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1 Introduction

The correlations between financial time series are crucial to risk management and the pricing of

portfolios of assets.1 Of particular interest is whether the correlations are constant over time:

Unstable correlations make it difficult (or impossible) to hedge exposure to one risk factor with

an offsetting position in another asset. In discussions of the importance of correlation for risk

management and hedging, one often encounters statements to the effect that one has to allow for

“correlation breakdown,” i.e., the empirical regularity that the correlations between the series differ

between “quiet” (or “ordinary”) periods and “hectic” (or “unusual”) periods. To quote the global

risk manager for a major securities trading firm (Bookstaber, 1997):

During major market events, correlations change dramatically.

Correlation breakdowns, if they occur, call into question the usefulness of hedging operations based

on correlations estimated from long time series of historical data, since they may be inaccurate

precisely when they may be needed the most.

The purpose of our paper is to show that testing for changes in correlations is not as straightfor-

ward as one might think. Specifically, we demonstrate that splitting a sample of data according to

the ex post realizations of a series, say between “large” and “small” values of one of the series, can

yield very misleading results, because such a procedure is likely to suggest correlation breakdown

regardless of whether the correlation coefficients have changed. We make this point analytically,

by way of several numerical examples, and via an empirical illustration. Although it may not be

obvious at first, our results are a direct consequence of selection bias, a phenomenon familiar to

statisticians and econometricians.

In Section 2, we introduce some notation, provide an analytical expression for the conditional

correlation between two independently and identically distributed (i.i.d.) bivariate normal random

variables, and compute the value of the conditional correlations for a variety of methods of splitting

a dataset into subperiods of interest. In each case, looking at the resulting conditional correlations

would indicate “correlation breakdown” even though the data are, by construction, i.i.d. In Sec-
1See, for example, Wilson 1993; Sullivan, 1995; Campa and Chang, 1997.
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tion 3, we provide several empirical illustrations of how “correlation breakdown” may be generated

by innocuous-seeming conditioning on events of interest. We examine a simple bivariate dataset

of daily changes in German and Japanese exchange rates (vs. the U.S. dollar). We find that the

patterns of conditional correlations calculated from this dataset are very similar to what we would

find if the data were known to be i.i.d. bivariate normal. Our empirical illustrations confirm that

it would be improper to conclude that the (population) correlation between two series varies across

observations based on sample-splitting exercises alone. In Section 4, we discuss what our findings

imply for proper testing for changes in correlations.

2 The relationship between conditional and unconditional correlations

To test whether the correlation between two time series is constant or is changing over time, one

could consider comparing sampling correlations between the two series calculated from subsets of

the data.2 If these conditional correlations are found to be statistically different from each other,

one might be tempted to conclude that the population correlation is not constant. In this section we

demonstrate both analytically and numerically that this intuitively attractive approach to testing

for correlation breakdowns can be very misleading.

2.1 Analytical derivation for bivariate normal random variables

We begin by considering a pair of bivariate normal random variables x and y with (unconditional)

correlation coefficient ρ. We are interested in studying the effect that various forms of conditioning

events—placing restrictions on the support of the distribution of (x, y)—have on the correlation

between x and y.

Empirical practice frequently proceeds by restricting only one of the two variables. Events of

interest in this paper are therefore mostly of the form “x ∈ A”, where A ⊂ R.3 When there is
2The focus on correlations and hence on linear dependence is entirely appropriate when the joint distribution of

the data is multivariate normal or, more generally, multivariate elliptic. In empirical practice, the joint distributions
of many asset price changes are frequently found to be fairly close to being multivariate elliptic.

3We do not treat events of the type “x ∈ A ⊂ R and y ∈ B ⊂ R” explicitly in the present paper. Our aim is to
demonstrate the ways in which (intentional or inadvertant) conditioning on events may affect the correlation between
two variables, rather than provide a general analysis of all types of conditioning. Explicit formulæ are straightforward
to derive along the lines suggested by Theorem 1 in this section.
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no chance of confusion, we shall denote the events simply by “A”. We only consider events of

nontrivial ( 6= 0, 1) probability.

The following theorem, which is proven in Appendix A, states the relationship between con-

ditional and unconditional correlations for bivariate normal random variables when conditioning

places restrictions on one of the two variables:

Theorem 1. Consider a pair of bivariate normal random variables x and y with variances σ2
x

and σ2
y, respectively, and covariance σxy. Put ρ = σxy/(σxσy), the unconditional correlation be-

tween x and y. Consider any event x ∈ A, where A ⊂ R such that 0 < Pr(A) < 1. The conditional

correlation ρA between x and y, conditional on the event x ∈ A, is equal to

ρA = ρ

(
ρ2 + (1 − ρ2)

Var(x)
Var(x | x ∈ A )

)−1/2

. (1)

Inspecting equation (1), we make the following observations:

1. sign(ρA) = sign(ρ). Conditioning, by itself, does not affect the sign of the correlation coeffi-

cient.

2. ρA = ρ if ρ = 0, i.e., if x and y are independent, or if |ρ| = 1, i.e., if the bivariate distribution

is degenerate (a case which we do not consider further).

3. For ρ 6= 0, |ρA| ≷ |ρ| if Var(x | x ∈ A ) ≷ Var(x). This is the result that is of primary interest

to us. The dependence of ρA on the ratio Var(x | A )/Var(x) is illustrated graphically in

Figure 1 for several values of ρ.

In practice, the parameters ρ and Var(x), whether conditional or unconditional, are usual-

ly estimated from time series data. In keeping with common usage, one would equate the full-

sample estimates of moments with the corresponding “unconditional” moments, and sub-sample

estimates—where the subsamples are selected based on the conditioning criterion—with the “con-

ditional” moments.

To extend the logic of Theorem 1 to the case of time series observations, consider the bivariate

time series {xt, yt}, t = 1, 2, . . . , n, which has support R
2×R

2×· · ·×R
2 (n copies) or, equivalently,
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R
n × R

n. Formally, conditioning consists of restricting attention to those observations for which

the xt’s fall into a subset of R
n, i.e., to require (x1, x2, . . . , xn)′ ∈ A, where A ⊂ R

n. As an example

of a sample-based conditioning criterion, we could study the correlation between those xt’s and yt’s

for which xt falls into the first or fourth quartile of the sampling distribution of x.

When the random variables xt and yt are i.i.d. bivariate normal with contemporanous correlation

coefficient ρ, equation (1) holds exactly for conditioning events A defined over (x1, x2, . . . , xn)′. If

the sequence {xt, yt}, t = 1, 2, . . . , n, is not i.i.d., but is assumed to satisfy certain stationarity and

weak dependence conditions, a more general version of equation (1) would apply. Both statements

are proven in Appendix C.

Figure 1: Dependence of ρA on Var(x | A)/ Var(x)
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2.2 Numerically calculated conditional correlations

From the preceding discussion, we note that knowledge of Var(x | A ) lets us determine whether ρA

is less than or greater than ρ. In Appendix B, we show how one may compute the conditional

variance of a normally distributed random variable x for various types of conditioning events of the

form x ∈ A ⊂ R. We now provide three numerical illustrations of how much conditional correlations

can differ from their unconditional counterparts.

As a first illustration of the dependence of the conditional correlation on the nature of the

conditioning event, let x and y be i.i.d. mean-zero, unit-variance normal random variables. The

only free parameter is ρ, the contemporaneous correlation coefficient. Let D1,D2, . . . ,D10 represent

the deciles of the (marginal) distribution of x. The conditioning events A, in this case, are of the

form “x ∈ Di” for the deciles i, i = 1, . . . , 10. We consider two values of ρ, one moderate (ρ = 0.50)

and one high (ρ = 0.95).

We should expect the variance of ( x | x ∈ Di ) to be larger for those deciles that fall into the tails

of the distribution, simply because the tail deciles are wider than the central deciles. Therefore, by

inspection of equation (1), we would also expect the conditional correlation between x and y to be

higher when x is in the tail of its distribution, irrespective of the value of ρ. These expectations

are confirmed by Table 1, where the conditional variance of x and the conditional correlation

between x and y are given for each of the ten deciles.4 As is shown in the center column of

the table, the conditional variance of x strongly depends on the chosen decile: Var(x | x ∈ D1 )

exceeds Var(x | x ∈ D5 ) by a factor of more than 30. As a result, the relationship between deciles

and conditional correlations is distinctly “U-shaped”—for both values of ρ we consider—with the

conditional correlations being largest in D1 and D10. Clearly, then, a U-shaped pattern need not

indicate correlation breakdown, but may instead merely be a consequence of the ex post partitioning

of the data—in this case into deciles.

The preceding illustration studied events which consist of single intervals of the data. In practice,

we are often interested in two-sided events, such as “x is more than (less than) two/three/four

standard deviations away from its mean.” In Table 2, we present the relationship between two-sided
4Var( x | x ∈ Di ) is calculated with equation (B.2); Corr(x, y | x ∈ Di) is calculated with equation (1).
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Table 1: Conditional variances and correlations, decile delimited events, bivariate
normal random variables

x and y are bivariate normal with zero mean and unit variance, and unconditional correlation ρ.

Decile Interval Var(x | x ∈ Di ) Corr(x, y | x ∈ Di )

ρ = 0.50 ρ = 0.95

1 −∞ < x ≤ −1.282 .169 .231 .781
2 −1.282 < x ≤ −.842 .0159 .0725 .358
3 −.842 < x ≤ −.524 .00834 .0526 .268
4 −.524 < x ≤ −.253 .00610 .0451 .231
5 −.253 < x ≤ 0.00 .00534 .0421 .217
6 0.00 < x ≤ .253 .00534 .0421 .217
7 .253 < x ≤ .524 .00610 .0451 .231
8 .524 < x ≤ .842 .00834 .0526 .268
9 .842 < x ≤ 1.282 .0159 .0725 .358
10 1.282 < x < ∞ .169 .231 .781

tail events A (and their complements, Ac) and the resulting conditional correlation coefficients,

again for random variables that are i.i.d. bivariate normally distributed. We consider four values

for the unconditional correlation (.20, .50, .80, and .95) and two-sided events with probabilities

of 50%, 10%, 5%, and 1%. (Each side has one half of the total probability of the event.) The

case Pr(A) = 50% signifies that the event of interest consists of x falling into either the lowermost

or uppermost quartile of its distribution. This corresponds to the case where we split the sample

into subsamples of equal size, according to whether x is far away from its median or not, and wish

to test whether the subsample correlations differ from each other. Cases of Pr(A) = 10% or less

serve to compare the correlation between “tail” observations of the data with the correlation among

“ordinary” observations.

For two-sided events we find |ρA| > |ρ| > |ρAc |, since Var(x | A ) > Var(x) > Var(x | Ac ). We

note that the pairs of conditional correlations are often far apart from each other, especially when

the (population) correlation coefficient is relatively small. E.g., if ρ = 0.5 and Pr(A) = 10%, ρA =

0.771 whereas ρAc = 0.415—a difference of close to 100%! Surely an unsuspecting analyst might

feel tempted to conclude that this discrepancy typifies a clear instance of “correlation breakdown”
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Table 2: Conditional correlations, two-sided events, bivariate normal random
variables

x and y are bivariate normal with zero mean and unit variance. Events A are two-sided “tail”
events of the marginal distribution of x.

Two-Sided Event Probabilities

50% 10% 5% 1%

Corr(x, y) ρA ρAc ρA ρAc ρA ρAc ρA ρAc

.20 .268 .077 .393 .159 .434 .175 .510 .193

.50 .618 .213 .771 .415 .806 .449 .859 .485

.80 .876 .450 .942 .725 .953 .758 .968 .789

.95 .972 .754 .988 .923 .990 .936 .994 .946

between ordinary (quiet) and unusual (hectic) data observations. But, once more, the differences

between the conditional correlations are caused by the choice of subsamples alone and not by any

change in the parameters of the data generating process.

A third form of conditioning is to look at subsamples of the data that are characterized by

“high volatility.” Let a sample of n draws from (x, y) be divided into nm equally sized subsamples

(“months”; m = 1, 2, . . . , nm). The subset of “high-volatility months” can be defined as the set of

months in which the ratio of the (within-month) variance of x to the overall (i.e., unconditional)

variance of x exceeds some threshold k (k ≥ 1):

HVM = {m :
Var(xt | t ∈ month m )

Var(xt)
≥ k, m = 1, . . . , nm}

Using this definition, the conditioning event A can be defined as

A = {(xt, yt) : t ∈ month m, m ∈ HVM}

Since the conditional variance of x is chosen directly in this case, the application of equation (1) is

direct when xt and yt are assumed to be i.i.d. bivariate normal random variables. Conditioning on
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Table 3: Effects of conditioning on “high volatility months”

xt and yt are i.i.d. bivariate normal with means equal to zero, variances equal to unity, and corre-
lation 0.5.

“High volatility months” are defined as months where Var(x) within the month is greater than or
equal to a threshold k. A month is assumed to have 20 observations.

Variance Fraction of months Corr(xt, yt | t ∈ “high volatility month” )
threshold k identifed as “high

volatility months”

1.8 .01 0.615
1.7 .02 0.610
1.6 .04 0.603
1.5 .06 0.595
1.4 .10 0.585
1.3 .16 0.575
1.2 .24 0.564
1.1 .33 0.553
1.0 .45 0.541

“high volatility months” will cause the conditional correlation ρA to be greater in absolute value

than the unconditional correlation ρ.

Table 3 illustrates the relationship between the conditional correlation and conditioning events of

this type. It assumes that xt and yt are distributed i.i.d. bivariate normal with zero means, variances

equal to unity, and correlation ρ = 0.5. We further assume each “month” has 20 observations.

Because the x’s are independent standard normal variables, the within-month conditional variance

of x, which is a function of a sum of terms involving x2, is distributed proportional to a χ2 random

variable with 20 degrees of freedom.

The first column of the table tabulates different values of the threshold k. The second column

uses the cumulative distribution function for a χ2(20) random variable to predict the fraction of

months that will have a conditional variance greater than a certain threshold k. The third column
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shows what the conditional correlation between x and y is for those months.5 Again the pattern

emerges that conditioning events characterized by high volatility of x are associated with high

conditional correlation between x and y, even though the underlying data are i.i.d.

2.3 Conditional correlations for data that are not multivariate normal

The central argument of our paper is that computing correlations conditional on realizations of one

variable, and observing that those correlations are different for different conditioning events, gives

you no basis to conclude that the “true” correlation of the data-generating process is changing

over time. Theorem 1 and Tables 1, 2, and 3 each illustrate this point. They are derived for the

case of i.i.d. normally distributed random variables because the multivariate normal distribution is

analytically tractable. However, Appendix C shows that our argument can be extended to treat

the case of non-i.i.d. random variables, although no simple analytic expressions are available.

To illustrate this point, we reproduced the numerical illustrations in Tables 1, 2, and 3 for the

case of xt and yt distributed as bivariate GARCH(1,1) with constant contemporaneous correlation, a

model introduced by Bollerslev (1990). GARCH random variables are neither normal nor identically

distributed, as their variance changes over time. However, like the case of i.i.d. bivariate normal

random variables we used above, the GARCH model of Bollerslev (1990) does feature a constant

contemporaneous correlation coefficient.6

The results are omitted to save space and because they are nearly identical to the results in

Tables 1, 2, and 3.7 “Correlation breakdown” is still observed when conditioning on deciles, two-

sided events, or high variance months, even when the true data generating process has constant

contemporaneous correlation and time-varying volatility.
5The numbers in the third column are Z

z≥k

ρA(z) dG(z),

where ρA(z) is from equation (1) with Var(x | A ) = z and G(z) is the cumulative distribution function of V/20,
where V is a χ2(20) random variable.

6Because no analytic formula is available for the conditional variance of a bivariate GARCH(1,1) process—the
Σxx|A from Appendix C—the results for GARCH random variables were produced using Monte Carlo simulations of
GARCH(1,1) data with constant contemporaneous correlation ρ.

7The tables are available from the authors on request.
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3 Empirical illustrations

We now present conditional correlations for the three conditioning events discussed above using

actual financial time series. The dataset comprises daily log changes in the German and Japanese

spot exchange rates versus the U.S. dollar, from January 2, 1991 through December 31, 1998

(henceforth, German and Japanese exchange rates).8 The full sample correlation between the two

series is 0.504. A scatterplot of the data is provided in Figure 2. The data points are clustered

around an upward-sloping line. However, the clustering appears to be slightly less tight in the tails

of the data than in the central portion. It is therefore of interest to examine how the correlations

differ between the subsets of the data.

The empirical values for the conditional correlations between the two series, by empirical decile,

are presented in Table 4. The theoretical conditional correlations that would apply if the data were

drawn from an i.i.d. bivariate normal distribution can be seen in Table 1, in the column labelled

“ρ = 0.50.” Rather than reproduce these numbers in Table 4, we provide a 90% confidence

interval for the theoretical conditional correlation.9 We observe that the empirical and theoretical

conditional correlations follow virtually the same U-shaped pattern. The empirical conditional

correlation is outside the 90% confidence interval for the theoretical conditional correlation only

once, in decile 3. Hence, the U-shaped pattern of correlations present in the data cannot be used,

by itself, to determine whether actual correlations differ across hectic and quiet subperiods.

Conditional correlation coefficients for two-sided tail events (“hectic periods”) were also calcu-

lated for the exchange rate data and are presented in Table 5. Again, the theoretical conditional

correlations which would apply if the data were i.i.d. and bivariate normal are nearly the same as

those shown in Table 2 in the row “ρ = 0.5,” so we again show 90% confidence intervals for the

theoretical conditional correlations under the assumption of bivariate normality.

We observe, yet again, that the empirical and theoretical conditional correlations are quite

similar. The empirical conditional correlations are never outside the 90% confidence interval for

normally distributed data. We can therefore not conclude that the true correlation between the
8The exchange rates were collected by the Federal Reserve Bank of New York, at noon of each U.S. business day.
9All confidence intervals in this section were generated with a Monte Carlo simulation on simulated bivariate

normal data with ρ = 0.504 and sample size n = 2,000.
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Figure 2: German and Japanese exchange rates vs. U.S. dollar: Scatterplot of daily
log changes × 100, January 1991–December 1998

two empirical series is different in the “tails” of the distribution. Instead, we should conclude

that the question of correlation breakdown for these series cannot be decided on the basis of this

sample-splitting exercise.

Our third illustration is to compute the empirical correlation between the two exchange rates

conditional on being in a month where the dollar-mark exchange rate exhibited “high volatility.”

Our data sample has 96 months. A scatterplot of the ratio of the within-month variance of daily

dollar-mark returns (on the horizontal axis) against the within-month correlation between dollar-

mark and dollar-yen returns (on the vertical axis) is presented in Figure 3. In addition to the

scatterplot of empirical data, a curve representing the theoretical conditional correlation under the
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Table 4: Empirical and theoretical conditional correlations, decile delimited events,
exchange rate data

Data: Daily log changes of German (x) and Japanese (y) exchange rates relative to U.S. dollar,
scaled by 100%. Sample period: January 2, 1991 to December 31, 1998. Full-sample correlation
ρ = 0.504.

Decile Di of x Range of decile Di Empirical 90% Conf. Interval for
Cond. Corr. Theoretical Cond. Corr.

1 −2.896% < x ≤ −.782% .322 (.117,.342)
2 −.782% < x ≤ −.482% −.026 (−.040,.192)
3 −.482% < x ≤ −.285% .198 (−.064,.168)
4 −.285% < x ≤ −.133% .067 (−.071,.159)
5 −.133% < x ≤ .006% .038 (−.076,.158)
6 .006% < x ≤ .150% −.009 (−.076,.158)
7 .150% < x ≤ .286% .050 (−.071,.159)
8 .286% < x ≤ .485% −.026 (−.064,.168)
9 .485% < x ≤ .797% .040 (−.040,.192)
10 .797% < x < 3.103% .285 (.117,.342)

Table 5: Empirical and theoretical conditional correlations, two-sided events,
exchange rate data

Data: Daily log changes of German (x) and Japanese (y) exchange rates relative to U.S. dollar.
Sample period: January 2, 1991 to December 31, 1998. Full sample correlation ρ = 0.504. Events A
are two-sided “tail” events of the marginal distribution of x.

Conditional Correlations

Two-Sided Event Probabilities
50% 10% 5% 1%

ρA ρAc ρA ρAc ρA ρAc ρA ρAc

Empirical
conditional .589 .224 .726 .386 .746 .448 .837 .477
correlation

90% conf.
interval for (.580, (.143, (.714, (.372, (.739, (.410, (.734, (.450,
theoretical .665) .286) .829) .464) .871) .497) .954) .530)
cond. corr.
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Figure 3: Relation between conditional variance and correlation, within-month data,
daily-frequency German and Japanese exchange rate returns

Scatterplot of within-month variance of German exchange rate (Var(x | x ∈ A)) against within-
month correlation between German and Japanese exchange rate changes vs. the U.S. dollar (ρmonth),
January 1991–December 1998 (96 months). Solid curve: theoretical conditional correlation as a
function of conditional variance of x. Error bars: 90%-confidence intervals for sample size of 21.

assumption of bivariate normality is plotted along with pointwise 90% confidence intervals (the

vertical bars). The figure shows that the empirical within-month correlations are positively related

to the within-month variance, as they would be if the data generating process were bivariate normal.

Comparing the correlation coefficients in “high volatility” months and “low volatility” months could
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Table 6: Empirical and theoretical conditional correlations, “high volatility month”
events, exchange rate data

Data: Daily log changes of German (x) and Japanese (y) exchange rates relative to U.S. dollar.
Sample period: January 2, 1991 to December 31, 1998. Full-sample correlation ρ = 0.504.
“High volatility months” are defined as months where Var( x | month )/Var(x) is greater than or
equal to a threshold k.

Variance Fraction of months Corr(xt, yt | t ∈ “high volatility month” )
threshold k identifed as “high Empirical Theoretical 90%

volatility months” confidence interval

1.8 .13 .662 (.425,.791)
1.7 .14 .660 (.427,.777)
1.6 .14 .660 (.442,.749)
1.5 .19 .639 (.467,.717)
1.4 .20 .638 (.485,.683)
1.3 .21 .644 (.496,.658)
1.2 .22 .642 (.498,.635)
1.1 .28 .622 (.498,.616)
1.0 .34 .562 (.494,.601)

give the illusion of “correlation breakdown,” but again the same pattern would emerge if the data

generating process were i.i.d.10

Table 6 shows how the empirical conditional correlation varies when conditioning on various

definitions of a “high volatility month.”11 The table also shows the 90% confidence interval for

the theoretical conditional correlations under bivariate normality. Evidence of fat tails in the

distribution of the dollar-mark exchange rate is clear in the second column, which shows a wider

spread of the distribution of within-month variance in Table 6 compared with the statistics in

Table 3 based on the bivariate normal distribution. Still, the theoretical and empirical conditional

correlations have the same basic pattern: highest when using a more extreme cutoff for the definition

of a “high volatility month” and declining as the cutoff is reduced. For the thresholds k = 1.2
10The figure does show that the empirical data depart from bivariate normality. There is a clustering of points

outside the 90% confidence interval in the “northwest” corner of the figure. This clustering would be unlikely to
occur if the data were truly bivariate normal.

11Note that Table 6’s conditioning events are of the form Var( x | month )/Var(x) ≥ k while Figure 3’s are of the
form Var( x | month )/Var(x) = k.
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and k = 1.1, the empirical conditional correlation is outside the 90% confidence interval for bivariate

normal data. For the remaining thresholds, it is not. Once again, although the correlation in “high

volatility months” is greater than the unconditional correlation, that is no basis to conclude that

the data generating process exhibits non-constant correlation.

4 Conclusion

We have shown that changes in correlations over time or across “regimes” cannot be detected

reliably by splitting a sample according to the realized values of the data. The lack of reliability

stems from the finding that correlation breakdowns will be “uncovered” by this method, irrespective

of the actual stationarity properties of the data. This result is a direct consequence of the (implicit)

selection bias that occurs when a sample is split according to the realized or observed values alone.

What valid alternative methods exist to detect changing correlations? In order to carry out a

valid test, we argue that it is necessary that the researcher begin with a data-coherent model of the

data generating process that builds in the possibility of structural changes, estimate the model’s

parameters, and only then decide whether the estimated parameters imply changing correlations

(and possibly other structural breaks). For example, if the data were generated according to a

Markov regime switching model with separate parameters for “quiet” and “hectic” time periods,

one could estimate the model’s parameters and then test whether the estimated correlations differ

significantly between regimes. We are undertaking further research along these lines. For other

valid approaches to testing the constancy of correlations, see Bera and Kim (1996), Karolyi and

Stulz (1996), and Longin and Solnik (1995).

We caution that, in empirical practice, one must guard against subtle influences of data mining:

The choice of model to represent the data generating process must be based on considerations that

go beyond prior knowledge as to which model may “fit” the data best. Relying on such knowledge

may reintroduce the problem of splitting the data by ex post criteria, and hence possibly invalidate

the formal test of constancy of correlations across regimes.
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Appendix A. Proof of Theorem 1

The proof relies on the well known property of bivariate normal random variables that each element

may be expressed as a weighted sum of the other element and an independent component which is

also normally distributed.12

Let u and v be two independent standard normal random variables. To create two random

variables x and y such that x and y are distributed bivariate normal with means µx and µy and

variances σ2
x and σ2

y , respectively, and correlation coefficient ρ = σxy/(σxσy), |ρ| ≤ 1, the following

operations can be performed on u and v:

x = µx + σx u (A.1)

y = µy + ρσy u +
√

1 − ρ2 σy v

= µy + (ρσy/σx) (x − µx) +
√

1 − ρ2 σy v (A.2)

Without loss of generality for what follows, we may assume that µx = 0 and µy = 0.

Consider any event A such that 0 < Pr(A) < 1. The conditional correlation coefficient ρA

between x and y, by definition, can be expressed as

ρA =
Cov(x, y | A )√

Var(x | A )
√

Var( y | A )
. (A.3)

We now replace both occurrences of y in equation (A.3) with the expression given in equa-

tion (A.2). The numerator of equation (A.3) may be rewritten as

Cov(x, y | A ) = Cov
(
x, (ρσy/σx)x +

√
1 − ρ2 σy v

∣∣ A )
, (A.4)

or equivalently,

Cov(x, y | A ) = Cov
(
x, (ρσy/σx)x

∣∣ A )
+ Cov

(
x,

√
1 − ρ2 σy v

∣∣ A )
. (A.5)

12See, e.g., Goldberger (1991), p. 75.
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But since x and v are independent, the covariance between x and y conditional on the event A
simplifies to

Cov(x, y | A ) = (ρσy/σx)Var(x | A ). (A.6)

Substituting equation (A.2) into the second part of the denominator of equation (A.3) and

recalling that x and v are independent and v has unit variance, we obtain

Var( y | A ) = Var
(
(ρσy/σx)x +

√
1 − ρ2 σy v

∣∣ A )
= (ρ2σ2

y/σ
2
x)Var(x | A ) + (1 − ρ2)σ2

y Var( v | A )

= (ρ2σ2
y/σ

2
x)Var(x | A ) + (1 − ρ2)σ2

y . (A.7)

By substituting equations (A.6) and (A.7) back into equation (A.3), we may express the condi-

tional correlation between x and y as

ρA =
(ρσy/σx)Var(x | A )√

Var(x | A )
√

(ρ2σ2
y/σ

2
x)Var(x | A ) + (1 − ρ2)σ2

y

. (A.8)

Finally, as was to be shown in this proof, we may simplify this expression to

ρA = ρ

(
ρ2 + (1 − ρ2)

Var(x)
Var(x | A )

)−1/2

.

Incidentally, this result also demonstrates that—at least for the case when the joint distribution

of x and y is normal—the conditional correlation coefficient does not depend on the variance of y

directly.

Appendix B. Analytical calculation of conditional correlation coefficients
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In this appendix, we provide some technical information on how one may calculate conditional

correlations analytically when the conditioning events are of the form x ∈ A, where A ⊂ R. Since

we exclude zero-probability events from our analysis (cf. Theorem 1), events of interest cannot

contain isolated points on the real number line. Candidate events A must therefore consist of

either an interval or a set of non-overlapping intervals. Suppose first that A is a single interval,

i.e., A = [a, b] with a < b.13 In this case, the conditional variance of x is

Var
(
x

∣∣ x ∈ [a, b]
)

= E
(
x2

∣∣ x ∈ [a, b]
) − E

(
x

∣∣ x ∈ [a, b]
)2

=

∫ b
a x2f(x) dx∫ b

a f(x) dx
−

[∫ b
a xf(x) dx∫ b
a f(x) dx

]2

. (B.1)

If x and y are bivariate normal and x has unit variance, equation (B.1) can be rewritten as,

putting Pr(A) =
∫ b
a f(x) dx,

Var
(
x

∣∣ x ∈ [a, b]
)

=
−be−b2/2 + ae−a2/2

√
2π Pr(A)

+ 1 −
[
−e−b2/2 + e−a2/2

√
2π Pr(A)

]2

. (B.2)

Alternatively, A may consist of a collection of mutually exclusive intervals, i.e., A = ∪Ai,

i = 1, . . . , `, with Ai ∩ Aj = ∅ for all i 6= j. The conditional variance of x easily follows from

straightforward modifications to equations (B.1) and (B.2). Equation (B.1), for instance, becomes

Var(x | A ) =

∫
A x2f(x) dx

Pr(A)
−

[∫
A xf(x) dx

Pr(A)

]2

(B.1′)

where
∫
A signifies integration over the intervals Ai = [ai, bi] that comprise the set A.

Thus, by substituting the applicable analytical expression for the conditional variance of x into

equation (1), it is possible to calculate the conditional correlation between x and y numerically, for

any conditioning set A of interest, as long as Pr(A) > 0.
13It is immaterial here whether this interval is open or closed since we are working with normal distributions, which

have continuous probability density functions.
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Appendix C. Extension of Theorem 1 to the multivariate, non-i.i.d. case

In this appendix, we show how the main result of Section 2, Theorem 1, may be extended to the

case of time-series observations. Instead of assuming that (x, y) are a pair of bivariate normal

random variables, we now assume that x ≡ (x1, x2, . . . , xn)′ and y ≡ (y1, y2, . . . , yn)′ are random

vectors which satisfy:

x(n×1) ∼ N(µx,Σxx), (C.1)

y(n×1) ∼ N(µy,Σyy), (C.2)

and


 x

y


 ∼ N





 µx

µy


 ,


 Σxx Σxy

Σxy
′ Σyy




 , (C.3)

where Σxy ≡ Cov(x, y) = E
(
(x − µx)(y − µy)′

)
.

If x and y are covariance stationary, the vectors µx and µy are vectors of constants, and Σxx,

Σyy, and Σxy are banded matrices. More generally, we may allow some heterogeneity in both

time series, as long as the heterogeneity and serial dependence satisfy conditions that permit the

application of a weak law of large numbers (WLLN) such as the one proved by Andrews (1988).

The average correlation between x and y may be defined as

ρ =
tr(Σxy)√

tr(Σxx) · tr(Σyy)
, (C.4)

where tr(·) is the trace operator. An estimator of ρ is defined as the full-sample correlation between

x and y:

ρ̂ =
1
n

∑
t(xt − x̄n)(yt − ȳn)√

1
n

∑
t(xt − x̄n)2 1

n

∑
t(yt − ȳn)2

(C.5)

Since a suitable WLLN is assumed to hold, we observe that plim ρ̂ = limn→∞ ρ, and may therefore

write ρ̂ = ρ + sampling error. (Again, if x and y are covariance stationary, ρ is a constant in any

finite sample.)
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Since the random vectors x and y are multivariate normal, they may also be written as linear

combinations of independent standard-normal random vectors U and V , as follows:

x = µx + Σ1/2
xx U, (C.6)

y = µy + ΣxyΣ−1
xx (x − µx) + (Σyy − ΣxyΣ−1

xx Σxy
′)1/2V

= µy + ΣxyΣ−1/2
xx U + (Σyy − ΣxyΣ−1

xx Σxy
′)1/2V (C.7)

As in the discussion in Section 2, we are interested in the effects conditioning exerts on the

correlation between xt and yt. We assume that conditioning consists of restricting the sample space

to (x ∈ A, y ∈ R
n), where A ⊂ R

n such that 0 < Pr(A) < 1. The random vectors (x | x ∈ A ) and

( y | x ∈ A ) are, in general, not multivariate normal. Setting their first and second moments equal

to µx|A, µy|A, Σxx|A and Σyy|A, respectively, we define the conditional covariance matrix as

Cov(x, y | A ) = E
(
(x − µx|A)(y − µy|A)′ | A )

= Σxy|A.

Setting nA as the number of sample points for which xt ∈ A, the quantities ρA and ρ̂A may

defined similarly to the corresponding unconditional moments (C.4) and (C.5):

ρA =
tr(Σxy|A)√

tr(Σxx|A) · tr(Σyy|A)
(C.8)

ρ̂A =
1

nA

∑
t∈A(xt − x̄A

n )(yt − ȳAn )√
1

nA

∑
t∈A(xt − x̄A

n )2 · 1
nA

∑
t∈A(yt − ȳAn )2

(C.9)

As in the unconditional case, we assume that a suitable WLLN applies to let the sample conditional

moments converge to (finite) constants as n → ∞ (and, of course, that ρA converges to the same

limit).

Some algebra shows that

Σyy|A = Var(y | A)

= Var
(

ΣxyΣ−1
xx (x − µx) +

(
Σyy − ΣxyΣ−1

xx Σxy
′)1/2 · V

∣∣∣ A)
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= Var
(
ΣxyΣ−1

xx (x − µx)
∣∣ A )

+ (Σyy − ΣxyΣ−1
xx Σxy

′)1/2 Var(V | A )(Σyy − ΣxyΣ−1
xx Σxy

′)1/2

= ΣxyΣ−1
xx Var(x | A )Σ−1

xx Σxy
′ +

(
Σyy − ΣxyΣ−1

xx Σxy
′)

= ΣxyΣ−1
xx Σxx|AΣ−1

xx Σxy
′ + Σyy − ΣxyΣ−1

xx Σxy
′ . (C.10)

Similarly,

Σxy|A = Cov(x, y | A )

= Cov
(

x,ΣxyΣ−1
xx x − (

Σyy − ΣxyΣ−1
xx Σxy

′)1/2
V

∣∣∣ A)
= Cov

(
x,ΣxyΣ−1

xx x
∣∣ A ) − Cov

(
x, (Σyy − ΣxyΣ−1

xx Σxy
′)1/2

V
∣∣ A )

= ΣxyΣ−1
xx Var(x | A )

= ΣxyΣ−1
xx Σxx|A . (C.11)

The relationship between ρA and ρ, defined in (C.8) and (C.4) above, can—in general—not be

expressed in simple terms such as (1). However, in the case that (xt, yt) is i.i.d., we may simplify

these equations, since Σxx = σ2
x · In, Σyy = σ2

y · In, and Σxy = σxy · In. Setting ρ = σxy/(σxσy), we

may write:

Σxx|A = σ2
x|A · In (C.12)

Σyy|A = ρσxσy(σ2
x)−1Σxx|A(σ2

x)−1ρσxσy + σ2
yIn − ρ2σ2

xσ2
y

σ2
x

In

= σ2
y

(
ρ2

σ2
x|A
σ2

x

+ 1 − ρ2
)
In (C.13)

Σxy|A =
ρσxσy

σ2
x

σ2
x|AIn

=
ρσy

σx
σ2

x|AIn. (C.14)
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We thus obtain

ρA =
ρσy

σx
σ2

x|A

σ2
x|A · σ2

y

√
ρ2

σ2
x|A
σ2

x
+ 1 − ρ2

=
ρ

σx

σ2
x|A

√
σ2

x|A

(
ρ2

σ2
x|A
σ2

x
+ 1 − ρ2

)

=
ρ√

ρ2 + σ2
x

σ2
x|A

(1 − ρ2)
, (C.15)

which is exactly equal to (1) in the bivariate case.
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