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Abstract

We disentangle price changes due to economy-wide shocks from those driven by
idiosyncratic shocks by estimating a two-regime dynamic factor model with dynamic
loadings on a new large dataset of finely disaggregated monthly personal consumption
expenditures price inflation indexes for 1959-2023. We find that up to the mid-1990s
and after the Covid pandemic, common shocks were the primary driver of US inflation
dynamics and had long-lasting effects. In between, idiosyncratic shocks were the main

driver, and common shocks had short-lived effects.
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1 Introduction

Price stability is one part of the Federal Reserve’s dual mandate. For achieving this goal,
it is crucial to correctly identify the portion of price changes driven by macroeconomic
shocks—that is, those shocks that affect all prices and thus change the general price level
of goods and services—from that resulting from transitory or item-specific developments.
Indeed, policymakers should respond only to the former while avoiding responding to the
latter or—even worse—to measurement error.

With this goal in mind, we develop common core inflation, a measure that isolates price
changes driven by economy-wide shocks from those led by idiosyncratic shocks. Common
core inflation is based upon a dynamic factor model estimated on a new large dataset of
finely disaggregated PCE price indexes suitable for factor-model analysis.

Given its importance, economists have employed similar approaches to produce mea-
sures of underlying inflation (e.g., Cristadoro et al., 2005; Stock and Watson, 2016) and
these measures are currently used in policy institutions.! This paper differs from previous
research in two key aspects. First, we estimate a two-regime dynamic factor model with
dynamic loadings estimated using frequentist methods. We chose a “two-regime” dynamic
factor model with “dynamic loadings” because the properties and the dynamics of the
covariance and spectral density matrices of the data suggest that this is an appropriate
representation of disaggregated PCE prices. Moreover, based on the evolving covariance
structure of the data, we objectively and promptly identify regime changes. For example,
we show that the model provided evidence of a regime switch by August 2021, just a few
months after the inflation ramp-up started.

Our model is more restrictive than one with time-varying volatilities and parameters
estimated using Bayesian methods (e.g., Stock and Watson, 2016) because volatilities and
parameters are fixed within a regime. Nonetheless, we show that our estimate of common
core inflation from the two-regime model is very close to the estimate of common trend
inflation obtained by fitting Stock and Watson’s 2016 model on our dataset. This obser-
vation suggests that regime changes combined with dynamic loadings capture the same
important features of disaggregated price inflation captured by time-varying volatilities

and parameters.

'For example, the Multivariate Core Trend inflation from Federal Reserve Bank of New York essentially
adopts Stock and Watson’s multivariate model and updates the estimates regularly. See the description
https://www.newyorkfed.org/research/policy/mct#--:overview. Likewise, the Underlying Inflation
Gauge (UIG) of Amstad et al. (2017) that the NY Fed discontinued in October 2023 adopted the Cristadoro
et al. (2005) model.



Second, we construct a new and unique dataset of finely disaggregated PCE prices com-
posed of about 140 series from 1959 to 2023 suitable for estimating dynamic factor models.
Due to how the Bureau of Economic Analysis constructs the PCE price indexes, there is
spurious cross-sectional correlation in the disaggregated data, which deteriorates the esti-
mate of the model (see the discussion in Boivin and Ng, 2006 and Luciani, 2014). We take
care of this issue and construct a dataset that does not exhibit spurious cross-sectional
correlation while preserving the structure of the PCE consumption basket—datasets em-
ployed in previous studies are either small (e.g., Stock and Watson, 2016) or do not cover
the PCE basket, hence direct aggregation based on the item weights is not possible (e.g.,
Reis and Watson, 2010). Having such a large and carefully cleaned dataset has the main
advantage that the co-movement in the data—what we are after—and its evolution—what
we leverage to estimate the probability of being in a regime or the other—are very well
estimated.

Our analysis unveils additional and important characterization of the relevant features
of US inflation dynamics. First, Stock and Watson (2007, 2016) show that there has been
a marked reduction in the volatility of the shocks driving trend inflation before and after
the 1990s. We show that this change in volatility is the result of a change in the amount
and the persistency of the comovement among disaggregated prices. Specifically, we show
that US inflation dynamics experienced two regimes, a long-memory regime up to the
mid-1990s, and a short-memory regime from the mid-1990s to the Covid Pandemic. In
the long-memory regime, inflation dynamics are primarily driven by common shocks, and
the effect of these common shocks is long lasting; in the short-memory regime, inflation
dynamics are primarily driven by idiosyncratic shocks, and the effect of the common shocks
is short lived. Thus, when inflation is in the long-memory regime, monetary policy should
promptly and decisively respond to inflation dynamics, while when inflation is in the short-
memory regime, monetary policy can focus on stabilizing the real economy.

Second, Eo et al. (2023) show that since the 1990s, the dynamic of US trend inflation
has been entirely dominated by services inflation. Our results add supporting evidence
to this finding by showing that from the mid-1990s through the Covid pandemic, the
dynamic of nearly all subcomponents of core goods price inflation became almost entirely
idiosyncratic, and the commonality in the data reflected primarily the dynamics of housing
services prices.

Third, we show that inflation fluctuations after the pandemic are consistent with the

long-memory regime, as goods and service inflation started again to comove and show



persistent dynamics. This finding is consistent with the fast and furious cycle of monetary
policy tightening that occurred between March 2022 and April 2023.

Our analysis of disaggregated PCE prices presents results entirely novel in the literature
and provides a new perspective for understanding how macroeconomic shocks propagate
through sectoral price changes and how the nature of this propagation evolves. Specifi-
cally, we go beyond what Stock and Watson (2016) and Eo et al. (2023) did by explicitly
analyzing the distribution of the commonality share—i.e., how much variance of each dis-
aggregated price is explained by the common component. Our findings suggest that as
inflation dynamics transitioned from the long-memory regime (prior to the mid-1990s) to
the short-memory regime (mid-1990s to 2019), the distribution of the commonality share
shifted toward zero, indicating a general increase in idiosyncratic behavior. Moreover, we
find that after the onset of the pandemic, although commonality in goods prices rose across
the board, idiosyncrasy in some core services, namely education and health care, increased
heavily. As a result, the distribution of commonality shares became more dispersed.

The rest of the paper is organized as follows. Section 2 introduces the new dataset
and summarizes the key features of the data, and Section 3 presents the model. Section 4
presents the empirical analysis, and Section 5 compares common core inflation and trend
inflation from the Stock and Watson (2016) model. Section 6 concludes. This paper
includes a lengthy Appendix containing material that could have be in the main body
of the text. In Appendix A we provide an in depth analysis of the relevance of having
two regimes and secular time-varying trends in the model. In Appendix B, we discuss
inflation dynamics during the Covid lockdowns, the advantage of having a large number
of variables, and the real-time reliability and the forecasting performance of common core
inflation. Appendix C provide robustness results. Lastly, Appendix D provide an in-depth

literature review.

2 Data

This section discusses our new dataset of disaggregated PCE prices and its main features.
Section 2.1 details the construction of the dataset. Section 2.2 provides a formal statistical

examination of the time-series properties of disaggregated inflation data.



2.1 A new dataset of disaggregated PCE prices

PCE price data are available at different levels of disaggregation, the highest of which
includes roughly 220 price indexes, with a complete set of observations available since
1990. Our reference starting point is the disaggregation the Dallas Fed uses to produce
the Trimmed Mean PCE inflation index (see Dolmas, 2005). The dataset comprises 178
disaggregated prices, the highest level of disaggregation that produces a balanced panel of
data beginning from the late 1970s.

Disaggregated PCE prices can be classified as “market-based” and “nonmarket-based.”
According to the BEA, market-based prices are defined “as those goods and services that
have been produced for sale at prices that are economically significant” and, hence, “their
current market price provides a rational and viable basis for valuing” them (Bureau of
Economic Analysis, 2017, pp. 2-5). Nonmarket-based prices consist of prices of “goods
and of individual or collective services that are produced by nonprofit institutions and by
government that are supplied for free or at prices that are not economically significant”
(Bureau of Economic Analysis, 2017, pp. 2-5). Services in this category are provided by
businesses either without charge or for a small fee, whose prices do not reflect the entire
value of the service.? In other words, a “market-based” good /service can be actually bought
and, hence, it is possible to record a price for it, while a “nonmarket-based” good/service
cannot be bought and, hence, its price is imputed by the BEA based on the costs of
production (for nonprofit institutions and government) or some other assumptions (for
business).?

Market-based goods and services are about 87% of total PCE. Most of them are con-
structed by taking the corresponding (or conceptually closest) CPI, with only a few ex-
ceptions where a corresponding PPI series is used (for example, airfares and some medical
prices). By contrast, most nonmarket-based prices are imputed by the BEA, with just
a few exceptions constructed out of the corresponding CPIs and/or PPIs. Because there
is not always a corresponding CPI or PPI for each PCE price, some disaggregated PCE

prices are constructed out of the same CPI or PPI index and hence are identical (or nearly

2For example, education and health services provided by non-profit institutions are typically provided
at below-market prices. Another example is checking account maintenance, which is often provided by
banks without charge.

3An example here could help: one of the consumption categories is “lotteries,” but what is the price for
lotteries? For example, suppose John buys a scratch lottery ticket for, say, $2, and suppose John does not
win. Now, John has consumed $2 in participation in a lottery, but what is the price that John paid? In
this case, the BEA imputes the PCE price index for “lotteries” using the overall CPI. Another example is
“standard clothing issued to military personnel,”, which is imputed by using the PPI for “apparel.”
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In the level of disaggregation used by the Dallas Fed, we identify 21 price groups
constructed from the same CPI/PPI. Price changes in the same group exhibit an almost
perfect correlation. This data environment poses a significant challenge to estimating
dynamic factor models because such models are estimated under the assumption that
the idiosyncratic components are only mildly cross-sectionally correlated. If two price
changes are (almost) perfectly correlated due to the data construction, as in the current
PCE price data, the idiosyncratic components will also be almost perfectly correlated.
The violation of this key assumption makes identifying the common and idiosyncratic
components likely biased and unreliable because the excess of fictitious correlation in the
idiosyncratic components is mistaken for co-movement in the data (Boivin and Ng, 2006;
Luciani, 2014).

To get around this problem, we aggregate the 53 price indexes constructed from the
same sources into 21 alternative price indexes exhibiting distinct variations. This operation
leaves us with 146 disaggregated PCE prices. At this stage, most of the disaggregated price
changes are available from 1959 except for four categories available only starting from the
1970s. For these four categories, we use higher-level aggregates available from 1959. As
a result, our dataset includes 142 disaggregated PCE price inflation rates from January
1959 to December 2023. The Complementary Appendix provides the list of variables in

the dataset as well as details about the data construction.’

2.2 Features of the data

In the past several decades, the U.S. economy underwent structural changes that have
altered the time-series properties of consumer price inflation. By simply looking at the
time series of total and core PCE price inflation (left chart, Figure 1), we see that inflation
was very persistent from (approximately) the mid-1970s to the early-1990s, while inflation
has been very stable since the 1990s. We observe similar patterns from the cross-sectional
distribution of disaggregated PCE prices (right chart, Figure 1).

In the macroeconomic literature, “persistency” is typically defined in terms of I(0)

4Examples are the PCE price indexes for “Bicycles and accessories,” “Pleasure boats,” “Pleasure aircraft,”
and “Other recreational vehicles,” which are all constructed out of the CPI “Sports vehicles including
bicycles.”

>The price data are taken from the National Income and Product Accounts (NIPA) Table 2.4.4U, while
the nominal quantity data necessary to compute the weights are taken from the NIPA Table 2.4.6U. The
data were downloaded from the BEA website on March 14, 2024.



Figure 1: YEAR-OVER-YEAR PCE PRICE INFLATION
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Notes: The right chart reports the percentiles of the cross-sectional distribution of 142 disaggregated PCE price inflation.

or I(1) processes. However, processes can be fractionally integrated, that is, I(d) with
d € (0,1) (Granger and Joyeux, 1980; Hosking, 1981). A fractionally integrated process has
long memory, that is, its autocorrelation function decays slowly; an 1(0) process has short
memory, that is, its autocorrelation function decays exponentially; and an /(1) process, we
can say that has infinite memory, that is, its autocorrelation function is flat. The larger
d is, the more persistent the process is. The remainder of this section provides formal
statistical evidence indicating that disaggregated inflation data experienced a change in
the order of integration from a very persistent to a much less persistent regime. In other
words, the order of integration d € [0, 1] has decreased meaningfully over time.°

The left chart in Figure 2 reports the percentage of variance explained by the 10 largest
eigenvalues of the covariance matrix of disaggregated PCE price inflation, I'"." We estimate
this statistic on a 25-year rolling window to keep track of low-frequency changes in the
structure of the covariations between disaggregated price changes. As shown in the left
panel, the share of variance explained by the largest eigenvalue has decreased dramatically
over time. Two factors can explain this pattern. First, the commonality in the data has
decreased over time. Second, one long-memory (and perhaps nonstationary) or I(1) factor

(a.k.a., common trend) accounts for the persistency in disaggregated data in the early part

6In addition to d = 0 and d = 1, there are two regions of particular interest for d, 0 < d < % and

% >d <1 WhenO<d< %, the process has long memory, but it is stationary; when % > d < 1, the
process has long memory, and it is nonstationary meaning that Y; has infinite variance, but mean reverts
in the sense that the impulse response function is slowly decaying.

"We look at the largest eigenvalues of the covariance matrix because they are related to the comovement
in the data. Indeed, all the criteria that we will discuss in Section 3.3 and Appendix B.6 to determine
the number of factors in the model are based on the behavior of the eigenvalues of either the covariance
matrix or the spectral density matrix.



of the sample, but the persistency weakened later in the sample. In other words, there has
been a change in the order of integration of the common component.

To determine which of these two hypotheses is likely correct, we look at the covariation
structure of the first-differenced disaggregated PCE price inflation, '™, The rationale
for first-differencing the data is to control for the potential nonstationarity in the data.
If we no longer observe a declining fraction of the variance accounted for by the largest
eigenvalue, we conclude that the decreased persistency in the disaggregated data accounts
for the pattern shown in the left chart in Figure 2, which would be evidence that a regime
change actually occurred. Otherwise, we interpret that the commonality has reduced over
time, which would not necessarily be caused by a regime change. The right chart in Figure
2 suggests that the former is the likely answer. Although there has been some reduction in
commonality, this reduction is far less dramatic when compared with the left chart. This
observation indicates that disaggregated PCE prices were in a long-memory (and perhaps
nonstationary) or I(1) regime up to sometime in the early 1990s but then switched to a

short-memory (i.e., 1(0)).8

Figure 2: SHARE OF VARIANCE EXPLAINED BY THE LARGEST EIGENVALUES
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NotEes: The left chart reports the percentage of variance explained by the 10 largest eigenvalues of the covariance matrix of
disaggregated PCE price inflation. The right chart reports the percentage of variance explained by the 10 largest eigenvalues of
the covariance matrix of the first difference of disaggregated PCE price inflation. In both charts, we estimated the covariance
matrices over 25-year rolling windows. As we explain in Section 4.1.3 and in Appendix B.1, we excluded the data from March

to August 2020 from the computation because of the Covid lockdown and the reopening.

8There exists a small literature that has estimated fractionally integrated models on inflation data
across the world. This literature overwhelmingly concludes that inflation data is a long-memory and
mean-reverting process (Baillie et al., 1996; Gadea and Mayoral, 2006; Canarella et al., 2020).



2.3 Detection of changes in the regimes

In Section 2.2, we showed that a regime change in disaggregated inflation dynamics oc-
curred sometime in the 1990s. In this Section, we address the issue of when this change
occurred.

Figure 3 shows the ratio of the largest and the second largest eigenvalue of I'" at each
point in time estimated using windows of different lengths. We denote this statistic as z;",
where the superscript w indicates the window length in years. Given the results in Figure 2,
we expect z;” to drop and remain at a low level when the disaggregated dynamics enter the
short-memory regime from the long-memory regime. In contrast, if the dynamics switch
from the short-memory regime to the long-memory one, we expect z;" to rise prominently
and stay elevated.

The left panel in Figure 3 shows z!°, while the right panel shows z?—we choose the
15-year window to capture low-frequency structural changes in the disaggregated inflation
dynamics, while we chose the 5-year window to capture more sudden changes. As shown in
Figure 3, 2/ dropped suddenly in the mid-1990s and stayed low afterward, while 2} spiked
in 2021 and stayed elevated relative to the pre-pandemic level. This result indicates that
disaggregated PCE prices became a short-memory process around the mid-1990s, and may
have revert to the long-memory regime in 2021, as seen in the ramp-up in inflation from
2021.

Figure 3: RATIO OF LARGEST OVER SECOND-LARGEST EIGENVALUE
15-year Window 5-year Window
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NoTEes: As we explain Section 4.1.3 and in in Appendix B.1, we excluded the data from March to August 2020 from the
computation because of the Covid lockdown and the reopening.

Next, we show that we can modify this heuristic approach based on z;” to get a formal
data-driven detection of changes in the regime. We assume that there are two inflation

regimes, and we model the probability that inflation is in each regime following the ap-



proach of Auerbach and Gorodnichenko (2012). Let 2z be our regime determinant variable,

then the probability that inflation is in the long-memory regime is

B 1
T 1t eap(—Er)

m(z")

where 2}V is 2" standardized to have mean zero and variance one, and - is set by the econo-
metrician to achieve the desired smoothness in the estimated probability.® To minimize
ad-hoc adjustments, we experimented with different values for v used in the literature and
settled on v = 5.

Figure 4 reports the probability of being in a long-memory regime. There exists a
clear trade-off between precision and timeliness of detection determined by the length of
the window. The shorter the window, the more timely but less precise is the detection
(meaning the higher the chances of a false positive); the longer the window, the less timely
but more precise is the detection. Thus, our rule of thumb is to favor a longer window
when trying to detect a gradual regime change, but to favor shorter windows when trying

to detect a sharp regime change such as Covid.

Figure 4: PROBABILITY OF INFLATION BEING IN THE LONG-MEMORY REGIME
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Following our rule-of-thumb, the results in Figure 4 support the conclusion in Figure
3. US inflation dynamics were in the long-memory regime up to the mid-1990s, but hen
switched to the short-memory regime until the pandemic. Sometime after Covid, inflation
dynamics returned to the long-memory regime.

In light of these results, we will estimate the model by imposing a regime switch in 1995.

9For instance, Auerbach and Gorodnichenko (2012), which use the standardized value of the output gap
as regime determinant variable, set v to 1.5 to capture that the economy is in a recession for 20 percent
of the sample period.

10



However, for the post-pandemic period, we will initially be agnostic about the regime and
assume that the post-pandemic could belong to either regime. We will then address the

question of when the regime change could have been detected in Section 4.1.3.

3 Methodology

This section discusses the construction of common core inflation. Section 3.1 introduces
the concept of common and idiosyncratic inflation. Section 3.2 illustrates the dynamic
factor model used to extract these two components from disaggregated PCE price inflation
data.

3.1 Defining common and idiosyncratic inflation

This analysis aims to evaluate what portion of core inflation is driven by shocks that affect
all prices (macroeconomic fundamentals) and what portion is driven by idiosyncratic price
movements based on a statistical method. Our methodology involves two steps.

In the first step, we decompose changes in each individual price into two components:
the common component and the idiosyncratic component. The common component cap-
tures price changes attributable to economy-wide (that is, common) factors, such as the
economic slack or movements in the input prices of goods and services. The common com-
ponent has pervasive effects across disaggregated price changes, but the magnitude and
dynamic features of the effect may vary cross-sectionally. The idiosyncratic component
captures price changes driven by sector-specific developments or measurement errors.’
The idiosyncratic price changes are specific to an individual price series or a particular
subset of series.

% — 1) be the month-over-month inflation rate, with

possibly slowly moving time-varying mean (or secular trend) p;. We then have

Formally, let m;; = 100 x (

it = Wit + Xit + it (1)

where y;; is the common component, and &;; is the idiosyncratic component.

10An example of idiosyncratic price change is the plunge (52% at an annual rate) in the price index for
wireless telephone services March 2017, which shaved off about 8 basis points from the monthly percent
change in core PCE prices. The plunge was due to a methodological change to the measurement of wireless
services in the CPI and the fact that in late February 2017, Verizon and AT&T (which in March 2017
accounted for nearly 70% of wireless subscriptions in the U.S.) brought back unlimited data plans.

11



In the second step, after estimating the common component of each series, we aggregate
them to construct the common component of core inflation by using each series’ weight in
the core PCE price index. In this way, we estimate “common core inflation” (x§), defined

to be the portion of core inflation attributed to common (macroeconomic) factors:

Xi = wipi + xir) (2)
i€core
where w§, are the “approximate” core PCE weights—the core PCE weights are computed
by setting the weights for food and energy prices to zero and reweighting the PCE weights
appropriately.!

Note that we include the time-varying mean in common core inflation. This is common
practice because, by doing so, common core inflation has a level comparable to that of the
published core PCE price inflation. For example, Stock and Watson, 2016 define "trend
inflation“ as the sum of sector-specific and common trends. Likewise, in the literature on
large stationary dynamic factor models, the default strategy is to center the variables (i.e.,
subtracting the sample mean) before estimating the model—using our notation, we would
have p;; = p;—and then attribute back the sample mean to the common component. Now,
in this literature, p; is just a shift parameter. In contrast, in our setting, j;; is time-varying,
so attributing it to the common component might be a stretch depending on how much
time variation pu; exhibits. However, this is not a problem for us because, as we discuss in
Section 3.2, we limit the time variation in p; so that it will be a slow-moving mean (see
also Appendix A.3), and hence we are fine incorporating it in the definition of common
core inflation.

Finally, it is worth emphasizing that we estimate the dynamic factor model on a dataset

of PCE prices that preserves the structure of PCE and thus includes food and energy prices.

1We use approximate weights because the PCE price index is a Fisher index, and as such, it has the
drawback of the nonadditivity property (see Whelan, 2002, as well as Chapter 4 of the NIPA Handbook,
Bureau of Economic Analysis, 2017). Therefore, only approximate weights can be computed. To compute
the “approximate” PCE weights we follow Dolmas (2005) and set:

Qit—1Pit—1 05 Qi1 Pit—1
Zi]\il Qit—1Fi—1 Zi\; Qi1 Pir—1

where @;; is real consumption of item ¢ at time ¢ and P;; is the corresponding PCE price index. Note that
these weights are very similar to the weights of the T'6rnqvist index—the Toérnqvist index weights have
the same expression as in (3) but for the last term in which P;;_1 is replaced by Pj;. This is not surprising
because Diewert (1976, 1978) shows that a Térnqvist index numerically approximates a Fisher index (see
also Dumagan, 2002).

12



Therefore, our model can capture potential spillovers from food and energy prices to core
prices, although food and energy prices are not explicitly included in the aggregation

process to produce common core inflation.

3.2 Dynamic factor models

Formally, we consider the following dynamic factor model:

Wit:/JJit—i_Xit_}_git izl,...,N, t:17...,T, (1)
Wit = [it—1 + Nit, nie ~ N (0, Uif”), (4)
Xit = ZAEZ)ﬁ% <5>
k=0
ft = ZAgr)ftfé + Uy, Uy Z'l\“ N<07 Fz(j))> (6)
(=1
d;
r i.i.d. ,
it = sz(g)fz't—; + €t e, ~ N(O, Fg )); (7)
7=1

where f; = (fi:--- fu)' are the ¢ common latent factors capturing co-movements across
series and across time; A = (Mg -+ Aige) are the factor loadings for price ¢ at lag k;
s > 0, p > 1, and d; are finite integers; I', is a ¢ X ¢ positive definite covariance matrix
with full rank; and I', is an n X n positive definite covariance matrix with full rank.
Shocks to the common and idiosyncratic components are denoted by w; = (uy¢ - - - ug)" and
e, = (e1 -+ en). The superscript r indicates that the parameters change across different
regimes.

In light of the results in Sections 2.2 and 2.3, we allow the possibility of two regimes:
a pre-1995 and a post-1995 regime. That is, as we explain in Section 3.2.1, we estimate
twice the model in the two samples without imposing any constraint to differentiate the
two regimes so that the data will tell us what these two regimes are.!?

In addition, we further employ the following assumptions (for a rigorous treatment of
this model, see Barigozzi and Luciani, 2019, 2020a,b):

(i) The common factors f; are pervasive—that is, they have non-negligible effects on all

2In Appendix A.1, we show that this assumption is crucial and that failing to switch regimes when
the data moves from the long-memory to the short-memory regime leads to an incorrect representation of
inflation dynamics. Moreover, in Appendix C.1, we show that our results do not change if we change the
switching point by a few years.

13



variables at least at one lag, and they can be nonstationary and long-memory.

(ii) The idiosyncratic shocks are weakly cross-sectionally correlated—that is, they do not
have a pervasive effect. Moreover, all the idiosyncratic components & = (&1 -+ - &)’
are stationary—that is, the (potential) higher order persistency around 7r; — p; comes
from the common component.

(iii) uy, 1y, and e, are independent of each other.

2 _ 1
n "~ 600’

a standard deviation equal to the standard deviation of 7.

(iv) We impose o which implies that the expected change in u;; over 50 years has

Assumptions (i)—(ii) are enough to identify the common from the idiosyncratic compo-
nent, while assumption (iv) is necessary to identify the idiosyncratic trend.'®> By imposing
a small variance, Assumption (iv) defines the idiosyncratic trend as a slow-moving mean
(see also Appendix A.3).1

Lastly, it is necessary to clarify that we are not imposing that the loadings in (5) are
dynamic. Rather, we are allowing this possibility. Section 3.3 shows that s > 0 is a feature
of disaggregated PCE price inflation data. Moreover, in Section 4.1.1, we show that the
factor loadings are the main parameter that changes across the two regimes because of

their link to the persistence of the common components.

3.2.1 Estimation

We estimate model (1), (4)—(7) by Quasi-Maximum Likelihood, implemented through the
Expectation-Maximization (EM) algorithm. The EM algorithm is an iterative method
to find maximum likelihood estimates of parameters in models with unobserved latent
variables. In the case of model (1), (4)—(7), and abstracting from the presence of two
different regimes for the moment, at any iteration x > 0, in the E-step, given an estimate
of the parameters XZ[.Z*”, .«?lril], f‘\u[ﬁ_l], ;?Ej."*”, and f‘\e[ﬁ_”, the factors are estimated by
running the Kalman filter and the Kalman smoother. Then, given :M, in the M-step the

parameters are estimated equation-by-equation by running OLS, where the OLS formulas

13Setting up the variance of ju;; is important because separating a trend and a cycle is extremely chal-
lenging using the Frequentist approach we use and present in Section 3.2.1. In particular, due to the
so-called pile-up problem (see Kim and Kim, 2022), if the variance of the random walk component is left
unconstrained, the estimated trend can easily overfit the data. To this end, Stock and Watson (1998)
propose the median unbiased estimator as a solution. A philosophically different approach is the Bayesian
one, which imposes an informative and quite tight prior on the overall variations in the estimated trend
(see Del Negro et al., 2019). Our approach is in line with the Bayesian method, as one can look at our
strategy as setting up a dogmatic prior.

14Tn Appendix A.2, we show that including the secular trend even with a small variance is crucial.
Moreover, in C.2 we show that the estimate of common core inflation is robust to reasonable values of U%i.
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are modified to account for the estimation error in ft['ﬂ. For a rigorous treatment of the EM
algorithm in Dynamic Factor Models we refer the reader to Barigozzi and Luciani (2020b).

We discuss a few high-level details about the estimation: the estimation over the two
regimes, the special treatment reserved for the secular trends, the characterization of the
idiosyncratic components, and the normality assumptions.

First, we estimate the model’s parameters independently for the two regimes with the
EM algorithm. Next, the factors and the secular trends are estimated with one final run of
the Kalman Filter and Smoother. Under the assumption that the idiosyncratic components
are stationary, the EM algorithm works in the same way, independently of whether the
data are stationary, long-memory, or unit root processes.

Regarding the idiosyncratic component, we forgo estimating (7); rather, we impose
pij = 0. Moreover, we impose that I', is a diagonal matrix. By imposing such a simplified
structure, we are estimating a misspecified model. Nonetheless, these two assumptions
have minimal effects on the efficiency of the estimator and no effect on the consistency
of the estimator (see the simulations in Barigozzi and Luciani, 2020b). As emphasized
earlier, the estimated idiosyncratic components are just slightly cross-correlated thanks to
the carefully constructed dataset. Therefore, it is unlikely that the assumption that T, is
a diagonal matrix has meaningful effects on the consistency of the estimator.

Last, we assume that the shocks are drawn from normal distributions. However, both
the model parameters and the unobserved states are consistently estimated even if the

normality assumption does not hold in the data or if we relax the normality assumptions.'®

3.2.2 Modeling disaggregated inflation during the Covid-19 pandemic

As discussed in recent studies (for example, Maroz et al., 2021), the Covid-19 recession is
unique in two aspects. First, in March and April 2020, the U.S. economy was hit by an
unprecedentedly large and acute shock that had pervasive effects across sectors. Second,
about a year after the shock, consumer price inflation rose, reaching levels not seen in the
past four decades.

The Covid-19 shock is so large that it requires special treatment. Otherwise, the dy-

namic factor model estimate will likely be distorted for three reasons. First, the model

15We could relax this assumption by allowing the shocks to be distributed from any distribution of the
exponential family as long as the first four moments are defined. Therefore, the fact that disaggregated
inflation rates are skewed and fat-tailed is not a problem. For instance, simulations in Barigozzi and
Luciani (2020b) show that the model is consistently estimated even when the shocks come from a Skew-t
distribution.
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parameters change substantially to fit the extreme movements between March and April
2020, as discussed in Lenza and Primiceri (2020). Second, the smoothed estimate of the
factor for the pre-pandemic period changes noticeably because the smoother interprets
some of the surprises after March 2020 as informative about the pre-pandemic. Third,
inflation dynamics may have returned to the long-memory regime, in which case, charac-
terizing disaggregated price inflation as a short-memory process is misleading. All told,
allowing any of these things to happen would be ill-advised.

Having this in mind, we make three assumptions. First, we will initially be agnos-
tic about the regime and assume that the post-pandemic could belong to either regime.
Second, Covid-19 is such an extreme and short-lived shock that we will treat it as not re-
lated to the standard inflation co-movement. This assumption is in line with the results of
Maroz et al. (2021), who concluded that Covid dominated co-movement in the data from
March-June 2020 so these data should be ignored when studying non-Covid questions.
Moreover, this assumption is in line with Ng (2021), who excludes the pandemic obser-
vations when estimating the dynamic factor model to prevent the mentioned estimation
problem. Third, observations after the pandemic contain no information for pre-pandemic
inference because the big economic shock and its consequences in 2020:H1 were unprece-
dented and unexpected; hence, the surprises cannot be interpreted in the context of average
pre-pandemic dynamics.

Therefore, (1) we do not re-estimate the model but continue to employ the param-
eters estimated over the short-memory or long-memory regime and let the data tell us
which regime better describes post-pandemic inflation dynamics. (2) We run the Kalman
Smoother separately for the pre- and post-pandemic periods to prevent the pandemic obser-
vations from changing the pre-pandemic inference. This procedure creates discrepancies in
the smoothed factor estimates in February 2020 obtained from the two separate smoothing
procedures. By adjusting the level, we match the post-pandemic smoothed estimate to the
pre-pandemic estimate while letting the idiosyncratic component absorb the differences.!

Using this approach, we estimate the co-movement across disaggregated PCE prices
had they followed their pre-pandemic short /long-memory patterns. In addition, the acute
Covid-19 shock does not distort the two-sided estimate of the pre-pandemic factor. In sum,
our approach produces estimates of the common component during the Covid-19 pandemic

and the recovery that satisfy the desirable property.

16 An unintended consequence of this approach is that the idiosyncratic component essentially absorbs the
unprecedented dynamics driven by the pandemic-specific shock. Appendix B.1 discusses how we address
this problem.

16



Could we have treated the Covid period differently? In other words, is there an al-
ternative to stop estimating the model before Covid? Yes, the literature has suggested
two options. The first one consists of assigning ‘NaN’ to all the observations during the
Covid period (Ng, 2021). The second one is to boost the volatility of the common shock
in the Covid period so that the model knows that what is going on comes from additional
volatility in the common shock, not from a change in the parameter (Lenza and Primiceri,
2020). However, the complication here is the potential change of regime. If inflation re-
verted to the long-memory regime, then we should concatenate observations pre-1995 with
those post-2021. This is certainly feasible, but it looks a little bit odd. In addition, we

choose not be agnostic about the regime.

3.3 Model set-up

Before estimating the model, we must determine the number of factors ¢ and the number
of lags s in the factor loadings. To estimate the number of factors, we use the information
criterion proposed by Hallin and Ligka (2007), which exploits the behavior of the eigenvalues
of the spectral density matrix of 7, averaged across all frequencies, 3, (w).!”

In the 1959-94 sample, the Hallin and Liska (2007) criterion suggests no common
factors. However, the Barigozzi et al. (2021) criterion run on the same sample selects the
presence of one common trend in 7r; (see Appendix B.6).!® Taken together, we read these
results as suggesting the presence of one common shock in the 1959-94 sample—we suspect
that the Hallin and Liska (2007) criterion detects no factors because Amr; is too noisy and
at high frequencies there is no commonality. As for the 1995-2019 sample, the Hallin and
Liska (2007) criterion points towards one common shock.

Having determined ¢, we choose s such that the share of the variance explained by the
¢ = q(s + 1) largest eigenvalues of the covariance matrix of r; coincides with the share
of the variance explained by the ¢ largest eigenvalues of the spectral density matrix of
(averaged over all frequencies)—see also D’Agostino and Giannone (2012). The rationale

for this approach is that if model (1), (4)—(7) is the true data-generating process, then the

17To account for the different time-series properties of the pre- and post- 1990s data, we run this criterion
separately in the two periods. When dealing with pre-1990s data, we run the criterion on Am;—in the
first sample 7; ~ I(1), and the Hallin and Ligka (2007) criterion works on stationary data because it relies
on the spectral density matrix of the data—while when dealing with data post-1995, we run the criterion
on .

18The Barigozzi et al. (2021) criterion is a modification of the Hallin and Ligka (2007) criterion that
looks only at the eigenvalues of X a,(w) at frequency zero. This criterion detects the number of common
trends in 7r;.
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spectral density matrix of 7, has ¢ eigenvalues that diverge with n, and, at the same time,
the covariance matrix of 7, has at most ¢ = ¢(s + 1) diverging eigenvalues.

Table 1 reports the cumulative variance explained by each of the 10 largest eigenvalues
of the spectral density matrix (lines 1 and 3) and the covariance matrix (lines 2 and 4) in
the two samples. Our approach consists of finding the value of ¢ in line (2) such that the
variance explained by the ¢ largest eigenvalues of the covariance matrix is the closest to—
but larger than—the variance explained in line (1) by the largest eigenvalue of the spectral

density matrix (that is, ¢ = 1). The same applies to lines (3) and (4).

Table 1: PERCENTAGE OF EXPLAINED VARIANCE

Sample 1 2 3 4 ) 6 7 8 9 10
® 9591994 ¢ 73 131 183 230 274 314 352 387 420 45.1
@) qg 38 7.0 9.8 122 146 16.8 19.0 21.1 232 251
® 9959019 ¢ 8.6 150 206 25.7 302 343 381 416 449 48.0

) qg 39 7.3 9.8 122 143 164 184 203 221 239

Notes: This table reports the cumulative percentage of total variance explained by the ¢ largest eigenvalues of the spectral
density matrix and the ¢ = ¢g(s + 1) largest eigenvalues of the covariance matrix. The spectral density matrix and the
covariance matrix are estimated on A7 in the 1959-94 sample and on 7 in the 1995-2019 sample.

The results in Table 1 suggest that ¢ ~ 3 in the 1959-94 sample and ¢ ~ 2 in the
1995-2019 sample—the Bai and Ng (2002) criterion (see Appendix B.6) confirms these
results. Thus, we select ¢ = 3, that is, s = 2.

In summary, our benchmark specification features one common factor loaded by each
price inflation index within three months, ¢ = 1 and s = 2. As for the lag order of the AR
model for the common factor, we set p = 3 based on the BIC.?

One final comment about the benchmark specification is in order. The model with
g = 1 imposes that, taking aside idiosyncratic shocks and shocks to the secular trend,
any difference in relative inflation will reflect differences in the factor loadings. At first
glance, this specification might seem to impose very strong economic restrictions, as it
postulates that one specific shock drives the co-movement in PCE prices. However, we
are not identifying shocks and not labeling the common shock. As such, the model with
g = 1 imposes that every month, one shock is the primary driver of the co-movement in the
data, not a specific shock. It might be different shocks, but every month just one of them
matters. If interpreted this way, it is clear that the model is not imposing any extreme

economic restrictions.

19Tn Appendix C.3, we present a robustness analysis for alternative model specifications.
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4 Empirical Results

This section presents the estimation results. Section 4.1 presents he aggregate results,

while in Section 4.2, we dive deep into the disaggregated prices.

4.1 Commonality in aggregate inflation

This section presents the aggregate results. Section 4.1.1 Characterizing the two inflation
regimes. Section 4.1.2 reports the estimates of common core inflation before the Covid-19

pandemic. Section 4.1.3 presents estimates during the pandemic.

4.1.1 Characterizing the two inflation regimes

In this section, we discuss the difference in the parameter estimates between the pre-1995
and the post-1995 regimes and their implications.

We begin by comparing the factor loadings. Figure 5 shows the median and the in-
terquartile range of the cross-sectional distribution of the factor loadings for each regime.
The interquartile range of the estimated factor loadings in the pre-1995 sample is very nar-
row, meaning that most disaggregated prices load the common factor similarly. Moreover,
most of the contemporaneous (\g) and lagged loadings (A\; and M) have a positive sign
(inset box in Figure 5). In contrast, the interquartile range of the estimated factor loadings
in the post-1995 sample is very large, indicating large variability around how disaggregated

prices load the common factor. Moreover, the sum of the factor loadings, 22 g, is much

5=0
smaller in the post-1995 sample than in the pre-1995 sample, confirming the idea that
there is much less commonality in the post-1995 sample.

Next, we move to the autoregressive parameters governing the low of motion of the
common factors. We estimate A" (L) = 0.15A4, L + 0.3645L? + 0.33A3L? in the pre-1995
sample, and A® (L) = 0.90A4,L + 0.214,L? — 0.17A45L? in the post-1995 sample. Both
AN (L) and AWM (L) yield two short-memory processes. Surprisingly, though, A® (L) gen-
erates a more persistent process than A™M (L), albeit the highest root of the two polynomials
is almost identical (0.92 vs. 0.93).

The low of motion of common core inflation is a function of both the factor loadings and
the low of motion of the common factor. If we write (6) in its MA form—f; = A(L) 'u;—

and substitute it into (5), we obtain
Xie = M(D)AL) M, = AL)NDL) X =
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Figure 5: CROSS-SECTIONAL MEDIAN AND INTER-QUANTILE RANGE OF THE ESTI-
MATED FACTOR LOADINGS
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NoTE: The vertical bars denote the cross-sectional interquartile range, while the dots denote the cross-sectional
median of the factor loading. The inset box in the chart reports the share of negative loadings.

from which it is clear that the order of integration of y;; depends on the roots of A(L)X;(L) ™,
not on those of A(L). Now, although A®(L) generates a more persistent process than
ﬂ(l)(L), the estimates of the loadings reported in Figure 5 are such that common core
inflation in the pre-1995 sample is much more persistent than in the post-1995 sample.
Specifically, in the pre-1995 sample, common core inflation exhibits a slowly decreasing
autocorrelation function typical of a long-memory (and potentially nonstationary) process
(Figure 6, left chart). In the post-1995 sample, common core inflation exhibits a monoton-
ically decreasing autocorrelation function typical of a short-memory process.

Looking at the autocorrelation of X7 in the pre-1995 regime shown in the left chart of
Figure 6, it is clear that X7 is not a unit root process, but rather a long memory process,
as suggested by the slow decaying of the autocorrelation function. To corroborate this
conjecture, we estimate the degree of fractional integration, d, of X7 in the persistent
regime. By estimating an ARFIMA(1; d; 0) model with maximum likelihood (Beran,
1995), we get d = 0.69, which suggests that X7 is a nonstationary fractionally integrated
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Figure 6: AUTOCORRELATION AND PARTIAL AUTOCORRELATION OF X%
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process.?’ Note that a nonstationary fractional integrated process has infinite variance but
mean reverts, while an /(1) process has an infinite variance and does not mean revert. In
other words, a shock to an I(d = 0.69) process will generate transitory but very persistent
dynamics, while a shock to an I(d = 1) process will generate a permanent change to the
level of the series.

Given these results, we dub the pre-1995 “the long-memory regime” and the post-1995

regime “the short-memory regime.”

4.1.2 Inflation dynamics before the Covid pandemic

Figure 7 shows the common and idiosyncratic decomposition of year-over-year (YoY) core
PCE price inflation.?! As shown in the left chart, before the 1990s, common core inflation
accounted for most of the fluctuation in core inflation, particularly low-frequency fluctu-
ations. However, as shown in the right chart, starting from the mid-1990s, common core
inflation accounts for a much smaller share of core PCE price movements. Specifically,
our model classifies the 2010 downturn in core inflation as entirely idiosyncratic, and it

also suggests that the 2015 and 2017 downturns in core inflation were due to idiosyncratic

20ARFIMA stands for Autoregressive Fractionally Integrated Moving Average. We say that gy, ~
ARFIMA(p,d,q) if x; ~ ARMA(p,q), where z; = (1 — L)%y, d can be any real number, and
(1-L) =1-dL+ %(d—1)L? — 4(d — 1)(d — 2)L* + .... An ARMA process is an ARFIMA pro-
cess with d = 0, and an ARIMA process is an ARFIMA process with d = 1.

21 Appendix B.2 shows how the estimate of common core inflation change when we use a smaller dataset,
while Appendix B.3 shows the common and idiosyncratic decomposition of the 12-month percent change
in the headline PCE price index.
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dynamics. Hence, these results suggest that most of the swings in core inflation during the
expansion that followed the Great Recession were mostly idiosyncratic. In other words,
core inflation was restrained for about 10 years by a series of idiosyncratic shocks; hence,
core inflation below 2% was not a structural feature.

Figure 7: COMMON AND IDIOSYNCRATIC DECOMPOSITION

CoORE PCE PRICES — YEAR-OVER-YEAR INFLATION
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Notes: In each plot, the red line denotes year-over-year common core inflation—that is, the common component’s contribu-
tion to the overall 12-month percent change of the core PCE price index (which is given by the black line). Put differently,
the red line tells us what core inflation would have been had there been no idiosyncratic price shocks over the past 12 months.
The black line is core PCE price inflation. The plot on the left covers the long-memory period (1959 to 1994), while the right
panel covers the short-memory period (1995 to 2019). To make it easier to understand what is happening in each of the two
periods, the two charts have different y-axes.

Our measure of common-core inflation speaks to the discussion on missing disinflation
during the Great Recession and missing inflation during the post-Great Recession recovery
(see, for example, Coibion and Gorodnichenko, 2015, and Constancio, 2015). What puzzled
macroeconomists was that headline inflation measures, including core inflation, showed
neither a meaningful decline during the Great Recession nor a pick up in the recovery
phase in a way consistent with the large swing in economic activity. This observation
suggested a clear breakdown in the Phillips correlation.

Quite differently, our common core inflation exhibits variations better aligned with
the underlying economic strength during the Great Recession and the recovery than the
headline data. Asshown in Figure 7, YoY common core inflation dropped by 1.6 percentage
points during the recession, about twice as much as the range within which it fluctuated
between 1995 and 2008. Although the decrease in core inflation during the recession
matched that of common core inflation, magnitude of this decline was similar to the range
within which core inflation fluctuated between 1995 and 2008—in other words, it represents
a much smaller deviation compared to its historical fluctuation.

In summary, the noisy idiosyncratic component masked the portion of core inflation
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better aligned with real economic activity, and the missing disinflation and inflation are

partly attributable to the transitory component, which is less relevant to the aggregate

dynamics.
Figure 8: COMMON AND IDIOSYNCRATIC DECOMPOSITION
CoRE PCE PRICES — MONTH-OVER-MONTH INFLATION — 2000-2019
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Notes: In each plot, the red area is common core inflation, while the yellow area gives the idiosyncratic component. These
two components sum to overall core PCE inflation (the black line) by construction.

Figure 8 shows the common and idiosyncratic decomposition of monthly core PCE price
inflation since the year 2000. As can be seen, our model effectively parses out transitory
and idiosyncratic surprises in core inflation. To illustrate this and to demonstrate the
relevance and usefulness of the common and idiosyncratic decomposition, we focus on
episodes between the Great Recession and the Covid pandemic (right chart in Figure 8).%
For example:

o In 2010, several clearly identifiable idiosyncratic negative shocks—the collapse of the
index for luggage in January, the very low reading for Medicare hospital services prices in
October, and an exceptionally long series of negative readings in the index for apparel—
lowered core inflation.

o In both 2014 and 2015, two years in which medical prices were low partly due to the
implementation of the Affordable Care Act, idiosyncratic factors held down core inflation.

o In March 2017, when core inflation was heavily affected by the collapse in the price index
for wireless telephone services, the model correctly interpreted that these developments
were idiosyncratic and transitory. This call from the model is particularly relevant be-

cause, at the time, there were concerns about inflation being constantly below 2 percent

22 Appendix B.4 further demonstrates the usefulness of common core inflation in practice by focusing on
the real-time reliability of model estimates (the properties of common core inflation as an inflation gauge
are discussed in Appendix B.5).
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and the possibility of inflation expectations de-anchoring on the downside.

Finally, another useful feature of the model is that it successfully detects residual sea-
sonality in the data and attributes these movements to the idiosyncratic component. Due
to residual seasonality, core inflation tends to be higher in the first half of the year.?? The
model parses this regular pattern as idiosyncratic; hence, the idiosyncratic component is
positive in the first half of the year (in January in particular) and negative in the second
half.

4.1.3 The post-pandemic inflation ramp-up

The previous section demonstrates that the model successfully parses out prominent episodes
of transitory and non-pervasive price changes as idiosyncratic. This section focuses on the
post-pandemic inflation ramp-up and evaluates how the model interprets this period. Cor-
rectly estimating common core inflation during the 2021-2022 inflation ramp-up and the
following decrease is important given the heightened uncertainty on the inflation trajec-
tory in the coming years. Appendix B.1 focuses on inflation dynamics during the Covid
lockdowns and the reopening.

We first revisit the question we left open in Section 2.2. Has the Covid-19 shock brought
back the long-memory regime? Does the 2021 ramp-up in inflation reflect this nonlinearity?
To answer these questions, we estimate common core inflation after the pandemic using
both sets of parameters (i.e., from the short- and the long-memory regime). Figure 9
reports estimates of month-over-month and YoY common core inflation post-pandemic in
the short-memory regime (red dotted line) and in the long-memory regime (dashed line)—
in this second case, the model switches regimes twice, in January 1995 from long-memory
to short-memory and in March 2020 from short-memory to long-memory. The results in
Figure 9 are clear: the long-memory regime model captures the 2021 inflation ramp-up
and the 2023 decline much better than the short-memory regime model.

The results in Figure 9 suggest that inflation dynamics after the pandemic (and up
to the end of 2023) are closer to what happened in the 1970s than in the 2000s. Would
we have been able to reach this conclusion had we used the model in real time? And,

when would we have been able to reach it? To answer this question, we re-estimate

23Peneva (2014) shows that, despite being based on data that statistical agencies seasonally adjust, core
PCE price inflation exhibits a regular downward pattern from the first to the second half of the year.
Moreover, Peneva and Sadée (2019) show that, although the 2018 comprehensive NIPA data revision has
partially attenuated the problem, residual seasonality is still present in core PCE price inflation.
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Figure 9: COMMON CORE INFLATION DURING COVID
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NotEes: The black line is core PCE price inflation. The solid red line is the estimate of common core inflation as discussed
in Section 4.1.2. The dotted red line is common core inflation estimated by assuming that inflation remained short-memory
during the Covid pandemic. The dashed line is common core inflation estimated by assuming that inflation switched back
to the long-memory regime during the Covid pandemic.

common core inflation, but instead of using the whole sample, we add one observation

post-February 2020 at a time. Figure 10 shows the results of this exercise.?* The main

Figure 10: REAL-TIME ESTIMATES OF COMMON CORE INFLATION DURING COVID
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NotEs: In all plots, the red line is the estimate of common core inflation obtained using data up to December 2023. The
yellow lines are the estimate obtained by adding one observation at a time starting with April 2020. Each black dots represent
the estimate of common core inflation for month M and year Y obtained over the sample ending at month M and year Y—
according to the definition of Section 77, the black dots are the quasi-final estimate of core inflation. Put differently, in the
figure, there is a yellow line for each black dot, and each yellow line ends with a corresponding black dot. The black line in
the left plot is headline PCE price inflation.

result emerging from Figure 10 is that the estimate of common core inflation revised very

24Gection B.4 provides a thorough real-time evaluation showing how much data revisions, parameters
estimation, and filtering, contribute to model revisions and calculating their relative importance. In this
Section, we do not have to estimate the parameters so we ignore the data revision problem to simplify.
This simplification is justified by the results in Section B.4 that shows that data revisions do not have a
big impact on the revision of common core inflation.
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little. Thus, in real-time, the long-memory regime model would have captured the ramp-
up in inflation already in March 2021, while the short-memory regime model would have
heavily discounted the high readings in core inflation. By July 2021, the difference between
the estimate of YoY common core inflation from the long-memory regime model and the
short-memory regime model was higher than half of a percentage point, signaling that it
was likely that the ramp-up in inflation would have been not so transitory as at the time
several people thought.

The left plot in Figure 11 zooms into our preferred probability estimate to detect poten-
tial abrupt regime changes. As can be seen, as of August 2021, the estimated probability
of being in the long-memory regime was 20%, while, as of December 2021, it was 40%.
This result, combined with those in Figure 9, shows that our model provided evidence of
a regime switch by August 2021, just a few months after the inflation ramp-up started,
evidence that became very robust by December 2021. Moreover, as of late 2023 (nearly
two years after the start of the inflation ramp-up), we estimate that the probability of

inflation dynamics still being in the long-memory regime is 90%.

Figure 11: WEIGHTED COMMON CORE INFLATION DURING COVID
LM regime probability Monthly core PCE price inflation

087 T

YoY core PCE price inflation

1.0
09
06
0.8
0.7
0.6
0.5

04

02
041

1 V
03 B 00 25k
021 1 200 e
0.1 } 02 sk
0.0 1 ok

04l L L L L L J
Dec-19 Jun-20 Dec-20 Jun-21 Dec-2l Jun-22 Dec-22 Jun-23 Dec-23 2018 2019 2020 2021 2022 2023 2024 2018 2019 2020 2021 2022 2023 2024

NotEes: The left chart shows the probability of inflation being in the long-memory regime. This is the same probability
shown in Figure 4. In the middle and right plot, the black line is core PCE price inflation. The solid red line is the estimate
of common core inflation as discussed in Section 4.1.2. The dotted red line is common core inflation estimated by assuming
that inflation remained short-memory during the Covid pandemic. The dashed line is common core inflation estimated by
assuming that inflation switched back to the long-memory regime during the Covid pandemic. The blue line is the weighted
average of the dashed and dotted lines, where the weights are the estimated probability shown in the left chart.

As an alternative to the approach of determining the regime and then applying a binary
approach, a practitioner can exploit the probability of being in the long-memory regime to
build a weighted average of common core inflation from the two regimes (i.e., the dashed
and dotted lines in Figure 9). The blue line in the middle and right chart in Figure 11
illustrates this procedure. As show in the middle chart, we would have made the right
call with this approach. In 2021, we would have been able to call core PCE price changes
increasingly common, and by early 2022, we would have been able to call core PCE price

changes mainly common.
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4.2 Commonality in disaggregated inflation

This section discusses how much disaggregated inflation indexes co-moves and how much
of their fluctuations are idiosyncratic.

We begin our analysis of disaggregated PCE prices by examining how our model parses
disaggregated inflation indexes into common and idiosyncratic dynamics. To this end, we
look at the percentage of variations in the inflation rate for total, food, energy, and core
(goods and services) explained by common dynamics (across all frequencies and at different
frequencies). To do so, we first decompose each inflation index (and its common compo-
nent) into six different series, each isolating fluctuations with different frequencies—call
them 7/ (w) and 7 (w), where j = { Total, Core, Core Goods, Core Services, Food, Energy}
and w is the frequency band. To compute 7/ (w) and ! (w), we use cosine projections as in
Miiller and Watson (2017). Next, we compute a pseudo R? for each frequency band, call
it Rf(w), as ' .

Ry =1 - Selrt) ~xi(e)?
(i (w))?

The higher RJQ (w), the larger the share of fluctuations of index j at frequency w explained

(8)

by the common component. Henceforth, we refer to R? (w) as the commonality share.
Each column in the Table 2 reports the commonality share computed over a certain
frequency band, where we report the period 7 of each band expressed in months. Thus, the
second column, 7 > 60, reports the share of variance explained by common components
of fluctuations longer than 60 months, while the last column, 7 < 6, reports the share of
variance explained by common components of fluctuations shorter than 6 months. The
first column (0 < 7 < oo) reports the share overall frequencies—that is, the overall share.
The first column of Table 2 shows that the commonality in PCE prices has decreased
since the mid-1990s. In particular, before the mid-1990s, core goods and core services
prices were moving in sync and so the commonality in the data reflected the dynamics of
both core goods and services prices (in addition to those of food prices). In contrast, since
the mid-1990s, core goods prices became almost entirely idiosyncratic, and this is true
for all subcomponents but to a lesser extent to motor vehicles prices (see Table 4). Our
intuition is that the increased idiosyncrasy in goods prices is probably due to the increase
in the share of goods produced abroad. Thus, the commonality in the data reflects the
dynamics of core services prices, and food and energy prices. Specifically, common core

inflation since the mid-1990s reflects primarily the dynamics of energy goods (essentially,
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Table 2: COMMONALITY SHARES OF AGGREGATED PCE PRICE INFLATION
(BY FREQUENCY BANDS)

0<T< 0@ T72>60 12<7<60 6<717<12 T<6

Total 81.1 98.9 63.2 50.7 35.7
Core 79.7 99.1 70.3 16.5 9.1

=y Goods 59.6 98.8 a7.1 2.3 4.9
= Services 69.1 98.5 14.0 12.7 3.5
2 Food 45.3 90.1 18.4 28.2 39.9
- Energy 25.3 91.3 15.4 12.7 -0.2
Energy goods 18.0 84.6 13.1 10.9 0.9

Energy svs 46.3 96.1 31.6 -0.8 2.4

Total 76.4 91.4 88.4 91.5 59.1
Core 19.2 76.7 39.8 22.3 2.3

s Goods 5.8 65.7 -0.9 6.1 0.2
CHID Services 15.9 86.6 41.9 15.2 -2.1
2 Food 26.5 90.8 59.8 7.2 -3.1
— Energy 76.6 95.7 80.4 91.7 66.9
Energy goods 72.5 94.1 4.7 88.6 63.2

Energy svs 27.5 89.7 42.2 5.1 19.0

Notes: This table shows the commonality share over different frequency bands w = %, where 7 is the period expressed in

months. The first column (0 < 7 < c0) reports the share overall frequencies—that is, the overall share—the second column
(r > 69) reports the share over fluctuations longer than 60 months, and so on. The commonality share is computed as
100 x R?, where R? is defined in (8). Note that, because R]2~ (w) is a pseudo R2, it can be negative, in which case it signals

that X{ (w) does not explain fluctuations in 7} (w).

To perform this exercise, we removed from the monthly inflation rate in core PCE prices the September and October 2001
observations and replaced them with the average over the previous 12 months. In September 2001, core PCE price inflation
was -0.56% (-6.5 % at an annual rate), while in October 2001, it was +0.72% (+8.9 % at an annual rate). The 2001 swing in
core PCE price inflation was driven by the price index for life insurance, which plunged 55 % in September 2001 and jumped
121 % in October 2001 as a result of the 9/11 terrorist attacks.

gasoline) prices and housing services prices (see Table 4, line 9).2°
Table 3, which decomposes the variance of different aggregated inflation indexes into
the contribution coming from different frequency bands,

R2 — Zt(ﬂ—g((")))z (9)

> ()

provides additional intuition on why commonality in PCE prices has decreased since the
mid-1990s. Before the mid-1990s, about 65-70% of the variability in total and core infla-

250ne reason why housing has become more common, is that in 1985 the Bureau of Labor Statistics
(BLS) changed the methodology used to compute the price of homeownership, moving from a “user cost
approach” in which the services for an owned dwelling are computed by summing the cost related to home
ownership, to “rental equivalence” in which the services for an owned dwelling is the rate of change in
the amount an owner would need to pay to rent that dwell. As a result of this change, the time series of
inflation for homeownership, nowadays called Owner Equivalent Rent (OER), has become way less volatile.
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tion was driven by low-frequency fluctuations (first column), with a little over 15% of the
variance accounted for by high-frequency fluctuations of less than six months (fourth col-
umn). However, since the mid-1990s, low-frequency fluctuations account for less than 10%
(15%) of total (core) inflation fluctuations, whereas high-frequency fluctuations account
for 45% (60%) of the variance. In sum, high-frequency variations, which are accounted for
mainly by the idiosyncratic component (see Table 2), become significantly more important
from the mid-1990s than in the earlier period, suggesting the increased role of idiosyncratic

fluctuations in disaggregated inflation dynamics.

Table 3: VARIANCE DECOMPOSITION OF AGGREGATED PCE PRICE INFLATION BY FRE-
QUENCY BANDS

Frequency w = 2L T > 60 12< 7 <60 6<71<12 T<6
Total 66.0 8.6 8.6 16.8

3 Core 71.9 8.9 5.6 13.6
= Goods 47.1 20.5 6.3 26.1
2 Services 67.4 6.2 9.4 17.0
= Food 22.1 13.8 23.1 41.0
Energy 20.2 23.5 25.5 30.8

Total 7.6 25.1 23.1 44.2

3 Core 11.7 13.1 16.2 58.9
= Goods 7.2 11.7 17.1 64.0
2 Services 13.2 10.9 8.5 67.4
= Food 11.0 31.3 9.5 48.2
Energy 3.9 21.0 23.1 52.0

Notes: This table shows the share of variance of each inflation index explained by each frequency band w = % as defined

in (9). 7 is the period expressed in months. The first column (0 < 7 < o0) reports the share over all frequencies—that is,
the overall share—the second column (7 > 60) reports the share over fluctuations longer than 60 months, and so on. The
share is computed as 100 x R?, where R? is defined in (9).

To perform this exercise, we removed from the monthly inflation rate in core PCE prices the September and October 2001
observations and replaced them with the average over the previous 12 months (see also the note on Table 2).

Putting together the results in Tables 2 and 3 with those in Section 4.1.1 we can
further refine the characterization of the the long-memory and short-memory regime. In
the long-memory regime, inflation dynamics are primarily driven by common shocks, and
the effect of these common shocks is long lasting; in the short-memory regime, inflation
dynamics are primarily driven by idiosyncratic shocks, and the effect of the common shocks
is short lived. Given this characterization, and since monetary policy should respond only
to common inflation shocks, we conclude that when inflation is in the long-memory regime,
monetary policy should promptly and decisively respond to inflation dynamics, while when

inflation is in the short-memory regime, monetary policy should focus on stabilizing the
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real economy.

Moving back to Table 2, the second column shows that the common component accounts
for most of the low-frequency variations in both samples. Note that the dynamic factor
model performs cross-sectional smoothing and no temporal smoothing; hence, this result
is not the necessary outcome of any restrictions in the model. In contrast, the common
component accounts for a small share of core inflation’s mid- to high-frequency fluctuations
(second to fourth columns). This portion becomes more important after the mid-1990s. As
for total inflation, the common component captures mid- and high-frequency fluctuations
well (second to fourth columns) because it captures energy price fluctuations. Finally,
common dynamics explain about 30% (60%) of the fluctuations in energy price inflation
before (after) the mid-1990s. Considering oil prices heavily influence energy prices, this
result suggests that the model views oil price shocks as a common macroeconomic shock
(see Conflitti and Luciani, 2019, for a detailed discussion on oil prices’ effect on common
and idiosyncratic core inflation).

Moving to the post-Covid inflation ramp-up, Table 4 reports the commonality shares of
disaggregated inflation sub-components before 2019 and in 2021-2023. The commonality
in the data in the 2021-2023 period reflects primarily the dynamics of core goods inflation
(nearly all components), housing and food services prices (lines 9 and 13), and food prices
(line 23). This result explains why the long-memory regime fits the data starting in 2021
and, especially, why it can do so in real time. First, one of the main drivers of core
inflation in 2021 was the rise in goods prices due to pandemic-related supply chain issues.
In the long-memory regime, a large share of the fluctuations in core goods is common; in
contrast, core goods inflation is idiosyncratic in the short-memory regime. Therefore, when
goods prices began to increase, common core inflation estimated with the long-memory
regime model responded immediately, while the estimate from the short-memory model
was unresponsive and started to respond later on, only once services inflation started
picking up. Second, commonality in the long-memory regime also reflects housing and
food services fluctuations, two large categories of core PCE price inflation that increased
substantially during the inflation rump-up.

The aforementioned changes in the disaggregated dynamics are also evident in the distri-
bution of commonality shares of each disaggregated inflation. Figure presents a histogram
of the commonality share for 142 prices, which is unprecedented in the literature—previous
studies like Stock and Watson (2016) and Eo et al. (2023) cannot capture such distributional

changes because they lack sufficient cross-sectional information. When comparing the dis-
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Table 4: COMMONALITY SHARES OF DISAGGREGATED PCE PRICE INFLATION
1959-1994 1995-2019  2021-2023L  2021-2023°

(1) Core goods 59.6 5.8 35.6 8.3
2) Motor vehicles 20.9 10.8 15.9 7.1
(3) Furnishings and equipment 39.0 8.5 32.7 18.9
(4) Recreational 29.6 8.8 13.3 0.5
(5) Other durables 20.2 4.9 -0.5 -1.8
(6) Clothing and footwear 22.8 5.2 19.1 3.5
(7) Other nondurables 59.8 4.9 23.7 10.9
() Core services 691 159 . 88 11.1
(9) Housing 50.3 72.5 42.2 54.7
(10) Health care 55.4 4.9 -41.2 -7.8
(11) Transportation 25.4 52.0 5.7 5.4
(12) Recreation 32.9 27.5 1.1 -0.5
(13) Food services 56.4 16.6 43.5 31.1
(14) Accommodations 18.5 5.9 4.6 3.4
(15) Financial and insurance 4.6 17.0 -2.1 2.9
(16) Communication 8.2 22.9 -3.4 9.7
(17) Education 22.1 6.5 -94.1 -23.6
(18) Professional and other 31.9 6.4 5.0 2.7
(19) Personal care and clothing 55.2 10.4 11.3 7.0
(20) Social and religious 38.8 35.9 -42.1 1.8
(21) Household maintenance 28.8 7.8 3.5 1.5
(22) NPISH 29.4 10.9 6.4 0.5
‘@23 Food 453 265 ¢ 402 53.2
(24) Energy 25.4 76.5 11.1 67.1

Notes: This table shows the commonality share as defined in (8). The column “2021-2023%” shows the share of variance
explained in 2021-2023 when common core inflation is estimated using the long-memory model, while column “2021-
20235’ reports number obtained with the short-memory model.

NPISH stands for “Non-Profit Institutions Serving Household.”

tribution of commonality shares over different periods, we see that as inflation dynamics
transitioned from the long-memory regime (prior to the mid-1990s) to the short-memory
regime (mid-1990s to 2019), the distribution of the commonality share shifted toward zero,
indicating a general increase in idiosyncratic behavior. Moreover, we see that after the
onset of the pandemic, although commonality in goods prices rose across the board, id-
iosyncrasy in some core services, namely education, health care, and some non-market
services, increased heavily. As a result, the distribution of commonality shares became

more dispersed.
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Figure 12: DISTRIBUTION OF COMMONALITY SHARES
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Notes: This figure displays the distribution of the commonality share in the 114 core (goods and services) disaggregated

PCE prices in our dataset for three different sample periods: 1959-1994, 1995-2019, and 2021-2023, based on the long-regime
estimates.

5 Common core inflation vs trend inflation

Our paper contributes to the literature using large-dimensional dynamic factor models
to study disaggregated prices (for example, Cristadoro et al., 2005; Boivin et al., 2009;
Conflitti and Luciani, 2019). While in Appendix D we provide a detailed literature review,
in this section, we compare our model with that of Stock and Watson (2016), which is
considered the gold standard in inflation modeling and forecasting.

Stock and Watson (2016), henceforth SW, estimate common trend inflation using a
multivariate unobserved components/stochastic volatility and outlier-adjustment model
(MUCSVO). The model includes common and idiosyncratic trends, stochastic volatility,
time-varying factor loadings, and outlier treatment. The model is estimated with Bayesian
methods.

Our model differs from SW’s model in two key aspects. First, SW characterize the
common factor as a random-walk process with static loadings. Instead, we model it as
an autoregressive process with dynamic loadings, capturing potential non-stationarity and
persistency through these two sets of parameters. Second, SW have time-varying volatilities
and parameters estimated. Instead, we have volatilities and parameters that differ between
the two regimes but are fixed within a regime. As such, our model is more restrictive than
SW’s model.

The question we want to answer in this section is whether the additional flexibility in
SW’s model helps measuring the underlying co-movements in disaggregated inflation. To

answer this question, we estimate SW’s model on our dataset and compare the estimate of
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trend inflation from their model against the estimate of common core inflation.

As shown in Figure 13, the two estimates are very similar, including during the pan-
demic period. This observation suggests that regime changes combined with dynamic
loadings capture the same important features of disaggregated price inflation captured by
time-varying volatilities and parameters. This result is in line with the conclusion of Miiller
(2013) who argues that identification of parameters is not entirely clear in overparameter-
ized time-varying parameter models, and a simpler model can capture the key dynamics
crucial for forecasting. In particular, the fact that both models produce similar estimates
during the Covid-19 pandemic indicates that our succinct model is flexible enough to adapt

to a large shock like Covid-19 and, hence, serve as a useful indicator.

Figure 13: COMMON CORE INFLATION VS TREND INFLATION
Year-over-year inflation
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NotEs: Trend inflation is estimated by fitting the MUCSVO model of Stock and Watson
(2016) on our dataset.

6 Conclusions

This paper introduces common core inflation, a measure that isolates price changes driven
by economy-wide shocks from those led by idiosyncratic shocks. Common core inflation is
based upon a dynamic factor model estimated on a new large dataset of finely disaggregated
PCE price indexes suitable for factor-model analysis.

Our model is designed to comprehensively characterize the changing inflation dynamics
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from 1959 to the Covid-19 pandemic and beyond. Based on the properties of the dis-
aggregated PCE price data, we set-up a two-regime dynamic factor model with dynamic
loadings, which we estimate using frequentist methods. Moreover, based on the evolving
covariance structure of the data, we objectively and promptly identify regime changes.
We show that US inflation dynamics experienced two regimes: a long-memory regime up
to the mid-1990s and after the Covid pandemic and a short-memory regime from the mid-
1990s to the Covid Pandemic. In the long-memory regime, inflation dynamics are primarily
driven by common shocks, and the effect of these common shocks is long-lasting; in the
short-memory regime, inflation dynamics are primarily driven by idiosyncratic shocks, and
the effect of the common shocks is short-lived. Thus, because monetary policy should
respond only to common inflation shocks, when inflation is in the long-memory regime,
monetary policy should promptly and decisively respond to inflation dynamics, while when
inflation is in the short-memory regime, monetary policy should focus on stabilizing the

real economy.

References
Amstad, M., Potter, S. M., and Rich, R. W. (2017). The New York Fed Staff Underlying
Inflation Gauge (UIG). Economic Policy Review, (23-2):1-32.

Antolin-Diaz, J., Drechsel, T., and Petrella, I. (2017). Tracking the slowdown in long-run
GDP growth. The Review of Economics and Statistics, 99:343-356.

Bai, J. and Ng, S. (2002). Determining the number of factors in approximate factor models.
Econometrica, 70:191-221.

Baillie, R. T., Chung, C.-F., and Tieslau, M. A. (1996). Analysing inflation by the frac-
tionally integrated arfima—garch model. Journal of Applied Econometrics, 11:23-40.

Barigozzi, M., Lippi, M., and Luciani, M. (2021). Large-dimensional dynamic factor mod-
els: Estimation of impulse-response functions with /(1) cointegrated factors. Journal of
Econometrics, 221:455-452.

Barigozzi, M. and Luciani, M. (2019). Quasi maximum likelihood estimation of non-
stationary large approximate dynamic factor models. arXiv:1910.09841.

Barigozzi, M. and Luciani, M. (2020a). Measuring the output gap using large datasets.
Ssrn, id 3217816.

Barigozzi, M. and Luciani, M. (2020b). Quasi maximum likelihood estimation and inference
of large approximate dynamic factor models via the em algorithm. arXiv:1910.03821.v2.

Beran, J. (1995). Maximum likelihood estimation of the differencing parameter for invert-

34



ible short- and long-memory arima models. Journal of the Royal Statistical Society B,
57:659-672.

Boivin, J., Giannoni, M. P.,; and Mihov, I. (2009). Sticky prices and monetary policy:
Evidence from disaggregated US data. American Economic Review, 99:350-384.

Boivin, J. and Ng, S. (2006). Are more data always better for factor analysis? Journal of
Econometrics, 127:169-194.

Bryan, M. F. and Cecchetti, S. G. (1993). The consumer price index as a measure of
inflation. Economic Review, Federal Reserve Bank, Quarter 4:15-24.

Bureau of Economic Analysis (2017). Concepts and Methods of the U.S. National Income
and Product Accounts.

Canarella, G., Gil-Alana, L. A., Gupta, R., and Miller, S. M. (2020). Modeling US historical
time-series prices and inflation using alternative long-memory approaches. Empirical
Economics, 58:1491-1511.

Carriero, A., Clark, T. E., Marcellino, M., and Mertens, E. (2022). Addressing COVID-19
Outliers in BVARs with Stochastic Volatility. The Review of Economics and Statistics,
pages 1-38.

Coibion, O. and Gorodnichenko, Y. (2015). Is the phillips curve alive and well after
all? inflation expectations and the missing disinflation. American Economic Journal:
Macroeconomics, 7(1):197-232.

Conflitti, C. and Luciani, M. (2019). Oil price pass-through into core inflation. The Energy
Journal, 40(6):221-247.

Constancio, V. (2015). Understanding inflation dynamics and monetary policy. Speech at
the Jackson Hole Economic Policy Symposium, 29:455-483.

Cristadoro, R., Forni, M., Reichlin, L., and Veronese, G. (2005). A core inflation indicator
for the euro area. Journal of Money, Credit and Banking, 37:539-560.

D’Agostino, A. and Giannone, D. (2012). Comparing alternative predictors based on large-
panel factor models. Ozford Bulletin of Economics and Statistics, 74:306—-326.

Del Negro, M., Giannone, D., Giannoni, M. P., and Tambalotti, A. (2019). Global trends
in interest rates. Journal of International Economics, 118:248-262.

Diebold, F. X. and Mariano, R. S. (1995). Comparing predictive accuracy. Journal of
Business and Economic Statistics, 13:253-263.

Diewert, W. E. (1976). Exact and superlative index numbers. Journal of Econometrics,
4:115-145.

Diewert, W. E. (1978). Superlative index numbers and consistency in aggregation. Econo-
metrica, 46:883-900.

Dolmas, J. (2005). Trimmed mean PCE inflation. Working Paper 506, Federal Reserve

35



Bank of Dallas.

Dumagan, J. C. (2002). Comparing the superlative Tornqvist and Fisher ideal indexes.
Economics Letters, 76:251-258.

Eo, Y., Uzeda, L., and Wong, B. (2023). Understanding trend inflation through the lens
of the goods and services sectors. Journal of Applied Econometrics, 38(5):751-766.

Forni, M., Hallin, M., Lippi, M., and Reichlin, L. (2005). The Generalized Dynamic
Factor Model: One sided estimation and forecasting. Journal of the American Statistical
Association, 100:830-840.

Gadea, M. D. and Mayoral, L. (2006). The persistence of inflation in OECD countries: A
fractionally integrated approach. International Journal of Central Banking, 2:51-104.

Giacomini, R. and White, H. (2006). Tests of conditional predictive ability. Econometrica,
74:1545-1578.

Giannone, D. and Matheson, T. (2007). A new core inflation indicator for new zealand.
International Journal of Central Banking, 3:145-180.

Granger, C. and Joyeux, R. (1980). An introduction to long memory time series models
and fractional differencing. Journal of Time Series Analysis, 1:15-39.

Hallin, M. and Liska, R. (2007). Determining the number of factors in the general dynamic
factor model. Journal of the American Statistical Association, 102:603-617.

Hosking, J. (1981). Fractional differencing. Biometrika, 68:165-176.

Kim, C. and Kim, J. (2022). Trend-cycle decompositions of real GDP revisited: classical
and bayesian perspectives on an unsolved puzzle. Macroeconomic Dynamics, 26(2):394—
418.

Lenza, M. and Primiceri, G. E. (2020). How to estimate a var after march 2020. Working
Paper 27771, National Bureau of Economic Research.

Li, M. and Koopman, S. J. (2021). Unobserved components with stochastic volatility:
Simulation-based estimation and signal extraction. Journal of Applied Econometrics,

36(5):614-627.

Luciani, M. (2014). Forecasting with approximate dynamic factor models: The role of
non-pervasive shocks. International Journal of Forecasting, 30:20-29.

Maroz, D., Stock, J. H., and Watson, M. W. (2021). Comovement of Economic Activity
During the Covid Recession. mimeo.

McAlinn, K., Rockova, V., and Saha, E. (2018). Dynamic sparse factor analysis.

Miiller, U. and Watson, M. W. (2017). Low-frequency econometrics. In Honoré, B., Pakes,
A., Piazzesi, M., and Samuelson, L., editors, Advances in Economics and FEconometrics:
Eleventh World Congress, volume 2, pages 53-94. Cambridge University Press.

Miiller, U. K. (2013). Risk of bayesian inference in misspecified models, and the sandwich

36



covariance matrix. Econometrica, 81(5):1805-1849.

Ng, S. (2021). Modeling macroeconomic variations after covid-19. Working Paper 29060,
National Bureau of Economic Research.

Peneva, E. (2014). Residual seasonality in core consumer price inflation. FEDS Notes
2014-10-14, Board of Governors of the Federal Reserve System.

Peneva, E. and Sadée, N. (2019). Residual seasonality in core consumer price inflation: An
update. FEDS Notes 2019-02-19, Board of Governors of the Federal Reserve System.

Reis, R. and Watson, M. W. (2010). Relative goods’ prices, pure inflation, and the Phillips
correlation. American Economic Journal Macroeconomics, 2:128-157.

Stock, J. H. and Watson, M. W. (1998). Median unbiased estimation of coefficient variance

in a time-varying parameter model. Journal of the American Statistical Association,
93(441):349-358.

Stock, J. H. and Watson, M. W. (2007). Why has U.S. inflation become harder to forecast?
Journal of Money, Credit and Banking, 39(1):3-33.

Stock, J. H. and Watson, M. W. (2016). Core Inflation and Trend Inflation. The Review
of Economics and Statistics, 98(4):770-784.

Whelan, K. (2002). A guide to U.S. chain aggregated NIPA data. Review of Income and
Wealth, 48:217-233.

37



Appendix A Additional details about the model

This appendix shows that some of our modeling choices are crucial to correctly representing
disaggregated PCE price inflation data. In Appendix A.1, we show that the model esti-
mated over the long-memory regime poorly fits the short-memory regime and vice versa.
Likewise, ignoring the regime change and fitting the model over the full sample yields poor
results. Thus, fitting a model with two regimes is necessary. Next, Appendix A.2 shows
that allowing for a time-varying secular trend in each disaggregated inflation series is cru-
cial to fit the data correctly. Lastly, Appendix A.3 decomposes common core inflation and

shows that the secular trend is nothing more than a time-varying mean.

A.1 Do we need two regimes?

Figure Al shows different estimates of common core inflation obtained from estimating
the model’s parameters on different samples—1959-94 (henceforth, M1), 1995-2019 (M2),
and 1959-2019 (M3)—while the common factor and the time-varying means are estimated
over the full sample. As shown in Figure Al, estimating the model over the pre-1995 or
post-1995 period yields completely different results. Model M1 fits very well the pre-1995
data but dramatically overfits the post-1995 data. Model M2 captures the primary pre-
1995 trend in the data but attributes a much larger part of the pre-1995 fluctuations to
the idiosyncratic component.

What if we ignore the break and estimate the model’s parameter over the full sam-
ple? As shown in the last column of Figure A1, model M3 fits the pre-1995 data well.
However, although model M3 does not overfit the post-1995 data, it seems to overestimate
the commonality in this period. The estimate of common core inflation during the 2008
recession supports this claim. According to model M3, common core inflation increased
at the onset of the recession and fell afterward, thus lagging core inflation. In contrast,
according to model M2, core inflation and common core inflation moved largely in sync
in 2008 and 2009, when the economy was affected by a large macroeconomic shock, and

macroeconomic variation likely dominated idiosyncratic variation in the data.
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Figure A1l: COMMON AND IDIOSYNCRATIC DECOMPOSITION

MODEL ESTIMATED OVER DIFFERENT SAMPLES
Core PCE PRICES — YEAR-OVER-YEAR INFLATION
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Notes: In all charts, the black line is core inflation. The blue/red/orange line is the estimate of common core inflation

obtained by estimating the model on different samples.

A.2 Do we need a time-varying secular trend for each disaggre-

gated inflation series?

Figure A2 shows estimates of M1 and M2 when there is a time-varying secular trend (thick

lines) and when there is not (thin lines). The results are clear: A time-varying secular

trend is necessary to fit the pre-1990s data appropriately. In contrast, a secular trend is

unnecessary if the goal is to estimate a model for the 1995-2019 sample.

Figure A2: COMMON AND IDIOSYNCRATIC DECOMPOSITION

MODEL ESTIMATED WITH AND WITHOUT TIME-VARYING SECULAR TREND
Core PCE PRICES — YEAR-OVER-YEAR INFLATION
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NotEs: In all charts, the thick line is the estimate of common core inflation obtained by including a time-varying secular
trend. The thin line is the estimate of common core inflation obtained without including a time-varying secular trend.
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A.3 Decomposing common core inflation?

Figure A3 decomposes common core inflation by isolating the contribution of the secular
trend, puf = >, .. Wittty in equation (2). As discussed in Section 3.1, we include the
secular trend in common core inflation because, in this way, common core inflation has a
level comparable to that of the published core PCE price inflation. Figure A3 confirms
what we anticipated in the text: pf is essentially a slow-moving mean and it basically serves
the function of aligning common core inflation and the data. Appendix C.2 discusses how
x¢ and pf changes when we calibrate differently the variance of py.

Figure A3: THE COMPONENTS OF COMMON CORE INFLATION
CORE PCE PRICES — YEAR-OVER-YEAR INFLATION

1959-1994 1995-2019 2020-2023
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Notes: The black line is actual data. The red line is common core inflation. The blue line is the secular trend component of
common core inflation, pu§ = >, ... Witktit, see also (2). The estimates in the 2020-2023 chart are from the long-memory
regime model.

Appendix B Additional results

B.1 Understanding inflation during the Covid lockdowns

As we show in Section 4.1.3, the model that assumes a return to the long-memory regime
explains inflation dynamics well from 2021 onwards. However, neither the long-memory
nor the short-memory regime model can fit the March—April inflation downturn and the
subsequent rebound in the summer of 2020. This is the case because the idiosyncratic
component essentially absorbs the unprecedented dynamics driven by the pandemic-specific
shock. Thus, we follow Maroz et al. (2021), who suggest including an additional common
factor to describe the pandemic dynamics to capture the unprecedented commonality.
Following this approach, we estimate the Covid factor as the first principal component
of the estimated idiosyncratic component for the pandemic period. In light of the result

in the left chart of Figure 9, and given the conclusion of Maroz et al. (2021) that Covid
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dominated co-movement in the data from March-June 2020, we define the pandemic period
as March 2020 to August 2020.

In practice, from March to August 2020, we replace the observation equation of model
(1) with

Tie = it + > NG Fro + ige + G £=2020:3,....2020 : 8 (B1)
k=0

where g, is the Covid factor, and 1); is the factor loading of variable i to the Covid factor,
and & = ¥igr + G-

Let at = T — it — 2 1o :\E,:) j?t_k be the idiosyncratic component estimated using
equation (1), we estimate 1;g; as the first principal component of Et That is, let I's be
the N x N covariance matrix of & estimated using observations from 2020:3 to 2028:8,
then we estimate 12 as the normalized eigenvector associated to the largest eigenvalue of
L', and g; as ¢y = ZZ]\LI @iét, that is as the weighted cross-sectional average of é where
the weights are the factor loadings .

Figure B1 displays core PCE price inflation, common core inflation, and the contribu-
tion of the Covid factor. As can be seen, the Covid factor explains 100% of the decline
between March and April 2020 and the rebound in the summer of 2020. During these
months, the primary drivers of the Covid factor were the prices of financial services, ap-
parel, and airfares (Table B1). Considering that the demand for these items/services was
affected by pervasive pandemic-specific factors such as the lockdowns, our model correctly

identifies the unusual commonality during the Covid-19 pandemic.

Table B1: CONTRIBUTION OF SELECTED PRICES TO THE COVID COMPONENT

Name Mar Apr May Jun Jul Aug
Apparel -5.5 -10.1 -3.8 0.2 2.2 1.8
Hospitals 2.5 3.1 2.3 1.7 14 1.6
Motor vehicle services -1.4 -2.9 -1.1 0.2 1.0 0.7
Air transportation -4.3 -5.1 -2.9 -0.8 -0.2 -0.5
Hotels and motels -5.4 -9.1 -3.5 -0.3 0.3 0.2
Financial services -5.0 -12.5 -3.4 4.6 9.4 6.8
NPISHs -1.2 -1.4 -1.5 -1.9 -1.7 -1.3
Total -19.4 -38.0 -12.9 6.2 17.4 14.8

Notes: The bottom row is the total contribution of the Covid factor to core PCE price inflation. To be sure,
the bottom row tells us that in April 2020, the Covid factor decreased monthly core PCE price inflation by 38.0
basis points. Of these 38.0 basis points, 10.1 were accounted for by Apparel (first line). “Apparel” is the sum of
Men’s & Boys’ Clothing, Women’s & Girls’ Clothing, and Shoes & Other Footwear (ID 57,58,62).
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Figure B1: COMMON CORE INFLATION AND COVID SPECIFIC FACTOR

MONTH-OVER-MONTH INFLATION YEAR-OVER-YEAR INFLATION
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NortEes: The black line is core PCE price inflation. The red line is common core inflation obtained by assuming that during
the Covid pandemic, inflation switched back to the long-memory regime. The shaded red area is the contribution of the
Covid factor when added to common core inflation.

B.2 Do we need a large number of variables?

Our model is estimated on 142 disaggregated PCE prices. Do we need all these variables?
What if we use just four variables (food, energy, core goods, and core services) along the
line of the early work of Bryan and Cecchetti (1993)?% And what if we go one level down
and use 17 variables similarly to Stock and Watson (2016)?

Figure B2 compares the estimate of common core inflation obtained by estimating
the model on three different datasets: our benchmark large dataset (142 variables), a
medium-sized dataset (the 17 variables listed in Table B2), and a small-sized dataset (4
variables, food, energy, core goods, and core services). The results are clear. When there
is enough commonality, as was the case pre-1995, then the size of the dataset does not
matter. Conversely, when the idiosyncratic component dominates, as was the case post-

1995, having many variables is crucial to correctly parsing out the common component.

B.3 Common headline inflation

As explained in the Introduction, we focus on core inflation because, from the Fed’s official
speeches, we can infer that the core PCE price index has a more relevant role in the conduct

of monetary policy than the total PCE price index (see also footnote 1). That said, we

26Bryan and Cecchetti (1993) propose using limited-information estimators, such as the median of the
cross-sectional distribution of inflation, to measure core inflation. Bryan and Cecchetti essentially attempt
to exclude the components that create substantial noise in the aggregate price index at high frequencies
in their measures.
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Figure B2: COMMON AND IDIOSYNCRATIC DECOMPOSITION

MODEL ESTIMATED WITH DIFFERENT NUMBER OF VARIABLES
Core PCE PRICES — YEAR-OVER-YEAR INFLATION
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Notes: The benchmark model has 142 variables, the medium-size model has 17 variables (see Table B2, and the small model
has four variables (food, energy, core goods, and core services).

Table B2: VARIABLES INCLUDED IN THE MEDIUM-SIZED MODEL

CS Housing CS Transportation services

CS Health care CS Water supply and sanitation

CS Other services CS Food services and accommodations

CS Recreation services CS Financial services and insurance

E  Electricity and gas E  Gasoline and other energy goods

CG Motor vehicles and parts CG Recreational goods and vehicles

CG Clothing and footwear CG Other durable goods

CG Other nondurable goods CG Furnishings and durable household equipment

F  Food and beverages purchased for off-premises consumption
NotEes: CS = Core Services; CG = Core Goods; E = Energy; F = Food.

can easily construct an index of common inflation by slightly modifying equation (2) as
follows:
N
Xt =Y wilpa + Xar)- (B2)
i=1

The upper charts in Figure B3 shows YoY headline inflation and common headline
inflation. For comparison purposes, we report YoY core and common core inflation in the
lower charts (that is, the same numbers reported in Figure 7 but on a different scale).

In a nutshell, common headline inflation fits headline inflation (upper charts in Figure
B3) very well, much better than common core inflation fits core inflation (lower charts).
Because the difference between core and headline inflation is primarily due to energy prices,
this result confirms the intuition in Section 4.2, according to which, to a large extent, the

common factor picks up oil/commodity prices. Common core inflation fits the data worse
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than common headline inflation because oil/commodity prices pass through core inflation
indirectly by affecting input prices and through second-round effects, and this pass-through
is smaller than Conflitti and Luciani (2019).

Figure B3: COMMON AND IDIOSYNCRATIC DECOMPOSITION
HEADLINE AND CORE PCE PRICES — YEAR-OVER-YEAR INFLATION
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Notes: In each plot, the red line denotes year-over-year common headline/core inflation, while the black line is year-over-year
headline/core inflation. The plot on the left covers the highly persistent period (1960 to 1994), while the right panel covers
the stable period (1995 to 2019). To make it easier to understand what happens in the two periods, the charts on the left
have different y-axes compared to those on the right.

B.4 Real-time stability

In Section 5, we already demonstrate that common core inflation successfully parses out
idiosyncratic and transitory disturbances in core inflation and correctly identifies the per-
sistent portion relevant to monetary policy. However, for this indicator to be useful in
practice, it is necessary not to revise too much as new observations become available and
the model is re-estimated, an issue that often plagues models with unobserved variables. In
other words, we do not want this model to drastically change its decomposition of current

inflation after receiving a few additional data points.

44



There are two sources of revisions in the estimates of unobserved variables. First, the
data themselves get revised. Second, new observations change the inference in history by
updating the model parameters or the smoothed estimates. We examine how robust the
estimates are to changes in the data. In order to estimate common core inflation in real
time, we retrieved real-time data vintages for our dataset starting in August 2009—that
is, after the 2009 NIPA comprehensive data revision.?” Overall, we retrieved 127 data
vintages, including the one used to produce previously reported results.

Figure B4 shows YoY core PCE price inflation computed using selected vintages of data
(the black line) together with YoY core PCE price inflation computed using the “final”
vintage of data (the gray line).?® The distance between the black and the gray lines reflect
the magnitude of data revisions. Looking at Figure B4, it is clear the 2013 comprehensive
revision of the NIPAs brought sizable changes to the core PCE price inflation.?? Outside
of this, however, core PCE price inflation does not revise much. For this reason, we do not

display the data from the post-2014 vintages.

Figure B4: CORE PCE PRICE INFLATION IN REAL-TIME
YEAR-OVER-YEAR INFLATION
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Note: In each plot, the black line is year-over-year core PCE price inflation computed using the data actually available at
each point in time, while the gray line is year-over-year core PCE price inflation computed using the vintage of data available.

2TBecause the structure of PCE changed as a result of the 2009 comprehensive revision, it is challenging
to extend the real-time analysis further back in time.

28Gpecifically, for each year, we show the vintage of data ending in June—that is, the one incorporating
the annual update of the NIPAs, which normally is published at the end of July (or beginning of August)
of the same year.

29The 2013 comprehensive revision of the NIPAs had a particularly relevant effect on the imputed price of
banking services and on the price of medical and hospitalization insurance as well as income loss insurance.
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Now, we examine revisions in common core inflation caused by the data revisions.
Figure B5 reports the estimates of common core inflation obtained from the data vintages
displayed in Figure B4. FEach plot in Figure B5 has four lines. The blue line is the
“real-time” estimate of common core inflation—that is, the one computed using the data
actually available at each point in time. The red line is the “final” estimate of common
core inflation—that is, the one computed using the latest available data (meaning the
data published by the BEA on January 31, 2020). The difference between the blue and
red lines is due to all the factors we mentioned at the beginning of this section, and it
gives us a measure of the real-time reliability of common core inflation. The yellow line is
the “quasi-real-time” estimate of common core inflation obtained by estimating the model
on the “final” vintage of data but on the same period covered by the “real-time” vintage.
The difference between the blue and yellow lines is due to data revision only. Finally, the
green line is the “ quasi-final” estimate of common core inflation obtained by estimating the
parameter of the model on the “final” vintage of data but on the same period covered by
the “real-time” vintage, and the smoothed estimates of the common factor on the “final”
vintage up to December 2019. In other words, the difference between the green and yellow
lines is solely due to the estimate of common factors. In contrast, the difference between

the red and green lines is due to the parameters estimate.

Figure B5: COMMON CORE INFLATION IN REAL-TIME
YEAR-OVER-YEAR INFLATION
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Note: In each plot, the blue line is the real-time estimate of common core inflation. The yellow line is the quasi-real-time
estimate of common core inflation. The green line is the quasi-final estimate of common core inflation. The red line is the
final estimate of common core inflation.
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Table B3 shows the mean absolute revision for core PCE price inflation and common
core inflation computed over all the 127 vintages. Here we define a “revision” as the
difference between the real-time (or quasi-real-time, or quasi-final) estimate and the final
estimate. Put differently, in each plot, the revision of common core inflation is the difference
between the blue/yellow /green dot and the red dot—in the case of core PCE price inflation,
the difference between the black dot and the gray dot. The results in the table are split into
two parts, before and after the 2013 comprehensive revision, which, as discussed above,

hugely impacted core PCE prices.

Table B3: AVERAGE ABSOLUTE REVISION

Inflation Period 94 Xt RT Xt ORT Xt QFin
(1) month-over-month 2009:6 — 2013:5 5.5 1.6 1.5 1.1
(2) 2013:6 — 2019:12 3.6 1.6 1.4 1.0
(3)  year-over-year 2009:6 — 2013:5 23.1 16.1 12.6 7.9
(4) 2013:6 — 2019:12 13.1 3.5 3.7 4.6

Note: 7f is core PCE price inflation, x;RT is the real-time estimate of common core inflation, xnyRT is the quasi-real-time
estimate, and Xf,QFm quasi-final estimate. The term “revision” indicates the difference between the real-time (or quasi-real-
time, or quasi-final) and the final estimate. The average absolute revision is expressed in basis points. Column “Period”
indicates the period upon which the averages are computed.

Between June 2009 and May 2013, our YoY common core inflation estimate underwent
sizable revisions (line 3). However, the average size of these revisions is more than 30%
smaller than those for core PCE price inflation. After the 2013 comprehensive revision,
although the revisions of YoY core PCE price inflation (line 4) almost halved, common core
inflation revises much less than core inflation itself. Finally, the average absolute revision
for the real-time estimate and the quasi-real-time estimate of month-over-month common
core inflation (lines 1 and 2) is about the same, thus indicating that data revisions play
a negligible role. In contrast, the model estimate really dominates. Within the model
estimate, about a third of the revision is due to the smoothed estimate of the factors and
two-thirds to revision to the parameter estimate.?”

To sum up, the results in this section suggest that common core inflation is a reliable

measure in real time. This result paired with the forecasting evaluation in Appendix B.5

30 As discussed in Section 3.2.2, we introduce an additional pandemic-specific factor to model the extreme
fluctuations that occurred in 2020 during the lockdowns and the reopening. Given the limited number of
observations, it is nearly impossible to credibly estimate the Covid factor in real time. For this reason, we
end the sample period of this analysis at 2019:M12 and exclude the Covid pandemic from the real-time
exercise.
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confirms once again the usefulness of common core inflation as a tool to read current

inflation development, a crucial task for implementing monetary policy.

B.5 Forecasting

As we explained in the Introduction, the main goal of common core inflation measure is
to help understand what is driving recent and current movements in core inflation. That
said, much of the literature on inflation gauges has focused on the ability of these measures
to serve as a monitoring device to gauge signals about future inflation. Therefore, in this
section, we provide a real-time out-of-sample assessment of the forecasting performance of
common core inflation against other well-known measures, where we run real-time exercises
as Section B.4 explains.

We investigate the performance of the annualized common headline/core inflation be-
tween month ¢ — h and month ¢ in predicting the annualized headline/core inflation rate

between month ¢ and month ¢ 4 h. In practice, we use the following forecasting equation:
Thhlt = Tyjen + Egemns (B3)

where i = {h,c} denotes either headline or core, j denotes different underlying inflation
measures, and 5{| .y is a forecast error.

To predict core inflation, we consider the following predictors: core inflation itself,
common core inflation, and a UIG-style indicator for core inflation as explained in Appendix
D. That is, when 7r§+h|t = Ty npe Wf“fh = {x§,UIG,}. To predict headline inflation
we consider the following predictors: headline inflation itself, core inflation, the Dallas
Fed Trimmed Mean, common headline inflation, and a UIG-style indicator for headline
inflation. That is, when 7T§+h|t = W{L+h‘t, ﬂf‘tfh = {7, DT My, x\!', UIG,}.

The results of this exercise are in Table B4 for core inflation, and Table B5 for headline
inflation. The tables report the mean squared error (MSE) of each indicator relative to the
MSE of the target variable forecasting itself (that is,ﬂf| h = W;‘ 1), as well as some tests
of equal predictive ability. In a nutshell, common core inflation is a good predictor of core
inflation, clearly outperforming core inflation, and slightly outperforming the UIG-style
core measure (Table B4). Moreover, common core inflation is also a good predictor of
headline inflation performing a little bit better than the other models at short horizons,

and better than common headline inflation at all horizons.
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Table B4: FORECASTING CORE INFLATION

RELATIVE MEAN SQUARED ERROR TESTING EQUAL PREDICTIVE ABILITY
h X§ vf h X§ = ¢ vf =mf vf = X¢
1 0.54 0.57 1 0.00 0.00 0.48
3 0.48 0.59 3 0.00 0.02 0.15
6 0.49 0.66 6 0.01 0.31 0.20
12 0.43 0.71 12 0.01 0.45 0.19
24 0.81 1.17 24 0.19 0.70 0.24
36 0.80 1.74 36 0.28 0.08 0.00

Notes: The left panel shows the mean squared error of common core inflation (x§) and UIG-style core (vf)in predicting
core inflation. The MSEs are shown relative to the MSE of common core inflation predicting itself. A value smaller
than 1 means that the alternative model outperforms core inflation. When comparing the numbers in the two columns,
the smaller the number the better the forecasting performance of the model.

The right panel shows the p-value of a test of equal predictive ability, where the null hypothesis is in the header of
the Table. The test used here is the test of “unconditional predictive ability” of Giacomini and White (2006), which is
equivalent to the Diebold and Mariano (1995) test statistic. When using rolling window estimations, this test statistics
has a standard normal limit distribution.

B.6 Determining the number of factors

Table B6 reports results for the Hallin and Liska (2007) and Barigozzi et al. (2021) criteria.
Because these two criteria select the number of common shocks by looking at randomly
selected sub-samples of the original data, we run the procedure several times for robustness.
Table B7 reports the results for the Bai and Ng (2002) information criteria.

Appendix C Robustness analysis

C.1 Alternative switching point for regime change

As we wrote in Section 3.2, our model assumes that there are two regimes and that the
switching point from one regime to the other was in January 1995. Figure C1 shows
the estimate of common core inflation from 2000 onwards when we change the switching
point—we do not show the estimates pre-2000 because they are virtually identical. As
shown in the left chart, if we move backward the switching point back to January 1993
or 1994, the results do not change; if we move the switching point to January 1990-1992,
the results change slightly. Likewise, as shown in the right chart, if we move forward the

switching point forward to January 1996-2000, the results are virtually unchanged.
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Table B5: FORECASTING HEADLINE INFLATION
Relative mean squared error

h s ) X7 X§ oy vy

) 1 0.73 0.64 0.75 0.59 0.64 0.60
g 2 3 0.65 0.64 0.72 0.54 0.61 0.54
o 6 0.67 0.67 0.80 0.52 0.68 0.51
£5 12 0.73 0.86 0.85 0.60 0.79 0.60
<E 24 0.38 0.45 1.00 0.40 0.84 0.46
36 0.34 0.37 1.08 0.37 1.23 0.62

= 1 0.09 0.03 0.04 0.01 0.03 0.02
=2 0.04 0.03 0.01 0.00 0.02 0.01
o 6 0.03 0.02 0.11 0.00 0.05 0.00
;g 5 12 0.16 0.51 0.34 0.02 0.40 0.03
<3 24 0.00 0.01 0.98 0.01 0.64 0.05
2 36 0.00 0.00 0.68 0.00 0.35 0.01
e 1 0.01 0.04 0.07 0.14 0.51
sz 3 0.02 0.00 0.08 0.26 0.97
Sow 6 0.06 0.01 0.02 0.16 0.87
S E ¢ 12 0.16 0.02 0.17 0.28 0.99
<3 24 0.74 0.04 0.00 0.01 0.45
a 36 0.55 0.87 0.00 0.00 0.00

Nortes: The upper panel shows the mean squared error of core inflation (7f), the the Dallas Fed Trimmed Mean PCE
(7P), common headline inflation (x?), common core inflation (x§), UIG-style headline (U{L) Uf, and UIG-style core
(vf) in predicting headline inflation. The MSEs are shown relative to the MSE of headline inflation predicting itself. A
value smaller than 1 means that the alternative model outperforms headline inflation. When comparing the numbers
in the six columns, the smaller the number the better the forecasting performance of the model.

The middle and lower panel shows the p-value of a test of equal predictive ability. In the middle panel, the null
hypothesis is that the forecasting ability of a given model is the same as those of headline inflation. In the lower model,
the null hypothesis is that the forecasting ability of a given model is the same as those of common core inflation. The
test used here is the test of “unconditional predictive ability” of Giacomini and White (2006), which is equivalent to the
Diebold and Mariano (1995) test statistic. When using rolling window estimations, this test statistics has a standard
normal limit distribution.

C.2 Alternative calibration of the variance of the secular trends

L
600

This variance implies that the expected change in p;; over 50 years has a standard deviation

As discussed in Section 3.2.1, we calibrated the variance of each secular trend as 0727 =

equal to the standard deviation of m;. Figure C2 shows that our results are robust to

) thi 2 _f1 1 1 1y -
reasonable changes in this parameter, namely o, = {155, 505> 1200+ soo )y that is, when the

expected change in pu; over 10, 25, 100, and 150 years has a standard deviation equal to
the standard deviation of ;.

To better understand the results in Figure C2, let us rewrite common core inflation

from (2) as x§ = uf, + X5, where p§, = 3. wipy and X5 = > .. wixi- Then, the
2

results in Figure C2 show that changing o,

has no effect on x§ but only on the share of
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Table B6: NUMBER OF COMMON SHOCKS ¢

Hallin and Liska (2007) | Barigozzi et al. (2021)
q 0 1 0 1
1959-1994 100 0 11 89
1995-2019 0 100 85 15

Notes: Each entry reports the number of times out of 100 repetitions that a certain number
of common shocks is selected.

Table B7: BAI AND NG (2002) INFORMATION CRITERIA
q=

FOR q(s+1)
PC1 PC2 PC3
1959-1994 3 3 9
1995-2019 2 2 5

Figure C1: COMMON AND IDIOSYNCRATIC DECOMPOSITION

MODEL ESTIMATED WHEN CHANGING THE REGIME SWITCHING POINT
CorE PCE PRICES — YEAR-OVER-YEAR INFLATION

Switching point moved forward
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Notes: In each plot, each line denotes the estimate of year-over-year common core inflation when the short-memory regime
starts in January of the year indicated in the legend. January 1995 is our benchmark model.

X; accounted for by pu,.

C.3 Alternative model specifications

In this section, we estimate common core inflation by using three alternative specifications

of the dynamic factor model:

1) Model SO, ¢ = 1 and s = 0. In this specification, each disaggregated price loads the
common factor only contemporaneously. The rationale for including this specification
is to show what benefits we obtain from including lagged factor loadings.

2) Model S1, ¢ = 1 and s = 1. Our benchmark specification has s = 2. However, as

discussed in Section 3.3, there was evidence supporting a model with s = 1.
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Figure C2: COMMON AND IDIOSYNCRATIC DECOMPOSITION

MODEL ESTIMATED WHEN CHANGING THE VARIANCE OF THE SECULAR TREND
Core PCE PRICES — YEAR-OVER-YEAR INFLATION
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NotEes: In each plot, each line denotes the estimate of year-over-year common core inflation obtained by using different
values to calibrate the variance of the secular trend.

3) Model S5, ¢ =1 and s = 5. This is a much richer specification in which each disaggre-
gated price can load the common factor in six months.
4) Model Q2, g = 2 and s = 4. This specification shows the effect of adding one additional

common factor, where s is set in the same way as in Section 3.3.

5) Model Q3, ¢ = 3 and s = 6, same as Model Q2.
Model S1 is the only one with support in the data; the other specifications are not supported
(see Section 3.3).

As shown in Figure C3, our estimates are robust to the first three alternative model
specifications, particularly those with dynamic loadings. Our benchmark model and model
S1 are almost identical (the yellow line is almost above the red line). Model SO yields an
estimate of YoY common core inflation much smoother than that produced by the other
models, indicating that the dynamic loadings help us capture quite a lot of the dynamics in
the data. Finally, model S5 produces an estimate very similar to our benchmark estimate,
just a touch more volatile.

In contrast, models Q2 and Q3 produce estimates of common core inflation quite differ-
ently than our benchmark specification. As discussed in Section 3.3, no evidence supports
including more than one common factor. As a result, when we include one or two ad-
ditional factors, we pick mainly idiosyncratic noise, and the fit of common core inflation

worsens.
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Figure C3: COMMON AND IDIOSYNCRATIC DECOMPOSITION

ALTERNATIVE MODEL SPECIFICATIONS — YEAR-OVER-YEAR INFLATION
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NortEes: In each plot, the black line is year-over-year core PCE price inflation. The red line is the year-over-year common
core inflation estimate from our benchmark model. All the other lines are year-over-year common core inflation estimates
from different specifications of the model.

Appendix D Literature review

Dynamic factor models have been a popular tool for modeling inflation dynamics. However,
the model specification differs across studies depending on the purpose or research question.
This Appendix discusses how our approach differs from Cristadoro et al. (2005), Reis and
Watson (2010), and some recent studies directly relevant for this paper. We compared our
model with that of Stock and Watson (2016) in Section 5.

To simplify the comparison between the different models, we simplify and rewrite our
model in its static representation. Specifically, equations (1) and (5) are collapsed into the

following;:
A ™) (r) D1
Tit Y A (D1)

where A,y = [AEQ) )\g) /\EZ)] and Ft(r) = ft(r)/ t(i)ll ft(f);]’ are of dimension ¢ x 1
with § = ¢(s + 1).

Comparison with Cristadoro et al. (2005). We first compare our model with that
of Cristadoro et al. (2005), henceforth CFRV, which is also adopted by Giannone and
Matheson (2007) and Amstad et al. (2017). CFRV estimate a dynamic factor model using
Generalized Principal Components (Forni et al., 2005) on a large dataset of European
data. CFRV’s model is similar to ours but is different in two key aspects. First, and most
importantly, unlike our approach, CFRV do not allow for regime changes in the model.
Second, CFRV do not consider higher-frequency fluctuations when estimating the com-

mon component. Specifically, CFRV exclude high-frequency fluctuations in the data, which
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are likely to be less relevant for forecasting inflation one or more years ahead; in contrast,
we take all the fluctuations on board and let the model filter out variations in disaggregated
prices that are idiosyncratic. To put it another way, CFRV apply both cross-sectional and
temporal smoothing, whereas we only apply cross-sectional smoothing.

Our model is more flexible and less restrictive than CFRV, and it has the comparative
advantage that it can capture a signal from higher-frequency fluctuations that is pervasive
across disaggregated prices and carry information useful for inflation nowcasting and fore-
casting common core inflation. Indeed, even without the additional temporal smoothing,
our common core inflation effectively captures the persistent co-movement of disaggregated
price changes.

The question we want to answer is whether the additional flexibility in our model
helps measuring the underlying co-movements in disaggregated inflation. To answer this
question, we compare common core inflation with the Underlying Inflation Gauge (UIG)
of Amstad et al. (2017) that the NY Fed discontinued in October 2023.

When comparing common core inflation with the UIG, it is necessary to consider two
key differences. First, the UIG is a measure of underlying headline inflation and not core
inflation. Second, the UIG is a measure of underlying inflation for the CPI and not for
PCE. As explained in the FAQs available on the website of the NY Fed, the NY Fed Staff
used to produce a measure of underlying inflation for the PCE deflator but did not share it
with the public. Therefore, we decided to estimate a custom version of the UIG by fitting
the model of Cristadoro et al. (2005) (the same model underlying the UIG) on our dataset
with the same parametrization as common core inflation. Doing so yields an estimate of
the common component for each price index, which is then aggregated in the same way
as common core inflation. This is clearly not the same thing as the UIG, but we believe
it is the best apple-to-apple comparison we can do. Henceforth, with a clear abuse of
terminology, we will refer to this model as UIG-style.

Figure D1 compares common core inflation with the UIG-style core measure. As can be
seen, the UIG-style estimate is much less volatile than common core inflation, with small
deviations from the in-sample mean. This is the result of both the different estimation

method, the truncation of higher frequencies.

Comparison with Reis and Watson (2010). Reis and Watson (2010), henceforth
RW, estimate a dynamic factor model on finely disaggregated PCE price changes like ours.
However, there are three key differences between RW’s model and ours. First, RW do

not comprehensively consider long memory and/or nonstationarity in disaggregated price
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Figure D1: COMMON CORE INFLATION Vs UIG
Year-over-year inflation

2.6 1

2.4

2.2

A Al VY.

1.6

1.4

12+ A

1.0 A

0.8 A

1 1 L
1995 2000 2005 2010 2015 2020

NoTEes: the black line is core inflation, the red line is common core inflation, and the
yellow line is the UIG-style core measure estimated on our dataset.

31 Specifically, RW do not allow for regime changes, while our model has both

changes.
a short-memory and a long-memory regime with the possibility of switching between the
two. In addition, RW do not allow for nonstationarity in the idiosyncratic component,
while we do so through a time-varying mean for each disaggregated price change.

Second, RW produce pure inflation and relative price inflation, while we produce com-
mon core inflation. Pure inflation is the part of the common component that has equipro-
portional effects on all disaggregated prices; its purpose is to gauge the price changes that
reflect anticipated policy changes. Relative price inflation is the part of the common com-
ponent that has different effects on disaggregated prices; its purpose is to capture relative
price changes that have Phillips correlations with real activities. These two measures are
amenable to the theory on the Phillips curve that they lay out in the paper. To recover

these two indices, RW impose restrictions on the structure of A; and F,—specifically,

A; =[1T;] and F, = [a; R;}]', where F; is an r x 1 vector that follows a VAR driven by
r shocks. These restrictions are unnecessary in our case because our purpose is to recover
underlying co-movements in disaggregated prices, controlling for the noise in the data.

Third, we assume that of ¢ < ¢ common shocks, where ¢ = 1 and ¢ = 3, drive the

31Gtrictly speaking, RW allow for one or more unit roots in the VAR of the common factors. However,
as discussed in Section4.1.1, the regime change implies a change in the factor loadings rather than in the
persistence of the factors, which is strong in both regimes.
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co-movement in the data, RW assume ¢ = ¢ = 3. In other words, we consider dynamic

loadings, while RW employ static loadings.

Other recent studies on inflation dynamics directly relevant to this paper. One
strand of literature on inflation dynamics has adopted an unobserved component time-series
model with stochastic volatility (for example, Stock and Watson, 2016; Li and Koopman,
2021).32 This model is usually estimated with Bayesian methods; however, recently Li and
Koopman (2021) proposed a frequentist approach based on simulated maximum likelihood
estimation.

To model inflation dynamics during the pandemic and the recovery, Antolin-Diaz et al.
(2017) and Carriero et al. (2022) consider outlier treatments and stochastic volatility in
their dynamic models, similar to Stock and Watson, 2016. However, while Antolin-Diaz
et al. (2017) consider a Bayesian dynamic factor model for a mixed-frequency dataset,
Stock and Watson, 2016 analyze a fixed-frequency disaggregated data. Carriero et al.
(2022) consider a monthly Bayesian VAR model, while Stock and Watson, 2016 a quarterly
dynamic factor model.

Instead of adopting stochastic volatility and outlier treatments for the Covid-19 pan-
demic, we explicitly bring in a pandemic-specific factor following Maroz et al. (2021). All
told, even though our approach is more succinct and computationally less costly than the
approach based upon the time-varying parameter model with stochastic volatility, as shown
in Section 5, we do not lose much information in estimating common core inflation during

the pandemic.

32Relatedly, McAlinn et al. (2018) propose a dynamic sparse factor model where both the factor loadings
and the variance of the idiosyncratic component change over time. This model is designed to characterize
the changing commonality in a large disaggregated dataset. However, McAlinn et al. apply their method
to a dataset of various macroeconomic variables rather than disaggregated inflation data. In spite of the
novelty, McAlinn et al.’s method is more restrictive than that of SW because they do not account for
long-memory in the data, outlier treatments, and stochastic volatility in the innovation of the common
component.
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Complementary Appendix

Table CA1 shows detailed information about the dataset used to estimate the common and idiosyncratic decomposition of core PCE prices.
The table has five columns: columns “ID”, “Item”, and “Haver” report for each price index the identification number on our dataset, on NIPA
Table 2.4.4U, and on the Haver USNA database, respectively. Column “PCE Component” reports the name of each PCE price component,
while the column “Price index source data” reports the source that the BEA uses to construct that PCE price.! The sixth column of the table

reports for some item a flag in four different symbols:

o All the entries that have a flag denoted by the “®” symbol are “PCE” price indexes that (actually) do not exist, i.e., they are not available in
the NIPA Table 2.4.4U. These price indexes are constructed by us and are aggregation of PCE price indexes that are (actually) available in
Table 2.4.4U. These PCE price indexes have all the same source data, and therefore they are nearly identical. There are overall 14 of such

“PCE” price indexes, and specific information on each of them are available in Table CA2.

*We are grateful to Jeremy Rudd, Andrew Figura, Lucas Moyon and seminar participants at the Federal Reserve Board, Bank of Italy, European Central Bank,
Bank of England, and Reserve Bank of Australia. Any errors are our responsibility.

Disclaimer: The views expressed in this paper are those of the author and do not necessarily reflect the views and policies of the Board of Governors or the Federal
Reserve System.
'For detailed information on source data for PCE price index we refer the reader to the excel file that can be downloaded at https://www.bea.gov/media/3051.
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— Suppose we have to aggregate the price and the quantity index of n items. Let ¢; be the quantity index for item ¢ at time ¢, and let py

be the price index for item ¢ at time ¢t. Then, let P, the aggregate price index, then for the Fisher formula we have:

P=P, Znizl Pitqit—1 % Znizl Pitqit fort=1,... . T—1 (1>
Zizl Dit—1G5t—1 Zi:l Dit—1G5¢

1
Pr = ﬁ ZpiT (2)
i=1

where (2) is necessary to fix the scale.

— Note that formula (1) is not always necessary. Indeed, in many of the aggregation that we perform, the indexes that we are aggregating
are actually the same. In some other cases, the index are identical for most of the sample, but not for all the sample. This is the case

because of some change of methodology in the way the BEA sourced or built the index. In those cases, formula (1).

— Once P, is constructed, we construct the quantity index as if p;; = poy = ... = px = P, and hence Q; = Z?:l ¢it- In other words no

Fisher formula is necessary for quantities.

o All entries that have a flag denoted by the “x¥” symbol are PCE price indexes available on Table 2.4.4U, which are aggregation of other
subindexes with the same source data. There are overall 7 of such PCE price indexes and specific information on each of them is available
in Table CA3.

o All entries that have a flag denoted by the “o” symbol are PCE price indexes that have multiple source data. This is the case because they

are aggregation of different price indexes that have different source data.

¢ Finally, all entries that have a flag denoted by the “7” symbol are PCE price indexes constructed by the BEA by different methodologies and

for which we refere the reader to the BEA website for more information.

All the PCE price indexes listed in Table CA1 are also used by the Dallas Fed for the construction of the Trimmed Mean PCE index, with
the exception of the prices with a flag denoted by the “o” or “x” symbol. Indeed, rather than using these price indexes, the Dallas Fed uses the
subcomponents listed in Table CA2 and Table CA3.
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Table CA1l: DATA AND DATA SOURCES

ID Item PCE Component Price index source data

1 6 New Autos *
2 9 New Light Trucks CPI New trucks
3 10  Net Purchases of Used Motor Vehicles *
4 19  Tires CPI Tires
5 20  Accessories & Parts CPI Vehicle parts and equipment other than tires
6 23  Furnituore CPI Furniture and bedding
7 24  Clocks, lamps, lighting fixtures, and other houschold decorative CPI Clocks, lamps, and decorator items

items

8 25  Carpets & Other Floor Coverings CPI Floor covering
9 26  Window Coverings CPI Window coverings
0 Major appliances
11 29  Small Electric Household Appliances CPI Other appliances
12 31  Dishes and Flatware CPI Dishes and flatware
13 32  Nonelectric Cookware & Tableware CPI Nonelectric cookware and tableware
14 34  Tools, Hardware & Supplies CPI Tools, hardware, and supplies
15 35  Outdoor Equipment & Supplies CPI Outdoor equipment and supplies
16 39  Televisions CPI Televisions
17 40  Other Video Equipment CPI Other video equipment
18 41  Audio Equipment CPI Audio equipment
19 43  Recording media T
20 45  Photographic Equipment CPI Photographic equipment
21 47  Information processing equipment CPI Personal computers and peripheral equipment 1
22 50  Sporting Equipment, Supplies, Guns & Ammunition CPI Sports equipment

e See Table CA2 « See Table CA3 o See Table CA4 I See Table CA4 1 See the excel file downloadable from the BEA website at https://www.bea.gov/media/3051
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Table CA1l: DATA AND DATA SOURCES (CONTINUTED)

ID Item PCE Component Price index source data

23 51 Sports & Recreational Vehicles *
24 58  Recreational Books CPI Recreational books
25 59  Musical Instruments CPI Music instruments and accessories
26 62  Jewelty CPI Jewelty
27 63  Watches CPI Watches
28 Medical equipment and supplies .
29 66  Corrective Eyeglasses & Contact Lenses CPI Eyeglasses and eyecare
30 67  Educational Books CPI Educational books and supplies
31 68  Luggage & Similar Personal Items CPI Miscellaneous personal goods
32 Telephone hardware, calculators, and other consumer items CPI Telephone hardware, calculators, and other consumer

1tems

33 75 Cereals CPI Cereals and cereal products
34 76  Bakery Products CPI Bakery products
35 78  Beefand Veal CPI Beef and veal
36 79  Pork CPlPork
37 80  Other Meats CPI Other meats
38 8  Poultry CPI Poultry
39 8  Fish and Seafood CPI Fish and seafood
40 84  FreshMik CPI Mik
41 85  Processed Dairy Products BEA Composite index of various CPIs t
42 86  EBges CPlEges
43 87  FatsandOils CPI Fats and oils
44 89  Fresh Fuit CPI Fresh fruits
45 90  Fresh Vegetables CPI Fresh vegetables
46 91  Processed Fruits & Vegetables CPI Processed fruits and vegetables
47 92 Sugar and Sweets CPI Sugar and sweets
48 93  Food Products, Not Elsewhere Classified CPI unpublished detailed categories t

o See Table CA2 «x See Table CA3 o See Table CA4 I See Table CA4 1 See the excel file downloadable from the BEA website at https://www.bea.gov/media/3051
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Table CA1l: DATA AND DATA SOURCES (CONTINUED)

ID Item PCE Component Price index source data

49 95 Coffee, Tea & Other Beverage Materials CPI Beverage materials including coffee and tea

50 96  Mineral Waters, Soft Drinks & Vegetable Juices CPI Juices and nonalcoholic drinks
51 98  Spirits CPI Distilled spirits at home
5299 Wine CPI Wine at home
53 100 Beer CPI Beer, ale, and other malt beverages at home
54 101  Food Produced & Consumed on Farms BEA Composite of USDA prices received by farmers t
55 104  Womens & Girls Clothing CPI Womens and girls apparel
56 105  Mens & Boys Clothing CPI Mens and boys apparel
57 106  Childrens & Infants Clothing CPIs Infants and toddlers apparel
S Sewing machines, fabrics, and supplies .
59 109  Standard Clothing Issued to Military Personnel PPI Apparel
60 110  Shoes & Other Footwear CPI Footwear
61 113  Gasoline & Other Motor Fuel CPI Motor fuel
62 114 Lubricants & Fluids CPI Motor oil, coolant, and fluids
63 116 Fueloil CPI Fueloil
64 117  Other Fuels CPI Propane, kerosene, and other firewood
65 121  Prescription Drugs CPI Prescription drugs
66 122  Nonprescription Drugs CPI Nonprescription drugs
67 125  Games, Toys & Hobbies CPI Toys
68 126  Pets & Related Products CPI Pets and pet products
69 127  Flowers, Seeds & Potted Plants CPI Indoor plants and flowers
70 128  Film & Photographic Supplies CPI Film and photographic supplies
71 130  Household Cleaning Products CPI Household cleaning products
72 131  Household Paper Products CPI Household paper products
73 132  Household Linens CPI Other linens

o See Table CA2 x See Table CA3 o See Table CA4 I See Table CA4 1 See the excel file downloadable from the BEA website at https://www.bea.gov/media/3051
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Table CA1l: DATA AND DATA SOURCES (CONTINUED)

ID Item PCE Component Price index source data

74 134  Miscellaneous Household Products CPI Miscellaneous household products

75 135  Personal Care Products *
76 139  Tobacco CPI Tobacco and smoking products
77 141  Newspapers & Periodicals CPI Newspapers and magazines
78 142  Stationery & Miscellaneous Printed Materials CPI Stationery, stationery supplies, and gift wrap
N Rent of primary residence
80 156  Imputed Rental of Owner-Occupied Nonfarm Housing
81 159  Rental Value of Farm Dwellings BEA extrapolation t
82 163  Water Supply & Sewage Maintenance CPI Water and sewage maintenance
83 164  Garbage & Trash Collection CPI Garbage and trash collection
84 166  Electricity CPI Electricity
85 167 Natural Gas CPI Utility (piped) gas service
86 170  Physician Services PPI Offices of physicians
87 171  Dental Services CPI Dental services
88 172  Paramedical Services 0
89 Hospitals e
90 183  Nursing Homes PPI Nursing care facilities
91 188  Motor Vehicle Maintenance & Repair CPI Motor vehicle maintenance and repair
92 190  Other motor vehicle services i
93 197  Railway Transportation CPI Intercity train fare
94 Intercity bus fare
9%5 Intracity mass transit
96 203  Air Transportation PPI Domestic scheduled passenger air transportation

o See Table CA2 x See Table CA3 o See Table CA4 1 See Table CA4 t See the excel file downloadable from the BEA website at https://wuw.bea.gov/media/3051
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Table CA1l: DATA AND DATA SOURCES (CONTINUED)

ID Item PCE Component Price index source data

97 204  Water Transportation . . e CPIShip fare

98 207  Membership Clubs & Participant Sports Centers CPI Club dues and fees for participant sports and group ex-
ercises

101 212 Spectator Sports CPI Admission to sporting events

102 214  Audio-Video, Photographic & Info Processing Services o0
103 222  Gambling
104 227  Veterinary & Other Services for Pets CPI Pet services including veterinary
105 229  Maintenance & Repair of Rec Vehicles & Sports Equipment CPI Sporting goods
106 Food at employee sites and schools
107 237  Other Purchased Meals 0
108 241  Alcohol in Purchased Meals CPI Alcoholic beverages away from home
109 246  Hotels and Motels CPI Other lodging away from home including hotels and mo-

tels

110 247  Housing at Schools CPI Housing at school, excluding board
111 251  Commercial Banks BEA extrapolatioo t
112 252  Other Depository Instns & Regulated Invest Companies BEA annual composite index. t
113 253  Pension Funds BEA input cost index t
114 254  Financial Service Charges, Fees & Commissions o0
115 267  Life Insurance BEA input cost index t
116 268  Net Household Insurance PPI Homeowners insurance
117 271 Net Health Insurance 0
118 275  Net Motor Vehicle & Other Transportation Insurance PPI Private passenger auto insurance t

119 277  Communication

e See Table CA2 « See Table CA3 o See Table CA4 I See Table CA4 1 See the excel file downloadable from the BEA website at https://www.bea.gov/media/3051
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Table CA1l: DATA AND DATA SOURCES (CONTINUED)

ID Item PCE Component Price index source data

120 287  Higher Education *
121 291  Elementary & Secondary Schools CPI Elementary and high school tuition and fixed fees
122 292  Day Care & Nursery Schools CPI Day care and nursery school
123 293  Commercial & Vocational Schools CPI Technical and business school tuition and fees
124 Legal services
125 297  Tax Preparation & Other Related Services CPI Tax preparation and other accounting fees
126 298  Employment Agency Services PPI Employment placement services
127 299  Other Personal Business Services CPI Miscellaneous personal services
128 300 Labor Organization Dues BEA input cost index t
129 302  Funeral & Burial Services CPI Funeral expenses
130 305 Hairdressing Salons & Personal Grooming Estab CPI Haircuts and other personal care services
131 Apparel services other than laundry and drycleaning e
132 308 Laundry & Dry Cleaning Services CPI Laundry and drycleaning services
133 312  Child Care CPI Child care and nursery school
134 313  Social Assistance BEA input cost index t
135 320  Social Advocacy & Civic & Social Organizations BEA input cost index t
136 321  Religious Organizations Services to Households BEA input cost index t
137 322  Foundations and grantmaking and giving services to households BEA input cost index t
138 324  Domestic Services BEA Composite index of various CPIs t
139 325  Moving, Storage & Freight Services CPI Moving, storage, and freight expenses
140 Repair of household items
141 328  Other Household Services CPI Household operations
142 338  Final Consumption Expenditures of Nonprofit Institutions Serving BEA input cost index t

Households

o See Table CA2 x See Table CA3 o See Table CA4 1 See Table CA4 t See the excel file downloadable from the BEA website at https://wuw.bea.gov/media/3051
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Table CA2: NOTES TO TABLE 1 FOR ENTRIES WITH e SYMBOL

Note

The price index for “Major Appliances” is the aggregation of the PCE price index for “Major Household Appliances” (Item 28, Haver
JCDFKKM) and the PCE price index for “Tenant Landlord Durables” (Item 155, Haver JCSHTDM@USNA), which are both constructed
out of the CPI “Major Appliances”

(Item 65, Haver JCDOOTM) and the PCE price index for “Other Medical Products” (Item 123, Haver JCNODOM), which are both
constructed out of the CPI “Medical equipment and supplies”.

108, Haver JCNLOLM) and the PCE price index for “Sewing Items Price” (Item 133, Haver JCNOLSM), which are both constructed
out of the CPI “Sewing machines, fabrics, and supplies”.

Index” (Item 153, Haver JCSHTBM), the PCE price index for “Tenant-Occupied Stationary Homes” (Item 154, Haver JCSHTSM),
and the PCE price index for “Group Housing” (Item 160, Haver JCSHOM), which are all constructed out of the CPI “Rent of primary
residence”.

Homes” (Item 157, Haver JCSHRBM), (2) “Owner-Occupied Stationary Homes” (Item 158, Haver JCSHRSM), which are both con-
structed using the “CPI Owners’ equivalent rent of primary residence”. In the disaggregation used by the Dallas Fed instead of the index
for “Imputed Rental of Owner-Occupied Nonfarm Housing” the single components are included.

Haver JCSMPNM), the PCE price index for “Proprietary Hospitals” (Item 181, Haver JCSMPPM), and the PCE price index for “Govt
Hospitals Price” (Item 182, Haver JCSMPPM), which are all constructed out of the PPI “Hospitals”.
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Table CA2: NOTES TO TABLE 1 FOR ENTRIES WITH @ SYMBOL (CONTINUED)

Note

The price index for “Intercity bus fare” is the aggregation of the PCE price index for “Intercity Buses” (ID 199, Haver JCSTIBM) and
the PCE price index for “Other Road Transportation Service” (ID 202, Haver JCSTIOM), which are both constructed out of the “CPI
Intercity bus fare”.

The price index for “Intracity mass transit” is the aggregation of the PCE price index for “Taxicabs” (Item 200, Haver JCSTLBM) and
the PCE price index for “Intracity Mass Transit” (Item 201, Haver JCSTLTM), which are both constructed out of the “CPI Intercity
bus fare”.

The price index for “Other recreation services” is the aggregation of the PCE price index for “Amusement Parks, Campgrounds & Related
Recreational Services” (Item 208, Haver JCSRCPM) and the PCE price index for “Package Tours” (Item 228, Haver JCSRKM), which
are both constructed out of the CPI “Other recreation services”.

The price index for “Admission to movies, theaters, and concerts” is the aggregation of the PCE price index for “Motion Picture Theaters”
(Item 210, Haver JCSRSPM), the PCE price index for “Live Entertainment, ex Sports” (Item 211, Haver JCSRSTM), and the PCE
price index for “Museums & Libraries” (Item 213, Haver JCSOSLM), which are all constructed out of the CPI “Admission to movies,
theaters, and concerts”.

The price index for “Food at employee sites and schools” is the aggregation of the PCE price index for “Elementary & Secondary School
Lunches” (Item 235, Haver JCSFPGM), the PCE price index for “Higher Education School Lunches” (Item 236, Haver JCSFPUM),
the PCE price index for “Food Supplied to Civilians” (Item 243, Haver JCSFEVM), and the PCE price index for “ Food Supplied to
Military” (Item 244, Haver J CSFEAM) which are all constructed out of the CPI “Food at employee sites and schools”.

The price index for “Legal services” is the aggregation of PCE price index for “Legal Services” (Item 295, Haver JCSOBLM) and PCE
price index for “Prof Assn Dues” (Item 301, Haver JCSBOPM), which are both constructed out of the CPI “Legal services”.

The price index for “Apparel services other than laundry and drycleaning” is the aggregation of the PCE price index for “Miscellaneous
Personal Care Services” (Item 308, Haver JCSOPOM), the PCE price index for “Clothing Repair, Rental& Alterations” (Item 309, Haver
JCSOPRM), and the PCE price index for “Repair & Hire of Footwear” (Item 310, Haver JCSOPSM), which are all constructed out of
the CPI *“ Apparel services other than laundry and drycleaning”.
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The PCE price index for “New Autos” has two subcomponents, (1) “New Domestic Autos” (Item 7, Haver JCDMNDM), and (2) “New
Foreign Autos” (Item 8, Haver JCDMNFEFM), which are both constructed using the “CPI New cars”. In the disaggregation used by the
Dallas Fed instead of the index for “New Autos” the single components are included.

which in its turn has three subcomponents (1a) “Net transactions in used autos” (Item 12, Haver JCDMUNM), (1b) “Used auto margin”
(Item 13, Haver JCDMUGM), and (1c) “Employee reimbursement” (Item 14, Haver JCDMURM); and (2) “Used light trucks” (Item 15,
Haver JCDMTUM), which in its turn has two subcomponents (2a) “Net transactions in used truck” (Item 16, Haver JCDMTUNM), and
(2b) “Used truck margin” (Item 17, Haver JCDMTUGM). Item 12 and 16 are constructed out of the (“CPI Used cars and trucks”), and
similarly Item 13 and 17 (“PPI Used vehicle sales at new car dealers”), whereas Item 14 is sourced from the “CPI Car and truck rental”.
In the disaggregation used by the Dallas Fed instead of the index for “SNet purchases of used motor vehicles” the two subcomponent
components (Item 11 and 15) are included.

(2) “Bicycles and accessories” (Item 53, Haver JCDOWBM), and (3) “Pleasure boats, aircraft, and other recreational vehicles” (Item 54,
Haver JCDBBM), which in its turn can be further decomposed in (3a) “Pleasure boats” (Item 55, Haver JCDBBBM), (3b) “Pleasure
aircraft” (Item 56, Haver JCDBBPM), and (3c) “Other recreational vehicles” (Item 57, Haver JCDBBOM). The source of all these
components is the same (“CPI Sports vehicles including bicycles”), the only exception being the PCE price index for “Motorcycles” that
is sourced from the “CPI New motorcycles”. In the disaggregation used by the Dallas Fed instead of the index for “Sports and recreational
vehicles” the single components (Item 52, 53, 55, 56, and 57) are included.

Elec Prod” (Item 136, Haver JCNOPPM), (2) “Cosmetic/Perfumes/Bath/Nail Preparatns & Implements” (Item 137, Haver JCNOPCM),
and (3) “Elec Appliances for Personal Care” (Item 138, Haver JCNOPEM). Item 136 and 138 are both constructed out of the “CPI Hair,
dental, shaving, and miscellaneous personal care products”’, while Item 137 is constructed out of the “CPI Cosmetics/perfumes/bath /nail
preparations and implements”. In the disaggregation used by the Dallas Fed instead of the index for “Personal Care Products” the single
components are included.
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The PCE price index for “Gambling” has three subcomponents, (1) “Lotteries Price Index” (Item 221, Haver JCSROGM), (2) “Casino
Gambling” (Item 222, Haver JCSROLM), and “Pari-Mutuel Net Receipts” (Item 223, Haver JCSROBM), which are both constructed
using the “CPI All Items”. In the disaggregation used by the Dallas Fed instead of the index for “Gambling” the single components are
included.

JCSOEUPM), and (2) “Nonprofit Pvt Higher Education Services to Households” (Item 287, Haver JCSOEUNM), which are both
constructed using the “CPI College tuition and fees”. In the disaggregation used by the Dallas Fed instead of the index for “Higher
Education” the single components are included.

Coverings” (Item 326, Haver JCSLORM) and the PCE price index for “Repair of Household Appliances” (Item 327, Haver JCSLOPM),
which are both constructed out of the “Repair of household items”
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86

The PCE price index for “Paramedical services” has three subcomponents, (1) “Home health care” (ID 173, Haver JCSMOAM), which
is constructed out of the PPI “Home health care services”; (2) “Medical laboratories” (ID 174, Haver JCSMOLM), which is constructed
out of the by the BEA as a composite index of fixed-weighted PPIs for “Medical laboratories” and for “Diagnostic imaging centers”; and
(3) “Other professional medical services” (ID 175, Haver JCSMOLM), which in its turn has two subcategories both constructed out of
the CPI “Services of other medical professionals”. Note that also in the disaggregation used by the Dallas Fed index for “Paramedical
services”, rather then the components, is included.

& Satellite Television & Radio Services” (Item 215, Haver JCSROTM), which is constructed out of the CPI “Cable and satellite TV and
radio services”; (2) “Photo Processing” (Item 216, Haver JCSRODM), which is constructed out of the CPI “Film processing”; (3) “Photo
Studios” (Item 217, Haver JCSROUM), which is constructed out of the CPI “Photographer fees”; (4) “Repair of Audio-Visual, Photo &
Info Process Equipment” (Item 218, Haver JCSREEM), which is constructed out of the CPI “Video and audio”; and (5) “Video Media
Rental Price” (Item 219, Haver JCSROYM), which is constructed out of the CPI “Rental of video or audio discs and other media”.
Note that also in the disaggregation used by the Dallas Fed index for “Audio-video, photographic, and information processing equipment
services”, rather then the components, is included.

Haver JCSFPLM), which is constructed out of the CPI “Limited service meals and snacks™; (2) “Meals at Other Eating Places” (Item
237, Haver JCSFPEM) and (3) “Meals at Drinking Places” (Item 238, Haver JCSFPDM), which are both constructed out of the CPI
“Full service meals and snacks”. Note that also in the disaggregation used by the Dallas Fed index for “Other Purchased Meals”, rather
then the components, is included.
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114

The PCE price index for “Financial service charges, fees, and commissions” has four subcomponents: (1) “Financial service charges and
fees” (Item 253, Haver JCSNFVM), which is constructed out of the CPI “Checking account and other bank services”; (2) “Securities
commissions” (Item 254, Haver JCSNFSM); (3) “Portfolio management and investment advice services” (Item 262, Haver JCSNFPM),
which is constructed as a fixed weighted average of the PPI “Portfolio Management” and the PPI “Investment advice”; and (4) “Trust,
fiduciary, and custody acitivities” (Item 263, Haver JCSNFTM), which is constructed out of the PPI “Commercial bank trust services”.
The subcomponent “Securities commissions” has three subcomponents: (2.1) “Direct commissions” (Item 255, Haver JCSNFSDM), which
in its turn has two subcomponents (2.1.1) “Exchange-listed equities” (Item 256, Haver JCSNFSEM), which is constructed out of the PPI
“Brokerage services, equities and ETFs”, and (2.1.2) “Other direct commissions” (Item 257, Haver JCSNFSOM), which is constructed out
of the PPI “Brokerage services, all other securities™; (2.2) “Indirect commissions” (Item 258, Haver JCSNFIM), which in its turn has two
subcomponents (2.2.1) “Over-the-counter equity securities” (Item 259, Haver JCSNFIVM), which is constructed out of the PPI “Dealer
transactions, equities securities”, and (2.2.2) “Other imputed commissions” (Item 260, Haver JCSNFIOM), which is constructed out of
the “Dealer transactions, debt securities and all other trading”; and (2.3) “Mutual fund sales charges” (Item 261, Haver JCSBKFM),
which is constructed by the BEA as an Implicit price index.

Note that also in the disaggregation used by the Dallas Fed index for “Financial service charges, fees, and commissions”, rather then the
components, is included.

(Item 270, Haver JCSMHIM), which is constructed out of the PPI “Homeowner’s insurance”; (2) “Health Insurance: Income Loss” (Item
271, Haver JCSMIIM), which is constructed out of the CPI “All items”™; and (3) “Health Insurance: Workers’” Compensation”, which is
constructed out of the PPI “Worker’s compensation insurance”. See also BEA. Note that also in the disaggregation used by the Dallas
Fed index for “Net Health Insurance”, rather then the components, is included.
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19 “Recording media” (42) is the aggregate of “Audio discs, tapes, vinyl, and permanent digital downloads” (43) and “Video discs, tapes,
and permanent digital downloads” (44). We took the aggregate because 44 is available only starting in 1976. In the disaggregation used
by the Dallas Fed instead of the aggregate index are the three subindexes.

software and accessories” (48), and “Calculators, typewriters, and other information processing equipment” (49). We took the aggregate
because 47 and 48 are available only starting in 1976. In the disaggregation used by the Dallas Fed instead of the aggregate index are

,,,,,,,,,,,, the three subindexes.
and tolls” (196). We took the aggregate because 192 is available only starting in 1976. In the disaggregation used by the Dallas Fed
instead of the aggregate index are the three subindexes.
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