0.052089228 -0.032083493 4.397235021 583.11 1266.67 2.840462642 2.128809457 6.27695788 5.807296065
1994:05 -0.19821612 0.077406885 -0.020689461 0.324320347 5.413231279 653.38 1356.87 11.37830418 6.878916707 9.735137227 7.746618143
1994:06 -0.238379136 -0.066329441 -0.086800425 0.692401798 5.350306822 645.67 1273.34 -1.187035223 -6.353720717 5.963511128 6.388560986
1994:07 -0.678509887 -0.90821975 -0.086800616 0.374999748 5.886724226 728.95 1376.88 12.13166052 7.817670044 8.607833509 4.82178036
1994:08 0.200040075 0.051405548 -0.044840022 -0.024133432 5.832915194 829.9 1524.83 12.97000691 10.20628585 8.517527444 5.364855771
1994:09 -0.160000034 -0.98772089 -0.105650749 -0.272009899 5.762643876 798.01 1485.71 -3.91840829 -2.599015596 3.171062505 2.654060767
1994:10 -0.08009612 -1.62587 -0.062193192 -0.132526754 5.765371895 837.82 1528.83 4.868215157 2.860996451 7.155308341 4.270282089
1994:11 0.08009612 -1.263244 0.024362042 0.170824806 5.967177778 774.53 1362.44 -7.85468865 -11.52255271 7.305162801 8.909470502
1994:12 0.479234144 -0.69993249 0.089058335 0.604725527 5.610904156 811.24 1360.09 4.630754751 -0.172633586 6.656509964 4.404799222
1995:01 -0.119593397 -0.835937 0.143381192 0.362722906 5.544704842 738.84 1217.74 -9.348255257 -11.05541922 7.651820609 8.936471142
1995:02 -0.199640713 -1.4712107 0.143169272 0.148863884 5.53318934 760.7 1288.47 2.915767329 5.645878615 4.134572876 4.48495264
1995:03 -1.044605722 -3.5056485 0.204035925 -0.011012027 6.533803266 712.75 1216.68 -6.510833421 -5.732963018 7.303703716 7.871895994
1995:04 -0.811034454 -5.7390434 0.057608995 -0.034661803 5.946341919 744.73 1208.69 4.389100879 -0.658870927 4.199315184 2.64257532
1995:05 0.406339446 -5.1709448 -0.039641866 -0.011867093 6.839231527 877.9 1392.31 16.45109553 14.14271098 10.43185115 7.078332168
1995:06 0.040543281 -4.5005034 -0.133509807 -0.047482893 6.773270159 890.53 1394.77 1.428409917 0.176528886 3.225305798 1.63465818
1995:07 0.283343642 -3.0265112 -0.065147451 -0.166966052 6.726502724 868.14 1383.1 -2.546379912 -0.840217048 5.571361474 4.271693901
1995:08 0.845245523 -0.64744734 -0.045669626 -0.239617532 6.635999659 850.07 1314.9 -2.103429294 -5.056673954 4.092319412 3.218493324
1995:09 0.67905194 -0.26158088 -0.174491343 -0.3754652 6.527720709 864.21 1294.23 1.649709579 -1.58446934 3.878170809 2.998775302
1995:10 -0.039816843 -0.16713594 -0.107196336 0.118110126 6.454512838 874.91 1270.76 1.23052291 -1.830077703 3.502332321 2.765133387
1995:11 0.198925866 -0.26231847 -0.132788912 0.745759813 6.451104716 850.83 1196.62 -2.790868029 -6.011423083 3.956561878 4.676944243
1995:12 0 0.75467722 -0.117186503 1.518058356 6.447743867 905.91 1280.81 6.272761972 6.799177443 3.494213231 2.897725707
1996:01 0.515362885 1.585675 -0.162474688 0.66094796 6.412549746 1100.39 1410.33 19.4479978 9.633102927 12.18791704 3.985342709
1996:02 -0.197902301 1.5324463 -0.182277058 0.062545171 5.652082148 995.82 1321.87 -9.985342304 -6.477631882 5.762259301 4.268186267
1996:03 -0.039627502 2.0966526 -0.173972651 -0.508970066 5.638893903 1004.07 1289.73 0.825050058 -2.46145066 3.654699265 3.803013739
1996:04 0.158415875 2.1798487 -0.169653019 -0.622934809 5.609458718 1029.02 1292.61 2.454515305 0.223053602 4.734971474 3.054248119
1996:05 0.039564788 1.8834441 -0.164029964 -0.676005049 4.632203046 1051.83 1311.91 2.192461129 1.482066045 2.734931086 2.904323413
1996:06 0.276516076 2.2086965 -0.236359542 -0.77331638 4.626313888 1003.22 1247.08 -4.73166774 -5.0679272 3.95378184 3.521144231
1996:07 -0.039455514 2.7567333 -0.205288994 -1.024574821 4.618535363 862.59 1064.04 -15.10306146 -15.87318344 10.7283833 10.99943505
1996:08 -0.276625349 3.3285283 -0.199849587 -1.293302996 4.535409363 918.33 1102.32 6.261731186 3.534406551 3.463059511 3.97798101
1996:09 0.355520817 4.2248636 -0.214517104 -1.360437341 4.534067166 930.95 1099.01 1.364876699 -0.300727514 6.150505448 7.052598915
1996:10 0.393546356 4.8462906 -0.262658379 -1.287711307 4.500481473 713.37 910.33 -26.62053502 -18.83578824 16.14271966 11.38099413
1996:11 -0.039285013 6.0930671 -0.195211549 -1.151386052 4.468140302 741.12 925.97 3.816233561 1.703466558 7.993771955 5.782478705
1996:12 0.392157365 7.8651142 -0.058563901 -0.888623778 3.540926579 630.53 831.57 -16.16018199 -10.75263564 9.113376453 7.499593318
1997:01 0.624270463 11.06193 -0.167904213 -0.757494632 4.228019008 592.82 788.04 -6.166992395 -5.376663031 7.573987432 5.446196516
1997:02 0.852057827 11.482467 -0.076105989 -0.385612588 4.203992823 545.9 727.56 -8.245500282 -7.985238012 8.424963176 5.772742597
1997:03 0.077101006 11.624908 -0.011490468 0.183795692 4.16902954 545.92 705.43 0.003663608 -3.088892391 6.056130967 3.914851362
1997:04 0.384615859 11.48664 0.106507252 -0.013005475 3.930889272 530.59 661.29 -2.848284993 -6.461507312 5.956679792 5.315382066
1997:05 -0.6933772 11.264242 0.648555095 -0.209706706 3.663102857 468.04 566.39 -12.54358326 -15.4909586 10.44913156 10.54446888
1997:06 -0.348499869 11.053496 0.872806063 -0.257622613 3.654484644 391.4 527.28 -17.88237074 -7.155117011 19.89863948 12.05427793
1997:07 16.22085633 -1.3506005 0.497481859 0.442615301 5.633769245 530.4 665.62 30.39013839 23.29872204 22.03073623 11.38967627
1997:08 6.881695452 -1.8538147 1.056570797 0.400427389 5.375142989 369.35 502.23 -36.18867349 -28.1660755 23.09356882 17.4807773
1997:09 11.1193226 -8.1618215 -0.055168551 0.597725751 5.345293072 410 544.54 10.44124557 8.088321947 15.90098669 9.240168226
1997:10 2.985296315 -8.580167 -0.336192863 0.553395814 5.274729987 318.16 447.21 -25.36027588 -19.69131186 18.24397001 13.36059093
1997:11 4.955381445 -9.2138302 0.190527817 0.053142874 5.1900765 273.61 395.47 -15.08506661 -12.2953352 22.8036168 13.81875189
1997:12 14.18617387 -15.167194 -0.441696828 0.313652849 5.184193311 235.06 372.69 -15.18629341 -5.932795609 15.83687579 7.385441267
1998:01 17.23730659 -23.444003 -0.938219057 0.823479342 5.081559038 296.27 495.23 23.14304 28.42753262 32.62125778 23.72027628
1998:02 -15.37790708 -13.346946 -0.351117829 0.13392824 5.654180351 319.23 528.42 7.46406454 6.486912093 9.470205544 9.011170995
1998:03 -11.00916242 -6.2770865 -0.167003891 -0.120197981 5.547650858 263.55 459.11 -19.16687428 -14.06015893 14.53314485 10.13684571
1998:04 -4.579441396 -3.6345586 -0.250544897 0.12570124 5.484012647 231.43 412.13 -12.99656513 -10.79509992 7.38818715 6.417168622
1998:05 -0.839379213 -2.1190619 0.097919789 0.517074825 5.437207445 165.92 325.59 -33.27717075 -23.56999124 20.85337428 13.00934137
1998:06 7.88040983 -5.4300435 -0.036791709 1.32628209 5.182733635 114.52 267.33 -37.07562643 -19.71550708 22.5806924 13.39846898
1998:07 -2.800901229 -3.3668032 0.118714247 0.901513405 6.822801211 98.34 266.72 -15.23186182 -0.228443129 19.73095555 7.658075607
1998:08 0.942377398 -2.7282635 -0.080555698 0.781554922 5.148261443 73.75 214.53 -28.77498668 -21.77498303 16.80945285 12.26050004
1998:09 -2.854200334 -2.8131134 0.194973001 0.487257782 2.507898886 92.25 253.82 22.38212877 16.81757657 23.27717368 13.1049385
1998:10 -5.781367892 -2.2198523 0.280713954 0.192763499 1.942551239 153.92 331.29 51.1930704 26.63687703 37.1338533 21.14086568
1998:11 -4.504783092 2.0532157 0.423709481 -0.174437708 1.37200789 212.16 362.82 32.09077201 9.091271879 24.63582927 10.05223619
1998:12 -0.550056392 1.1079408 0.372552753 -0.191028138 0.771612176 208.6 355.81 -1.692216443 -1.9509963 10.91612745 4.157854834
1999:01 0.987933392 0.54603044 0.403577491 -0.002036477 0.762617526 197.47 363 -5.48318685 2.000595375 13.1156654 7.582872182
1999:02 1.194368161 0.069115165 0.436591175 0.079798197 0.147101723 179.77 340.94 -9.390841801 -6.269632554 15.09292682 8.43473472
1999:03 1.206934324 0.37878766 0.192062678 0.471753686 -0.039310541 195 352.01 8.132130251 3.195307556 13.49094952 6.855047676
1999:04 0.23964863 0.67663576 0.148624828 0.75657268 0.010087136 283.56 459.35 37.44241824 26.61528624 22.90368003 16.90694139
1999:05 -1.662682444 2.564221 0.188613853 1.15666374 0.026229936 276.19 453.6 -2.633470632 -1.25966943 9.298810283 8.027049413
1999:06 -0.297901371 3.443058 0.064458946 1.221521345 -0.17809841 279.26 521.77 1.105421284 14.00111253 8.865705246 10.48672282
1999:07 0.48701395 3.7144832 -0.012366215 0.794845714 -0.379403578 213.05 456.81 -27.06163676 -13.29593282 19.00476595 9.705214741
1999:08 2.321032564 0.67959399 -0.094432328 0.424401263 -0.612026231 198.36 440.27 -7.144331832 -3.687937444 13.58032224 8.421724713
1999:09 4.914171981 -3.6607702 -0.277661303 0.262032244 -0.597219323 174.31 389.49 -12.92482384 -12.2549984 11.91070562 9.556060039
1999:10 -0.95863499 -2.4058171 -0.21100843 0.127822915 -0.595339549 179.55 395.55 2.961839745 1.543901043 9.081534391 6.478993749
1999:11 -1.867778488 -1.1545003 -0.09226364 0.028424299 -1.236313385 190.22 422.12 5.772757638 6.501243234 9.708185036 6.163715098
1999:12 -1.483050468 0.49439372 -0.229053398 -0.367594239 -1.451605062 230.84 481.92 19.35435328 13.24884914 14.42341026 9.630277382
2000:01 -2.280056354 3.2421587 0.115108518 -0.336064908 -1.649812541 231.28 477.57 0.190426787 -0.906737914 9.738187174 7.326607455
2000:02 0.960776006 4.6900541 0.196553595 -0.266724169 -1.858527292 159.71 374.32 -37.0269427 -24.35996995 22.52212852 14.84667916
2000:03 0.529802564 4.539114 0.122851823 -0.159159256 -2.04487612 174.75 400.32 8.999671045 6.715318072 10.38030803 6.541070429
2000:04 0.18476975 3.390047 0.138578029 0.142196852 -2.031047804 174.66 390.4 -0.051515413 -2.509237274 4.432438927 4.578348136
2000:05 2.525847078 3.3432464 0.071768194 0.370962206 -2.474057996 133.65 323.29 -26.76167844 -18.86221013 20.29520042 14.21188586
2000:06 0.333718703 2.6988701 0.049238531 0.033499252 -2.450400952 131.91 325.69 -1.310457072 0.739625548 7.51646776 5.426783919
2000:07 2.879714019 1.5568438 -0.003290848 -0.027509902 -2.646026581 105.53 284.67 -22.31245992 -13.46153941 12.67657793 8.614454255
2000:08 1.654562995 1.2169058 -0.04867828 -0.223727089 -2.662286831 115.19 307.83 8.758766626 7.821706789 9.451422997 6.437705398
2000:09 2.419668012 0.27868621 -0.103894673 -0.700054277 -2.844506047 104.77 277.29 -9.481546757 -10.44837926 8.42699479 7.851100852
2000:10 3.130035494 -1.1582692 -0.132012939 -0.57109155 -2.8242541 108.3 271.84 3.313768264 -1.985023202 7.030654114 6.206393025
2000:11 1.220510257 -1.5944341 -0.165708339 -0.665544827 -2.824999686 110.18 277.92 1.721023804 2.211964457 6.26773799 4.659005057
2000:12 -1.452475103 -0.93020177 -0.117872384 -0.828872547 -2.826221342 109.45 269.19 -0.664756808 -3.191585251 1.551224837 2.094014852
2001:01 0.046436035 -1.1658547 -0.086546791 -0.634467582 -1.928435222 151.82 332.77 32.72277846 21.20341107 23.33067212 13.91752984
2001:02 -1.143936835 0.1983891 -0.055809071 -0.459795201 -2.325640234 148.25 325.2 -2.379557071 -2.301118298 7.545331034 4.89007768
2001:03 2.89271587 -0.33760723 -0.035072124 -0.230086305 -1.883402502 121.53 291.94 -19.8738892 -10.7892076 10.10774959 6.053982713
2001:04 3.518570247 -1.473996 -0.108935306 -0.157698265 -1.452488644 122.24 300.63 0.582517954 2.933197104 6.728994466 4.847836791
2001:05 0.06604293 -1.1108983 -0.087378184 -0.195226331 -1.015651959 122.37 310.13 0.106291658 3.111129167 6.013753018 3.805388648
2001:06 -0.529568757 0.45165314 -0.009093403 -0.003803114 -0.79055775 119.84 322.55 -2.089172223 3.926659857 3.778680933 3.347032131
2001:07 0.815251844 -1.1862878 -0.063134819 0.065168402 -0.798392243 101.2 297.69 -16.90587629 -8.020548638 10.49475486 5.848357661
2001:08 -1.548018529 0.075302698 -0.074649712 0.055644449 -0.580749215 119.07 335.57 16.26127986 11.97779019 10.32703666 7.468704679
2001:09 -1.323631215 0.0365264 0.008926083 -0.031479878 -0.147901884 89.27 277.04 -28.80460703 -19.16686784 20.07982294 14.77457808
2001:10 0.876902752 -0.10251871 -0.044151747 -0.062253606 0.282702565 91.08 275.09 2.0072756 -0.706358324 6.01229662 3.294249536
2001:11 -0.673856997 0.45826283 -0.005532861 -0.023249913 0.713770897 106.14 302.62 15.30207362 9.537957617 11.92322326 8.266748679
2001:12 -1.15608224 1.0189736 0.08932076 -0.002231358 0.930378247 105.91 303.85 -0.216930054 0.405626556 4.338876529 2.594503671

ERDEV - Exchange Rate Devaluation

Figure 4: Singapore

Figure 4 - Data for figure immediately follows

These panels show the evolution of a number of Singaporean indicators over the period November 1984 to July 2001 (stock market data start in January 1985). REER is the percentage deviation of real effective exchange rate from its trend; IRDIFF is the domestic/U.S. interest rate differential on deposits; ERDEV is the exchange rate change computed using end of the month log-first difference; RDC is the deviation of the ratio between real domestic credit and GDP from its trend; M2ratio is the deviation of the ratio of M2 over reserves from its trend; GENRET and GENVOL are stock index returns and volatility, respectively; BANKRET and BANKVOL are returns and volatility of a stock indexed based on a portfolio of banks listed in the stock market.

Data for Figure 4: Singapore

OBS ERDEV REER M2ratio (Right axis) RDC IRDIFF BANKRET (Right axis) GENRET (Right axis) BANKVOL GENVOL
1984:11 -0.92593 7.74261 0.101908 -0.18743 -4.50388 -2.59734   4.509437  
1984:12 0.925933 4.437346 0.11959 -0.1426 -4.25225 -0.71871   2.928278  
1985:01 1.373019 6.971242 0.073722 -0.33466 -4.53129 4.429495   7.257889 6.93762
1985:02 2.690745 6.742808 0.056595 -0.34759 -4.61295 -0.48259 -0.04309 1.717951 2.02081
1985:03 0 6.65007 0.006194 -0.11528 -4.53369 -1.22492 -2.62176 2.590047 3.358853
1985:04 -1.78576 4.790588 0.008271 -0.03405 -4.88784 -3.54733 -4.5976 2.580228 2.994796
1985:05 0 4.561456 0.01035 -0.05776 -4.41365 3.195745 3.22104 4.105441 3.59222
1985:06 0.449439 3.059439 0.004947 -0.03722 -4.54662 -6.06093 -5.40793 3.798122 3.25305
1985:07 -0.90091 1.280983 -0.00658 -0.38415 -5.0388 -5.60175 -5.08121 4.467135 5.112621
1985:08 0 0.822322 0.018304 -0.35505 -5.32273 -7.94676 -5.46754 5.67072 4.21517
1985:09 0.900907 2.379602 -0.03586 0.199294 -5.24747 5.562372 5.622044 4.709727 4.371747
1985:10 -4.11958 1.84891 -0.0314 0.098028 -4.95547 1.580432 1.049435 3.409534 3.397835
1985:11 -1.41179 3.626171 -0.03385 0.20122 -4.93148 -3.97479 -5.89424 5.990277 6.828537
1985:12 0.472814 0.707178 -0.04256 0.391856 -4.90587 -10.1421 -10.5603 8.542668 6.59321
1986:01 0.470589 0.487474 -0.04926 0.223435 -4.90371 -3.68941 -2.13988 5.423706 5.542604
1986:02 0.468385 -2.13745 -0.05779 0.093435 -4.91958 0.992838 5.334067 3.322234 4.099508
1986:03 0.930239 -3.67212 -0.04891 0.304345 -4.36411 -8.61535 -8.25477 7.627759 6.749033
1986:04 1.379332 -4.92095 -0.05884 0.323376 -3.68282 -2.58149 -2.11022 2.865566 3.234101
1986:05 1.360565 -6.08807 -0.05132 0.1331 -3.64215 11.65682 13.43211 7.304828 8.014463
1986:06 0 -5.07726 -0.07423 -0.1669 -3.59175 14.47094 14.2222 10.14058 9.80169
1986:07 -1.36057 -4.89191 -0.0742 -0.42974 -3.99545 0.950372 1.715108 3.121299 2.343182
1986:08 -1.37933 -4.13503 -0.06069 -0.43468 -2.83621 9.396411 11.7523 6.436505 7.51449
1986:09 0.461895 -4.1093 -0.0415 -0.27515 -3.51535 -4.28488 -3.01618 3.549956 2.855987
1986:10 0.459771 -3.81712 -0.02678 -0.30419 -3.92208 19.53906 20.96173 10.88857 12.24848
1986:11 0.457667 -1.76059 -0.01432 -0.09557 -4.05 -7.54545 -7.9873 5.959147 5.575698
1986:12 0 -1.24156 -0.01684 -0.12144 -4.04312 1.868775 1.583059 2.198854 1.513191
1987:01 -1.84337 -2.86174 -0.00377 0.088722 -4.01792 5.317393 5.543086 4.922796 5.229078
1987:02 -0.4662 -3.92277 -0.0083 0.13951 -3.9683 12.71574 10.61614 8.315588 6.346704
1987:03 0 -3.92609 -0.01377 0.18217 -3.96733 -4.62675 -1.42192 4.734731 4.327576
1987:04 -0.46838 -4.87285 -0.02055 0.166454 -3.93567 2.270618 4.682328 4.429581 4.726228
1987:05 -0.47059 -4.06396 0.044857 1.075612 -3.92187 7.382884 10.13931 4.976114 6.130836
1987:06 0 -3.19995 0.027598 0.640028 -3.8628 0.729326 2.770968 2.446743 2.377058
1987:07 0 -2.18109 0.030659 0.528625 -3.8639 13.53769 10.6871 8.944865 7.054035
1987:08 -0.47281 -1.60745 0.036141 0.974852 -3.82731 4.637455 3.190636 5.707487 3.98532
1987:09 -0.95239 -1.7789 0.020826 0.635264 -4.39309 -2.86132 -3.49251 4.381173 4.833542
1987:10 0 -1.69525 0.030785 0.636425 -4.31163 -42.1867 -52.249 31.82347 38.79509
1987:11 -2.42143 -2.05613 0.032488 0.714224 -4.34486 -6.88673 -4.39415 6.371865 7.248226
1987:12 -1.48151 -3.96111 0.036085 0.708904 -4.4124 -1.55256 0.354014 7.86443 10.08362
1988:01 0.990107 -3.70957 0.010281 0.529881 -4.67497 6.078823 8.544803 6.350866 6.539949
1988:02 -0.49383 -2.80066 -0.00968 0.211804 -4.74412 -1.84097 -0.86761 3.517577 3.773901
1988:03 -0.49628 -3.23322 -0.03005 -0.09978 -4.73213 2.192094 3.016664 5.286106 6.038122
1988:04 -0.49875 -2.90593 -0.05273 -0.41933 -4.68852 3.350478 2.990485 2.478742 2.617046
1988:05 0.498754 -3.01725 -0.02938 -0.57483 -4.67247 -2.73289 1.182625 2.767192 2.253381
1988:06 0.990107 -2.76542 -0.03012 -0.6219 -4.6154 10.33494 9.464339 6.231946 5.518333
1988:07 0.9804 -0.54848 -0.04546 -0.40048 -4.4844 1.874489 4.065369 2.217961 3.094225
1988:08 -0.489 0.135736 -0.03133 -0.51868 -4.87684 -7.38598 -7.99898 11.15029 9.79812
1988:09 0 -0.11059 -0.02013 -0.53766 -4.82125 -3.62361 -2.71068 4.004723 3.650949
1988:10 -0.98523 -0.78527 -0.03725 -0.50415 -4.79374 1.580339 2.075381 3.992732 4.186745
1988:11 -3.0153 -0.38612 -0.02641 -0.44804 -4.70692 -4.62799 -3.09682 3.352124 2.713955
1988:12 -1.02565 -0.31088 0.025421 -0.43024 -4.70124 5.997394 4.961461 4.468673 4.44225
1989:01 0 1.442715 0.000712 -0.17224 -4.60898 7.866076 10.01069 5.570404 6.776282
1989:02 -0.5168 2.076957 0.014858 -0.26881 -5.16234 0.801378 -0.60381 3.196935 2.214204
1989:03 0.516797 1.694041 0.04089 -0.32479 -5.08398 4.412327 5.012718 4.189128 4.211968
1989:04 0.51414 0.996019 0.036684 -0.32195 -4.89383 2.371919 5.578444 4.327906 4.494382
1989:05 0.51151 1.984822 0.026186 -0.22645 -4.79175 6.209247 3.520541 6.314311 2.934561
1989:06 0 2.362313 0.04357 -0.23937 -4.7528 0.59277 2.238664 5.447772 5.448783
1989:07 0 0.930218 0.023246 -0.41186 -4.74061 7.072502 5.52436 6.554697 4.319296
1989:08 0 0.390097 0.022611 -0.4157 -4.73534 -2.00821 -3.61681 3.663898 2.75469
1989:09 1.015237 0.043447 0.020601 -0.42932 -4.70392 -4.47502 -0.99632 3.537502 2.831839
1989:10 -1.01524 -0.70826 0.013581 -0.37212 -4.68406 -4.76899 -4.77414 6.592978 6.653106
1989:11 0 0.636436 0.060752 0.475647 -4.65346 4.185934 4.766066 3.386645 3.624053
1989:12 -2.06193 1.379056 0.032189 -0.15551 -4.59067 3.099219 4.51748 3.332486 3.209021
1990:01 -1.57484 2.121071 0.137781 2.788775 -4.29554 4.383536 3.599235 4.950487 3.050766
1990:02 -1.60003 2.463855 0.030237 -0.08105 -3.94428 3.527443 1.290563 3.790996 4.096436
1990:03 1.069529 2.508637 0.038485 0.193232 -3.76933 -1.44808 1.20636 1.912007 2.052181
1990:04 0 2.756474 0.029055 0.033678 -3.18666 -4.80611 -7.60496 3.008241 3.362022
1990:05 -1.06953 2.20825 0.043536 0.256359 -3.12142 9.051001 11.0604 7.357183 7.634951
1990:06 -0.53908 2.064655 0.005043 0.107149 -2.57569 5.292296 -2.08103 5.874424 1.500161
1990:07 -1.63491 1.626229 -0.0292 -0.11767 -2.39618 0.215617 2.862953 2.079345 2.703945
1990:08 -1.66209 1.293366 -0.05415 -0.54275 -2.22648 -18.7257 -21.7198 18.08966 21.53397
1990:09 -1.12361 0.166348 -0.02993 -0.81209 -2.18113 -15.055 -18.6224 8.51296 10.82763
1990:10 -2.28581 0.245367 -0.03972 -0.23438 -2.17618 6.62669 6.037327 6.548912 7.381364
1990:11 -1.1628 0.830604 0.003229 -0.35256 -2.22535 -0.89208 -4.18698 3.004684 2.411971
1990:12 1.162804 1.122222 0.011506 -0.4547 -1.78042 6.942271 7.409904 4.019038 4.338838
1991:01 1.149438 -0.77967 -0.00964 -0.3444 -2.29816 2.130406 5.369887 3.593069 5.266005
1991:02 -1.72915 -1.07505 0.02327 -0.45524 -1.76444 12.97658 14.53788 8.069735 9.063272
1991:03 2.298952 -0.46383 0.044872 -0.36631 -1.7665 4.0079 3.477991 3.045672 3.516397
1991:04 0.566574 -0.14586 0.000337 -0.22453 -1.21941 -1.70412 2.9491 2.491429 4.137834
1991:05 0 -0.22095 0.006394 -0.1094 -1.20545 1.20066 -0.15747 2.144918 2.133014
1991:06 0.563382 -0.08889 0.005896 -0.0022 -0.80307 -1.25389 -4.59032 1.680518 3.491528
1991:07 -1.12996 0.850522 0.030344 0.652463 -0.72325 0.747875 0.705124 1.687256 2.906412
1991:08 -1.71924 1.297512 0.004684 0.163036 -0.73808 -4.83385 -2.95602 7.05448 7.982677
1991:09 -1.74932 0.552241 0.005058 0.109447 -0.22174 -1.70036 -3.18696 2.492265 3.016442
1991:10 -0.58997 0.514779 0.000229 0.246119 -0.39939 2.19274 3.64087 3.299234 4.500418
1991:11 -1.19049 0.885161 0.012618 0.201229 0.12625 -0.97605 1.83271 2.769257 3.482853
1991:12 -1.20483 2.163383 0.011028 0.316872 0.284654 0.882187 3.20765 1.082396 3.243285
1992:01 -1.21953 2.449381 0.009064 0.361699 -0.14227 2.460773 2.885814 2.255741 2.742359
1992:02 0.611623 1.942942 -0.00375 0.244516 -0.51076 -3.00914 -4.31378 2.975775 2.991582
1992:03 1.212136 1.743679 0.041542 0.234764 -0.4878 -0.03889 -3.48345 1.717927 1.645212
1992:04 0 1.851075 0.012522 0.299912 -0.50284 1.40148 4.517906 1.712494 5.602887
1992:05 -1.21214 1.264488 0.005112 0.341893 -0.51411 1.554886 4.016546 1.529635 3.104982
1992:06 -1.22701 0.383149 0.00643 0.410147 -0.55412 1.520453 -2.16403 2.721842 1.865967
1992:07 -0.6192 -0.6938 0.015618 0.261417 -0.25192 -0.69311 -3.13868 2.136823 4.30343
1992:08 0 -1.16724 -0.00032 0.394698 -0.2794 -2.42059 -6.35973 4.937509 7.427489
1992:09 -0.62305 -1.738 0.003079 0.269012 -0.49793 0.125989 -1.72077 1.570427 2.368626
1992:10 0.623055 -1.00685 0.018168 0.256392 -0.60131 0.475138 1.875013 2.704871 3.575273
1992:11 1.234584 -0.37441 0.013296 0.276228 -0.60207 3.327479 6.851464 1.753211 3.277882
1992:12 0.611623 0.258749 0.008829 0.212232 -0.60712 1.017207 3.13571 1.912342 3.198006
1993:01 0.607905 0.092092 -0.02777 0.120559 -0.61225 2.965655 3.324641 2.081144 2.544864
1993:02 0 -0.17494 -0.04647 0.051533 -0.58786 2.421571 1.457812 1.988056 1.617945
1993:03 -0.6079 -0.6429 -0.01422 -0.02915 -0.77233 -1.36368 0.311558 1.161345 1.860603
1993:04 -1.22701 -1.11234 -0.02711 0.071835 -0.7814 2.151473 5.42277 1.499147 3.42367
1993:05 -0.6192 -1.38378 -0.02475 0.103246 -0.78404 0.372039 4.190683 1.968459 3.784667
1993:06 0.619197 -1.95763 -0.03031 -0.17234 -0.78216 -1.98876 -2.81045 1.731746 3.2681
1993:07 0 -1.33422 -0.04154 -0.48476 -0.79163 1.695165 0.6137 1.209261 1.828109
1993:08 -0.6192 -1.41377 -0.04433 -0.41889 -0.7804 12.5993 12.73586 5.452629 6.994211
1993:09 -0.62305 -2.09636 -0.04537 -0.3274 -0.7634 3.297656 2.026233 2.090871 1.956063
1993:10 -1.8928 0.418001 -0.00662 0.541198 -0.78075 2.297622 8.849972 1.600655 5.380943
1993:11 1.892801 -0.07055 -0.0233 -0.42064 -0.78545 0.967605 -2.32801 2.945884 3.405085
1993:12 0 0.738092 -0.02358 -0.17088 -0.7947 28.10857 18.2265 17.27812 10.61085
1994:01 0 0.944053 -0.05453 -0.08631 -0.5477 -2.29256 -4.93397 8.067849 8.90007
1994:02 -0.62696 0.247395 -0.06338 -0.16035 -0.37241 -0.98622 -2.80755 1.928815 2.287799
1994:03 -0.63092 -0.25188 -0.04584 -0.19753 -0.34851 -13.2153 -12.2632 9.778913 8.813282
1994:04 -1.2739 0.646204 -0.03713 -0.21831 -0.20912 4.679834 10.38838 4.773729 8.108968
1994:05 -0.64309 0.341653 -0.02416 -0.26188 -0.6588 -1.57647 -0.68026 2.259587 2.777535
1994:06 -1.29872 0.034421 -0.00567 -0.28365 -0.66099 -4.28102 -3.6481 3.11879 2.660689
1994:07 -1.31581 -0.87556 0.01637 -0.33395 -0.65694 3.13602 2.116692 3.67825 3.531489
1994:08 -0.66445 -0.68837 0.007403 -0.15752 -0.91366 2.21486 3.180887 1.637493 1.844839
1994:09 -0.6689 -1.40401 0.011688 -0.00769 -0.9027 1.113222 0.980097 1.3804 2.032205
1994:10 -0.6734 -1.12244 0.011598 -0.14526 -0.91214 2.776552 3.151018 2.018919 2.532334
1994:11 -0.67797 -0.34353 0.033899 -0.06881 -0.84397 -4.45107 -6.63896 2.29913 4.511172
1994:12 0 1.432933 0.047456 -0.11702 -1.18962 -0.06256 -0.67143 2.574876 4.520193
1995:01 -1.36988 1.307185 0.069982 0.119037 -1.17729 -6.97556 -8.30836 6.807866 10.11846
1995:02 0 -0.42063 0.063243 0.053712 -1.6667 2.124522 3.839937 1.447875 2.029154
1995:03 -2.09067 -0.85048 0.041385 -0.0255 -1.63858 -0.615 -1.08086 1.309094 2.385442
1995:04 -1.41846 -1.88228 0.016344 0.07067 -1.63872 1.403826 -0.84511 2.229445 1.817745
1995:05 -0.71685 -1.61589 0.023725 0.183868 -1.64211 2.404065 6.861484 3.917882 5.159222
1995:06 0 -2.75105 0.020184 0.013401 -1.80799 -4.07631 -5.05685 3.275737 5.356909
1995:07 0.716849 -2.98738 -0.01331 0.01087 -1.80147 1.802508 1.983795 1.03909 3.010307
1995:08 0.711747 -2.02432 0.004639 0.019436 -1.82771 -3.08462 -2.36117 2.041799 3.042218
1995:09 1.408474 -3.06109 -0.00879 -0.05754 -1.81746 -0.46726 0.228745 1.442261 1.432558
1995:10 -0.70176 -2.79676 -0.01471 -0.13497 -1.80353 -1.53672 -0.48927 1.307162 2.200014
1995:11 -0.70672 -1.33021 0.001597 -0.07248 -1.81337 -0.24762 1.032418 1.279823 2.482092
1995:12 0 -0.26013 0.015503 -0.05189 -1.80724 8.145887 7.546787 4.92328 4.531462
1996:01 0.706717 0.414919 -0.00356 0.035253 -1.77347 2.142691 9.623109 1.962708 6.224193
1996:02 -0.70672 0.396357 -0.004 -0.03069 -1.54918 1.506253 -0.21911 1.607366 2.400679
1996:03 0 0.685594 0.019879 0.02711 -1.50818 -4.09647 -1.89322 3.614996 4.694499
1996:04 0 1.384007 0.01376 0.069793 -1.49581 0.549433 -0.04065 1.128944 1.676256
1996:05 0 0.992925 0.020085 0.025747 -1.50212 -0.97414 -3.16146 2.333869 2.705477
1996:06 0 1.013583 0.019798 -0.02318 -1.50232 -2.12927 -1.09814 1.27657 1.69739
1996:07 0.706717 0.247145 0.015241 0.032301 -1.49302 -6.64315 -9.03968 4.791215 6.162168
1996:08 -0.70672 -0.20529 0.005876 0.046719 -1.48673 1.154881 3.48707 1.443897 2.060436
1996:09 0 -0.14265 0.003441 -0.09007 -1.47469 0.122404 1.113497 1.194354 2.543991
1996:10 0 0.436154 -0.01497 -0.28 -1.45945 -2.8303 -3.57467 1.701106 2.897542
1996:11 -0.71175 1.232232 0.001908 -0.17798 -1.45955 0.760013 6.809422 1.518221 5.894464
1996:12 0 3.346652 -0.00702 -0.0543 -1.46577 0.253357 1.806671 0.926505 1.345927
1997:01 0.711747 4.380399 -0.01283 -0.13387 -1.45687 2.152774 3.151143 1.772296 2.216971
1997:02 0.706717 4.834227 -0.01644 -0.16216 -1.45711 3.024621 0.105518 4.355086 2.587802
1997:03 1.398624 3.808584 -0.02297 -0.103 -1.42996 -3.06273 -8.24213 2.56207 5.111972
1997:04 0 4.203586 -0.02059 -0.08952 -1.43922 -2.87667 -3.90354 2.578743 4.917107
1997:05 0 2.91908 -0.03678 -0.09816 -1.44832 0.835942 7.260087 1.963311 4.577061
1997:06 -0.69687 2.954623 -0.03533 -0.17863 -1.44849 -2.91683 -1.95936 2.652652 2.297475
1997:07 1.388911 2.80957 -0.03056 -0.23854 -1.45471 -0.80425 1.482595 1.010575 2.521957
1997:08 3.390155 1.38307 -0.03276 -0.39255 -1.45788 10.73933 -11.1763 9.332254 8.246763
1997:09 1.324523 0.274078 -0.05712 -0.34206 -1.45209 -1.31408 6.498246 3.001889 7.027324
1997:10 2.597549 -1.41855 -0.04813 -0.32541 -1.44355 -17.9152 -21.0682 11.74456 17.90832
1997:11 1.273903 -1.19597 -0.06043 -0.46845 -1.40134 10.41335 4.936143 4.146596 3.501633
1997:12 4.335044 -0.05925 -0.05143 -0.34642 -0.79039 1.35714 -4.92686 6.380611 7.894848
1998:01 5.88405 -1.70937 -0.0654 -0.24528 0.260135 -32.1295 -16.8202 26.30267 20.27197
1998:02 -5.27982 1.052693 -0.08594 -0.30487 0.321829 17.52387 16.83349 5.43139 5.540003
1998:03 -2.43915 3.426091 -0.06225 -0.18731 0.297766 1.788043 -1.56809 6.425962 5.70882
1998:04 -1.24225 4.809889 -0.0849 -0.23531 0.306444 -7.72596 -9.18964 5.173505 5.657808
1998:05 2.469261 3.00292 -0.04656 -0.21083 0.382975 -8.00867 -14.8226 5.927593 8.515671
1998:06 3.593201 1.403682 -0.0777 -0.18429 0.394114 -14.2445 -14.5724 10.39509 10.87293
1998:07 0.586512 1.010465 -0.04461 -0.19362 0.394424 -6.87232 0.569127 6.375559 4.140035
1998:08 2.312242 -1.67854 -0.05854 -0.17094 0.405579 -26.8373 -16.9832 16.705 10.19713
1998:09 -1.14944 -3.76521 -0.11113 -0.23503 -0.03088 -7.6313 9.273488 8.770759 10.16081
1998:10 -5.34252 -1.3513 -0.11639 0.007663 -0.29396 33.48785 24.8412 23.53549 19.4026
1998:11 0 -0.63832 0.091683 1.679876 -1.31412 23.02891 16.20602 13.42359 11.87274
1998:12 0.607905 -1.42767 0.104056 1.739632 -2.50868 11.19464 -1.69585 9.198794 4.344847
1999:01 1.801851 -3.02072 0.092541 1.456869 -2.52137 7.095867 2.510705 13.14379 6.927264
1999:02 1.183446 -3.01872 0.109626 1.222007 -2.51967 1.549231 -1.14295 6.391534 5.826119
1999:03 1.749316 -3.12273 0.100846 1.298688 -2.52149 16.1676 7.265448 9.614948 4.380087
1999:04 -1.1628 -1.43359 0.064106 1.227123 -2.49468 15.39402 21.6961 8.324758 12.4963
1999:05 0 -1.25192 0.097703 0.97145 -2.498 10.95593 0.932448 11.64613 3.667878
1999:06 0 -1.17827 0.089403 0.905058 -2.49642 14.14984 12.97833 8.235401 8.658803
1999:07 -0.58651 -0.11306 0.075102 0.550691 -2.4872 -0.00959 -1.01682 10.92241 8.518631
1999:08 -1.18345 -0.35665 0.079753 0.194329 -2.70532 1.181698 -1.34182 8.744085 5.853752
1999:09 1.183446 -3.30939 0.059757 -0.18693 -2.68468 2.474922 -4.60278 4.396372 4.615191
1999:10 -1.18345 -2.57161 0.080288 -0.23067 -2.67541 0.486339 1.239608 3.91152 4.245644
1999:11 -0.59702 -1.3434 0.10042 -0.17432 -2.90081 11.27964 8.874521 6.589049 5.302224
1999:12 0 -0.62468 0.086971 -0.07823 -2.90254 15.65247 10.28954 10.79079 7.251474
2000:01 0 -0.11528 0.099776 -0.16045 -2.89555 -12.6777 -10.5962 11.18461 9.199398
2000:02 1.780462 -0.91497 0.078852 -0.18654 -3.06302 -13.8391 -5.04752 10.37196 4.719456
2000:03 1.169604 -1.72353 0.067957 -0.09234 -3.24213 0.773244 0.568529 5.893992 5.768064
2000:04 -0.58309 -0.64066 0.032221 -0.25945 -3.24085 6.103753 1.467199 6.743477 5.699434
2000:05 1.162804 -0.26596 0.001127 -0.27582 -3.67449 -24.5429 -18.6932 15.37998 11.7935
2000:06 0 -1.99896 -0.00823 -0.1921 -3.64823 19.36866 12.68768 10.82801 7.206155
2000:07 0.57637 -1.7392 -0.00964 -0.31484 -3.64422 1.806996 0.647565 2.948388 2.94729
2000:08 -1.15608 0.113942 -0.02436 -0.6482 -3.65394 2.652861 4.600023 5.433265 4.876375
2000:09 1.156082 -1.23881 -0.06341 -0.74383 -3.62651 -7.39523 -7.2769 8.912841 7.824497
2000:10 0.573067 -0.59672 -0.07032 -0.76167 -3.638 4.44568 -1.03132 7.291872 5.806891
2000:11 0 0.641023 -0.05542 -0.55089 -3.63823 -1.71086 -1.23755 5.987538 4.748217
2000:12 -0.57307 2.075264 -0.07141 -0.59733 -3.64443 0.777427 -1.30961 3.84471 3.885425
2001:01 0 1.506819 -0.04526 -0.37567 -2.74587 1.278747 3.29065 6.078598 4.222999
2001:02 0 1.836342 -0.04683 -0.39902 -2.72537 1.376002 -2.22875 2.920891 1.692753
2001:03 1.709443 1.564409 -0.01636 -0.25922 -2.28632 -14.7576 -15.1166 11.40465 10.0678
2001:04 2.23473 0.091439 -0.02383 -0.26605 -1.84488 -1.02836 2.857497 8.309841 5.94784
2001:05 0 0.717759 -0.01796 -0.27723 -1.39425 -4.17466 -3.88655 3.388864 2.988753
2001:06 0.550966 0.943686 -0.00946 -0.15957 -1.16569 5.940449 4.105732 5.763312 2.848425
2001:07 0 1.169493 -0.02614 -0.3118 -1.183 -2.57043 -3.56527 3.775485 3.000141
2001:08 -3.35227 2.695377 -0.01896 -0.22711 -0.96837 1.201999 -2.85608 2.293357 2.623914
2001:09 -0.5698 0.82146 0.023032 0.517082 -0.83901 -15.2178 -20.4607 13.24451 16.78371
2001:10 3.371106 -1.15233 -0.02522 0.507151 -0.56673 6.588995 3.595724 8.193366 4.96189
2001:11 1.098912 -1.1261 -0.01182 0.63655 -0.18539 8.12166 7.782226 10.48035 7.696204
2001:12 0.54496 0.500087 -0.00193 0.632493 -0.03195 11.11234 9.359079 7.376251 5.401725

ERDEV - Exchange Rate Devaluation

Figure 5: Philippines

Figure 5 - Data for figure immediately follows

These panels show the evolution of a number of Philippine indicators over the period November 1984 to July 2001 (stock market and banking sector data start in January 1987 and January respectively). REER is the percentage deviation of real effective exchange rate from its trend; IRDIFF is the domestic/U.S. interest rate differential on deposits; ERDEV is the exchange rate change computed using end of the month log-first difference; RDC is the deviation of the ratio between real domestic credit and GDP from its trend; M2ratio is the deviation of the ratio of M2 reserves from its trend; GENRET and GENVOL are stock index returns and volatility, respectively; BANKRET and BANKVOL are returns and volatility of a stock indexed based on a portfolio of banks listed in the stock market.

Data for Figure 5: Philippines

OBS ERDEV REER M2ratio (Right axis) RDC IRDIFF BANKRET (Right axis) GENRET (Right axis) BANKVOL GENVOL
1984:11 4.142756 3.921835 -0.86372 -0.36782 62.08222        
1984:12 -0.50226 7.16534 -3.4742 -1.01523 58.39462        
1985:01 -4.53219 13.9613 -1.04037 -0.81479 48.06061        
1985:02 -3.86729 19.6124 10.25994 -0.32333 41.64846        
1985:03 1.197619 19.72032 16.65111 0.263068 36.62252        
1985:04 0 15.1854 3.173184 -0.00045 40.74366        
1985:05 0 14.50662 0.572294 -0.28655 35.99903        
1985:06 -0.05413 13.78188 -0.35223 -0.5673 34.33621        
1985:07 0.593794 11.10809 0.440515 0.135896 29.18957        
1985:08 0.107585 7.881203 -5.26213 1.062379 26.45098        
1985:09 0.107469 9.796391 -4.12992 2.223377 19.98584        
1985:10 0.428725 5.348284 -1.45773 0.902212 16.23411        
1985:11 0.213675 5.230834 0.50219 -0.11346 16.13644        
1985:12 0.850165 4.937617 2.379378 -1.00112 15.89459        
1986:01 0.738011 5.461848 6.05579 -0.80793 14.29513        
1986:02 7.192973 -6.0036 7.393801 0.042599 17.42084        
1986:03 1.551923 -8.16623 -0.19562 1.115908 19.98053        
1986:04 -1.35661 -9.13314 -1.8915 0.696689 17.33949        
1986:05 0 -9.91086 -2.9346 0.273293 22.39701        
1986:06 0.243605 -10.4053 -2.68764 -0.06609 16.01696        
1986:07 -0.48781 -9.32155 -2.91345 0.505991 12.91171        
1986:08 -0.09785 -10.9642 -2.39072 1.129072 15.95599        
1986:09 0.390816 -9.53707 -2.56463 1.815471 13.55818        
1986:10 -0.34188 -7.14319 -3.4359 1.107056 12.58982        
1986:11 0 -5.685 -3.14819 0.532603 12.93103        
1986:12 0.390625 -3.96439 -5.12396 -0.43518 9.023881        
1987:01 -0.29283 -6.18288 -5.37737 -0.31491 7.987301       11.08506
1987:02 0.341547 -7.64172 -5.38759 0.011115 6.639297   -1.48128   4.852914
1987:03 0.146021 -7.44171 -5.12786 0.22755 5.49707   -0.53649   8.408129
1987:04 -0.29226 -7.98314 -5.37552 -0.23364 9.426945   10.21827   7.825637
1987:05 -0.14645 -7.36577 -4.80096 -0.57529 12.97436   7.424673   6.25001
1987:06 -0.04886 -4.48881 -4.74619 -0.78129 9.039884   40.94145   27.00139
1987:07 -0.04889 -0.85096 -5.04329 -0.80835 7.704465   23.42122   20.45761
1987:08 -0.04891 -1.65061 -5.37118 -0.68838 7.692958   -9.53515   15.58419
1987:09 0.779731 -2.78608 -3.56396 -0.23454 9.859612   -33.7253   24.73528
1987:10 0.53256 0.344412 -2.68808 -0.71301 9.407255   0.251959   13.09484
1987:11 0.529739 -1.25715 -0.9576 -0.89459 11.22576   -6.38606   13.2143
1987:12 -0.04804 -0.88881 -2.41388 -0.9954 14.39019   14.17616   14.30366
1988:01 0.192031 -1.24853 -0.32902 -0.6382 11.04152   1.356823   4.279545
1988:02 0.239521 -1.33419 1.047327 -0.17118 10.16014   -8.23721   6.238737
1988:03 0.620083 -1.64361 -0.13487 0.344607 11.68393   -1.05816   4.078096
1988:04 0 -2.7745 -0.43421 -0.13901 15.36264   5.640872   4.638409
1988:05 -0.38113 -2.22447 0.791892 -0.41295 14.663   0.781722   3.914821
1988:06 0 0.709085 2.001485 -0.64388 16.88083   4.888908   5.196947
1988:07 0.333572 2.428906 5.787896 -0.48463 13.56179   2.491765   2.472427
1988:08 0.190114 1.73769 5.759824 -0.1408 12.9223   -10.3897   10.49324
1988:09 0.898139 -0.06203 8.175648 0.423712 14.83947   -11.278   6.969985
1988:10 0.516312 -1.56786 5.519709 -0.15859 12.75193   3.759683   5.166832
1988:11 0.093589 -1.17737 0.892044 -0.45747 13.88809   0.791497   1.772579
1988:12 -0.09359 1.211946 -4.13228 -0.73405 14.06942   14.0057   8.052372
1989:01 -0.09368 3.7027 -2.63888 -0.45787 14.50723   -0.22552   2.871175
1989:02 0.093677 2.097408 -1.11845 0.197123 14.42622   3.106158   4.445056
1989:03 -0.09368 1.698331 1.641108 0.973914 14.648   4.970956   4.297941
1989:04 0.327486 1.507585 7.44318 0.484595 14.94618   9.73486   5.232277
1989:05 0.790886 3.827168 4.994853 0.178914 14.68239   3.933336   6.240477
1989:06 0.462322 5.158973 7.196174 -0.04772 15.71539   -2.8209   3.421899
1989:07 0.963973 2.804627 11.64186 0.149096 15.44868   14.41568   12.68921
1989:08 -0.04569 5.465401 5.717031 0.272221 11.52677   -3.91789   5.072963
1989:09 0.410491 8.342366 4.132631 0.34573 19.34279   1.65954   1.967531
1989:10 -0.04553 10.73622 -1.69491 -0.18081 17.07058   12.94006   9.622054
1989:11 0.635499 8.247077 0.215361 -0.34041 19.03573   1.35911   4.353616
1989:12 1.080119 7.074307 -5.70476 -0.53605 16.75739   -17.1073 3.226176 18.2396
1990:01 0.535716 3.716707 1.435261 -0.18332 20.55026 -2.30587 -5.36826 2.996912 4.530073
1990:02 0.709852 2.072583 4.49898 0.2826 20.95081 4.210312 -2.94434 4.15861 2.412057
1990:03 0.617014 3.039984 1.944016 0.83854 20.72524 0.581735 7.741029 1.981449 8.173885
1990:04 0 3.616812 6.499812 0.430458 23.122 -1.87359 -15.54 1.698956 9.750141
1990:05 0.61323 2.500762 -0.99337 0.265622 23.14754 -7.75995 -13.9483 5.428108 13.83221
1990:06 0.869571 2.489273 0.633743 0.289346 23.31584 3.658052 8.008293 3.702903 15.0696
1990:07 1.971774 1.079615 1.114696 0.437334 22.86493 3.082142 5.482021 3.149436 7.00518
1990:08 3.707986 -1.43112 -0.87871 0.633116 22.25194 -17.5676 -22.4446 13.06418 19.83688
1990:09 3.614851 -2.54591 0.309364 1.146404 23.43377 -13.0452 -31.5746 8.217223 19.90298
1990:10 1.56559 -4.56763 2.292081 0.669541 26.24213 2.943151 11.22129 3.492076 11.50093
1990:11 8.376988 -10.099 3.493877 0.306641 26.96495 7.274784 1.467818 7.639929 8.024717
1990:12 0 -7.84238 2.336931 -0.01731 25.77743 -1.31427 4.805013 4.426708 7.415746
1991:01 0 -6.79947 5.773876 0.259565 26.25708 4.449477 14.72345 6.400256 15.8652
1991:02 0 -11.0714 -1.29879 0.459965 24.87933 22.53172 26.5771 14.43169 19.43186
1991:03 0 -8.35889 -0.44525 0.93215 25.03925 8.154475 11.46036 6.57039 10.09578
1991:04 -0.25031 -6.66177 -3.03103 0.438473 21.50864 6.125396 -3.99871 4.396636 7.653145
1991:05 -0.39462 -6.4794 -3.51711 0.054944 19.84023 7.919247 10.45798 7.411764 7.882561
1991:06 -0.07192 -3.41062 -3.63709 -0.14566 18.09061 -1.93914 -10.2889 4.198684 7.478607
1991:07 -0.64959 -1.75384 -2.64033 -0.11331 16.18275 -3.29928 -4.17376 4.542092 7.203064
1991:08 -1.53232 0.192774 -2.54648 -0.04947 15.65698 -0.85618 0.002936 3.368437 6.805047
1991:09 -0.81211 0.831166 -2.53729 -0.04795 14.69231 -9.19327 -7.9913 8.138387 8.170127
1991:10 0.037058 -0.63672 -2.71039 -0.24047 17.3417 -0.79604 8.865311 2.167742 5.870356
1991:11 -0.93059 1.89099 -2.86812 -0.51256 18.11484 5.317413 5.553052 4.503341 6.339378
1991:12 -0.26212 2.51623 -2.52147 -0.58643 18.66706 0.637907 5.759373 3.133806 3.159892
1992:01 -0.48863 3.54079 -2.92647 -0.51313 17.78454 4.674818 9.335819 2.929507 7.067494
1992:02 -1.44215 2.56629 -2.96855 -0.41079 16.94542 -0.4321 -5.63311 3.354353 6.900238
1992:03 -1.34695 5.194104 -2.90963 -0.22841 15.8373 0.679323 -7.99808 3.136882 4.622402
1992:04 -0.5439 4.525425 -2.01002 -0.43159 14.6546 6.580713 12.16133 4.594797 7.383404
1992:05 1.85262 1.761089 -0.71093 -0.47666 13.79134 3.409046 12.62394 4.682833 10.74319
1992:06 -0.11479 1.501616 -0.51208 -0.62322 13.20887 10.83041 10.07215 7.106339 7.907505
1992:07 -3.34792 4.147403 -0.42923 -0.79282 13.36119 -5.19709 -3.78582 4.792069 4.398291
1992:08 -2.36342 5.598744 0.232081 -0.80311 13.73663 -4.51519 -7.96616 4.458629 6.141991
1992:09 0.242915 6.455646 -0.57331 -0.7224 13.51496 5.234762 1.989917 6.128787 2.785522
1992:10 0.201979 6.317723 -0.78761 -0.91198 13.65842 -1.21131 -3.49275 2.872504 5.353033
1992:11 0.643606 8.384146 -0.69073 -1.03173 12.90731 -7.85205 -7.20496 6.165191 4.677626
1992:12 1.512166 5.853643 -0.44525 -0.94765 12.99491 5.979222 -1.6375 3.912124 5.03244
1993:01 -0.1581 5.524362 -0.84452 -0.96071 11.87144 1.268516 7.562782 1.377419 3.418874
1993:02 0.118601 4.394044 -0.99153 -0.85149 10.44831 7.072714 12.68909 4.596405 8.377734
1993:03 0.23678 2.860047 -1.20558 -0.64751 9.155958 2.640982 -4.44524 4.547075 4.602902
1993:04 2.760136 -2.48058 -1.23124 -0.90994 8.908131 5.372175 9.686352 2.657668 5.873135
1993:05 3.503843 -6.13098 -0.6704 -1.04396 7.298893 7.027152 -1.20464 4.96119 3.149156
1993:06 0.737738 -6.69412 -0.46597 -1.27175 7.330595 -0.6759 -0.51143 1.835037 2.35409
1993:07 1.314367 -6.67257 -0.32673 0.88448 5.094554 12.90534 10.69602 7.788349 6.591537
1993:08 1.368897 -7.86839 0.194321 1.358708 5.130819 3.003258 1.722527 4.481897 2.750113
1993:09 0.996804 -9.78321 0.498751 1.787517 6.128828 12.44042 10.25352 7.744158 5.306193
1993:10 3.241266 -10.7181 0.240943 1.156129 6.414355 4.70242 18.46535 4.620936 13.66899
1993:11 -2.35958 -8.57348 0.478113 0.712004 8.41697 8.205939 -1.48459 10.62971 3.593261
1993:12 -2.45258 -4.84896 0.716237 0.363143 10.99043 21.29059 31.37426 11.91476 19.81028
1994:01 -0.25221 -0.54362 0.578333 0.495166 10.19168 13.50804 -12.054 9.198371 9.549898
1994:02 -0.25284 -2.75616 0.457276 0.790725 10.63419 10.14398 -0.52614 9.540001 4.560564
1994:03 -0.21723 -2.68528 -0.24742 1.298039 10.32703 -1.96059 -5.2844 2.690006 5.857311
1994:04 -0.21771 -2.92946 -0.56303 0.621316 9.626841 -1.72662 4.778688 2.093 5.379107
1994:05 -1.75893 -0.387 -0.3239 0.318948 9.449835 3.105653 6.352785 3.852574 4.648638
1994:06 -0.25912 -1.456 -0.62169 0.126752 8.715024 -6.0421 -9.85403 4.871109 8.221873
1994:07 -1.94617 0.365464 -0.72693 -0.02051 8.885899 5.231244 2.048879 4.687211 6.904488
1994:08 -0.56851 1.779426 -0.52839 -0.00081 7.342928 1.40884 10.47671 2.058891 5.451354
1994:09 -1.53201 0.687888 -0.3342 0.312218 5.42364 4.106702 -6.79842 5.247604 4.750083
1994:10 -2.02736 0.792731 -0.09379 -0.30167 4.787118 3.242713 5.364727 2.60423 4.027996
1994:11 -4.55265 6.095786 0.457012 -0.59299 3.682223 -6.17798 -13.1212 5.026133 9.077655
1994:12 -0.45445 6.198831 1.01102 -0.58365 3.030744 1.43725 3.45552 3.356731 4.880441
1995:01 1.927474 3.603219 0.880953 -0.27658 2.951653 -6.74929 -14.0722 6.074408 10.43791
1995:02 1.651598 -0.39012 1.344028 0.422519 2.790282 1.244819 3.646164 2.399475 4.966587
1995:03 3.262227 -6.98053 1.378047 1.336925 3.178947 -7.47271 -4.80444 6.391031 6.41908
1995:04 0.578371 -9.46729 1.349478 0.856456 4.006245 1.025783 3.031034 2.321127 3.487127
1995:05 -0.61705 -8.14922 0.921376 0.251643 3.797593 10.2656 11.71579 7.000285 8.483121
1995:06 -0.69876 -8.02449 0.630363 -0.25606 5.123214 -0.43118 -0.21376 1.772406 2.886748
1995:07 -0.62525 -8.49068 0.0714 -0.17887 4.315513 10.25818 4.576902 7.064885 4.156249
1995:08 0.780949 -3.94482 0.161405 -0.13422 3.942954 -0.06326 -4.84838 2.444676 3.717704
1995:09 1.0062 -1.08337 0.275009 0.004393 2.991344 -1.8264 -4.81515 2.444947 3.075116
1995:10 0 -1.00249 0.803927 -0.60629 1.330982 -3.25986 -6.62406 14.73854 4.424981
1995:11 0.767169 -1.79827 0.963036 -0.93698 2.074666 -3.82065 -0.75752 6.36695 7.836791
1995:12 0.15273 1.233252 1.036337 -1.20762 1.887653 9.916399 6.038758 6.10446 3.326847
1996:01 0.038146 3.796181 0.844842 -0.7924 3.006231 10.23302 10.65178 8.223678 7.41073
1996:02 -0.2291 2.89453 0.705998 0.189613 4.320337 3.314913 -0.10956 2.510621 2.782331
1996:03 0.152788 3.132048 0.787261 1.128628 4.582169 5.174088 0.627666 3.300687 3.908435
1996:04 -0.03818 4.812285 0.271434 0.437764 3.967308 9.897295 1.275295 5.32322 2.059936
1996:05 -0.03819 6.038572 -0.02157 0.107897 4.506739 8.093874 10.10127 5.593926 7.021068
1996:06 0.03819 8.313906 -0.15006 -0.21849 2.657924 -2.96549 0.766226 2.152926 2.338308
1996:07 0.038175 6.840865 -0.39794 -0.03434 3.514709 -3.27605 -7.83826 4.016365 7.400947
1996:08 0 9.621449 -0.7938 -0.01531 5.160845 6.955008 6.158722 3.303174 2.984077
1996:09 0.152555 8.557184 -0.65014 0.236799 4.339375 -0.95098 -1.59396 1.559982 1.819793
1996:10 0.114264 8.048926 -0.45314 -0.04923 3.965831 -6.60321 -6.71225 5.416655 7.014677
1996:11 0 6.29694 -0.43432 -0.43259 3.895205 7.779424 4.168316 4.875031 2.910367
1996:12 0.076104 9.500928 -0.22634 -0.61371 4.153511 2.289311 2.568536 2.238937 1.799835
1997:01 0.114047 13.06016 -0.09511 -0.38729 3.631118 19.36253 7.629065 12.13367 5.099435
1997:02 0.075959 15.27324 -0.38493 0.116966 3.231051 -6.07436 -3.16568 3.195816 2.704404
1997:03 -0.03797 13.33787 -0.27004 0.868736 2.781184 -2.66308 -2.82357 1.784451 2.302767
1997:04 0.113874 10.95068 -0.14384 0.528622 2.07956 -22.1668 -19.6438 12.9287 11.3066
1997:05 0.037929 9.707397 0.011433 0.233727 2.812362 0.654908 5.91199 8.070943 7.328506
1997:06 0.037915 12.00297 0.202527 -0.04751 2.666221 -1.74386 -0.00854 2.302157 3.166033
1997:07 4.774265 7.731671 1.010901 0.409933 3.39861 -6.9296 -7.1104 9.286874 7.169788
1997:08 5.826209 3.086952 0.393541 0.528345 4.773619 -27.2677 -25.795 18.0828 18.01455
1997:09 9.923885 -3.93828 -0.22045 0.965747 5.811918 -14.0053 1.758849 12.82857 8.362779
1997:10 6.19495 -7.55134 0.060435 0.390728 5.604502 -7.50308 -12.3652 7.699015 11.00358
1997:11 0.173964 -5.95925 0.184481 -0.15276 5.418994 2.660474 -2.57115 2.748774 4.770127
1997:12 7.396312 -9.16852 1.011369 -0.31608 6.465836 -3.52129 5.345159 4.446388 6.761331
1998:01 13.77597 -16.8852 0.439049 0.358592 8.21626 -10.8031 4.128176 14.98998 15.62975
1998:02 -5.41844 -10.4149 0.136346 0.854686 6.359504 29.3091 15.13402 13.83137 7.12512
1998:03 -3.55156 -7.46173 0.311498 1.664916 6.130321 3.565241 -1.23783 4.28095 4.978011
1998:04 -1.44631 -5.32933 -0.3155 0.94012 5.420287 -8.89939 -2.58401 4.111435 2.881189
1998:05 2.212593 -5.52074 -0.35043 0.28876 5.126041 -4.77447 -8.10743 3.981551 7.499889
1998:06 2.760527 -6.03863 -0.14443 -0.12185 4.929738 -15.1145 -13.3468 10.87909 10.44168
1998:07 3.358797 -7.68528 -0.14322 -0.06086 3.819214 -6.20282 -9.06391 7.90573 9.240469
1998:08 2.971216 -9.16258 0.075586 0.286534 4.490301 -26.2801 -29.8906 14.73093 16.16347
1998:09 1.704718 -11.6719 -0.20906 0.422784 2.788139 2.973848 5.498369 6.217473 9.991469
1998:10 -2.05384 -11.9138 -0.14167 -0.27178 3.999462 29.74513 33.16657 24.21823 25.59578
1998:11 -7.12604 -5.38834 0.28399 -0.72156 4.207745 15.42232 11.8259 9.977969 11.77014
1998:12 -2.20234 -5.1945 0.472331 -0.97277 4.67957 1.724837 -0.33366 6.816139 6.693165
1999:01 -1.72974 -2.23098 0.068504 -0.75681 4.521058 6.618748 -0.74587 8.408209 6.577438
1999:02 0.984719 -0.59611 -0.10469 -0.23318 3.995164 0.025888 0.556237 3.922529 3.623828
1999:03 0.334664 1.11194 -0.27948 0.383413 4.017436 7.953395 3.163594 4.967832 3.228258
1999:04 -1.73692 3.795032 -0.43607 -0.12722 2.098845 23.35424 18.22591 14.6351 11.69556
1999:05 -1.05153 5.25496 -0.26787 -0.33856 -0.23544 1.81076 -0.57154 5.298407 5.32978
1999:06 0.158437 6.393251 -0.21645 -0.59827 1.664857 3.145243 2.736379 3.255765 3.718063
1999:07 0.997645 5.311068 -0.20648 -0.44552 1.184333 -5.02313 -5.971 8.575427 9.216065
1999:08 2.527862 2.209129 -0.23309 -0.10779 0.76361 -2.38351 -7.48651 5.394657 8.018995
1999:09 2.291426 0.087784 -0.29974 0.083493 1.226593 -1.78976 -3.63598 3.292737 3.305854
1999:10 0.372718 -0.35277 -0.29375 -0.37314 0.344613 0.868638 -2.91145 6.290365 5.728186
1999:11 0.049591 0.087653 -0.151 -0.61108 0.859893 3.626086 -2.82078 2.617662 2.955241
1999:12 0.691702 -0.39073 -0.03222 -0.91608 1.188188 2.25354 7.938884 4.015477 7.806855
2000:01 -0.46885 1.812294 -0.07932 -0.56666 0.56473 -8.49755 -7.43446 6.847688 5.591158
2000:02 0.345679 2.596955 -0.03112 -0.05449 0.353645 -15.483 -19.197 12.04062 13.82586
2000:03 0.90787 1.663365 -0.30443 0.620732 0.39049 -0.21563 2.393861 2.969815 5.079413
2000:04 0.608793 1.711452 -0.22443 0.235746 -0.90908 -0.38331 -5.06075 2.802843 7.31433
2000:05 1.494004 2.841032 -0.14753 0.043053 -0.44333 -10.2744 -7.80057 8.570512 8.39527
2000:06 1.989173 -0.1482 -0.08741 -0.2285 -0.00865 -3.80687 3.666829 3.776902 4.099646
2000:07 3.885993 -0.95675 -0.04641 -0.05376 0.092806 -10.9301 -7.92103 6.98239 6.141008
2000:08 1.255059 -0.68511 -0.21736 0.032033 -0.16127 7.2958 8.15088 6.283713 5.410996
2000:09 1.853539 -1.53369 -0.06206 0.28936 0.004668 -2.424 -6.93613 3.940331 5.169085
2000:10 5.051687 -5.20289 0.048131 -0.05857 3.121758 -5.84915 -10.7835 4.933932 8.156382
2000:11 3.352041 -7.09297 -0.08471 -0.50456 3.55916 3.421404 8.694214 5.978703 4.631027
2000:12 0.301054 -6.70384 -0.10048 -0.79428 2.604661 7.280888 6.18754 5.484254 4.939142
2001:01 2.121622 -2.43493 -0.0227 -0.37439 2.728459 12.42451 12.11601 10.82788 10.78033
2001:02 -5.40127 -2.68516 0.230551 0.104582 2.22416 -4.11956 -4.45523 2.041912 3.715938
2001:03 0.372055 -2.15335 0.114134 0.870159 2.499297 -2.09937 -10.9322 2.718576 7.676658
2001:04 3.487075 -5.63808 0.164459 0.501534 2.087751 -0.74046 -4.78351 2.471552 4.060001
2001:05 0.69493 -3.1378 0.14903 0.068546 2.902829 1.959422 1.686405 3.12806 4.640879
2001:06 1.862251 -6.95055 0.125913 -0.28206 2.462226 -5.41007 0.553273 4.137745 3.92354
2001:07 3.304665 2.12581 0.095563 -0.1209 2.501743 -2.15957 -3.40319 3.399922 2.475721
2001:08 -2.33829 4.693937 0.168761 -0.06363 2.832971 -4.86037 -7.41876 2.766677 3.785919
2001:09 -1.43358 6.956328 0.198798 0.098257 3.179163 -14.0641 -11.6189 8.408583 8.841683
2001:10 0.932227 7.115153 0.186218 0.16553 3.911386 -13.9874 -12.5903 8.672172 8.692534
2001:11 0.501351 7.372101 0.078434 0.269708 4.838688 11.38554 12.75349 7.277332 8.294976
2001:12 -0.38543 9.828366 -0.08314 0.289778 4.636121 11.23591 3.449864 7.954359 3.960002

ERDEV - Exchange Rate Devaluation

Figure 6: Malaysia

Figure 6 - Data for figure immediately follows

These panels show the evolution of a number of Malaysian indicators over the period November 1984 to July 2001 (banking sector data start in January 1986). REER is the percentage deviation of real effective exchange rate from its trend; IRDIFF is the domestic/U.S. interest rate differential on deposits; ERDEV is the exchange rate change computed using end of the month log-first difference; RDC is the deviation of the ratio between real domestic credit and GDP from its trend; M2ratio is the deviation of the ratio of M2 over reserves from its trend; GENRET and GENVOL are stock index returns and volatility, respectively; BANKRET and BANKVOL are returns and volatility of a stock indexed based on a portfolio of banks listed in the stock market.

Data for Figure 6: Malaysia

OBS ERDEV REER M2ratio (Right axis) RDC IRDIFF BANKRET (Right axis) GENRET (Right axis) BANKVAR GENVAR
1984:11 0.82988 6.999526 -0.08818 -1.07804 2.659002   -2.66561   4.586604
1984:12 0.82988 9.191868 0.017348 -1.17516 2.733337   -0.11853   3.295387
1985:01 2.449102 8.06227 0.235647 -0.92942 2.074022   1.90886   4.915082
1985:02 2.78348 6.909626 0.749325 -0.74848 2.087996   0.290463   3.266435
1985:03 1.169604 6.032271 0.602307 -0.6344 2.096153   -1.43467   3.02453
1985:04 -3.55067 7.528062 0.68588 -0.4251 2.162895   -4.38397   3.484732
1985:05 -0.40242 9.394434 0.438759 -0.39369 2.904763   1.851184   2.932116
1985:06 -0.40404 9.6283 0.245925 -0.35008 0.858782   -6.38614   4.163829
1985:07 0 7.625923 -0.01203 -0.4325 0.802826   1.672967   8.199524
1985:08 -0.40568 6.482895 3E-05 -0.41055 0.789137   -5.56874   3.939343
1985:09 0.809721 8.294279 -0.27034 -0.12906 0.902951   9.959492   8.825027
1985:10 -1.21705 4.154688 -0.22651 0.076186 -0.71713   -2.28307   4.045179
1985:11 -0.81968 3.958158 -0.17347 0.266394 -0.68171   -12.2578   6.948216
1985:12 0 3.698438 -0.14171 0.594471 -0.67988   -9.61781   6.83759
1986:01 0.819677 2.169001 -0.26296 0.614142 -0.69397   -11.2156 7.137016 8.993979
1986:02 0.813013 -1.93694 -0.36653 0.592955 -0.73044 -3.29964 -5.98792 3.826692 5.511048
1986:03 2.400115 -7.52631 -0.2233 0.69853 -0.04709 -6.3533 -3.22592 8.780649 6.924746
1986:04 2.729214 -10.4059 -0.00775 0.898641 0.671604 -14.6774 -10.2894 9.551923 7.796794
1986:05 0 -11.082 0.067837 0.797521 0.653486 -4.99967 10.20532 6.89797 7.088774
1986:06 1.14724 -9.6602 -0.15581 0.776978 0.725743 21.86263 13.66684 15.57373 10.1561
1986:07 0.379507 -9.74523 -0.23588 0.873495 0.700605 -4.49098 -4.39286 5.736507 5.132078
1986:08 -1.14287 -9.04122 -0.01575 1.089043 2.114042 15.12206 11.5688 9.691857 6.982939
1986:09 0.38241 -8.45161 0.204008 1.298807 2.119664 -16.5769 -5.81383 14.76591 6.822417
1986:10 0 -8.57921 -0.10994 0.935239 2.103151 32.95846 19.83233 19.36475 11.2762
1986:11 -0.38241 -4.52625 -0.05191 1.00503 2.080296 -9.93789 -8.52823 9.296721 5.932149
1986:12 -0.38388 -3.59433 -0.15537 1.191521 0.726884 6.840746 1.988503 4.364493 2.211131
1987:01 -0.7722 -4.38479 -0.17357 1.12992 0.785688 8.887354 9.781718 7.866041 7.09795
1987:02 -1.56253 -2.09869 -0.09749 0.865858 -1.51524 17.97363 16.04278 14.21498 8.72531
1987:03 -0.79052 -0.63677 -0.06566 0.58471 -4.12925 -0.21822 -2.9878 5.113702 4.246595
1987:04 -1.19762 0.300347 -0.33838 0.105321 -4.10233 15.54177 12.48794 11.57748 10.41511
1987:05 -0.80646 0.712092 -0.25653 -0.06662 -4.08837 7.501758 11.49284 5.29715 7.233463
1987:06 1.60646 1.097876 -0.34238 -0.1769 -3.73422 1.22324 1.684846 2.515316 2.29986
1987:07 1.188133 1.657062 -0.39257 -0.33337 -4.04534 15.31938 9.021964 10.04799 6.196416
1987:08 0 1.988936 -0.65487 -0.55528 -4.00714 -5.15787 -4.18244 7.245443 6.598641
1987:09 -0.79052 2.592667 -0.45779 -0.6213 -4.63849 -7.46664 -3.53827 5.64616 4.864908
1987:10 0.39604 0.467288 -0.50273 -0.61291 -4.59432 -46.6849 -42.8972 39.38652 37.23104
1987:11 -1.19286 -0.88835 -0.53108 -0.67428 -4.59085 -5.63566 -10.6191 9.773491 9.219421
1987:12 -0.4008 -2.17543 -0.32143 -0.33464 -4.61205 -0.82152 7.120233 7.76036 15.19178
1988:01 1.988137 -3.69506 -0.23051 -0.1693 -4.26621 6.921755 7.967154 8.60303 6.41265
1988:02 1.562532 -3.84822 -0.12219 -0.10569 -4.25153 -2.0402 -4.0146 5.850911 5.185605
1988:03 -0.38835 -3.43561 -0.23503 -0.10899 -4.22058 0.261526 5.167598 2.859285 4.674415
1988:04 0 -3.35768 0.109807 -0.15417 -3.52082 4.481435 8.816117 3.699005 6.04371
1988:05 0.38835 -3.41464 0.22689 -0.19316 -3.16812 15.67138 3.983716 10.25175 3.354553
1988:06 0.386848 -0.30645 0.137229 -0.42197 -3.17792 9.993914 11.54055 6.721934 5.918103
1988:07 1.532597 0.067146 0.190698 -0.43008 -3.17311 0.615119 0.554669 4.298373 4.507211
1988:08 0.757579 0.606438 0.47181 -0.15085 -4.1087 -10.1761 -10.1975 8.36027 8.36523
1988:09 0.376648 0.111706 0.532419 -0.21422 -4.06566 1.38929 2.193496 2.313526 2.278066
1988:10 0.749067 -2.01681 0.097799 -0.34043 -4.03161 -1.27278 2.114627 2.6768 4.172225
1988:11 0 -3.57887 0.055469 -0.33675 -4.04429 -2.05536 0.633807 2.271393 1.672487
1988:12 0.743498 -4.37412 0.044461 -0.33512 -4.06224 0.342024 2.59939 2.676569 2.784335
1989:01 0.738011 -3.40192 0.407639 -0.0961 -3.38557 6.989832 8.867954 4.579431 5.571196
1989:02 0.366973 -3.26136 0.393318 -0.02917 -3.02347 1.617772 0.199534 3.241402 2.194525
1989:03 0.72993 -3.05128 0.405359 -0.1773 -2.97327 2.518993 4.595066 3.24614 3.439328
1989:04 -0.72993 -1.67028 0.31799 -0.14635 -2.92099 3.099834 7.418642 3.578397 4.750662
1989:05 -1.10498 1.483236 0.148164 -0.40207 -2.88953 10.16365 1.660918 7.906903 2.949684
1989:06 0.369686 2.710975 0.272071 -0.48629 -2.8687 0.87522 -0.69113 5.305797 5.321495
1989:07 -1.11318 3.314553 0.144552 -0.60643 -2.86904 9.059519 3.64502 6.046813 2.663978
1989:08 0 3.795393 0.25475 -0.55425 -2.8596 -0.03461 0.138405 2.407437 1.934131
1989:09 0.743498 4.054688 0.11294 -0.54565 -2.21315 6.295785 6.971441 4.001106 2.95865
1989:10 0 3.293369 0.089954 -0.59442 -2.17718 -7.13008 -4.31224 8.458677 7.664609
1989:11 0 2.712084 0.165688 -0.36793 -2.18948 10.57145 6.973334 6.69972 4.892961
1989:12 0 1.911252 -0.01098 -0.19075 -2.19494 13.43106 9.851306 9.798346 6.289443
1990:01 0 0.991106 0.025869 -0.01806 -2.10941 5.268095 1.402255 3.343251 3.792809
1990:02 0 0.951742 0.034788 0.021868 -2.10759 6.643925 5.621095 7.221141 5.468013
1990:03 0.738011 2.493191 0.077752 -0.08572 -2.06226 -0.36979 -3.29998 2.767734 2.457381
1990:04 0.366973 2.415417 0.162211 -0.1477 -2.08103 -11.9274 -11.4291 6.117206 5.234364
1990:05 -1.10498 2.01821 0.069998 -0.32078 -1.33222 12.16826 11.4754 7.88992 7.743405
1990:06 0.369686 1.701193 0.048355 -0.18383 -0.78583 -0.23388 0.133502 3.883998 1.860134
1990:07 0 0.463848 0.048579 -0.09666 -0.73129 8.825126 7.516665 8.097746 4.610813
1990:08 -0.36969 -0.49446 -0.05114 0.070169 -0.34634 -15.6398 -15.3038 17.44712 17.16091
1990:09 0 -1.8744 -0.17792 -0.05488 -0.00171 -18.9222 -16.3917 13.78313 11.52806
1990:10 0 -3.7766 -0.51593 0.154042 0.006909 7.676513 6.866463 9.481268 5.895588
1990:11 -0.37106 -4.10158 -0.14538 0.014167 0.571659 -13.7234 -5.64756 7.126645 2.235886
1990:12 0.371058 -2.94956 -0.2008 0.242768 1.082073 16.22067 8.4965 8.65776 4.904418
1991:01 0.738011 -3.5205 -0.08884 0.419828 1.093288 -0.08987 -1.72655 4.618445 3.978124
1991:02 -0.73801 -3.21416 -0.05731 0.395063 1.02798 10.23521 12.31003 7.206558 7.378733
1991:03 1.470615 -1.93005 -0.01485 0.229609 1.02211 3.797123 4.289665 4.047994 4.986375
1991:04 0.364299 -1.26744 -0.09573 0.352327 1.662795 -3.06196 0.280672 3.104139 2.496527
1991:05 0.362977 -0.92548 -0.08329 0.240709 1.642872 2.127007 6.700914 6.200752 5.798254
1991:06 0.722025 -1.10325 0.035502 0.5355 2.080491 -3.01355 -1.73054 1.905268 1.29357
1991:07 0.359067 -1.19973 0.030056 -0.02241 2.120723 -2.78373 -2.68316 3.718031 3.053297
1991:08 -0.35907 -1.81385 0.044996 -0.35552 2.586805 -8.07553 -8.45994 12.01453 11.30494
1991:09 -0.72202 -2.14444 0.177517 -0.62086 3.430123 -4.1373 -5.72009 3.725776 4.85451
1991:10 -0.36298 -2.79021 0.225868 -0.37256 3.884267 0.982494 1.652648 4.21482 3.373273
1991:11 -0.3643 -3.94974 0.230063 -0.3621 4.399131 -0.17018 0.129761 3.865611 3.249115
1991:12 0 -5.62137 0.163833 -0.09636 5.437976 6.606758 4.435125 4.716505 3.237935
1992:01 -1.84167 -3.90322 0.251112 1.049324 5.390837 0.11154 2.559464 3.104518 2.983019
1992:02 -3.40297 0.507012 0.379703 1.258306 5.255415 10.61207 5.856909 7.479292 4.53853
1992:03 -0.7722 2.8119 0.253185 1.89915 5.142978 -0.86304 -1.97792 2.804785 2.718244
1992:04 -1.1696 3.113972 0.160838 1.233882 5.301889 -0.15903 -0.2667 3.089069 3.031578
1992:05 -0.78741 3.415564 0.164169 0.680019 5.223827 -0.43139 -0.43025 2.446771 1.743507
1992:06 -0.39604 2.018797 0.445783 0.55716 5.45511 0.431387 0.548494 1.987521 1.954208
1992:07 -0.79682 1.725553 0.133203 0.286487 5.867886 3.964496 1.54125 3.41347 3.350368
1992:08 0 1.537576 -0.01022 -0.02263 5.723106 -2.46022 -4.5576 5.188467 5.114303
1992:09 0 0.956489 -0.29188 -0.19933 5.620195 10.80436 4.682209 7.963103 3.996685
1992:10 0 2.383807 -0.40754 -0.08259 5.655491 4.853731 6.279051 4.659746 5.151415
1992:11 0.796817 6.02098 -0.36663 -0.23299 5.572086 -1.00746 0.090399 4.321257 2.217632
1992:12 1.9647 3.869294 -0.05098 0.21964 5.538622 -0.67629 0.321966 2.746142 1.720962
1993:01 1.160555 3.729613 -0.02057 0.278111 5.428229 -1.81667 -3.07013 5.0148 2.203103
1993:02 1.14724 2.702536 0.145366 0.484661 5.085354 4.286459 2.170073 3.710158 2.153958
1993:03 -0.76336 2.788401 0.398742 0.433587 4.970773 -0.21486 0.789741 3.832732 1.126503
1993:04 -1.15608 1.487358 0.353423 0.156692 4.958108 10.0258 11.21759 5.981611 6.417857
1993:05 -0.38835 1.499365 0.549808 -0.10958 4.934012 9.17412 2.150118 7.361571 2.606685
1993:06 0 1.424275 0.505349 -0.36186 4.480236 1.464373 -1.93357 6.31408 3.8643
1993:07 0 1.861839 0.221051 -0.66141 4.446146 4.169482 6.041171 4.623066 4.391711
1993:08 -0.78125 2.511707 -0.02123 -0.61676 4.256755 17.62413 5.388171 10.61518 3.845709
1993:09 0 2.2734 -0.12262 -0.63207 4.14789 1.295345 5.45638 5.584516 2.809158
1993:10 0 2.546266 0.110759 -0.33792 3.923 15.4282 12.96134 10.01479 8.23765
1993:11 0 2.929494 -0.16422 -0.34739 3.883222 2.09668 2.485345 6.498546 4.898859
1993:12 0.781254 3.022096 -0.33524 0.464031 3.835051 44.91144 24.67534 26.85211 14.28119
1994:01 5.304274 -1.47712 -0.8933 0.644211 3.470269 -14.737 -14.1553 15.57254 16.3993
1994:02 1.828204 -5.06955 -0.75251 0.700791 3.192262 1.057789 1.669826 5.106649 4.40464
1994:03 -1.45988 -4.0565 -0.68448 0.79394 3.018319 -14.8264 -16.6777 10.89267 9.852086
1994:04 -1.10907 -3.13891 -0.57901 0.291556 2.292546 8.215267 10.15009 7.818023 8.283403
1994:05 -2.63669 -1.01745 -0.60428 -0.23584 0.924301 -2.54998 -5.93565 2.809036 3.382882
1994:06 -1.15164 -0.49256 -0.56968 -0.62849 0.875507 0.340367 1.78032 3.632152 5.196092
1994:07 0.385357 -2.26462 -0.47948 -0.96607 0.858322 5.935202 1.562493 5.525851 2.879121
1994:08 -1.16055 -0.73397 -0.44138 -1.13195 0.352238 7.696333 9.508808 3.457116 5.334464
1994:09 -0.38986 -1.3008 -0.41465 -1.14048 0.345814 1.958802 -0.02213 4.362354 3.315368
1994:10 0 -2.36523 -0.38553 -1.11619 0.437988 -0.17639 -1.86818 3.450919 2.327515
1994:11 0 -2.22732 -0.42532 -1.04636 0.626298 -7.2016 -9.02789 4.235876 5.493172
1994:12 0 -1.68694 -0.07482 -0.62317 0.560358 -6.14142 -4.22571 4.96171 6.542019
1995:01 0 -2.64382 -0.01508 -0.17501 0.558866 -6.42276 -9.48891 9.156764 8.932976
1995:02 -0.39139 -3.19756 0.016757 0.07254 0.036293 9.131846 10.35316 6.865048 4.433593
1995:03 0 -5.94758 -0.08049 0.502307 0.563265 3.033951 0.451188 5.599321 3.792304
1995:04 -2.78348 -5.69309 -0.08941 0.133909 0.580658 -2.98144 -3.33421 3.375528 3.639141
1995:05 -0.40404 -4.33288 -0.05777 -0.29367 0.557047 18.69298 9.819051 11.71409 6.631012
1995:06 -1.22201 -3.46534 -0.06131 -0.53696 0.56741 -4.03507 -2.25183 3.837567 3.590434
1995:07 0.408999 -3.18856 -0.10295 -0.4653 0.55578 9.12712 3.219515 6.184725 3.027404
1995:08 -0.81968 0.899613 0.131904 -0.35449 0.652437 -3.38645 -4.35094 3.799545 3.468073
1995:09 3.23915 -1.09846 -0.0036 -0.47328 0.74517 -3.85416 -1.43578 2.781488 2.155805
1995:10 0.793655 -2.58047 0.039038 -0.49743 1.247225 0.560977 -4.39145 2.848273 2.821378
1995:11 0.394478 -1.84403 0.122074 -0.65231 1.31137 -4.37356 -0.62012 7.241016 4.626455
1995:12 0 -1.98658 0.188101 -0.43775 1.295795 6.788286 4.467423 2.90372 1.642046
1996:01 0.784318 -1.10543 0.446355 -0.19758 1.406851 5.233808 5.878049 4.799925 4.817887
1996:02 -0.78432 -0.09774 0.420477 -0.04172 1.791425 3.075184 2.709727 3.730024 1.778982
1996:03 0 0.039377 0.274662 0.31028 1.87477 4.346417 5.792556 3.741541 4.546866
1996:04 -1.18813 1.808847 0.234876 0.116357 1.907415 7.553474 3.460506 5.147612 3.001917
1996:05 -0.8 4.113575 0.101201 -0.36242 1.936754 -3.55688 -4.16003 3.832001 2.598591
1996:06 0.400802 4.756347 0.080992 -0.61635 2.09091 -0.2528 -0.41802 2.058539 1.620351
1996:07 -0.4008 4.839661 0.022617 -0.62564 2.145309 -10.288 -6.17831 7.44037 4.948163
1996:08 0 4.865684 0.051227 -0.47042 2.096734 7.753773 4.604801 4.37877 1.975837
1996:09 0.400802 5.63625 0.094015 -0.48357 2.086082 4.697932 1.481942 4.117867 2.359462
1996:10 0.399202 6.452851 0.091899 -0.50723 2.11093 1.471899 2.868775 1.916717 2.351076
1996:11 0.397615 5.616591 0.06698 -0.61704 2.08827 6.697478 4.862263 4.099112 3.24177
1996:12 0.39604 6.528125 0.122046 -0.2468 2.075774 3.814751 0.928397 3.584191 2.557696
1997:01 -1.59366 10.78772 0.248467 0.435369 2.068346 1.210977 -1.73061 4.829507 1.689279
1997:02 0 14.09518 0.199905 0.823243 2.045777 4.861513 4.338561 3.068404 2.496936
1997:03 -0.40242 15.54957 0.148681 1.252244 2.089523 -6.53422 -5.46428 4.055829 2.917672
1997:04 0.803217 15.64898 0.185554 0.896535 2.117325 -13.3489 -10.7783 7.744964 7.160877
1997:05 0.399202 15.7904 0.233015 0.748289 2.130388 2.341923 2.257304 4.538958 3.856868
1997:06 0.397615 15.26976 0.321606 0.707898 2.264963 -1.40942 -2.52336 3.620401 3.43415
1997:07 1.9647 14.98188 1.039304 0.477122 2.54804 -5.50492 -6.16996 5.308217 5.00828
1997:08 6.405202 10.82051 0.815474 0.544839 2.358167 -29.0198 -23.0417 17.20031 13.80433
1997:09 9.398216 2.078376 0.498365 0.682725 2.491423 -14.6119 1.256371 13.99089 12.23475
1997:10 8.894749 -5.45256 0.200808 0.624548 3.290391 -26.8277 -20.334 19.89257 16.07409
1997:11 2.994236 -5.68046 0.164478 0.147981 3.742941 -35.5268 -19.7728 30.57482 20.84592
1997:12 10.62451 -11.5131 0.175509 0.024476 3.680832 10.1519 8.602698 21.70049 15.47466
1998:01 15.67997 -21.158 -0.15243 0.964454 3.635328 -14.7662 -4.28434 19.73354 13.30666
1998:02 -14.101 -10.2216 0.189853 1.012127 3.854207 52.56965 26.9091 33.93334 7.437944
1998:03 -2.1109 -7.50917 0.277358 1.731858 4.115281 -7.34662 -3.5283 9.292001 5.19139
1998:04 -0.53476 -6.42506 0.297164 1.091682 4.190795 -19.3686 -13.9282 11.29934 7.643003
1998:05 2.384219 -6.57318 0.207767 0.351957 4.274886 -11.7815 -15.0998 12.15728 9.60838
1998:06 4.354081 -7.957 0.140653 -0.22724 4.388272 -20.8 -16.6602 12.43855 11.82566
1998:07 4.172384 -10.3795 0.001831 -0.03931 4.488757 -24.4354 -12.3635 20.40768 13.42734
1998:08 0.956945 -9.44319 0.060977 0.298096 3.800377 -12.9973 -28.4632 9.230813 15.26166
1998:09 -9.74553 -2.84973 0.209863 0.339782 0.830186 31.89866 20.95358 34.22915 33.03714
1998:10 -0.26281 -5.40022 -0.10021 0.254038 0.997855 13.26327 8.173 12.73198 10.29121
1998:11 0 -4.49552 -0.03893 0.440974 1.008041 27.06731 21.28422 14.68353 11.2277
1998:12 0 -4.83614 -0.2831 0.542507 0.952775 14.36259 15.59978 10.01221 8.614379
1999:01 0 -4.72226 -0.37789 0.89158 0.82332 6.251326 0.900173 10.48035 6.046174
1999:02 0 -2.85374 -0.38145 1.049521 0.706725 -8.06264 -8.68531 8.117907 6.063573
1999:03 0 -1.03009 -0.34964 1.109698 0.596445 -0.86539 -7.5458 3.184086 4.517555
1999:04 0 -1.05064 -0.30974 0.388574 -0.63459 38.43346 29.44212 21.90604 15.44026
1999:05 0 -0.31465 -0.32507 -0.37303 -0.86362 7.273815 9.609645 8.859822 8.812152
1999:06 0 -0.02128 -0.38007 -0.92026 -0.86106 12.83812 8.764147 12.18649 7.937311
1999:07 0 0.03029 -0.38998 -0.73409 -0.85125 -0.7556 -5.37036 6.140562 6.423947
1999:08 0 -0.95908 -0.45623 -0.68557 -1.06681 -3.0113 -0.21227 12.58122 9.305404
1999:09 0 -1.88856 -0.2963 -0.15197 -1.04617 -11.4875 -12.7186 7.862579 6.982093
1999:10 0 -2.65724 -0.25144 -0.48335 -1.40413 13.53649 9.514193 8.331375 6.15027
1999:11 0 -2.56407 -0.18626 -0.66856 -1.63526 0.351377 -1.11133 3.023551 2.604853
1999:12 0 -3.00784 -0.17255 -0.87775 -1.6641 8.085504 10.04989 6.069173 7.159274
2000:01 0 -2.58714 -0.24215 -0.56431 -1.66863 20.52076 12.6747 13.19921 9.83967
2000:02 0 -1.10036 -0.30858 -0.33334 -1.88623 5.417701 6.3182 6.951175 4.513861
2000:03 0 -1.24572 -0.35851 -0.17171 -2.07618 -3.11989 -0.80343 5.993635 4.458727
2000:04 0 -1.32134 -0.33105 -0.53566 -2.0905 -5.39186 -8.12416 4.966581 6.164005
2000:05 0 0.074733 -0.29251 -0.77182 -2.53172 0.220575 1.454282 5.466047 4.51273
2000:06 0 -1.25546 -0.30448 -0.98314 -2.50387 -7.77888 -8.96248 6.37328 7.393169
2000:07 0 -0.50989 -0.21734 -0.86402 -2.4945 -7.2813 -4.23296 5.590116 5.065397
2000:08 0 -0.18641 -0.2061 -0.62602 -2.31435 3.171146 -0.375 3.871555 2.294526
2000:09 0 0.417131 -0.21181 -0.72538 -2.27834 -11.9207 -10.9202 4.12003 4.53176
2000:10 0 1.502909 -0.01347 -0.34207 -2.28124 6.531457 5.301848 8.32908 7.718422
2000:11 0 1.873072 0.017615 -0.33648 -2.28408 -9.76171 -3.02389 6.053488 4.680263
2000:12 0 0.829661 0.104012 -0.14665 -2.30741 -4.05585 -7.14128 3.72474 5.416659
2001:01 0 0.674592 0.209424 -0.01492 -1.42134 5.393272 6.836685 4.484809 6.357744
2001:02 0 1.409712 0.234643 0.133175 -1.40972 -0.96687 -2.55247 2.779023 2.336586
2001:03 0 4.136832 0.366799 -0.16141 -0.97872 -12.9405 -9.13175 7.828625 5.424959
2001:04 0 3.357662 0.485232 -0.03783 -0.53531 -15.4243 -10.2331 11.42095 10.16046
2001:05 0 2.973625 0.557594 0.073743 -0.09103 1.005257 -2.00805 5.154792 6.139348
2001:06 0 3.985912 0.480925 0.043953 0.119589 4.10259 3.450126 5.996976 3.958334
2001:07 0 2.895502 0.286105 0.097553 0.120215 11.87532 10.61528 7.722001 7.368485
2001:08 0 0.403101 0.228019 0.153597 0.334838 5.539751 4.123683 5.639926 4.311753
2001:09 0 0.409216 -0.00872 0.407354 0.57913 -15.5485 -11.0392 12.36836 9.097736
2001:10 0 1.414321 -0.04471 0.579218 1.000676 2.39717 -2.51286 4.909272 2.238317
2001:11 0 2.018867 -0.07079 0.674847 1.427264 7.005156 6.132332 7.012078 5.048643
2001:12 0 3.023203 -0.13668 0.667302 1.63776 6.764244 8.710933 4.07903 4.937435

ERDEV - Exchange Rate Devaluation

Figure 7: Thailand: Panel A - Model31 (REER,M2ratio)

Figure 7, Panel A - Data for figure immediately follows

Data for Figure 7: Thailand: Panel A - Model31 (REER,M2ratio)

  Exchange Rate Percentage Change Probability
1984:12 1.90056 0.07565
1985:01 0.882034 0.02581
1985:02 2.24322 0.026
1985:03 0.392788 0.02138
1985:04 -2.27078 0.0281
1985:05 0.291227 0.03898
1985:06 -0.43716 0.03949
1985:07 -1.50821 0.03842
1985:08 -0.63209 0.0348
1985:09 0.891205 0.04679
1985:10 -1.97878 0.03126
1985:11 -1.09954 0.0253
1985:12 1.626052 0.0311
1986:01 -0.03752 0.01075
1986:02 -0.67771 0.00523
1986:03 -0.2648 0.00325
1986:04 0 0.00319
1986:05 -0.30349 0.00228
1986:06 0.227704 0.0032
1986:07 -0.72285 0.00228
1986:08 -0.38256 0.00217
1986:09 0.076628 0.00246
1986:10 0 0.00231
1986:11 0.610922 0.00304
1986:12 -0.19051 0.00353
1987:01 -0.99656 0.00272
1987:02 -0.1542 0.00243
1987:03 -0.7746 0.00382
1987:04 -0.19459 0.0025
1987:05 -0.19497 0.00285
1987:06 0.54496 0.00418
1987:07 0.696328 0.00626
1987:08 -0.15432 0.00771
1987:09 -0.65853 0.00806
1987:10 0.15534 0.00847
1987:11 -1.17097 0.01174
1987:12 -0.94675 0.00444
1988:01 0 0.00451
1988:02 0.316581 0.0062
1988:03 -0.35622 0.00498
1988:04 -0.27794 0.00538
1988:05 0 0.00533
1988:06 0.436422 0.00862
1988:07 0.945634 0.0143
1988:08 0.15674 0.01693
1988:09 -0.03916 0.02097
1988:10 -0.66811 0.01485
1988:11 -0.95088 0.00845
1988:12 0.119355 0.00692
1989:01 0.59465 0.00912
1989:02 0.236873 0.00971
1989:03 0.47207 0.01272
1989:04 0.156863 0.01035
1989:05 0.897217 0.01965
1989:06 0.658024 0.03136
1989:07 -0.46404 0.02375
1989:08 0.193611 0.02562
1989:09 0.540125 0.02491
1989:10 -0.54012 0.01716
1989:11 0.038677 0.01188
1989:12 -0.42627 0.00881
1990:01 -0.0777 0.00604
1990:02 -0.07776 0.00629
1990:03 0.774897 0.0116
1990:04 0.346754 0.01015
1990:05 -0.50125 0.00804
1990:06 -0.03866 0.00764
1990:07 -0.69849 0.00659
1990:08 -0.46838 0.00457
1990:09 -0.74613 0.00422
1990:10 -1.03012 0.01324
1990:11 -0.23923 0.01114
1990:12 0.557326 0.0121
1991:01 0.119024 0.01104
1991:02 -0.3973 0.00917
1991:03 1.30514 0.0793
1991:04 0.470405 0.02013
1991:05 0.234375 0.01753
1991:06 0.467109 0.02415
1991:07 -0.03884 0.02497
1991:08 -0.11662 0.02021
1991:09 -0.38971 0.01488
1991:10 -0.2737 0.01159
1991:11 -0.19596 0.00842
1991:12 -0.43248 0.00573
1992:01 -0.23669 0.0055
1992:02 0.472814 0.00754
1992:03 0.666016 0.00926
1992:04 0.078064 0.009
1992:05 -0.39093 0.00867
1992:06 -0.54988 0.00801
1992:07 -0.43418 0.00604
1992:08 -0.11874 0.00484
1992:09 -0.23791 0.00472
1992:10 0.198295 0.00537
1992:11 0.828571 0.01076
1992:12 0.078555 0.01014
1993:01 0.235294 0.00882
1993:02 -0.1568 0.00714
1993:03 -0.275 0.0038
1993:04 -0.75025 0.00436
1993:05 -0.03964 0.00563
1993:06 -0.03966 0.00872
1993:07 0.395883 0.01359
1993:08 -0.51495 0.01142
1993:09 0.039706 0.0097
1993:10 0.277503 0.01021
1993:11 0.395101 0.01163
1993:12 0.354261 0.00787
1994:01 0.313849 0.0142
1994:02 -0.58928 0.01558
1994:03 -0.35524 0.01553
1994:04 -0.15829 0.01068
1994:05 -0.19822 0.00717
1994:06 -0.23838 0.00512
1994:07 -0.67851 0.0051
1994:08 0.20004 0.00912
1994:09 -0.16 0.0081
1994:10 -0.0801 0.006
1994:11 0.080096 0.00528
1994:12 0.479234 0.00458
1995:01 -0.11959 0.00515
1995:02 -0.19964 0.00499
1995:03 -1.04461 0.00355
1995:04 -0.81103 0.00147
1995:05 0.406339 0.00173
1995:06 0.040543 0.00212
1995:07 0.283344 0.00386
1995:08 0.845246 0.00901
1995:09 0.679052 0.01093
1995:10 -0.03982 0.00776
1995:11 0.198926 0.00467
1995:12 0 0.0034
1996:01 0.515363 0.00862
1996:02 -0.1979 0.01311
1996:03 -0.03963 0.02252
1996:04 0.158416 0.02509
1996:05 0.039565 0.02408
1996:06 0.276516 0.02793
1996:07 -0.03946 0.03704
1996:08 -0.27663 0.04968
1996:09 0.355521 0.06401
1996:10 0.393546 0.07011
1996:11 -0.03929 0.08376
1996:12 0.392157 0.1057
1997:01 0.62427 0.17559
1997:02 0.852058 0.17167
1997:03 0.077101 0.12976
1997:04 0.384616 0.13823
1997:05 -0.69338 0.1502
1997:06 -0.3485 0.14124
1997:07 16.22086 0.81393
1997:08 6.881695 0.52772
1997:09 11.11932 0.75767
1997:10 2.985296 0.48419
1997:11 4.955381 0.35462
1997:12 14.18617 0.65605
1998:01 17.23731 0.73494
1998:02 -15.3779 0.49819
1998:03 -11.0092 0.20893
1998:04 -4.57944 0.08713
1998:05 -0.83938 0.03819
1998:06 7.88041 0.06511
1998:07 -2.8009 0.02466
1998:08 0.942377 0.00993
1998:09 -2.8542 0.00476
1998:10 -5.78137 0.00502
1998:11 -4.50478 0.01821
1998:12 -0.55006 0.01723
1999:01 0.987933 0.01392
1999:02 1.194368 0.01082
1999:03 1.206934 0.00854
1999:04 0.239649 0.00684
1999:05 -1.66268 0.00847
1999:06 -0.2979 0.01041
1999:07 0.487014 0.01528
1999:08 2.321033 0.017
1999:09 4.914172 0.66025
1999:10 -0.95863 0.28406
1999:11 -1.86778 0.08648
1999:12 -1.48305 0.03286
2000:01 -2.28006 0.03278
2000:02 0.960776 0.04663
2000:03 0.529803 0.04176
2000:04 0.18477 0.02709
2000:05 2.525847 0.02937
2000:06 0.333719 0.02185
2000:07 2.879714 0.02842
2000:08 1.654563 0.01857
2000:09 2.419668 0.02181
2000:10 3.130035 0.02592
2000:11 1.22051 0.01101
2000:12 -1.45248 0.01376
2001:01 0.046436 0.01072
2001:02 -1.14394 0.01365
2001:03 2.892716 0.73218
2001:04 3.51857 0.54713
2001:05 0.066043 0.21752
2001:06 -0.52957 0.0708
2001:07 0.815252 0.02561
2001:08 -1.54802 0.01359
2001:09 -1.32363 0.01118
2001:10 0.876903 0.01163
2001:11 -0.67386 0.01164
2001:12 -1.15608 0

Figure 7: Thailand: Panel B - Model31 (REER, BANKRET)

Figure 7, Panel B - Data for figure immediately follows

Data for Figure 7: Thailand: Panel B - Model31 (REER, BANKRET)

  Exchange Rate Percentage Change Probability
1987:03 -0.7746 0.44985
1987:04 -0.19459 0.11286
1987:05 -0.19497 0.01657
1987:06 0.54496 0.002
1987:07 0.696328 0.00019
1987:08 -0.15432 0.00001
1987:09 -0.65853 0
1987:10 0.15534 0.00017
1987:11 -1.17097 0.00003
1987:12 -0.94675 0
1988:01 0 0
1988:02 0.316581 0
1988:03 -0.35622 0
1988:04 -0.27794 0
1988:05 0 0
1988:06 0.436422 0
1988:07 0.945634 0
1988:08 0.15674 0
1988:09 -0.03916 0
1988:10 -0.66811 0
1988:11 -0.95088 0
1988:12 0.119355 0
1989:01 0.59465 0
1989:02 0.236873 0
1989:03 0.47207 0
1989:04 0.156863 0
1989:05 0.897217 0
1989:06 0.658024 0
1989:07 -0.46404 0
1989:08 0.193611 0
1989:09 0.540125 0
1989:10 -0.54012 0
1989:11 0.038677 0
1989:12 -0.42627 0
1990:01 -0.0777 0
1990:02 -0.07776 0
1990:03 0.774897 0
1990:04 0.346754 0
1990:05 -0.50125 0
1990:06 -0.03866 0
1990:07 -0.69849 0
1990:08 -0.46838 0
1990:09 -0.74613 0.00003
1990:10 -1.03012 0
1990:11 -0.23923 0
1990:12 0.557326 0
1991:01 0.119024 0
1991:02 -0.3973 0
1991:03 1.30514 0
1991:04 0.470405 0
1991:05 0.234375 0
1991:06 0.467109 0
1991:07 -0.03884 0
1991:08 -0.11662 0
1991:09 -0.38971 0
1991:10 -0.2737 0
1991:11 -0.19596 0
1991:12 -0.43248 0
1992:01 -0.23669 0
1992:02 0.472814 0
1992:03 0.666016 0
1992:04 0.078064 0
1992:05 -0.39093 0
1992:06 -0.54988 0
1992:07 -0.43418 0
1992:08 -0.11874 0
1992:09 -0.23791 0
1992:10 0.198295 0
1992:11 0.828571 0
1992:12 0.078555 0
1993:01 0.235294 0
1993:02 -0.1568 0
1993:03 -0.275 0
1993:04 -0.75025 0
1993:05 -0.03964 0
1993:06 -0.03966 0
1993:07 0.395883 0
1993:08 -0.51495 0
1993:09 0.039706 0
1993:10 0.277503 0
1993:11 0.395101 0
1993:12 0.354261 0
1994:01 0.313849 0
1994:02 -0.58928 0
1994:03 -0.35524 0
1994:04 -0.15829 0
1994:05 -0.19822 0
1994:06 -0.23838 0
1994:07 -0.67851 0
1994:08 0.20004 0
1994:09 -0.16 0
1994:10 -0.0801 0
1994:11 0.080096 0
1994:12 0.479234 0
1995:01 -0.11959 0
1995:02 -0.19964 0
1995:03 -1.04461 0
1995:04 -0.81103 0
1995:05 0.406339 0
1995:06 0.040543 0
1995:07 0.283344 0
1995:08 0.845246 0
1995:09 0.679052 0
1995:10 -0.03982 0
1995:11 0.198926 0
1995:12 0 0
1996:01 0.515363 0
1996:02 -0.1979 0
1996:03 -0.03963 0
1996:04 0.158416 0
1996:05 0.039565 0
1996:06 0.276516 0
1996:07 -0.03946 0
1996:08 -0.27663 0
1996:09 0.355521 0
1996:10 0.393546 0.75639
1996:11 -0.03929 0.08435
1996:12 0.392157 0.00759
1997:01 0.62427 0.00046
1997:02 0.852058 0.00005
1997:03 0.077101 0
1997:04 0.384616 0
1997:05 -0.69338 0.02532
1997:06 -0.3485 0.81549
1997:07 16.22086 0.532
1997:08 6.881695 0.61631
1997:09 11.11932 0.40345
1997:10 2.985296 0.17298
1997:11 4.955381 0.08323
1997:12 14.18617 0.25987
1998:01 17.23731 0.26902
1998:02 -15.3779 0.10262
1998:03 -11.0092 0.0387
1998:04 -4.57944 0.01343
1998:05 -0.83938 0.09635
1998:06 7.88041 0.11272
1998:07 -2.8009 0.03356
1998:08 0.942377 0.01044
1998:09 -2.8542 0.00247
1998:10 -5.78137 0.00089
1998:11 -4.50478 0.00019
1998:12 -0.55006 0.00003
1999:01 0.987933 0
1999:02 1.194368 0
1999:03 1.206934 0
1999:04 0.239649 0
1999:05 -1.66268 0
1999:06 -0.2979 0
1999:07 0.487014 0.50128
1999:08 2.321033 0.46448
1999:09 4.914172 0.29635
1999:10 -0.95863 0.08623
1999:11 -1.86778 0.01906
1999:12 -1.48305 0.00331
2000:01 -2.28006 0.00054
2000:02 0.960776 0.99992
2000:03 0.529803 0.53197
2000:04 0.18477 0.19865
2000:05 2.525847 0.34572
2000:06 0.333719 0.09506
2000:07 2.879714 0.03398
2000:08 1.654563 0.00618
2000:09 2.419668 0.00133
2000:10 3.130035 0.00038
2000:11 1.22051 0.00004
2000:12 -1.45248 0.00001
2001:01 0.046436 0
2001:02 -1.14394 0
2001:03 2.892716 0
2001:04 3.51857 0
2001:05 0.066043 0
2001:06 -0.52957 0
2001:07 0.815252 0
2001:08 -1.54802 0
2001:09 -1.32363 0.01931
2001:10 0.876903 0.00387
2001:11 -0.67386 0.00036
2001:12 -1.15608 0

Figure 8: Singapore: Panel A - Model22 (REER)

Figure 8, Panel A - Data for figure immediately follows

Data for Figure 8: Singapore: Panel A - Model22 (REER)

  Exchange Rate Percentage Change Probability
1984:12 0.925933 0.80707
1985:01 1.373019 0.97984
1985:02 2.690745 0.99951
1985:03 0 0.99988
1985:04 -1.78576 0.99994
1985:05 0 0.99994
1985:06 0.449439 0.99979
1985:07 -0.90091 0.99705
1985:08 0 0.98945
1985:09 0.900907 0.99017
1985:10 -4.11958 0.99885
1985:11 -1.41179 0.99869
1985:12 0.472814 0.99276
1986:01 0.470589 0.98083
1986:02 0.468385 0.84794
1986:03 0.930239 0.55555
1986:04 1.379332 0.26675
1986:05 1.360565 0.06438
1986:06 0 0.01369
1986:07 -1.36057 0.00448
1986:08 -1.37933 0.00142
1986:09 0.461895 0.00069
1986:10 0.459771 0.00027
1986:11 0.457667 0.00018
1986:12 0 0.0002
1987:01 -1.84337 0.00023
1987:02 -0.4662 0.00008
1987:03 0 0.00002
1987:04 -0.46838 0
1987:05 -0.47059 0
1987:06 0 0
1987:07 0 0.00001
1987:08 -0.47281 0.00005
1987:09 -0.95239 0.00005
1987:10 0 0.00007
1987:11 -2.42143 0.00026
1987:12 -1.48151 0.00009
1988:01 0.990107 0.00011
1988:02 -0.49383 0.00005
1988:03 -0.49628 0.00002
1988:04 -0.49875 0.00001
1988:05 0.498754 0
1988:06 0.990107 0
1988:07 0.9804 0.00054
1988:08 -0.489 0.00231
1988:09 0 0.00238
1988:10 -0.98523 0.00154
1988:11 -3.0153 0.0105
1988:12 -1.02565 0.0071
1989:01 0 0.02151
1989:02 -0.5168 0.05146
1989:03 0.516797 0.06308
1989:04 0.51414 0.04909
1989:05 0.51151 0.06687
1989:06 0 0.09005
1989:07 0 0.05061
1989:08 0 0.02682
1989:09 1.015237 0.03498
1989:10 -1.01524 0.02177
1989:11 0 0.01682
1989:12 -2.06193 0.04865
1990:01 -1.57484 0.07187
1990:02 -1.60003 0.10932
1990:03 1.069529 0.24251
1990:04 0 0.2346
1990:05 -1.06953 0.18954
1990:06 -0.53908 0.13257
1990:07 -1.63491 0.14176
1990:08 -1.66209 0.10462
1990:09 -1.12361 0.05463
1990:10 -2.28581 0.09586
1990:11 -1.1628 0.05948
1990:12 1.162804 0.14716
1991:01 1.149438 0.13341
1991:02 -1.72915 0.14935
1991:03 2.298952 0.4917
1991:04 0.566574 0.42065
1991:05 0 0.23755
1991:06 0.563382 0.17569
1991:07 -1.12996 0.12676
1991:08 -1.71924 0.10657
1991:09 -1.74932 0.07445
1991:10 -0.58997 0.04058
1991:11 -1.19049 0.03023
1991:12 -1.20483 0.06188
1992:01 -1.21953 0.09636
1992:02 0.611623 0.12542
1992:03 1.212136 0.16673
1992:04 0 0.12341
1992:05 -1.21214 0.09523
1992:06 -1.22701 0.05402
1992:07 -0.6192 0.02402
1992:08 0 0.01134
1992:09 -0.62305 0.00467
1992:10 0.623055 0.00403
1992:11 1.234584 0.00559
1992:12 0.611623 0.00612
1993:01 0.607905 0.00577
1993:02 0 0.00379
1993:03 -0.6079 0.00203
1993:04 -1.22701 0.00124
1993:05 -0.6192 0.0006
1993:06 0.619197 0.00049
1993:07 0 0.00032
1993:08 -0.6192 0.00021
1993:09 -0.62305 0.00009
1993:10 -1.8928 0.00355
1993:11 1.892801 0.01738
1993:12 0 0.0177
1994:01 0 0.01631
1994:02 -0.62696 0.00969
1994:03 -0.63092 0.00505
1994:04 -1.2739 0.00802
1994:05 -0.64309 0.00658
1994:06 -1.29872 0.00559
1994:07 -1.31581 0.00312
1994:08 -0.66445 0.00173
1994:09 -0.6689 0.00077
1994:10 -0.6734 0.00046
1994:11 -0.67797 0.001
1994:12 0 0.01812
1995:01 -1.36988 0.02803
1995:02 0 0.0166
1995:03 -2.09067 0.03151
1995:04 -1.41846 0.01598
1995:05 -0.71685 0.00653
1995:06 0 0.0026
1995:07 0.716849 0.00167
1995:08 0.711747 0.00107
1995:09 1.408474 0.00132
1995:10 -0.70176 0.00061
1995:11 -0.70672 0.00035
1995:12 0 0.00112
1996:01 0.706717 0.00432
1996:02 -0.70672 0.00552
1996:03 0 0.00819
1996:04 0 0.0202
1996:05 0 0.01826
1996:06 0 0.01767
1996:07 0.706717 0.01688
1996:08 -0.70672 0.00972
1996:09 0 0.00602
1996:10 0 0.00633
1996:11 -0.71175 0.01593
1996:12 0 0.17122
1997:01 0.711747 0.45109
1997:02 0.706717 0.65887
1997:03 1.398624 0.81469
1997:04 0 0.79889
1997:05 0 0.6808
1997:06 -0.69687 0.54879
1997:07 1.388911 0.80886
1997:08 3.390155 0.97543
1997:09 1.324523 0.96223
1997:10 2.597549 0.93061
1997:11 1.273903 0.87057
1997:12 4.335044 0.98432
1998:01 5.88405 0.90735
1998:02 -5.27982 0.88617
1998:03 -2.43915 0.88644
1998:04 -1.24225 0.88281
1998:05 2.469261 0.9985
1998:06 3.593201 0.99725
1998:07 0.586512 0.99264
1998:08 2.312242 0.91514
1998:09 -1.14944 0.56977
1998:10 -5.34252 0.93455
1998:11 0 0.89929
1998:12 0.607905 0.81533
1999:01 1.801851 0.71638
1999:02 1.183446 0.52655
1999:03 1.749316 0.52662
1999:04 -1.1628 0.40981
1999:05 0 0.26881
1999:06 0 0.1409
1999:07 -0.58651 0.06691
1999:08 -1.18345 0.03764
1999:09 1.183446 0.05496
1999:10 -1.18345 0.03111
1999:11 -0.59702 0.01432
1999:12 0 0.00723
2000:01 0 0.00459
2000:02 1.780462 0.02597
2000:03 1.169604 0.02061
2000:04 -0.58309 0.01088
2000:05 1.162804 0.01948
2000:06 0 0.00974
2000:07 0.57637 0.00624
2000:08 -1.15608 0.00604
2000:09 1.156082 0.00988
2000:10 0.573067 0.00698
2000:11 0 0.00821
2000:12 -0.57307 0.04558
2001:01 0 0.04175
2001:02 0 0.05018
2001:03 1.709443 0.22659
2001:04 2.23473 0.35227
2001:05 0 0.25222
2001:06 0.550966 0.19053
2001:07 0 0.11164
2001:08 -3.35227 0.91615
2001:09 -0.5698 0.88038
2001:10 3.371106 0.9482
2001:11 1.098912 0.89394
2001:12 0.54496 0

Figure 8: Singapore: Panel B - Model31 (REER, BANKSTD)

Figure 8, Panel B - Data for figure immediately follows

Data for Figure 8: Singapore: Panel B - Model31 (REER, BANKSTD)

  Exchange Rate Percentage Change Probability
1984:12 0.925933 0.72693
1985:01 1.373019 0.89933
1985:02 2.690745 0.86623
1985:03 0 0.8706
1985:04 -1.78576 0.83775
1985:05 0 0.78742
1985:06 0.449439 0.63839
1985:07 -0.90091 0.46482
1985:08 0 0.27009
1985:09 0.900907 0.29891
1985:10 -4.11958 0.86484
1985:11 -1.41179 0.78894
1985:12 0.472814 0.67185
1986:01 0.470589 0.45628
1986:02 0.468385 0.25663
1986:03 0.930239 0.18389
1986:04 1.379332 0.17379
1986:05 1.360565 0.13628
1986:06 0 0.05985
1986:07 -1.36057 0.05006
1986:08 -1.37933 0.02626
1986:09 0.461895 0.0178
1986:10 0.459771 0.00823
1986:11 0.457667 0.00366
1986:12 0 0.00135
1987:01 -1.84337 0.0028
1987:02 -0.4662 0.00126
1987:03 0 0.00048
1987:04 -0.46838 0.00018
1987:05 -0.47059 0.00006
1987:06 0 0.00002
1987:07 0 0.00027
1987:08 -0.47281 0.00022
1987:09 -0.95239 0.00013
1987:10 0 0.84795
1987:11 -2.42143 0.84902
1987:12 -1.48151 0.66568
1988:01 0.990107 0.68172
1988:02 -0.49383 0.4707
1988:03 -0.49628 0.23677
1988:04 -0.49875 0.09775
1988:05 0.498754 0.05625
1988:06 0.990107 0.0401
1988:07 0.9804 0.02457
1988:08 -0.489 0.07306
1988:09 0 0.03082
1988:10 -0.98523 0.01658
1988:11 -3.0153 0.15202
1988:12 -1.02565 0.08394
1989:01 0 0.07997
1989:02 -0.5168 0.07498
1989:03 0.516797 0.08006
1989:04 0.51414 0.05117
1989:05 0.51151 0.13721
1989:06 0 0.18173
1989:07 0 0.10274
1989:08 0 0.04239
1989:09 1.015237 0.04089
1989:10 -1.01524 0.02913
1989:11 0 0.01741
1989:12 -2.06193 0.0662
1990:01 -1.57484 0.12073
1990:02 -1.60003 0.15838
1990:03 1.069529 0.26342
1990:04 0 0.22042
1990:05 -1.06953 0.30219
1990:06 -0.53908 0.23167
1990:07 -1.63491 0.23934
1990:08 -1.66209 0.72253
1990:09 -1.12361 0.49557
1990:10 -2.28581 0.63404
1990:11 -1.1628 0.41595
1990:12 1.162804 0.55767
1991:01 1.149438 0.42484
1991:02 -1.72915 0.5447
1991:03 2.298952 0.7675
1991:04 0.566574 0.59602
1991:05 0 0.32359
1991:06 0.563382 0.19228
1991:07 -1.12996 0.14328
1991:08 -1.71924 0.16469
1991:09 -1.74932 0.11066
1991:10 -0.58997 0.04958
1991:11 -1.19049 0.03261
1991:12 -1.20483 0.03653
1992:01 -1.21953 0.06878
1992:02 0.611623 0.08559
1992:03 1.212136 0.0857
1992:04 0 0.05323
1992:05 -1.21214 0.04187
1992:06 -1.22701 0.02215
1992:07 -0.6192 0.00837
1992:08 0 0.00343
1992:09 -0.62305 0.00136
1992:10 0.623055 0.00096
1992:11 1.234584 0.00103
1992:12 0.611623 0.00133
1993:01 0.607905 0.00127
1993:02 0 0.0008
1993:03 -0.6079 0.00036
1993:04 -1.22701 0.00022
1993:05 -0.6192 0.00009
1993:06 0.619197 0.00006
1993:07 0 0.00004
1993:08 -0.6192 0.00017
1993:09 -0.62305 0.00006
1993:10 -1.8928 0.00111
1993:11 1.892801 0.00602
1993:12 0 0.49534
1994:01 0 0.29438
1994:02 -0.62696 0.13878
1994:03 -0.63092 0.07519
1994:04 -1.2739 0.05393
1994:05 -0.64309 0.02242
1994:06 -1.29872 0.01477
1994:07 -1.31581 0.00758
1994:08 -0.66445 0.00291
1994:09 -0.6689 0.00108
1994:10 -0.6734 0.00043
1994:11 -0.67797 0.00043
1994:12 0 0.01279
1995:01 -1.36988 0.07075
1995:02 0 0.03427
1995:03 -2.09067 0.09659
1995:04 -1.41846 0.05006
1995:05 -0.71685 0.01899
1995:06 0 0.00745
1995:07 0.716849 0.00458
1995:08 0.711747 0.00234
1995:09 1.408474 0.00278
1995:10 -0.70176 0.00155
1995:11 -0.70672 0.00063
1995:12 0 0.00194
1996:01 0.706717 0.00243
1996:02 -0.70672 0.00215
1996:03 0 0.00637
1996:04 0 0.00796
1996:05 0 0.00791
1996:06 0 0.00581
1996:07 0.706717 0.00793
1996:08 -0.70672 0.00409
1996:09 0 0.00186
1996:10 0 0.0018
1996:11 -0.71175 0.00593
1996:12 0 0.10384
1997:01 0.711747 0.3727
1997:02 0.706717 0.69281
1997:03 1.398624 0.71513
1997:04 0 0.63242
1997:05 0 0.41113
1997:06 -0.69687 0.2995
1997:07 1.388911 0.4983
1997:08 3.390155 0.81544
1997:09 1.324523 0.66194
1997:10 2.597549 0.83846
1997:11 1.273903 0.679
1997:12 4.335044 0.86615
1998:01 5.88405 0.8501
1998:02 -5.27982 0.81353
1998:03 -2.43915 0.768
1998:04 -1.24225 0.79291
1998:05 2.469261 0.86493
1998:06 3.593201 0.82711
1998:07 0.586512 0.66852
1998:08 2.312242 0.8395
1998:09 -1.14944 0.71386
1998:10 -5.34252 0.86596
1998:11 0 0.74605
1998:12 0.607905 0.57303
1999:01 1.801851 0.68767
1999:02 1.183446 0.52562
1999:03 1.749316 0.58136
1999:04 -1.1628 0.49723
1999:05 0 0.30881
1999:06 0 0.14032
1999:07 -0.58651 0.09696
1999:08 -1.18345 0.06405
1999:09 1.183446 0.1062
1999:10 -1.18345 0.07901
1999:11 -0.59702 0.03415
1999:12 0 0.03084
2000:01 0 0.0562
2000:02 1.780462 0.21877
2000:03 1.169604 0.14285
2000:04 -0.58309 0.07638
2000:05 1.162804 0.23408
2000:06 0 0.11643
2000:07 0.57637 0.06366
2000:08 -1.15608 0.05161
2000:09 1.156082 0.0729
2000:10 0.573067 0.04001
2000:11 0 0.03061
2000:12 -0.57307 0.06807
2001:01 0 0.08597
2001:02 0 0.0601
2001:03 1.709443 0.42315
2001:04 2.23473 0.48983
2001:05 0 0.3081
2001:06 0.550966 0.19807
2001:07 0 0.09616
2001:08 -3.35227 0.84125
2001:09 -0.5698 0.73109
2001:10 3.371106 0.86604
2001:11 1.098912 0.71941
2001:12 0.54496 0

Figure 9: Philippines: Panel A - Model21 (REER)

Figure 9, Panel A - Data for figure immediately follows

Data for Figure 9: Philippines: Panel A - Model21 (REER)

  Exchange Rate Percentage Change Probability
1984:12 -0.50226 0.52162
1985:01 -4.53219 0.80488
1985:02 -3.86729 0.67853
1985:03 1.197619 0.72124
1985:04 0 0.57592
1985:05 0 0.27517
1985:06 -0.05413 0.15359
1985:07 0.593794 0.15835
1985:08 0.107585 0.12025
1985:09 0.107469 0.11223
1985:10 0.428725 0.10156
1985:11 0.213675 0.09508
1985:12 0.850165 0.15331
1986:01 0.738011 0.11921
1986:02 7.192973 0.90457
1986:03 1.551923 0.81841
1986:04 -1.35661 0.83117
1986:05 0 0.65987
1986:06 0.243605 0.28503
1986:07 -0.48781 0.24353
1986:08 -0.09785 0.09683
1986:09 0.390816 0.0637
1986:10 -0.34188 0.07158
1986:11 0 0.06369
1986:12 0.390625 0.06655
1987:01 -0.29283 0.07169
1987:02 0.341547 0.06341
1987:03 0.146021 0.05668
1987:04 -0.29226 0.06044
1987:05 -0.14645 0.05675
1987:06 -0.04886 0.06068
1987:07 -0.04889 0.07039
1987:08 -0.04891 0.06975
1987:09 0.779731 0.12125
1987:10 0.53256 0.09286
1987:11 0.529739 0.07676
1987:12 -0.04804 0.07773
1988:01 0.192031 0.07351
1988:02 0.239521 0.071
1988:03 0.620083 0.08029
1988:04 0 0.07426
1988:05 -0.38113 0.07844
1988:06 0 0.07961
1988:07 0.333572 0.08472
1988:08 0.190114 0.08145
1988:09 0.898139 0.1531
1988:10 0.516312 0.09596
1988:11 0.093589 0.07593
1988:12 -0.09359 0.07979
1989:01 -0.09368 0.08678
1989:02 0.093677 0.08209
1989:03 -0.09368 0.08182
1989:04 0.327486 0.08363
1989:05 0.790886 0.11031
1989:06 0.462322 0.10078
1989:07 0.963973 0.15803
1989:08 -0.04569 0.12788
1989:09 0.410491 0.11902
1989:10 -0.04553 0.1215
1989:11 0.635499 0.13724
1989:12 1.080119 0.15861
1990:01 0.535716 0.11117
1990:02 0.709852 0.09941
1990:03 0.617014 0.09244
1990:04 0 0.09319
1990:05 0.61323 0.10307
1990:06 0.869571 0.10613
1990:07 1.971774 0.69259
1990:08 3.707986 0.86359
1990:09 3.614851 0.7897
1990:10 1.56559 0.61594
1990:11 8.376988 0.91161
1990:12 0 0.82442
1991:01 0 0.68932
1991:02 0 0.25388
1991:03 0 0.08573
1991:04 -0.25031 0.06547
1991:05 -0.39462 0.06303
1991:06 -0.07192 0.06542
1991:07 -0.64959 0.11568
1991:08 -1.53232 0.29329
1991:09 -0.81211 0.17253
1991:10 0.037058 0.09721
1991:11 -0.93059 0.33743
1991:12 -0.26212 0.17573
1992:01 -0.48863 0.12926
1992:02 -1.44215 0.54611
1992:03 -1.34695 0.36941
1992:04 -0.5439 0.18228
1992:05 1.85262 0.8901
1992:06 -0.11479 0.7433
1992:07 -3.34792 0.88533
1992:08 -2.36342 0.74859
1992:09 0.242915 0.64002
1992:10 0.201979 0.37371
1992:11 0.643606 0.23378
1992:12 1.512166 0.54999
1993:01 -0.1581 0.38298
1993:02 0.118601 0.18795
1993:03 0.23678 0.10075
1993:04 2.760136 0.89819
1993:05 3.503843 0.83598
1993:06 0.737738 0.68952
1993:07 1.314367 0.5999
1993:08 1.368897 0.4274
1993:09 0.996804 0.20249
1993:10 3.241266 0.91264
1993:11 -2.35958 0.86222
1993:12 -2.45258 0.74414
1994:01 -0.25221 0.54402
1994:02 -0.25284 0.24341
1994:03 -0.21723 0.10215
1994:04 -0.21771 0.07344
1994:05 -1.75893 0.89252
1994:06 -0.25912 0.71767
1994:07 -1.94617 0.89275
1994:08 -0.56851 0.71702
1994:09 -1.53201 0.89078
1994:10 -2.02736 0.79469
1994:11 -4.55265 0.87949
1994:12 -0.45445 0.75893
1995:01 1.927474 0.82846
1995:02 1.651598 0.68816
1995:03 3.262227 0.90577
1995:04 0.578371 0.78445
1995:05 -0.61705 0.64948
1995:06 -0.69876 0.37734
1995:07 -0.62525 0.16717
1995:08 0.780949 0.26827
1995:09 1.0062 0.1753
1995:10 0 0.11381
1995:11 0.767169 0.11488
1995:12 0.15273 0.09362
1996:01 0.038146 0.08897
1996:02 -0.2291 0.08987
1996:03 0.152788 0.08797
1996:04 -0.03818 0.09184
1996:05 -0.03819 0.09543
1996:06 0.03819 0.10285
1996:07 0.038175 0.09875
1996:08 0 0.10819
1996:09 0.152555 0.10568
1996:10 0.114264 0.10324
1996:11 0 0.09764
1996:12 0.076104 0.10743
1997:01 0.114047 0.12196
1997:02 0.075959 0.13304
1997:03 -0.03797 0.12792
1997:04 0.113874 0.11726
1997:05 0.037929 0.111
1997:06 0.037915 0.11858
1997:07 4.774265 0.87795
1997:08 5.826209 0.80563
1997:09 9.923885 0.87151
1997:10 6.19495 0.7971
1997:11 0.173964 0.75164
1997:12 7.396312 0.9099
1998:01 13.77597 0.86907
1998:02 -5.41844 0.78595
1998:03 -3.55156 0.70682
1998:04 -1.44631 0.45139
1998:05 2.212593 0.90371
1998:06 2.760527 0.82045
1998:07 3.358797 0.82271
1998:08 2.971216 0.74598
1998:09 1.704718 0.54534
1998:10 -2.05384 0.9146
1998:11 -7.12604 0.89997
1998:12 -2.20234 0.80196
1999:01 -1.72974 0.73864
1999:02 0.984719 0.81556
1999:03 0.334664 0.6056
1999:04 -1.73692 0.88606
1999:05 -1.05153 0.70658
1999:06 0.158437 0.43851
1999:07 0.997645 0.43477
1999:08 2.527862 0.85898
1999:09 2.291426 0.74649
1999:10 0.372718 0.51896
1999:11 0.049591 0.22318
1999:12 0.691702 0.17528
2000:01 -0.46885 0.17462
2000:02 0.345679 0.12437
2000:03 0.90787 0.13419
2000:04 0.608793 0.09945
2000:05 1.494004 0.67607
2000:06 1.989173 0.65051
2000:07 3.885993 0.88718
2000:08 1.255059 0.76168
2000:09 1.853539 0.87848
2000:10 5.051687 0.90313
2000:11 3.352041 0.81412
2000:12 0.301054 0.6831
2001:01 2.121622 0.82316
2001:02 -5.40127 0.8985
2001:03 0.372055 0.80471
2001:04 3.487075 0.83654
2001:05 0.69493 0.71501
2001:06 1.862251 0.83802
2001:07 3.304665 0.86292
2001:08 -2.33829 0.83343
2001:09 -1.43358 0.6944
2001:10 0.932227 0.84094
2001:11 0.501351 0.62176
2001:12 -0.38543 0

Figure 9: Philippines: Panel B - Model31 (REER, GENRET)

Figure 9, Panel B - Data for figure immediately follows

Data for Figure 9: Philippines: Panel B - Model31 (REER, GENRET)
  Exchange Rate Percentage Change Probability
1984:12-0.50226 0
1985:01-4.53219 0
1985:02-3.86729 0
1985:031.197619 0
1985:040 0
1985:050 0
1985:06-0.05413 0
1985:070.593794 0
1985:080.107585 0
1985:090.107469 0
1985:100.428725 0
1985:110.213675 0
1985:120.850165 0
1986:010.738011 0
1986:027.192973 0
1986:031.551923 0
1986:04-1.35661 0
1986:050 0
1986:060.243605 0
1986:07-0.48781 0
1986:08-0.09785 0
1986:090.390816 0
1986:10-0.34188 0
1986:110 0
1986:120.390625 0
1987:01-0.29283 0.86712
1987:020.341547 0.43883
1987:030.146021 0.16761
1987:04-0.29226 0.09897
1987:05-0.14645 0.05874
1987:06-0.04886 0.0474
1987:07-0.04889 0.05843
1987:08-0.04891 0.06564
1987:090.779731 0.16852
1987:100.53256 0.11186
1987:110.529739 0.07868
1987:12-0.04804 0.07438
1988:010.192031 0.06997
1988:020.239521 0.06839
1988:030.620083 0.08029
1988:040 0.07189
1988:05-0.38113 0.07549
1988:060 0.07617
1988:070.333572 0.08256
1988:080.190114 0.082
1988:090.898139 0.21638
1988:100.516312 0.12218
1988:110.093589 0.07859
1988:12-0.09359 0.07444
1989:01-0.09368 0.08446
1989:020.093677 0.07849
1989:03-0.09368 0.07768
1989:040.327486 0.07958
1989:050.790886 0.11303
1989:060.462322 0.10556
1989:070.963973 0.2033
1989:08-0.04569 0.16265
1989:090.410491 0.13853
1989:10-0.04553 0.1303
1989:110.635499 0.15833
1989:121.080119 0.18547
1990:010.535716 0.12826
1990:020.709852 0.1082
1990:030.617014 0.09227
1990:040 0.10027
1990:050.61323 0.11528
1990:060.869571 0.11161
1990:071.971774 0.74088
1990:083.707986 0.90149
1990:093.614851 0.86597
1990:101.56559 0.76339
1990:118.376988 0.95305
1990:120 0.90739
1991:010 0.8442
1991:020 0.45054
1991:030 0.13903
1991:04-0.25031 0.07696
1991:05-0.39462 0.05948
1991:06-0.07192 0.06258
1991:07-0.64959 0.13866
1991:08-1.53232 0.30551
1991:09-0.81211 0.20094
1991:100.037058 0.11169
1991:11-0.93059 0.38441
1991:12-0.26212 0.22587
1992:01-0.48863 0.15734
1992:02-1.44215 0.64489
1992:03-1.34695 0.49344
1992:04-0.5439 0.26226
1992:051.85262 0.95305
1992:06-0.11479 0.89212
1992:07-3.34792 0.95284
1992:08-2.36342 0.89659
1992:090.242915 0.88464
1992:100.201979 0.75607
1992:110.643606 0.60968
1992:121.512166 0.84474
1993:01-0.1581 0.74694
1993:020.118601 0.50656
1993:030.23678 0.19915
1993:042.760136 0.95305
1993:053.503843 0.9153
1993:060.737738 0.8433
1993:071.314367 0.75518
1993:081.368897 0.61529
1993:090.996804 0.34933
1993:103.241266 0.95305
1993:11-2.35958 0.92067
1993:12-2.45258 0.86056
1994:01-0.25221 0.75823
1994:02-0.25284 0.50488
1994:03-0.21723 0.19526
1994:04-0.21771 0.08866
1994:05-1.75893 0.9528
1994:06-0.25912 0.87791
1994:07-1.94617 0.95284
1994:08-0.56851 0.87872
1994:09-1.53201 0.95216
1994:10-2.02736 0.90154
1994:11-4.55265 0.95103
1994:12-0.45445 0.90276
1995:011.927474 0.90702
1995:021.651598 0.84108
1995:033.262227 0.95287
1995:040.578371 0.89334
1995:05-0.61705 0.80271
1995:06-0.69876 0.59553
1995:07-0.62525 0.309
1995:080.780949 0.58522
1995:091.0062 0.42597
1995:100 0.26041
1995:110.767169 0.21259
1995:120.15273 0.12984
1996:010.038146 0.09262
1996:02-0.2291 0.09079
1996:030.152788 0.08785
1996:04-0.03818 0.09144
1996:05-0.03819 0.09243
1996:060.03819 0.10373
1996:070.038175 0.10209
1996:080 0.10934
1996:090.152555 0.1088
1996:100.114264 0.10779
1996:110 0.09758
1996:120.076104 0.10931
1997:010.114047 0.12542
1997:020.075959 0.14403
1997:03-0.03797 0.13864
1997:040.113874 0.1318
1997:050.037929 0.11477
1997:060.037915 0.12452
1997:074.774265 0.95305
1997:085.826209 0.91605
1997:099.923885 0.92909
1997:106.19495 0.88883
1997:110.173964 0.91537
1997:127.396312 0.95083
1998:0113.77597 0.91513
1998:02-5.41844 0.86708
1998:03-3.55156 0.82444
1998:04-1.44631 0.6272
1998:052.212593 0.95305
1998:062.760527 0.90912
1998:073.358797 0.90034
1998:082.971216 0.85308
1998:091.704718 0.71587
1998:10-2.05384 0.95305
1998:11-7.12604 0.94492
1998:12-2.20234 0.89672
1999:01-1.72974 0.79393
1999:020.984719 0.92303
1999:030.334664 0.83686
1999:04-1.73692 0.95305
1999:05-1.05153 0.87978
1999:060.158437 0.77321
1999:070.997645 0.75234
1999:082.527862 0.93653
1999:092.291426 0.88299
1999:100.372718 0.77028
1999:110.049591 0.50013
1999:120.691702 0.43568
2000:01-0.46885 0.40871
2000:020.345679 0.26413
2000:030.90787 0.23232
2000:040.608793 0.13756
2000:051.494004 0.88354
2000:061.989173 0.853
2000:073.885993 0.94734
2000:081.255059 0.89188
2000:091.853539 0.91716
2000:105.051687 0.95301
2000:113.352041 0.90706
2000:120.301054 0.87887
2001:012.121622 0.89913
2001:02-5.40127 0.95263
2001:030.372055 0.90816
2001:043.487075 0.89821
2001:050.69493 0.84049
2001:061.862251 0.86923
2001:073.304665 0.9165
2001:08-2.33829 0.91273
2001:09-1.43358 0.85555
2001:100.932227 0.95067
2001:110.501351 0.87329
2001:12-0.38543 0

Figure 10: Malaysia: Panel A - Model31 (REER,M2ratio)

Figure 10, Panel A - Data for figure immediately follows

Data for Figure 10: Malaysia: Panel A - Model31 (REER,M2ratio)

  Exchange Rate Percentage Change Probability
1984:12 0.82988 0.75102
1985:01 2.449102 0.71258
1985:02 2.78348 0.66364
1985:03 1.169604 0.34599
1985:04 -3.55067 0.80093
1985:05 -0.40242 0.55905
1985:06 -0.40404 0.21283
1985:07 0 0.04205
1985:08 -0.40568 0.00866
1985:09 0.809721 0.00274
1985:10 -1.21705 0.00249
1985:11 -0.81968 0.00176
1985:12 0 0.00111
1986:01 0.819677 0.00033
1986:02 0.813013 0.00007
1986:03 2.400115 0.00043
1986:04 2.729214 0.00046
1986:05 0 0.00012
1986:06 1.14724 0.00005
1986:07 0.379507 0.00001
1986:08 -1.14287 0.00017
1986:09 0.38241 0.00024
1986:10 0 0.00004
1986:11 -0.38241 0.00006
1986:12 -0.38388 0.00001
1987:01 -0.7722 0.00001
1987:02 -1.56253 0.00029
1987:03 -0.79052 0.00028
1987:04 -1.19762 0.00008
1987:05 -0.80646 0.00146
1987:06 1.60646 0.00324
1987:07 1.188133 0.00099
1987:08 0 0.00017
1987:09 -0.79052 0.0393
1987:10 0.39604 0.00915
1987:11 -1.19286 0.00395
1987:12 -0.4008 0.01282
1988:01 1.988137 0.06479
1988:02 1.562532 0.02365
1988:03 -0.38835 0.00553
1988:04 0 0.05138
1988:05 0.38835 0.01052
1988:06 0.386848 0.00176
1988:07 1.532597 0.00242
1988:08 0.757579 0.04134
1988:09 0.376648 0.0082
1988:10 0.749067 0.00181
1988:11 0 0.0003
1988:12 0.743498 0.0001
1989:01 0.738011 0.04291
1989:02 0.366973 0.00751
1989:03 0.72993 0.00171
1989:04 -0.72993 0.00045
1989:05 -1.10498 0.00012
1989:06 0.369686 0.0083
1989:07 -1.11318 0.00322
1989:08 0 0.00988
1989:09 0.743498 0.00264
1989:10 0 0.00104
1989:11 0 0.0036
1989:12 0 0.00055
1990:01 0 0.00087
1990:02 0 0.00053
1990:03 0.738011 0.00173
1990:04 0.366973 0.00369
1990:05 -1.10498 0.00152
1990:06 0.369686 0.0006
1990:07 0 0.00034
1990:08 -0.36969 0.00006
1990:09 0 0.00001
1990:10 0 0
1990:11 -0.37106 0.09699
1990:12 0.371058 0.02023
1991:01 0.738011 0.00512
1991:02 -0.73801 0.00138
1991:03 1.470615 0.00171
1991:04 0.364299 0.00035
1991:05 0.362977 0.0002
1991:06 0.722025 0.00196
1991:07 0.359067 0.00041
1991:08 -0.35907 0.00017
1991:09 -0.72202 0.00162
1991:10 -0.36298 0.00041
1991:11 -0.3643 0.00008
1991:12 0 0.00001
1992:01 -1.84167 0.00025
1992:02 -3.40297 0.0046
1992:03 -0.7722 0.00128
1992:04 -1.1696 0.00038
1992:05 -0.78741 0.00076
1992:06 -0.39604 0.08144
1992:07 -0.79682 0.01748
1992:08 0 0.00284
1992:09 0 0.00041
1992:10 0 0.00006
1992:11 0.796817 0.00537
1992:12 1.9647 0.38205
1993:01 1.160555 0.14058
1993:02 1.14724 0.06883
1993:03 -0.76336 0.11477
1993:04 -1.15608 0.03248
1993:05 -0.38835 0.0304
1993:06 0 0.00495
1993:07 0 0.00072
1993:08 -0.78125 0.00015
1993:09 0 0.00003
1993:10 0 0.13394
1993:11 0 0.02279
1993:12 0.781254 0.00596
1994:01 5.304274 0.85535
1994:02 1.828204 0.67501
1994:03 -1.45988 0.48901
1994:04 -1.10907 0.19472
1994:05 -2.63669 0.35268
1994:06 -1.15164 0.11468
1994:07 0.385357 0.03551
1994:08 -1.16055 0.01593
1994:09 -0.38986 0.00381
1994:10 0 0.00135
1994:11 0 0.00026
1994:12 0 0.5035
1995:01 0 0.13131
1995:02 -0.39139 0.02342
1995:03 0 0.00354
1995:04 -2.78348 0.13359
1995:05 -0.40404 0.03906
1995:06 -1.22201 0.01222
1995:07 0.408999 0.00306
1995:08 -0.81968 0.11277
1995:09 3.23915 0.84951
1995:10 0.793655 0.62563
1995:11 0.394478 0.26504
1995:12 0 0.05579
1996:01 0.784318 0.06364
1996:02 -0.78432 0.01895
1996:03 0 0.0033
1996:04 -1.18813 0.0018
1996:05 -0.8 0.0005
1996:06 0.400802 0.0029
1996:07 -0.4008 0.00178
1996:08 0 0.00717
1996:09 0.400802 0.0121
1996:10 0.399202 0.00829
1996:11 0.397615 0.00427
1996:12 0.39604 0.01588
1997:01 -1.59366 0.1238
1997:02 0 0.05838
1997:03 -0.40242 0.04977
1997:04 0.803217 0.12422
1997:05 0.399202 0.14273
1997:06 0.397615 0.17733
1997:07 1.9647 0.93704
1997:08 6.405202 0.86287
1997:09 9.398216 0.84091
1997:10 8.894749 0.78199
1997:11 2.994236 0.60703
1997:12 10.62451 0.86449
1998:01 15.67997 0.83732
1998:02 -14.101 0.77071
1998:03 -2.1109 0.64361
1998:04 -0.53476 0.44565
1998:05 2.384219 0.45771
1998:06 4.354081 0.70553
1998:07 4.172384 0.64291
1998:08 0.956945 0.35128
1998:09 -9.74553 0.8645
1998:10 -0.26281 0

Figure 10: Malaysia: Panel B - Model32 (REER,BANKSTD)

Figure 10, Panel B - Data for figure immediately follows

Data for Figure 10: Malaysia: Panel B - Model32(REER,BANKSTD)

  Exchange Rate Percentage Change Probability
1986:03 2.400115 0.75772
1986:04 2.729214 0.61941
1986:05 0 0.25017
1986:06 1.14724 0.08229
1986:07 0.379507 0.01169
1986:08 -1.14287 0.00318
1986:09 0.38241 0.00055
1986:10 0 0.00028
1986:11 -0.38241 0.00008
1986:12 -0.38388 0.00002
1987:01 -0.7722 0.00002
1987:02 -1.56253 0.00193
1987:03 -0.79052 0.00038
1987:04 -1.19762 0.00309
1987:05 -0.80646 0.00079
1987:06 1.60646 0.00126
1987:07 1.188133 0.00402
1987:08 0 0.00221
1987:09 -0.79052 0.00171
1987:10 0.39604 0.7109
1987:11 -1.19286 0.45971
1987:12 -0.4008 0.09419
1988:01 1.988137 0.17977
1988:02 1.562532 0.04999
1988:03 -0.38835 0.00858
1988:04 0 0.00101
1988:05 0.38835 0.00029
1988:06 0.386848 0.00034
1988:07 1.532597 0.00034
1988:08 0.757579 0.00113
1988:09 0.376648 0.00021
1988:10 0.749067 0.00005
1988:11 0 0.00001
1988:12 0.743498 0
1989:01 0.738011 0.00001
1989:02 0.366973 0.00001
1989:03 0.72993 0.00001
1989:04 -0.72993 0.00002
1989:05 -1.10498 0.00157
1989:06 0.369686 0.00154
1989:07 -1.11318 0.00282
1989:08 0 0.00119
1989:09 0.743498 0.00194
1989:10 0 0.00568
1989:11 0 0.00284
1989:12 0 0.00437
1990:01 0 0.00075
1990:02 0 0.00095
1990:03 0.738011 0.00058
1990:04 0.366973 0.00148
1990:05 -1.10498 0.00261
1990:06 0.369686 0.00085
1990:07 0 0.001
1990:08 -0.36969 0.0138
1990:09 0 0.00378
1990:10 0 0.00056
1990:11 -0.37106 0.00009
1990:12 0.371058 0.00012
1991:01 0.738011 0.00003
1991:02 -0.73801 0.00005
1991:03 1.470615 0.00008
1991:04 0.364299 0.00004
1991:05 0.362977 0.00016
1991:06 0.722025 0.00005
1991:07 0.359067 0.00005
1991:08 -0.35907 0.00099
1991:09 -0.72202 0.00018
1991:10 -0.36298 0.00003
1991:11 -0.3643 0
1991:12 0 0
1992:01 -1.84167 0
1992:02 -3.40297 0.00088
1992:03 -0.7722 0.0006
1992:04 -1.1696 0.00079
1992:05 -0.78741 0.00072
1992:06 -0.39604 0.00029
1992:07 -0.79682 0.00034
1992:08 0 0.0006
1992:09 0 0.00123
1992:10 0 0.00093
1992:11 0.796817 0.0061
1992:12 1.9647 0.00888
1993:01 1.160555 0.00353
1993:02 1.14724 0.00142
1993:03 -0.76336 0.00107
1993:04 -1.15608 0.00096
1993:05 -0.38835 0.0014
1993:06 0 0.001
1993:07 0 0.00067
1993:08 -0.78125 0.00742
1993:09 0 0.0021
1993:10 0 0.00636
1993:11 0 0.00305
1993:12 0.781254 0.33202
1994:01 5.304274 0.92814
1994:02 1.828204 0.80782
1994:03 -1.45988 0.60304
1994:04 -1.10907 0.27831
1994:05 -2.63669 0.18407
1994:06 -1.15164 0.03504
1994:07 0.385357 0.00629
1994:08 -1.16055 0.0018
1994:09 -0.38986 0.00025
1994:10 0 0.00004
1994:11 0 0.00003
1994:12 0 0.00005
1995:01 0 0.00018
1995:02 -0.39139 0.00006
1995:03 0 0.00001
1995:04 -2.78348 0.00019
1995:05 -0.40404 0.00017
1995:06 -1.22201 0.00006
1995:07 0.408999 0.00004
1995:08 -0.81968 0.0002
1995:09 3.23915 0.12111
1995:10 0.793655 0.01597
1995:11 0.394478 0.00202
1995:12 0 0.00024
1996:01 0.784318 0.00011
1996:02 -0.78432 0.00012
1996:03 0 0.00012
1996:04 -1.18813 0.00069
1996:05 -0.8 0.00176
1996:06 0.400802 0.00157
1996:07 -0.4008 0.009
1996:08 0 0.0044
1996:09 0.400802 0.00511
1996:10 0.399202 0.004
1996:11 0.397615 0.00495
1996:12 0.39604 0.00676
1997:01 -1.59366 0.06472
1997:02 0 0.13662
1997:03 -0.40242 0.24384
1997:04 0.803217 0.42875
1997:05 0.399202 0.32655
1997:06 0.397615 0.24795
1997:07 1.9647 0.48659
1997:08 6.405202 0.91584
1997:09 9.398216 0.90668
1997:10 8.894749 0.88586
1997:11 2.994236 0.74474
1997:12 10.62451 0.91427
1998:01 15.67997 0.92439
1998:02 -14.101 0.92735
1998:03 -2.1109 0.83092
1998:04 -0.53476 0.63217
1998:05 2.384219 0.49371
1998:06 4.354081 0.67247
1998:07 4.172384 0.65407
1998:08 0.956945 0.30244
1998:09 -9.74553 0.90345
1998:10 -0.26281 0

Footnotes

*   We would like to thank for helpful comments: Mark Carey, Graciela Kaminsky, Adrian Pagan, Jon Wongswan, and participants at the EC2 conference in Bologna 2002 and ASSA meeting in Washington DC 2003. The authors gratefully acknowledge funding support from the Wharton Singapore Management University Research Center. The views expressed in this paper are solely the responsibility of the authors and should not be interpreted as reflecting the view of the Board of Governors of the Federal Reserve System or of any other person associated with the Federal Reserve System.  Return to text

1.  Europe in 1992-93 (the European Exchange Rate mechanism); Mexico in 1994-95; Turkey in 1994 and 2000-01; East and Southeast Asia in 1997; Russia in 1998; and Argentina, Uruguay and Brazil starting in late 2001. Return to text

2.  See also Berg and Patillo (1999b). A more recent paper by Kumar, Moorthy and Perraudin, 2003, applied logit models to pooled data on 32 developing countries for the period January 1985 to October 1999. The results confirm those of earlier studies that factors such as declining reserves, exports and declining real activity are the most important explanatory variables for currency crashes. Return to text

3.  The volatility process is not directly observable. Many volatility proxies have been proposed in the literature. Most of them are functions of the return process (squared returns, absolute returns). We adopt a non-standard proxy: the range. Drawing on the results of Feller (1951), Parkinson (1980) shows that the range (properly rescaled) is an unbiased estimator of the volatility process. Moreover, Brunetti and Lildholdt (2002a) demonstrate that the range is superior to volatility proxies based on returns. Return to text

4.  For a review of the literature on GARCH models see Bera and Higgins (1993) and Bollerslev, Engle and Nelson (1994). More recently, see Hansen and Lunde (2005), who show that a GARCH(1,1) cannot be outperformed by more sophisticated models in the analysis of exchange rates. Return to text

5.  For a literature review on the link between banking and currency crisis see Kaminsky and Reinhart (1999). Return to text

6.  See appendix for a description of how those series were created. Return to text

7.  The dataset consists of ex-post revised data. A forecasting exercise should be performed with real-time data. Return to text

8.  Trend components are computed using the Hodrick-Prescott filter. If this model were to be used for forecasting purposes, a one-sided filter should be use, so that only past information would be considered in the determination of the trend. Return to text

9.  The classification of these variables as external, financial and real sector indicators is based on Kaminsky and Reinhart (1999). They do not include any volatility measures as possible indicators. Return to text

10.  The volatility of the general stock market index and the volatility of the banking index are computed using the range - equations (1) and (2). Return to text

11.  We computed summary statistics for all the variables analyzed. However, to conserve space we do not report them. Return to text

12.  To conserve space we only report results and charts for the model we selected using criteria 1-4 above, and we report also Model(1,1) for comparison. Return to text

13.  See Nelson and Cao (1992). Return to text

14.  For Malaysia, the first difference of the M2 ratio is used. The deviation from trend for M2 ratio was very noisy. Return to text

15.  Data on the bank stock index are available only from February 1986. Return to text

16.  As in Kaminsky and Reinhart (1999) we identify the onset of the Malaysian crisis with August 1997. Return to text



This version is optimized for use by screen readers. Descriptions for all mathematical expressions are provided in LaTex format. A printable pdf version is available. Return to text

Home | Economic research and data | Publications and education resources
Accessibility | Contact us
Last update: March 23, 2007