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I. Introduction

A central theme in asset pricing is what types of news drive realized asset returns. A large literature

combines the log-linearization of Campbell and Shiller (1988) with a VAR approach as in Campbell (1991)

to decompose stock return variance into components coming from cash flow news, discount rate news,

and the covariance of the two. In this paper we propose a decomposition not only of return variance but

of the realized return for a given period. This allows for an interpretation of the movement of the stock

market period by period. It can also be used to assess the effect of potential risks to the market ex-ante,

similarly to the way investors use duration to assess risks ex-ante in the bond market.

Our approach relies on two main ideas. First, we observe that in recent decades, a lot of information

about the inputs to the present value formula for the stock price is observable from financial market data

and expectations data. The term structure of the real riskless rate can be measured out to 30 years

using yields on Treasury inflation protected securities or nominal Treasury yields combined with inflation

swaps. The term structure of the equity risk premium is not directly observable, but Martin (2017)

provides a lower bound on the equity risk premium based on S&P500 index options. We extend Martin’s

empirical evidence that this lower bound is approximately tight and thus is close to the actual equity

risk premium. The bound can be calculated out to around 2 years in recent years, based on available

S&P500 options. Because fluctuations in near-term equity premia are substantial (especially in crisis

periods), fluctuations in the first two years will account for an important part of equity risk premium

news. Expectations data can also be used to obtain information about changes to expected dividends.

Specifically, while current earnings have large transitory movements making them a poor guide to likely

changes in expected future dividends, we argue that expected earnings a few years out from analyst

forecasts filter out much of these transitory movements and therefore are informative about the likely

updating to expected dividends down the road which account for most of the value of the market.

Second, to utilize the availability of rich discount rate data and earnings expectations data, we develop

a new stock return decomposition for the overall stock market which is straightforward to map to available

data using the S&P500 as the measure of the stock market. Because expectations data are available only

for expected levels, not expected log levels, our method is developed to use levels as inputs, as opposed

to logs in the Campbell-Shiller log-linearization. Our approach starts by expressing the stock price as

the sum of the present values of the subsequent expected dividends. At each point in time, there are

dividends one, two, three, ... years out. The realized capital gain on the stock market in a given period is

therefore a weighted average of (1) how the value of “generic” dividend strips (i.e., dividend strips that

pay off a certain number of periods out) evolve over time, and (2) the initial weights of each of the generic

dividend strips in the overall market (the dividend strip weights). The effects of changes to the real yield
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curve, equity premia, or changes to expected dividends on the stock price follow from this expression.

Specifically, the capital gain on the market is driven by changes to the inputs and what fraction of the

stock price a given input change is relevant for.

Regarding expected dividends, an x% increase in the expected dividend at date t+k leads to a capital

gain of x% times the dividend strip weight for that dividend. As an example, suppose the expected

dividend at time 10 accounts for 2% of today’s stock price. Then, increasing this expected dividend by

10% increases today’s stock price by 0.2% (a 10% increase in something accounting for 2% of value). In

general, percentage changes to dividends that are larger and thus account for more of the stock market

value will have a bigger effect on the stock price.

Regarding discount rates, the percentage capital loss from a y percentage point increase in the forward

real yield or forward equity premium for a given future period t+k is (approximately) y times the weight

of dividends at date t+k and beyond in today’s stock price. For example, suppose expected dividends at

time 10 and later account for 90% of today’s stock price. Then, increasing the discount rate for year 10

by 1 percentage point lowers today’s stock price by approximately 0.9% (a 1% shrinkage to 90% of stock

value). Intuitively, only dividends from year 10 and later are affected in present value terms by a change

to discounting in year 10. In general, changes in the forward real yield or the forward equity premium

for a more distant forward period have a smaller stock price impact than changes to these forwards for

earlier periods.

We highlight that our decomposition is based on very few assumptions. The effects of changes to

expected dividends and to real yields require only the assumption that the stock price is determined by

present value. Furthermore, regarding the effect of changing equity premia, our method is applicable

even if the equity premium differs across dividend strips in ways that are not observable. By writing the

stock price as a function of the terminal payoff at a given future date (the dividend plus the price), we

observe that one period before that future date, the full value of the stock market is due solely to the

terminal payoff. Therefore, for that period, the terminal payoff is discounted using the expected return

on the market which can be expressed in terms of the forward real yield and the forward equity premium,

and the effect of a change to the forward market equity premium follows. We show that this terminal

value approach leads to exact effects of changes to the market equity premia if returns are independent

over time and close to exact effects under realistic return processes.

Crucially for implementing our decomposition, dividend strip weights can be calculated from dividend

futures prices.1 We calculate dividend strip weights from dividend futures out to year 10 and show how

dividend strip weights can be estimated past year 10 using market data, if expected returns and expected

1Before the availability of dividend futures, we follow van Binsbergen et al. (2013) and calculate dividend strip prices
from options data and put-call-parity.
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growth are approximately constant past year 10. Today’s market price and today’s prices of the near-

term dividend futures imply today’s value of the expected dividends after year 10. From that value,

one can infer the market’s perception today of the ratio G/R past year 10, where G denotes the gross

expected growth rate and R the gross expected return, both past year 10. This ratio then is used to

calculate dividend strip weights past year 10. We highlight that because our approach allows for time-

varying dividend strip weights, it effectively allows for a time-varying duration of the stock market. By

contrast, the Campbell-Shiller log-linearization is typically implemented with a constant log-linearization

parameter ρ over time.

We consider two implementations of our decomposition. The first, which we refer to as Decomposition

A, exploits only financial market data: Dividend futures data to obtain the dividend strip weights, real

yield curve changes to year 30, and equity risk premium changes to year 2. This allows a decomposition

the stock market capital gain for a given period into a factor due to the change in the real yield curve, a

factor due to changes in near-term equity premia, and a factor which captures changes to expected cash

flows (dividends) as well as changes to real yields or equity premia past the horizons of observable data.

Because this decomposition only relies on financial market data, it can be implemented at frequencies as

high as daily (even intra-day if researchers have access to intra-day financial markets data). Decomposition

A provides insights about the role of real yield curve shifts and changes to near-term equity premium

but bundles the effects of changes to expected cash flows with those of changes to long-term discount

rates (forward real yields past year 30 or forward equity premia past year 2). Adding data for analyst

earnings expectations, along with a set of assumptions mapping these to expected dividends, allows one

to construct a measure of the effect of changes to expected cash flows and therefore a measure of the

effect of changes to long-term discount rates. Our mapping from expected earnings to expected dividends

is to assume that the growth rate in expected earnings for year 3 forward is a good proxy for the growth

rate in expected dividends for all forward horizons. We then use data on inflation swaps to construct

a measure of growth in expected real dividends. Decomposing the cash flow & long-term discounting

component into its two parts, we show that the capital gain factor due to changes in long-term discount

rates is strongly negatively correlated with the factor due to real yield curve changes, implying that it

likely captures changes to forward equity premia past year 2 as opposed to changes to forward real yields

past year 30. We verify this inference using data on asset manager equity premium expectations out

to year t + 10, obtained from Dahlquist and Ibert (2021). The analyst forecast data therefore enable a

second decomposition, Decomposition B, which separately provides capital gain factors due to real yield

curve changes, changes to equity premia (at all horizons), and changes to expected dividends.
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We apply our observables approach to monthly S&P500 data for 2005-2023.2 We first document the

relative roles of the capital gain and dividend yield. We then focus on the capital gain and decompose it

using both Decomposition A and Decomposition B. We provide an (expanding window) decomposition

of the cumulative capital gain based on monthly returns and also provide decompositions of each annual

return over our sample. The contributions of the various factors driving the capital gain are multiplicative

(for gross returns), making it simple to compound factor contributions over time. We report results of our

decomposition along several dimensions: Which of the factors (real yield curve, equity premium, expected

real dividends) mattered the most for the realized cumulative capital gain over the sample? What were

the contributions of each of the factors to volatility? And how did the relative roles of the capital gain

drivers differ across periods? The latter is a particular strength of our approach so we zoom in of three

years with large market declines – 2008, 2020, and 2022 – to highlight how return drivers differed across

these periods. Our findings can be summarized as follows based on Decomposition B.

First, changes to expected real earnings (and thus expected real dividends) played the dominant

role for the realized cumulative capital gain on the market over the 2005-2023 period. We estimate a

cumulative gross capital gain of 244% (i.e., a net capital gain of 144%) and a cumulative gross expected

dividend factor of 217% while the cumulative gross return factors for each of the yield curve and equity

premium components are close to one.

Second, the yield curve and the equity premium factors are more volatile than the expected dividend

factor. In annual data, the standard deviations of the former two factors are between two and three

times the standard deviation of the expected dividend factor. A lot of the variance of the equity premium

factor comes from movements in equity premia past year 2, with fluctuations in the year 1-2 equity

premia mattering mostly in crisis. In terms of correlation of factors, the yield curve factor is negatively

correlated with both the equity premium factor and expected dividend factor, while the equity premium

factor and expected dividend factor are positively correlated. In our variance decomposition of annual

log returns, the variance of the yield curve factor and variance of the equity premium factor each account

for over 100% of the capital gain variance, but the negative covariance between these two factors plays

a large stabilizing role and account for around -200% of the log capital gain variance. In a variance

decomposition which combines the yield curve and equity premium factors to study the relative roles of

overall discount rate changes versus expected dividend changes, the variance of the combined discount

rate (i.e., expected stock return) factor accounts for about half of the capital gain variance, while the

variance of the expected dividend factor accounts for a fifth and the covariance of the combined discount

rate factor and the expected dividend factor for the remainder.

2We explore Decomposition A for higher frequency returns around FOMC announcements in Knox and Vissing-Jorgensen
(2024). Knox and Timmer (2023) also provide Decomposition A results for CPI announcement days.
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Third, the mix of return drivers differs across periods. While the strong negative correlation between

the yield curve factor and the equity premium factor (-0.80 for the log factors) means that these two

components fairly consistently move in opposite directions, much lower correlations between these factors

and the expected dividend factor are indicative of a heterogeneous mix of return drivers across periods.

As an example of this, we highlight the contrast between year 2008 and year 2022, both of which saw a

large negative capital gain on the market for the year. The market decline in 2008 was driven by a mix

of higher equity premia and negative changes to expected earnings with the former playing the larger

role, while the market drop in 2022 was driven by higher real yields. As for the COVID-related market

crash in the first quarter of 2020, it looks much like 2008 in being driven by higher equity premia and

negative changes to expected earnings with higher equity premia playing the larger role. In both 2008

and 2020Q1, higher year 1-2 equity premia play substantial (but not dominant) roles in the overall equity

premium factor. For year 2020 as a whole, falling real yields explain why the market ended up with a

large positive 15% real capital gain despite the recovery still being nascent and uncertain at the end of

2020.

Relating our approach to the literature

Relating our work to the large prior literature on return decomposition, we note that one could

exploit our idea of using observable inputs to decompose returns using the Campbell and Shiller (1988)

(CS) log-linearization for Decomposition A but not for Decomposition B (given the absence of data on

expected log earnings or dividends). The inputs to the decomposition would be changes to expected log

returns (log riskless forward yields and log forward equity premia, which can be constructed from options

as in Gao and Martin (2021)). Expected log dividends would be backed out with the effects of changes

to long-term discount rates as the residual factor and one would obtain a decomposition of log returns.

Since our approach allows a decomposition of both returns (using multiplicative factors) and log returns

(using additive log factors), we do not provide results based on the CS log-linearization.

In the literature on return decomposition, VAR models play a central role. These models are well

suited for decomposing return variance over a long period of interest. We highlight several advantages

of our observables approach relative to VARs. First, the R2 of the predictive regressions in VARs is

often modest, leading to large statistical uncertainty about whether expected excess stock returns are

in fact time-varying or not. This issue does not arise when using our approach to decompose returns

and perform variance decomposition. Second, a VAR decomposition would not allow for a decomposition

of the cumulative capital gain over a full sample of interest, since it imposes that cash flow news and

discount rate news each have mean zero. Third, a key strength of our observables approach is to allow

for a decomposition of capital gains (and thus returns) period by period. The drawback of using a VAR
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for a period-by-period decomposition of returns is that VARs interpret all movements in the predictors

similarly. For example, suppose the price-earnings (PE) ratio falls in a given period of interest and that,

over the full VAR estimation sample, a lower PE ratio predicts higher stock returns. A VAR approach

will then interpret the price move based on how the PE ratio moved, with a low return along with a lower

PE ratio interpreted as discount rate news and a low return along with an unchanged PE ratio interpreted

as cash flow news. In practice, the mix of discount rate changes and expected cash flow changes driving

movements in the PE ratio could vary over time and our approach allows for this.3 Effectively, because

our decomposition is based on observable data and does not require regressions, it allows researchers to

decompose realized stock returns in a way that is conceptually similar to that used in event studies of

yield changes in bond markets (e.g., Krishnamurthy and Vissing-Jorgensen (2011) for quantitative easing

announcements).

Our paper is also related to van Binsbergen (2024) who studies the performance of bond portfolios with

durations roughly equal to that of the stock market, highlighting that over the past 50 years the realized

return and volatility of the bond portfolios have been as high as their equity counterparts. The bond

portfolio returns are conceptually similar to the yield curve factor of our stock return decomposition.4 By

using I/B/E/S analysts earnings forecasts, the implementation of the cashflow factor in Decomposition

B relates our paper to a growing literature that also use these forecasts to highlight the important role

changing cashflow expectations have for aggregate equity valuations.5 Methodologically, we contribute

to these papers by showing how to use cashflow expectations in a return decomposition framework with

modest assumptions. Empirically, we contribute to these papers by first showing that in recent decades,

which is our empirical sample, data quality has improved out to 3-5 year horizons, and second by utilizing

these medium term horizons to measure how expected dividends further down the road update. Our paper

also relates to Cieslak and Pang (2021) who use a stock-bond correlation sign restriction plus restrictions

on the term-structure of interest rates to decompose stock returns into a growth news, a monetary news,

and two risk premium news components. Finally, our paper relates to Gonçalves (2021), who studies the

contribution of dividends of different maturities to the overall stock market return. His analysis is within

a CS decomposition and VAR setting rather than the observables-based approach that we are focused

on.

The outline of the paper is as follows. Section II derives our decomposition. Section III maps the

3Campbell and Vuolteenaho (2004) discuss different recession types — cashflow or discount rate driven — as estimated
through the lens of a standard VAR implementation with constant coefficients. Bianchi (2020) uses a Markov-switching VAR
to compare the Great Depression and the Great Recession, with the regime switching allowing time-varying coefficients.

4Greenwald et al. (2024) also study the impact of long-term yields on equity valuations, arguing that this has been an
important driver of rising financial wealth inequality since the 1980s.

5For example, see Landier and Thesmar (2020); De La O and Myers (2021); McCarthy and Hillenbrand (2021); Bordalo
et al. (2024); De la O and Myers (2024); Hillenbrand and McCarthy (2024); Bordalo et al. (2024).
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decomposition to observable inputs. Section IV provides empirical results and section V concludes. The

Appendix contains proofs along with a series of supplementary results.

II. A new stock return decomposition

We derive a new decomposition of the realized stock market capital gain into the contributions from

changes in the real yield curve, changes in equity premia, and changes to expected dividends. Our

approach relies on assessing the effect of changes to the inputs in the present value formula for the stock

price. It formalizes two simple intuitions: (1) if the expected dividend at time 10 accounts for 2% of

today’s stock price, then increasing this expected dividend by 10% will increase today’s stock price by

0.2% (a 10% increase in something accounting for 2% of value); and (2) if expected dividends at time

10 and later account for 90% of today’s stock price, then increasing the discount rate for year 10 by 1

percentage point will lower today’s stock price by approximately 0.9% (a 1% shrinkage to 90% of stock

value). Capital gains are thus driven by how much the inputs change and what fraction of the stock price

a given input change is relevant for.

A. Background definitions

Start from the present value formula of the stock market

Pt =
∞∑
n=1

P
(n)
t =

∞∑
n=1

Et [Dt+n]

Et

(
R

(n)
t+1R

(n−1)
t+2 ...R

(1)
t+n

) =
∞∑
n=1

Et [Dt+n](
1 + y

(n)
t

)n [Et

(
R

(n)
t+1R

(n−1)
t+2 ...R

(1)
t+n

)
(

1+y
(n)
t

)n

] (1)

where all variables are in real terms. P
(n)
t is the value of the nth dividend strip (i.e., the present value at

time t of the expected dividend paid out at time t+n), Et

(
R

(n)
t+1R

(n−1)
t+2 ...R

(1)
t+n

)
is the n-period cumulative

gross discount rate at time t for discounting Et [Dt+n] back from t + n to t, and R
(n)
t+1 =

P
(n−1)
t+1

P
(n)
t

is the

one-period gross return of the nth dividend strip where P
(0)
t+1 = Dt+1.6 y

(n)
t denotes the yield on an n-year

zero coupon bond.
Et

(
R

(n)
t+1R

(n−1)
t+2 ...R

(1)
t+n

)
(

1+y
(n)
t

)n is the ratio of the cumulative expected gross return on the nth

dividend strip relative to that on the zero coupon bond with the same maturity. It thus captures the risk

premium on the dividend strip.

The one-period gross return on the market can be expressed as the value-weighted average of the

6The definition of the value of the nth dividend strip, P
(n)
t , follows from the fact that the only payment is at maturity.

The hold-to-maturity realized return from purchasing the strip today is thus Rt,n =
Dt+n

P
(n)
t

. Take time t expectations and

rearrange to show P
(n)
t =

Et[Dt+n]
Et(Rt,n)

. Rt,n can in turn be expressed as the product of one-period realized returns.
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one-period gross returns on all dividend strips

Rt+1 =
∞∑
n=1

w
(n)
t R

(n)
t+1 (2)

where

w
(n)
t =

P
(n)
t

Pt
(3)

is the weight of the nth dividend strip (the present value of the expected dividend paid out at time t+ n

relative to the overall stock market value) and
∑∞

n=1w
(n)
t = 1.

B. Decomposing capital gains and returns

Consider the capital gain over a period from t to t+ 1

Pt+1

Pt
=

P
(1)
t+1

Pt
+
P

(2)
t+1

Pt
+ ... =

P
(1)
t

Pt

P
(1)
t+1

P
(1)
t

+
P

(2)
t

Pt

P
(2)
t+1

P
(2)
t

+ ... = w
(1)
t

P
(1)
t+1

P
(1)
t

+ w
(2)
t

P
(2)
t+1

P
(2)
t

+ ... (4)

Equation (4) expresses the market’s capital gain in terms of how the value of “generic” dividend strips

(i.e., dividend strips that pay off a certain number of periods out, as opposed to on particular calendar

dates) evolve over time. For example, the factor
P

(1)
t+1

P
(1)
t

captures how the value of a dividend strip that

pays off one year out differs from date t to t+ 1. The following result emerges.

Result 1 (One-period capital gain decomposition). The one-period capital gain on the market is

Pt+1

Pt
=

∞∑
n=1

w
(n)
t

P
(n)
t+1

P
(n)
t

= w
(1)
t

G
D,(1)
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G
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G
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G
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EP,(2)
t+1

+ ... (5)

where

G
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G
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(
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(n)
t

)n G
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t+1 =

Et+1

(
R

(n)
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t+3 ...R
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(6)
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For G-factors near one, approximately,

Pt+1

Pt
≈

[
w

(1)
t G

D,(1)
t+1 + w

(2)
t G

D,(2)
t+1 + ...

]
Cash flow factor (7)

×

[
w

(1)
t

1

G
Y C,(1)
t+1

+ w
(2)
t

1

G
Y C,(2)
t+1

+ ...

]
Yield curve factor

×

[
w

(1)
t

1

G
EP,(1)
t+1

+ w
(2)
t

1

G
EP,(2)
t+1

+ ...

]
Equity premium factor

Equations (5) and (6) follow directly from equation (4) and involve no assumptions or approximations.

As for equation (7), each of the three factors are exact in that they state what the capital gain would be

if only that factor was operative. The approximation in equation (7) is that the total capital gain can

only approximately be expressed as the product of the three factors, with the approximation better the

closer the G-factors are to one. The cash flow factor in equation (7) is the formal version of our first

intuition regarding the capital gain resulting from changes to expected dividends.

The approximation in equation (7) exploits the fact that for arguments near one, geometric and

arithmetic averages are equal up to a first-order approximation. This is a general result, not specific to

an asset pricing context. For values x1, ..., xn and weights w1, ..., wn, at x1 = ... = xn = 1:

w1x1 + w2x2 + ...wnxn = xw1
1 xw2

2 ...xwn
n = 1

∂

∂xi
[w1x1 + w2x2 + ...wnxn] =

∂

∂xi
[xw1

1 xw2
2 ...xwn

n ] = wi.

We apply this result twice to obtain equation (7). First, the arithmetic average in equation (5) is

approximately equal to the corresponding geometric average
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Second, rewrite the geometric average of the growth factor ratios:
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 (9)
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where each term on the right hand side approximately equals its corresponding arithmetic average.

The approximation in equation (7) is not the same as a Taylor approximation which would result in

the three factors being added rather than multiplied.7 The approximation in equation (7) is more accurate

than a Taylor approximation for that reason. Intuitively, the growth rates from the three different types

of changes (cash flow, yield curve, and equity premium) build on each other to generate the total capital

gain, in a similar way to returns compounding over time. Equation (7) has the additional advantage that

it can easily be used to decompose multi-period returns since each factor can be compounded over time.

For readers interested in using our decomposition to understand a longer period of interest, we recommend

applying the decomposition to shorter periods and then compounding the factors across periods up to

the longer period, rather than applying the decomposition just once to the longer period of interest.8

B.1. The yield curve factor expressed in terms of forward rates

The yield curve return component in Result 1 is directly implementable. To gain intuition, and for

comparison with a later result on the equity premium factor, we show how to express the yield curve

return factor in terms of forward rates. Define the forward real yield for period n as:

1 + fY C,nt =

(
1 + y

(n)
t

)n
(

1 + y
(n−1)
t

)n−1 (11)

and the yield curve growth factor for forward period n as:

GY C,fnt+1 =

(
1 + fY C,nt+1

)
(

1 + fY C,nt

) . (12)

Spot and forward growth factors are then related as follows:

G
Y C,(1)
t+1 = GY C,f1

t+1 , G
Y C,(2)
t+1 = GY C,f1

t+1 GY C,f2
t+1 , G

Y C,(3)
t+1 = GY C,f1

t+1 GY C,f2
t+1 GY C,f3

t+1 , ... (13)

The following result emerges straightforwardly from these definitions.

Result 2 (Yield curve return factor expressed using forward growth rates). The yield curve

7The first-order Taylor approximation of equation (5) around G-factors (and thus 1/G-factors) of one is

Pt+1

Pt
≈ 1 +

[
w

(1)
t G

D,(1)
t+1 + w

(2)
t G

D,(2)
t+1 + ...− 1

]
+

[
w

(1)
t

1

G
Y C,(1)
t+1

+ w
(2)
t

1

G
Y C,(2)
t+1

+ ...− 1

]
+

[
w

(1)
t

1

G
EP,(1)
t+1

+ w
(2)
t

1

G
EP,(2)
t+1

+ ...− 1

]
(10)

8If only one of the three return factors changes, compounding that return factor over time will mechanically give the
same total return as applying equation (7) once for the full period. This is not the case if two or three factors change and
compounding will then be more accurate than applying equation (7) once for the full period.
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return factor can be expressed using forward growth rates as:[
w

(1)
t

1

GY C,f1
t+1

+ w
(2)
t

1

GY C,f1
t+1 GY C,f2

t+1

+ w
(3)
t

1

GY C,f1
t+1 GY C,f2

t+1 GY C,f3
t+1

+ ...

]
(14)

Approximating around 1/G-factors of one and by multiplying the (gross) capital gains resulting from the

change in each separate forward yield, gives[
1 +

(
1

GY C,f1
t+1

− 1

)]
×

[
1 + (1− w(1)

t )

(
1

GY C,f2
t+1

− 1

)]
×

[
1 + (1− w(1)

t − w
(2)
t )

(
1

GY C,f3
t+1

− 1

)]
× ...(15)

≈

[
1−

(
∆fY C,1t+1

1 + fY C,1t

)]
×

[
1− (1− w(1)

t )

(
∆fY C,2t+1

1 + fY C,2t

)]
×

[
1− (1− w(1)

t − w
(2)
t )

(
∆fY C,3t+1

1 + fY C,3t

)]
× ...(16)

where ∆fY C,nt+1 = fY C,nt+1 − fY C,nt .

To see how equation (15) follows from equation (14), suppose only fY C,n changes. Then the gross

capital gain in equation (14) is:

w
(1)
t + ...+ w

(n−1)
t +

(
w

(n)
t + w(n+1) + ...

) 1

GY C,fnt+1

= 1 +
(
w

(1)
t + ...+ w(n−1)

)( 1

GY C,fnt+1

− 1

)

where
(
w

(n)
t + w(n+1) + ...

)
= 1−

(
w

(1)
t + ...+ w(n−1)

)
. We have verified that the quality of the approx-

imation in equation (15) is very high.9

Equation (16) is the formal version of our second descriptive intuition (regarding the capital gain

resulting from a change to the expected return for a forward period) that we set out at the top of Section

II. For simplicity, we left out the 1/(1 + f) factor (which is close to one) when giving the intuition.

Equation (16) relies on the first-order approximation 1

GY C,fn
t+1

− 1 ≈ − ∆fY C,n
t+1

1+fY C,n
t

and is thus only accurate

for small changes to forward rates, similar to duration based analysis that ignores convexity. That being

said, we use equation (15) in our empirical analysis.

B.2. An implementable equity premium return factor expressed using the market risk premium

The equity premium return factor in Result 1 is not directly implementable because equity premia on

individual dividend strips are not observable. We therefore develop a method for deriving an equity

9In our sample of monthly data from 2005M1-2023M12, the exact yield curve return factor in has an average of 1.001034
and a standard deviation of 0.0456607, while the approximate yield curve return factor in equation (15) has an average
1.000823 and a standard deviation of 0.0454937. The correlation of the exact and approximate yield curve return factors is
0.99990.
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premium return factor that is expressed in terms of the market equity premium which – using data from

options markets or asset manager expectations – is (to some extent) observable. To proceed, we need

a few additional equity premium definitions. Define the forward equity premium on the overall stock

market for period n as

1 + fEP,nt =
Et (Rt+1Rt+2...Rt+n) /

(
1 + y

(n)
t

)n
Et (Rt+1Rt+2...Rt+n−1) /

(
1 + y

(n−1)
t

)n−1 (17)

and the market equity premium growth factor for forward period n as

GEP,fnt+1 =
1 + fEP,nt+1

1 + fEP,nt

. (18)

Using these definitions, we state the following result.

Result 3 (Equity premium return factor using market equity premium, in forwards). Approx-

imating around 1/G-factors of one and by multiplying the (gross) capital gains resulting from the change

in each separate forward equity premium, the equity premium return factor of the one-period capital gain

is:[
1 +

(
1

GEP,f1
t+1

− 1

)]
×

[
1 + (1− w(1)

t )

(
1

GEP,f2
t+1

− 1

)]
×

[
1 + (1− w(1)

t − w
(2)
t )

(
1

GEP,f3
t+1

− 1

)]
× ...(19)

In equation (19):

(a) The capital gain factor for n = 1, 1 +

(
1

GEP,f1
t+1

− 1

)
, is exact.

(b) The capital gain factors for any n > 1, 1 + (1 − w(1)
t − ... − w

(n)
t )

(
1

GEP,fn
t+1

− 1

)
are exact if returns

are independent over time and close to exact even if returns are not independent, for realistic return

processes.

Proof: Please see Appendix A.

The intuition described following Result 2 for the effect of an increase in a forward yield carries over

to understanding the effect of an increase in a forward equity premium in Result 3. The effect in both

cases depends on the weight in the overall price of the dividends strips whose present value is affected by

a change in discounting in period n and this weight is 1−
(
w

(1)
t + ...+ w(n−1)

)
.

We emphasize that Result 3 does not rely on any assumptions about how expected returns on dividend

strips of various maturities relate. Intuitively, Result 3 is derived in terms of the forward equity premium

on the entire market by writing the stock price as a function of the terminal payoff at a given future

date. In the period before the future date, the terminal payoff accounts for the full value of the stock

12



market and is therefore discounted over that period using the expected return on the market which can

be expressed in terms of the forward real yield and the forward equity premium. The effect of a change

to the forward market equity premium follows.

B.3. Summarizing the decomposition

Combining Result 1-3, we have the following decomposition result.

Result 4 (One-period capital gain decomposition, combining Result 1-3). For G-factors near

one, the one-period capital gain on the market is, approximately,

Pt+1

Pt
≈
[
w

(1)
t G

D,(1)
t+1 + w

(2)
t G

D,(2)
t+1 + ...

]
(20)

× 1

GY C,f1
t+1

×

[
1 + (1− w(1)

t )

(
1

GY C,f2
t+1

− 1

)]
×

[
1 + (1− w(1)

t − w
(2)
t )

(
1

GY C,f3
t+1

− 1

)]
× ...

× 1

GEP,f1
t+1

×

[
1 + (1− w(1)

t )

(
1

GEP,f2
t+1

− 1

)]
×

[
1 + (1− w(1)

t − w
(2)
t )

(
1

GEP,f3
t+1

− 1

)]
× ...

In Result 4, G
D,(n)
t+1 captures how the expected nth generic (i.e., constant maturity) dividend evolves

from date t to t + 1. Similarly, GY C,fnt+1 and GEP,fnt+1 capture how the nth generic real forward yield and

forward equity premium change from date t and t+ 1. The effect of a particular change depends on how

much of the initial market value is affected by that change. The effect of an increase in the generic nth

expected dividend leads to a larger capital gain if this dividend initially was large and thus accounted for

a larger fraction w
(n)
t of the date t stock price. The effect of forward yields and forward equity premia

depend on the initial weight of the dividend strips affected by such changes,
(
w

(n)
t + w(n+1) + ...

)
=

1−
(
w

(1)
t + ...+ w(n)

)
.

B.4. Drivers of G-factors: News versus roll

To clarify the economics underlying Result 4, it is informative to express the G-factors as follows.

G
D,(n)
t+1 =

Et+1 [Dt+n+1]

Et [Dt+n]
=
Et [Dt+n+1]

Et [Dt+n]

Et+1 [Dt+n+1]

Et [Dt+n+1]
= G

D,(n),roll
t G

D,(n),news
t+1 (21)

GY C,fnt+1 =
1 + fY C,nt+1

1 + fY C,nt

=

(
1 + fY C,n+1

t

1 + fY C,nt

)(
1 + fY C,nt+1

1 + fY C,n+1
t

)
= GY C,fn,rollt GY C,fn,newst+1 (22)

GEP,fnt+1 =
1 + fEP,nt+1

1 + fEP,nt

=

(
1 + fEP,n+1

t

1 + fEP,nt

)(
1 + fEP,nt+1

1 + fEP,n+1
t

)
= GEP,fn,rollt GEP,fn,newst+1 (23)
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where the ”roll” and ”news” components refer to the first and second fractions in the second to last term

in each equation. The ”roll” component is the effect of moving one calendar period forward, implying that

each object in the PV formula now refers to a later period. This component is known as of t. The ”news”

component is due to changing expectations from t to t + 1 about a particular object for a given future

time period. In the absence of news, the realized capital gain would be driven by the roll components of

the growth factors and can be calculated from the formula in Result 4 replacing the Gt+1-factors with

the Gt-roll factors. The role of the news is then simply the actual change
(
Pt+1

Pt

)
minus

(
Pt+1

Pt

)no news
.

This allows one to separate the importance of roll versus news in a given application and this further

decomposition can be done for the cash flow, yield curve and equity premium factors separately.10

B.5. A sub-period of a year

Result 1 and 2 hold for any period length. However, in practice one typically starts from inputs that

are in years (e.g., constant maturity yields for maturities that have one-year increments). Therefore,

we provide a decomposition result where t denotes years but we consider a sub-period of a year that is

expressed in terms of such inputs. In our empirical applications, we will use this result to decompose

monthly returns, but we state the result more generally since others may want to analyze returns at other

frequencies such as daily or weekly.

Consider a sub-period of a year going from a fraction s into the year to a fraction s′ into the year,

with 0 ≤ s ≤ 1, 0 ≤ s′ ≤ 1, and s′ > s. Denote these two points in time by t+ s and t+ s′. Date t is thus

the beginning of a calendar year, t+ s is a fraction s into the calendar year, and t+ s′ is a later date in

the same calendar year. We write the capital gain from t+ s to t+ s′ as:

Pt+s′

Pt+s
=

P
(1)
t+s′

Pt+s
+
P

(2)
t+s′

Pt+s
+ ... =

P
(1)
t+s

Pt+s

P
(1)
t+s′

P
(1)
t+s

+
P

(2)
t+s′

Pt+s

P
(2)
t+s′

P
(2)
t+s

+ ... = w
(1)
t+s

P
(1)
t+s′

P
(1)
t+s

+ w
(2)
t+s

P
(2)
t+s′

P
(2)
t+s

+ ... (24)

where “(1)” refers to a dividend strip paying off one year from the date considered. This expression

assumes that Pt+s′ = P
(1)
t+s′ +P

(2)
t+s′ + .... At any given point in time (not just at the end of each year, but

also on a given day within the year), we thus implicitly assume that the next dividend is one year away.

In practice, dividends are paid throughout a given year. The annual dividends in our formulas can be

thought of as the future value of dividends to be paid over the next 1-year period, with the future value

calculated as of one year out. Our formula with annual cash flows then holds not only at the start of

each year but also on any day within the year.11

10The news components calculated this way are slightly different than what one will get by using only the news G-factors
in Result 4, since the role of roll and news in the G-factors are multiplicative, implying that the roll and news components
interact.

11We do not account for the fact that moving all dividends over a 1-year period out to the end of that period involves an
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With then have the following version of Result 4, stating the decomposition for the sub-period.

Result 5 (Capital gain for a sub-period of a year). For G-factors near one, the capital gain on the

market for a sub-period of a year is, approximately,

Pt+s′

Pt+s
≈
[
w

(1)
t+sG

D,(1)
t+s′ + w

(2)
t+sG

D,(2)
t+s′ + ...

]
(25)

× 1

GY C,f1
t+s′

×

[
1 + (1− w(1)

t+s)

(
1

GY C,f2
t+s′

− 1

)]
×

[
1 + (1− w(1)

t+s − w
(2)
t+s)

(
1

GY C,f3
t+s′

− 1

)]
× ...

× 1

GEP,f1
t+s′

×

[
1 + (1− w(1)

t+s)

(
1

GEP,f2
t+s′

− 1

)]
×

[
1 + (1− w(1)

t+s − w
(2)
t+s)

(
1

GEP,f3
t+s′

− 1

)]
× ...

where for n = 1, 2, ...

G
D,(n)
t+s′ =

Et+s′ [Dt+s′+n]

Et+s [Dt+s+n]
, GY C,fnt+s′ =

1 + fY C,nt+s′

1 + fY C,nt+s

, GEP,fnt+s′ =
1 + fEP,nt+s′

1 + fEP,nt+s

. (26)

B.6. Instantaneous price change

An interesting limit of Result 5 emerges as s’ goes to s. Then Result 3 simply states the effect of

instantaneous changes to expected cash flows, forward real yields or forward equity premia, similar

to how duration analysis for bonds allows one to assess the capital gain on a bond resulting from an

instantaneous shift in the yield curve. As s′ goes to s, the expected capital gain is approximately zero

and the capital gain in Result 3 is the unexpected capital gain from an instantaneous change to the

inputs.

III. Implementing the stock return decomposition with observables

This section lays out how to implement our return decomposition for the S&P500 utilizing observable

data. First, we describe how to use dividend futures prices and equity option prices to obtain dividend

strip weights. Second, we describe available data on total returns, capital gains, and dividend yields as

well as the data used to decompose capital gains: dividend strip weights, real yields, the equity premium

and expected cash flows. Table I summarizes data sources. Third, given the available data, we provide

two ways of implementing our decomposition. Decomposition A uses only financial market data while

Decomposition B also uses data on the growth in analyst’s expected earnings as a guide to the growth

interest rate to calculate the future value. This is an approximation that should have only a very small effect on our results.
Specifically, at each point in time, this approach overstates the duration of the stock market by 1/2 year, which is very small
relative to the very long duration of the stock market.
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in expected dividends. We also address the issue that the main inputs (expected returns and expected

dividends) are not available to infinite maturities.

A. Dividend strip weights: Methodology

Dividend strip weights w
(n)
t drive the magnitude of the effect of changes to real yields, equity premia,

and expected dividends on the stock market.

A.1. Obtaining dividend strip weights

It is well known that dividend strips (which are not traded) can be valued from dividend futures (e.g. van

Binsbergen et al. (2013)) or equity option prices (e.g. van Binsbergen et al. (2012); Golez and Jackwerth

(2023)). Since dividend futures pay off at maturity (t + n), dividend strips and dividend futures prices

are related by

P
(n)
t = Fn,t/

(
1 + ynom

t,n

)n
(27)

where Fn,t denotes the date t price of a dividend future paying the nominal dividend for period t+ n at

t + n and ynom
t,n is the riskless nominal yield at date t for an n-period investment. Fn,t is nominal (since

dividend futures contracts pay the nominal dividend) and therefore discounted using the nominal yield

ynom
t,n . We can then express the dividend strip weights as

w
(n)
t =

P
(n)
t

Pt
=
Fk,t/

(
1 + ynom

t,k

)k
Pt

. (28)

When dividend futures are not available, we use the van Binsbergen et al. (2012) approach to calculate

dividend strip weights from equity options. In the absence of arbitrage opportunities, put-call parity for

European options with maturity t+ n at time t implies:

P
(1)
t + P

(2)
t + ....+ P

(n)
t = putt,n − callt,n + Pt −Xe−r

f
t,n (29)

where X denotes the strike price and rft,n is the (continuously compounded nominal) risk-free yield

between t and t+ n.

A.2. Computing dividend strip weights at all maturities

Dividend futures and equity options are observed to a maximum maturity that we will label ND
t years,

where the t subscript indicates that the maximum maturity varies over time depending on data availability
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(see Section III.B).

Using the available data on dividend strip prices, along with the market price, the total value of

long-term dividends beyond the maximum maturity is observable as

Lt = Pt −
ND

t∑
n=1

P
(n)
t . (30)

The total weight of long-term dividends as a fraction of the stock market value Lt
Pt

is therefore observable.

The individual dividend strip weights beyond year t + ND
t (that sum to Lt

Pt
) are not observable and

assumptions are needed to estimate these dividend strip weights. We assume a Gordon growth model for

dividends beyond year t + ND
t , with GLt denoting the expected annual gross dividend growth rate past

year t+ND
t and RLt denoting the expected annual gross return past year t+ND

t . Both rates are, as of

time t, assumed to be constant in expectation across all periods past year t+ND
t . Under this assumption,

we have the following result.

Result 6 (Long-maturity dividend strip weights estimates).

Assume a Gordon growth model for dividends beyond year t + ND
t . Then, the observable value of long-

term dividends, Lt = Pt−
∑ND

t
n=1 P

(n)
t , along with the last observed dividend strip price, P

(ND
t )

t , reveal the

market’s expected ratio
GL

t

RL
t

:

Lt = P
(ND

t )
t

(
GLt

RLt −GLt

)
=⇒ GLt

RLt
=

1

1 +
(
P

(ND
t )

t /Lt

) (31)

Dividend strip weights beyond ND
t years can then be calculated as:

w
(n)
t = w

(ND
t )

t

(
GLt
RLt

)n−ND
t

for n > ND
t . (32)

To verify that the weights across all horizons sum to one, observe that from equation (32), the weights

beyond N
(D)
t sum to w

N
(D)
t

t × GL
t /R

L
t

1−GL
t /R

L
t

and the weights up to N
(D)
t sum to 1− Lt

Pt
= 1− P

(N
(D)
t )

t
Pt

Lt

P
(N

(D)
t )

t

=

1−
(
w
N

(D)
t

t × GL
t /R

L
t

1−GL
t /R

L
t

)
.

A.3. Share repurchases and issuance

As we have shown, dividend strip weights determine the effect of changes in discount rates (real yields or

equity premia) and expected dividends at different maturities. Is this correct, even in cases with share
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repurchases or share issuance? The answer is yes, with the following clarification.

As is well known, the stock price per share is the present value of dividends per share even in

the presence of share repurchases/issuance. Furthermore, the S&P500 dividend futures from which we

calculate the dividend strip weights are adjusted for share issues/repurchases so the contracts always

reflect the dividends per share at the time the contract pays off.12

The subtlety is that if a company is expected to repurchase/issue shares (or repurchase/issue debt),

then changes to expected returns may have not only a discount rate effect but also an effect on expected

future dividends. In our decomposition, any such effects will enter the expected dividend factor, as they

should, but it is nonetheless relevant for thinking about the underlying drivers of the expected dividend

factor whether such effects are present.

In Appendix B, we show that there will be no discount rate effect on expected dividends if repur-

chases are funded by debt issuance while there will be such an effect if firms are expected to fund share

repurchases/issuance by changing dividends. Asness et al. (2018) document that in the last few years

leading up to their publication, net repurchases were substantial for firms in the Russell 3000 (as the

are for the S&P500) but they were roughly equal to net debt issuance. Any effects of discount rates on

expected dividends due to repurchases are thus likely to be modest.

B. Return data and data for decomposition inputs

B.1. Total return, capital gain and dividend yield

Since our decompositions pertain to capital gains, we first decompose the total real S&P500 return into

its real capital gain and real dividend yield components. Our data inputs are the Bloomberg SPX Index,

which is the price-level index of the S&P500 and excludes dividends, and the Bloomberg SPXT Index,

which is the total-return index of the S&P500.13 The total return index not only captures capital gains

but also includes returns from reinvesting dividends paid by index constituents back into the index. For

both the SPX Index and SPXT Index, we divide by the level of the CPI (from FRED, series CPIAUCSL)

to obtain real variables. We then compute the dividend yield in each month as the difference between

returns on the two real indexes.

Figure 1 shows the cumulative gross real return on the S&P500 index from 2005m1 to 2023m12. The

sample period is based on the availability of other data series that we will discuss below. A dollar invested

at the end of 2004 would have grown to $3.56 in real terms by the end of 2023, for a 256 percent real net

return of which 144 percent was from real capital gains. In the figure, we show the monthly real dividend

12See https://www.spglobal.com/spdji/en/documents/additional-material/faq-sp-500-dividend-points-index.pdf
13The price-level index is the market capitalization of the index constituents after adjusting for the index divisor (which

adjusts the index-level for changes in market capitalization that are due to corporate actions or index constituent changes).
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yield summed over time, which amounts to 38 percent net (or 138 percent gross), in total. The remaining

256 − 144 − 38 = 74 percent of the total real net return is from the return earned on the reinvested

dividends (this return is dominated by the capital gain).

B.2. Dividend strip weights data

We obtain daily dividend futures prices from Bloomberg, available to year 10 from 2017. Proprietary

dividend futures data from various banks back to the early 2000s have previously been used in the

literature (starting with van Binsbergen et al. (2013)), but this data is not widely available. When

dividend futures are not available, we obtain dividend strip prices from equity option prices to year 2

using equation (29) data from OptionMetrics, which is available from 1996.14 For both types of data

inputs, on each date we use linear interpolation across available maturities on the traded assets in order

to calculate constant maturity dividend strip weights, which is a standard approach in the literature that

studies dividend futures (i.e., van Binsbergen et al. (2013)).

The top left panel of Figure 2 shows the evolution of the 1-year dividend strip weight from 2005m1 to

2023m12 and how this dividend strip closely tracks the past year’s dividend over the current stock price.

On average, the 1-year dividend strip has contributed roughly 2 percent to the total stock market value

in our sample period, although this declined to around 1.4 percent in the last few years of the sample.

The top right panel of Figure 2 shows the evolution of the sum of dividend weights from year 1 to year

10 and from year 1 to year 30.

The bottom panels of Figure 2 show the average dividend strip weight (left hand side) and average

cumulative dividend strip weight (right hand side) by maturity in the sample from 2017, which is the time

from which we have dividend futures prices available out to 10-years (denoted by the gray shaded area

in the figures). The average sum of dividend weights through to year 10 is 18 percent across our sample

and the average sum of dividend weights through to year 30 is 42 percent. These numbers highlight the

long duration of stock market (a point also made in van Binsbergen (2024)), which means that the stock

market will be sensitive to changes in long-maturity discount rates.

Appendix D analyzes the robustness of our measured dividend strip weights to liquidity issues in

dividend futures. Our method uses dividend future price levels, rather than changes in prices of dividend

futures, which largely mitigates the impact of bid-ask spreads that is known to impact analysis on dividend

futures returns (Bansal et al., 2021). We also show that results are not very sensitive to the maximum

maturity of observed dividend futures used to implement Result 6.

14Results are similar when using options data from the CBOE.
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B.3. Real yield curve data

We obtain forward real yields to year 30 from TIPS data when available and prior to that from nominal

Treasury yields and inflation swaps.

Zero-coupon TIPS yields are available from Gürkaynak et al. (2010) which is updated by the Federal

Reserve and available on the Federal Reserve website.15 This data is available since 1999. However,

Gürkaynak et al. (2010) note that liquidity in the TIPS market was initially poor, resulting in a liquidity

premium in TIPS yields that unwound slowly over the first few years of the market’s development. Given

that this TIPS-specific declining liquidity premium of real yields is unlikely to be relevant for the stock

market, we do not include the first few years of TIPS yields in our sample. Furthermore, 30-year TIPS

were dropped from issuance in October 2001 and only reintroduced in January 2010. Until January 2010,

we therefore measure real yields using nominal zero-coupon Treasury yields adjusted by inflation swap

rates, with TIPS yields used subsequently. Nominal Treasury yields are also obtained from the Federal

Reserve website and are based on Gürkaynak et al. (2007), while inflation swaps are from Bloomberg and

are available from August 2004. To use full years, our sample starts in 2005.

Figure 3 shows the evolution of the real 30-year yield from 2005-2023 at a monthly frequency (our

analysis uses all 30 yearly forward real yields, but for readability of the figure we show the 30-year spot

real yield as a summary measure of how real yields evolved over our sample). Panel A shows the 30-year

zero-coupon real yield as measured by TIPS and by the zero-coupon nominal Treasury adjusted for the

inflation swap rate. In the overlapping period, the two real yield measures are tightly related. At the start

of the sample, as measured by nominal Treasury yields and inflation swaps, the 30-year real yield was 1.67

percent. Real yields then generally trended down from 2005-2021, reaching a low of -0.54 percent, before

rebounding dramatically at the end of the sample such that, on net, real yields were broadly unchanged

over our sample period.

Figure 3 Panel B shows the components of the 30-year real yield, i.e., the nominal Treasury yield

and expected inflation. Expected inflation is measured by either the inflation swap rate or by break-even

inflation computed from the 30-year nominal Treasury yield and the 30-year TIPS yield. The nominal

yield and expected inflation fluctuations are correlated over time, but the movements in expected inflation

are smaller, thus resulting in the larges swings in the 30-year real yield illustrated in Panel A.

B.4. Equity risk premium data: The Martin lower bound and asset manager expectations

For the equity risk premium we use the methodology of Martin (2017) who calculates a lower bound

on the equity premium using prices of stock market index options and argues that this lower bound is

15https://www.federalreserve.gov/data/tips-yield-curve-and-inflation-compensation.htm
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approximately equal to the true risk premium. Martin’s data covers the period 1996-2012. We replicate

and extend the original series to December 2023 using data from OptionMetrics. The maximum maturity

of equity options from 2005 are 2 to 3 years, which allows us to estimate equity premium out to 2-years

throughout our 2005-2023 sample period. 16 Appendix C provides a recap of Martin’s approach and

details on our data construction.

Panel A of Figure 4, left chart, shows the time series of the estimated 1-year equity premium and

the forward equity premium for year 2 (i.e., the 1-year equity premium in 1-year’s time). The average

1-year equity premium is around 5 percent but with large increases around 2008 (the global financial

crisis) and 2020 (the onset of the COVID pandemic). The spot 1-year equity premium increases more

than the forward equity premium for year 2 in these crisis periods. This is also illustrated in the right

chart in the same panel, which shows the cumulative equity premium by maturity on two example trade

dates. The steep slope of the curve at short maturities on the crisis trade date, March 31, 2020, shows

how near-term equity premia were particularly elevated.

We provide novel support for the use of the Martin lower bound as a measure of the equity risk

premium by comparing it to equity premium estimates of asset managers.17 Dahlquist and Ibert (2021)

collect a dataset of equity risk premium estimates of asset managers (and some of the largest investment

consultants). The data is based on asset managers’ capital market assumptions, posted publicly or

provided to clients. For the period 2005Q1-2021Q1, their data has 561 observations of equity risk premia

from a total of 47 asset managers such as J.P. Morgan, BlackRock, Franklin Templeton and AQR. The

most typical horizons in their dataset are 10 years (45% of the data), 7 years (13%), and 5 years (10%).

Dahlquist and Ibert (2021) show that asset managers’ expectations appear rational in that their perceived

equity risk premium is high when the P/E ratio is low, consistent with statistical predictive relations.

Using their (unbalanced) panel data, we construct an asset manager equity premium time series for

the 10-year horizon by taking out asset manager fixed effects.18 We estimate this relation

EP 10
m,t = α+ ΣT

t=1βtD(date = t) + ΣM
m=1δmD(manager = m) + um,t (33)

where m denotes a given asset manager. We calculate the predicted value, excluding manager fixed effects,

for each date t, α + ΣT
t=1βtD(date = t). Figure 4, Panel B, graphs the resulting asset manager 10-year

16We note that, since 2022, the maximum maturity of options has extended to 5 years, which further strengthens our
observables approach going forward (for consistency across years, we use Martin equity premium measures only to year 2).

17Appendix C provides an updated version of the regression evidence in Martin (2017) on the quality of Martin lower
bound, as well as theoretical analysis of the how the change in the lower bound relates to the change in the true equity
premium.

18The 10-year expected return sample, which begins in 2010, is by far the richest in data availability and covers 31 unique
asset managers.
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equity premium series along with the 1-year Martin measure. The correlation is high at 0.72.19 This

lends credence to the Martin measure and also suggests that asset manager equity premium perceptions

are consistent with actual asset prices. We will exploit the fact that the asset manager equity premia are

available for a longer maturity than the equity-options based series to assess the effect of equity premium

past year 2 for stock prices in our decomposition implementations.

B.5. Expected earnings data

We use analyst forecast data to extract a measure of earnings expectations. Since 1976, Refinitiv’s

I/B/E/S Estimates Database provides analyst estimates of earnings per share (EPS) for U.S. publicly

traded companies over the next 1 to 5 fiscal years at a monthly frequency. We use this database to

generate constant-maturity EPS estimates for the aggregated S&P500 index, as has been done in prior

work (De La O and Myers, 2021; Hillenbrand and McCarthy, 2024). The coverage of S&P500 firms in the

I/B/E/S database is better for nearer term forecasts, and has improved in general over time.20 Appendix

Section E explains our EPS data construction in detail.

From nominal EPS forecasts we compute real earnings expectations by adjusting for expected inflation

over the forecast horizon using inflation swaps (to get real values in date t dollars) and dividing through

by the level of the CPI Index at date t to get real values in the CPI base-year dollars (remember that

the stock price we are trying to understand is also in real terms, calculated using the same CPI index):

Et

(
EPSrealt+n

)
=

Et
(
EPSnominalt+n

)
CPIt (1 + πt,t+n−1)n−1 (1 + πt+n−1,t+n)0.5

(34)

where πt1,t2 is the annualized inflation swap rate from year t1 to year t2. Note that the final year forward

inflation swap rate is to the power of on half, which reflects that forward earnings occur on average

halfway through the year.

Figure 5 illustrates the growth in real earnings and real earnings forecasts from 2005 through to 2023

at a monthly frequency. The actual real earnings is smoothed from a quarterly frequency and is taken

from the Robert Shiller website.21 Panel A shows cumulative growth and Panel B shows rolling 12-month

growth rates. There are two major drawdowns in earnings and earnings forecasts in our sample, first

during the global financial crisis in 2008 and 2009 and second during the COVID crisis in 2020. In our

19Regressing the 10-year asset manager series on the 1-year Martin measure results in a regression coefficient of 0.41 with
a t-statistic of 9.6.

20At the start of the sample in December 2004, we observe 499, 499, 473, 267 and 205 S&P500 firms with an EPS forecast
1-year, 2-year, 3-year, 4-year and 5-years ahead respectively. By December 2023, this coverage is much more comprehensive,
with these numbers rising to 500, 500, 500, 461 and 404 respectively.

21The Shiller earnings reflect GAAP earnings while the analysts in the I/B/E/S database forecast earnings that exclude
various ‘special’ items (see Hillenbrand and McCarthy (2024)).
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Decomposition B laid out in the next sub-section, we will make assumptions that allow us to map changes

expected earnings to changes in expected dividends.

There are other potential sources of cash flow data that one could use to implement the expected

dividend factor of our capital gain decomposition. First, dividend per share estimates are available since

2003 in I/B/E/S, but with lower coverage than for the EPS data in terms of both the number of firms

within the S&P500 and the number of analysts updating forecasts each month.22 Second, one could use

the I/B/E/S long-term earnings growth variable, which captures earnings growth over the company’s

next full business cycle and (according to the I/B/E/S documentation) refers to a period of 3 to 5 years

(McCarthy and Hillenbrand, 2021; Nagel and Xu, 2022; Bordalo et al., 2024). However, we find that

this variable has appeared highly affected by the level of current earnings in recent data, and also that

the number of firms with estimates has dropped, with S&P500 coverage falling below 450 firms by 2020

and below 400 firms by the end of the sample in 2023 (previously the coverage of S&P500 firms for this

variable was close to complete). Finally, dividend futures, which we use for dividend strip weights, provide

investors’ risk-neutral expectations of dividends per share on the S&P500 (Gormsen and Koijen, 2020).

Under the assumption of a flat equity risk premium structure, the Martin (2017) options-implied equity

risk premium at the same maturity as a dividend futures could be used to adjust for equity premium

and translate risk-neutral dividend expectations into dividend expectations (for an application of this in

practice see Ibert, Knox, and Vazquez-Grande (2022)) though only out to the horizon of available options.

C. Two implementations of our stock return decomposition

Based on the available data, we propose two ways to implement our capital gain decomposition. The first

implementation (Decomposition A) is based purely on financial market data and is thus implementable at

a daily (or even intra-day) frequency. The second implementation (Decomposition B), incorporates ana-

lyst earnings forecasts, thus allowing for a more detailed decomposition but one that can be implemented

only in monthly or lower frequency data.

C.1. Decomposition A: Financial Markets Data Only

From financial markets data, we observe the real yield curve growth factors to year 30 and the equity

premium growth factors to year 2, GY C,fnt+1 , n = 1, ..., 30 and GEP,fnt+1 , n = 1, 2. We set the growth factors

to one past the horizon with available data. Using Result 4, we can then back out the cash flow (i.e.,

expected dividend) factor from the observed capital gain and the yield curve and equity premium factors.

22Since 2010, the DPS coverage for the 1-year and 2-year maturities improved and since then nearly all S&P500 firms
have updated forecasts each month at these maturities. For firms in the S&P500 with coverage, on average, since 2010, 18
(10) analysts update EPS (DPS) forecasts each month.
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The cash flow factor will include the effects of changes to forward real yields past year 30 and forward

equity premia past year 2 and we refer to it as the ”Cash flow & Long-term discounting” factor. We thus

have the following implementation of Result 4, which we refer to as Decomposition A:

Pt+1

Pt
≈ [Cash flow & Long-term discounting factor]

× [Yield curve factor, yr 1-30]× [Equity premium factor, yr 1-2]

C.2. Decomposition B: Adding analyst EPS forecast data

To separate the cash flow and long-term discounting factor into its underlying drivers, our second decom-

position incorporates cash flow expectations from analyst forecasts. The dividend growth factors in our

methodology measures the growth expected dividends

G
D,(i)
t+1 =

Et+1 [Dt+i+1]

Et [Dt+i]
for i = 1, 2, ... (35)

For our Decomposition B we assume:

G
D,(i)
t+1 = G

EPS,(3)
t+1 for i = 1, 2, .... (36)

where G
EPS,(3)
t+1 = Et+1[EPSt+4]

Et[EPSt+3] is the growth rate in expectations of earnings per share on the S&P500

index three years ahead. With this assumption, the cash flow factor is simply

w
(1)
t G

D,(1)
t+1 + w

(2)
t G

D,(2)
t+1 + ... = G

EPS,(3)
t+1 (37)

since the sum of all weights w
(i)
t equals one. We motivate this assumption with several observations.

First, in terms of earnings versus dividends, it is well documented that firms smooth dividends over

time. Changes to near-term expected dividends are therefore likely to be a worse guide to changes

to expected dividends further out than changes to near-term expected earnings, and those longer-term

dividends account for most of the stock market value. Furthermore, as noted above, analyst coverage for

dividends per share is worse than for earnings per share.

Second, in terms of the use of GEPS,(3) at all horizons, refer back to Figure 5 Panel B. Growth in EPS

for the first year forward GEPS,(1) and, to a lesser extent, the second year forward GEPS,(2) moves more

than growth in EPS for the subsequent years, which all move about the same as GEPS,(3). Using the

12-month growth rates from the figure, regressions of GEPS,(n) on annual GEPS,(1) for n = 2, 3, 4, 5 results

in coefficients of 0.71 (t=14.90), 0.57 (t=9.80), 0.58 (t=11.55) and 0.55 (t=10.60), respectively (using
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Newey-West standard errors with 12 lags). It thus appears a reasonable assumption to use GEPS,(3)

for year 3 forward and subsequent years. We prefer GEPS,(3) due to higher analyst coverage in the

I/B/E/S data but obtain similar results using longer maturities. In terms of the first two years’ expected

dividends, we assume they change with the same growth factor GEPS,(3) as later dividends, given dividend

smoothing.

Given the assumption made in equation (36), we obtain our second implementation of Result 4, which

we refer to as Decomposition B:

Pt+1

Pt
≈ [Cash flow factor]× [Yield curve factor, yr 1-30]

× [Equity premium factor, yr 1-2]× [Long-term discounting factor] (38)

where the Long-term discounting factor is backed out from the observed capital gain and the observed

cash flow, yield curve and equity premium factors.

Our assumption in equation (36) is similar to that made by Landier and Thesmar (2020) in their

study of the stock market during COVID in year 2020. They assume that the growth rate of earnings

past year 2022 does not change over year 2020 and thus that expected earnings past year 2022 change

percentage-wise the same over year 2020 as do expected earnings for year 2022.23

For Decomposition B, when calculating GEPS,(3) (the growth factor for the third year forward) in the

data, we lead earnings forecasts by two months to capture sluggish updating. Results are similar when

leading by only one month. By using leads of the EPS data, we implicitly assume that the earnings

changes were expected by market participants at t (and thus drove returns from t − 1 to t) but were

only revealed to the econometrician via analyst forecast data available at t+ 2. This timing issue is less

important in annual than in monthly data.

IV. Results: Decomposition of S&P500 returns, 2005-2023

This section provides results for the S&P500 over the period 2005 to 2023. For this period of almost

two decades, we provide an expanding window decomposition of the cumulative capital gain based on

monthly returns. We also provide variance decompositions as well as decompositions of returns year by

year to show the heterogeneous mix of capital gain drivers across years.

23Landier and Thesmar (2020) assume that expected dividends in the first two years are proportional to expected earnings
for those two years. Because the first one or two dividends each account for only about 2% of the stock market value,
assumptions about these have little effect on decomposition results. Our assumption in this regard may be slightly more
accurate given dividend smoothing.
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A. Capital gain Decomposition A

Figure 6, Panel A (capital gain and capital gain factors) and Panel B (log capital gain and log capital

gain factors) illustrate the evolution of the cumulative series over time. In Panel A, the factors multiply

to the overall real gross capital gain. In Panel B, the log factors sum to the overall log real gross capital

gain.

The cash flow & long-term discounting capital gain factor performs well in the second half of the

sample. The yield curve factor provides a strong boost to the stock market in 2019 and 2020 as real

yields fall sharply. Real yields increase in 2022 generating a strong reversal in the yield curve factor. The

factor capturing changes to the equity premium for year 1-2 contributes negatively to the market capital

gain at the onset of the financial crisis in fall 2008 and the COVID crisis in 2020, with less movement

outside crisis periods.

The importance of each return factor for the overall capital gain varies across the sample. To illustrate

this more clearly, Figure Panel C shows the decomposition of log returns for each year from 2005 to

2023. To obtain annual data, we compound returns and return factors across months of the year. The

heterogeneous mix of return components is apparent. Notably, the large negative market return in 2008

was driven mainly by the cash flow & long-term discounting factor in contrast to the large negative

market return in 2022 which was driven by a large negative yield curve factor (i.e., an upward shift in

real yields).

Table II, Panel A, provides summary statistics for Decomposition A in annual data. The average

annual net return is 8.4% with an average annual capital gain of 6.3%. The average capital gain is driven

by the cash flow & long-term discounting factor which averages 7.9% per year. In terms of standard

deviations, the yield curve and cash flow & long-term discounting factors are more important than the

return factor for the equity premium in years 1 and 2. The panel also shows similar summary statistics for

the log real gross capital gain and log capital gain factors. Table II, Panel B, documents the correlation

of log return factors, with a -0.75 correlation between the log yield curve factor and the log cash flow &

long-term discounting factor. Table II Panel C provides a variance decomposition of annual log returns.

The variances of the log yield curve factor and the log cash flow & long-term discounting factor both

contribute over 100% of the variance of the annual log capital gain, while their negative covariance

contribute about -200%. The contribution of the log return factor for the equity premium in year 1-2 is

more modest.

Given the important role of the cash flow & long-term discounting factor for average returns and

return volatility, as well as its heterogeneous importance across years, separating this factor further is

informative and will facility implementation of decomposition B.
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B. Dissecting the cash flow & long-term discounting return factor

B.1. Cash flows versus long-term discounting

Figure 7, Panel A left, graphs the cumulative cash flow & long-term discounting return factor from

Decomposition A along with the cumulative growth in real earnings (EPS) for the third year forward

from analyst forecasts. The latter time series proxies for the cash flow (expected dividend) return factor

under the assumption in equation (36).

The analyst forecast series indicates that growth in expected forward earnings was central for un-

derstanding the growth in the cash flow & long-term discounting return factor (and thus the market

capital gain) over time. Rearranging equation (38) and using earning forecasts for the cash flow factor,

an implied long-term discounting factor can be computed. The implied time series is graphed in Fig-

ure 7, Panel A right, along with the total cumulative cash flow & long-term discounting return factor

from Decomposition A. The cumulative long-term discounting factor is much flatter that the cumulative

earnings factor from the left chart but with substantial volatility.

To better assess the importance of the earnings factor and the long-term discounting factor for return

volatility, Figure 7, Panel B graphs 12-month return factors as opposed to cumulative return factors.

Both the earnings factor and the long-term discounting factor 12-month gross returns are strongly pos-

itively correlated with the overall cash flow & long-term discounting 12-month gross return factor, with

correlations of 0.58 for the two series in the left chart and 0.91 for the two series in the right chart. The

12-month earnings factor has a standard deviation of 8%, lower than the 15% standard deviation of the

12-month long-term discounting factor.

B.2. Long-term yield changes versus long-term equity premium changes

The long-term discounting return factor in Figure 7, Panel A right, could be driven by movements in

real forward rates past year 30 or by movements in forward equity premia past year 2, or both. We

investigate this breakdown in Figure 8. Panel A left shows the cumulative long-term discounting return

factor graphed against the cumulative yield curve (1-year to 30-year) return factor. The two should be

strongly positively correlated if the long-term discounting return factor was dominated by movements

in real forward rates past year 30. This is clearly not the case; the correlation is strongly negative at

-0.43, with an even more negative correlation of -0.82 using 12-month return factors. This suggests an

important role for movements in equity premia past year 2. Figure 8, Panel A right provides additional

support for this claim using data on asset managers’ equity premium expectations. Starting from 2010m9

(the first asset manager observation) it compares the cumulative log long-term discounting return factor
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to a cumulative log equity premium return factor calculated from changes in the asset managers’ 10-year

equity premium expectations. The latter is calculated using the assumption that equity premia of all

maturities between 1 and 10 years change by the same amount as the observed 10-year equity premium

change. While the asset manager data is sparse, especially toward the start of the sample graphed, the

correlation between the two series is strongly positive at 0.70. This provides further support that the

long-term discounting return factor is dominated by equity premium changes. We proceed under this

interpretation and bundle the long-term discounting return factor with the return factor for the equity

premium in years 1 and 2 to construct an overall equity premium return factor to use in Decomposition

B.

Before turning to Decomposition B, it is worth thinking about the economics of Figure 8, Panel A

left. With the long-term discounting return factor dominated by equity premium changes, the chart

implies that real Treasury yields and the equity premium often move in opposite directions, thus partly

insulating the expected real stock return from movements in long-term real yields. We illustrate this

further in Figure 8, Panel B left. Adding the log yield curve factor and the log equity premium factor

(the one that combines the contributions from the equity premium in years 1 and 2 and the equity

premium in later years as measured by the long-term discounting return factor), we obtain a log expected

equity return factor. The log expected equity return factor (the purple line) is less volatile than the log

yield curve return factor (the blue line) due to movements in the log equity premium return factor (the

green line) in the opposite direction of the log yield curve return factor. Based on a regression of the

12-month equity premium (all years) return factor on the 12-month yield curve (1-year to 30-year) return

factor, the average offset is -0.89. However, the degree to which movements in equity premia insulate

the expected stock return from movements in yields varies greatly over time. Importantly, the large

yield curve decrease in 2019-2020 and the sharp yield curve increase in the first half of 2022 (visible as

a sharp drop in the blue line in Figure 8, Panel B left) appear to be only partly counteracted by equity

premium changes, suggesting that expected equity returns move with real yields in these episodes. By

contrast there are several periods where movements in the yield component appear almost fully offset by

movements in equity premia, thus implying little change in expected stock returns. Three such events are:

2008m12, 2011m7-2011m8 and 2013m5-2013m6. These are all periods with news about unconventional

monetary policy.24

Data on asset manager expectations confirm the finding that real yield curve changes and equity

24December 2008 is a period with news about quantitative easing (QE) expansion to Treasury purchases. May-June 2013
is the period of the taper tantrum. July-August 2011 is the height of the European sovereign debt crisis, which led up to the
ECB announcing purchases of Italian and Spanish government debt in early August 2011 and the Fed giving strong forward
guidance about yields also in August 2011. We study the December 2008 event in detail below but (in the interest of space)
do not delve into the other two episodes.
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premium changes are negatively correlated, leading to the combined expected equity return being less

volatile than real yields. Specifically, Figure 8, Panel B right illustrates asset managers’ 10-year expected

(nominal) equity return (per year), the 10-year (nominal) Treasury yield (from yield data), and the

resulting asset manager 10-year equity premium series. Asset managers’ 10-year expected stock market

return trends down over the available sample but otherwise moves around less than the 10-year Treasury

yield. As a result, movements in asset managers’ 10-year equity premium is negatively correlated with

the 10-year Treasury yield.

C. Capital gain Decomposition B

With the decomposition of the cash flow & long-term discounting return factor into a cash flow com-

ponent and a long-term discounting component dominated by equity premium changes, we are ready

for Decomposition B. Focusing on log returns and log return factors Figure 9, Panel A left shows the

cumulative series for Decomposition A. The black and blue lines (the log real capital gain and the log

yield curve return factor) are as for Decomposition A. The orange line shows the log cash flow (dividend)

factor estimated using data on analyst earnings forecasts, while the green line shows the overall log equity

premium return factor resulting from combining the contributions from the equity premium in years 1

and 2 and the equity premium in later years captured by the long-term discounting return factor. Figure

9, Panel A right combines the log yield curve return factor and the log equity premium return factor

to assess the combined effect of expected equity return changes relative to cash flow changes. The log

cash flow factor is important for understanding the log market capital gain over the sample and also

contributes to the market drawdowns in the financial crisis and COVID (more on this shortly). However,

there are large deviations between the log capital gain series and the log cash flow factor illustrating the

importance of changing expected returns on the market.

Figure 9 Panel B provides the decomposition of annual returns using Decomposition B, with the left

bar chart showing the log yield curve return factor and the log equity premium return factor separately

and the right bar chart combining these two log return factors. Discount rate movements (for these years

dominated by real yield curve movements) are central to understanding the market’s strong performance

in 2019 and 2020 and its poor performance in 2022 while changes to expected cash flows are central for

understanding the market drop in 2008. We zoom in on the years 2008, 2020 and 2022 below.

Table III provides summary statistics on return factors based on Decomposition B as well as a variance

decomposition for annual returns based on this decomposition. Table IV repeats Table III but combining

the yield curve and equity premium return factors. Several key results emerge.

First, the expected earnings return factor contributes the vast majority of the overall average return
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(Table III, Panel A). Second, the yield curve and equity premium factors are much more volatile than

the cash flow factor but strongly negatively correlated. Specifically, the log yield curve factor and log

equity premium factor have standard deviations of 0.195 and 0.212 respectively, over twice the standard

deviation of the log cash flow factor based on analyst earnings forecasts. The equity premium (all years)

is thus substantially more important than in Decomposition A. The log expected equity return factor

has a lower standard deviation of either of its two inputs due to their strong negative correlation of -0.80

(Table III Panel B). In the variance decomposition in Table IV Panel C, the log expected equity return

factor contributes 52% of the log capital variance, with the log cash flow factor contributing 20% while

a positive covariance of these two factors contributes the remaining 28%.

D. Three eventful years in US stock market history

To illustrate the heterogeneous mix of capital gain drivers across years, we finish our analysis by zooming

in on 2008, 2020 and 2022. Figure 10 shows the results of Decomposition A and Decomposition B for each

of these years, plotting cumulative effects over each year based on monthly data. We present results in

this section using gross returns, and the factor returns in each decomposition multiply together to equal

the overall capital gain on the market.

D.1. 2008: The global financial crisis

Focus first on the period up to November 2008 and Decomposition B, shown in the right chart in Figure

10, Panel A top. By end of November, the cumulative gross real capital gain is 0.615 for a net loss of

39.5% (black line). Decomposition B reveals that the market decline was driven mainly by higher equity

premia, contributing -23.0%, and lower expected dividends, contributing -16.6%.

Turning to December 2008, Figure 10, Panel A top right shows a dramatic upward move in the

cumulative yield curve factor, driven by a sharp decline in real yields. As an example, the 20-year (zero

coupon, spot) real yield based on nominal Treasuries and inflation swaps dropped 137 basis points over

this month. The sharp drop in real yields occurred with little change in the stock market and only modest

further decline in analyst earning forecasts, implying a sharp increase in equity premia and thus a sharp

drop in the equity premium factor, visible in the figure. December 2008 thus emerges as an important

example of a large yield curve move that is partially offset by an opposing equity premium move.

To gain insight into the likely driver of the disconnected (from the stock market) yield curve shift in

December 2008, we exploit the fact that Decomposition A can be done in higher frequency data. Figure

10, Panel A bottom shows Decomposition A in daily data for 2008. In December 2008, the yield curve

factor shifts up sharply around December 1 and December 16, indicated with the vertical dashed lines.
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These dates are among the main days with news about quantitative easing (QE) studied in the QE

literature (e.g., Gagnon et al. (2011) and Krishnamurthy and Vissing-Jorgensen (2011)). December 1,

2008 is the date of a speech by Chair Bernanke in which he mentions the possibility of the Fed expanding

QE from MBS purchases to also include Treasuries and agency debt. December 16, 2008 is the date

of an FOMC announcement which mentioned that the FOMC was evaluating the potential benefits of

purchasing longer-term Treasuries. Since such Fed actions would be designed to stimulate the economy,

it is unlikely that they led to negative changes to expected cash flows (though some role for the Fed

information effect cannot be ruled out). Therefore, the downward moves in the cash flow & long-term

discounting factor around December 1 and 16 are likely driven by increases in equity premia beyond year

2. The story that emerges is one where QE leads to effects on bond yields but not the expected return

on stocks, thus explaining why the market moved sideways in December 2008 despite the large decline

in real yields. In monetary policy terminology, the portfolio rebalancing effects of Treasury QE appear

confined to the bond market in this episode.25

Figure 7, Panel C shows the importance of December 2008 for the decomposition of the cash-flow &

long-term discounting return factor. This figure sets all return and return factors to zero in December

2008. The cash flow component now tracks the cash-flow & long-term discounting return factor even

more closely than in Figure 7, Panel A (the two series diverge from mid-2022 and we study this below).

For the year 2008 as a whole, our assessment is that higher equity premia and lower expected cash flows

both contributed substantially to the market decline. However, there was a large positive contribution

from falling yields, driven to a large extent by QE announcements in December 2008.

D.2. 2022: Monetary tightening

By way of macroeconomic background, realized 12-month PCE inflation in the December 2021 release

(i.e. from 2020m11 to 2021m11) was 5.7%, while the federal funds rate target range was 0 to 25 bps at

the end of 2021. At that time, many still expected that inflation would be transitory and would revert

toward the FOMC’s target of 2% without much increase in the federal funds rate. During 2022, inflation

turned out more persistent than expected and monetary policy tightened more than expected. Realized

12-month PCE inflation for 2022 was 5.44% and the target federal funds rate (mid-point) stood at 4.38%

by the end of 2022, 363 bps higher than expected.

With this background, our decompositions of the market capital gain for 2022 are shown in Figure 10,

25Haddad et al. (2024) argue that the Fed’s QE announcements in the fall of 2008 represented a fundamental change in Fed
policy by revealing not just likely QE purchases in the near future but a regime change toward a dynamic state-contingent
plan of QE interventions going forward. They document what appears to be a permanent downward shift in the term
structure of bond yields post-2008 which they interpret as resulting from bonds becoming safer due to the Fed now being
expected to buy bonds in bad economic states, with this increased safety lowering their ex-ante yields.
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Panel B. In the first half of 2022, the market dropped dramatically in value, with a loss of 23.8% by the

end of June. This is driven by sharply higher real yields leading to a large negative contribution from the

yield curve factor. The dominant role for higher real yields for the 2022H1 market drawdown stands in

sharp contrast to the 2008 market decline, thus illustrating how capital gain drivers differ across periods.

The market capital gain is roughly zero in 2022H2. Real yields kept increasing leading to a continued

negative contribution from the yield curve factor. From the middle chart, the cash flow factor deteriorated

modestly over this period. Decomposition B therefore implies that there must have been a boost to the

market from lower equity premia leading to a positive equity premium factor (the dark green line in

Decomposition B). The increase in real yields during this period is thus not (or not fully) present in

expected stock returns.

In terms of the underlying reasons for real yield increases in 2022H2 that (unlike those in 2022H1)

appear disconnected from the stock market, several factors could have contributed. First, as short rates

rose during 2022H1, there may have been a reversal of reach for yield among fixed-income investors (for

analysis of such effects in earlier data, see Hanson and Stein (2015)). This may disproportionately have

affected the bond market, as opposed to stocks. Second, as real rates soared and bonds experienced

losses not seen in decades (and even larger than the losses on stocks), some bond investors may have

fundamentally reassessed the attractiveness of long-maturity bonds relative to stocks; long bonds may

ex-ante have appealed to safety-minded investors but may have lost this appeal as losses mounted and

bonds appeared to lose their hedging properties in an environment with simultaneous losses on both bonds

and stocks (a reversal of the increase in appeal from December 2008). Both of these two effects could be

non-linear. Third, several bond supply effects may have played a role in 2022H2. The UK government’s

fiscal plan introduced on September 23, 2022, led to a large yield increase that was only partially reversed

after the Bank of England intervened and the package was later abandoned. Higher UK yields likely had

spillovers to yields elsewhere. Also supply-related, the Federal Reserve initiated quantitative tightening

(QT) in 2022Q2 and increased it in 2022Q3, thus reducing Fed Treasury holdings; the Bank of Japan

sold Treasuries in September and October 2022 to counter dollar appreciation; and the Bank of England

announced on September 22, 2022 that its QT would involve gilt sales (as opposed to only balance sheet

reduction via securities maturing), thus adding to the global supply of bonds.

D.3. 2020: The COVID crash and rebound

There is a growing literature seeking to understand the drivers of the stock market crash and rebound

in 2020. Landier and Thesmar (2020) (mentioned above) estimate a counterfactual path for the stock

market which assumes unchanged discount rates and uses dividend expectations constructed from analyst
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earnings forecasts. They find that the cash flow component of the stock market return was modest, around

-5% by March 23, 2020, and became more negative past March 23, 2020. This contrasts with the large

crash and fast recovery of the actual stock market. Our approach accounts for the somewhat sluggish

updating of analyst earnings forecasts (leading them by 2 months) and we will assign a bit more of

the crash to changes to expected earnings. Cox, Greenwald, and Ludvigson (2020) use the estimated

structural asset pricing model of Greenwald, Lettau, and Ludvigson (2019) in which the value of the

stock market is expressed as GDP × [corporate profits/GDP] × [stock market value/corporate profits].

They also conclude that it is difficult to explain the V-shaped trajectory of the stock market over the

COVID crisis with changes to expected cash flows alone. A central argument is that, based on data from

the Survey of Professional Forecasters as of May 2020, GDP was expected to fall by about 10% in 2020Q2,

but was expected to increase in 2020Q3. Using the method of Cieslak and Pang (2021), Cieslak estimates

(in NBER presentation slides) that growth news account for a stock market drop of about 10% out to

March 23. Gormsen and Koijen (2020) study dividend futures. They show that changes to the value of

dividends out to year 7 can account for little of the stock market crash (given their modest weight in the

market and the realized decline in dividend futures values) and none of the recovery up to July 20, 2020.

They argue that longer-maturity dividends are likely to be only modestly affected by the COVID crisis,

implying that changes to their present value and thus to the overall market may have been driven mostly

by discount rate news. Overall, the literature suggests that changes to expected cash flows do not appear

able to explain the majority of the stock market decline or recovery in 2020. Our decompositions allow

us to assess whether information on real yields and equity premia is consistent with that conclusion and

enables a decomposition of discount rate news into its two components.

Figure 10 Panel C shows our decompositions for year 2020. The market drops by 19.5% up to the end

of March 2020.26 In Decomposition A (left chart), the market drop is partly drive by higher near-term

(year 1 and 2) equity premia which contribute -6.0%. Real yields fall to March and throughout the year.27

Decomposition A therefore implies that a large negative cash flow & long-term discounting component

was central for the market drop to March. Analyst expected real earnings (middle chart) for year 2,

3 and 4 forward all drop by less than 10% to March (as revealed by subsequent data given the use of

2-month leads of EPS forecasts), substantially less than the drop in the cash flow & long-term discounting

component. Decomposition B (right chart) therefore assigns a substantial role to movements in equity

premia (at all horizons), with it contributing 18.2% to the overall market drop of 19.5% to March.

The bottom row of charts in Figure 10 Panel C uses data on asset manager’s 10-year equity premium

26In daily data, not shown, the market drop is even larger with a drop of 30.4% to March 23.
27The yield spike in mid-March studied in, e.g., Vissing-Jorgensen (2021) and He, Nagel, and Song (2022) was resolved

fast and is not visible in monthly data (it led to Fed Treasury purchases of over $1T in 2020Q1 to stabilize markets).
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expectations to validate this conclusion. We present these results at the quarterly frequency since two

thirds of the asset manager data are for quarter ends.28 The left chart illustrates the sharp increase

in asset managers perceived 10-year equity premium in 2020Q1, from 2.8% to 5.0%. The middle chart

shows the result of Decomposition A when we use equity premium data out to year 10.29 The right chart

shows Decompostion B. Decompositions A and B now lead to a similar message that the market drop in

2020Q1 was due to a combination of lower future expected cash flows and higher future equity premia

with a larger role for the latter.

In the last three quarters of 2020, the market more than fully recovered and ended with a capital gain

of 17% for the year. Expected cash flows fully recovered, equity premia eased somewhat (thus pushing

up the equity premium factor), and real yields kept falling. As an example, the real 30-year zero-coupon

yield TIPS graphed in Figure 3 fell 93 bps for 2020 as a whole. Falling real yields even far out the yield

curve were central to understand why the market did so well in 2020 as a whole, despite the fact that the

COVID crisis was far from resolved by the end of the year.

V. Conclusion

The paper contributes to answering a core question in asset pricing: what drives movements in the stock

market? We assess the role of changes to real yields, to equity premia and to expected dividends. We

argue that a lot of information about the three market drivers is observable from financial market data

and expectations data and provide a novel decomposition of the market capital gain for a given period.

Our decomposition inputs are in levels (as opposed to logs), thus facilitating the use of expectations

data. Furthermore, dividend strip weights are allowed to be time-varying, therefore allowing for changing

duration of the stock market over time. Additionally, the three capital gain factors due to real yields,

equity premia and expected dividends are multiplicative, thus making it easy to decompose multi-period

capital gains.

Implementing our approach for the S&P500 from 2005 to 2023, we reach three conclusions. First,

changes to expected real earnings (and thus expected real dividends) played the dominant role for the

realized cumulative capital gain over the sample. Second, the yield curve and equity premium factors

are much more volatile than the expected dividend factor but are strongly negatively correlated. A

combined expected stock return factor accounts for about half of the capital gain variance in annual data

(with about 20% coming from the expected dividend factor and 30% from the covariance between the

28This is partly due to Dahlquist and Ibert (2021)’s (entirely reasonable) assumption that data are end of the prior month
when the asset manager only states a year and month and not an exact date.

29We assume that equity premia changes are the same for each of the first 10 years. Results are similar if we use the
equity premia from the Martin approach for year 1 and 2 and back out the forward equity premium for years 3 to 10 from
the asset manager data.
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expected stock return factor and the expected dividend factor). Third, the mix of capital gain drivers

is heterogeneous across periods. Comparing the market drawdowns in 2008, 2020Q1 and 2022H1, the

first two were driven by lower expected dividends and higher equity premia while the market decline in

2022H1 was due to higher real yields.
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VI. Figures

Figure 1. Cumulative Stock Return and Capital Gain, 2005 - 2023
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This figure shows the cumulative gross real return on the S&P500 index over the period 2005-2023. The graph plots
the total real return, the real capital gain, and the realized dividend yield. All variables are plotted at a monthly
frequency. Table I and Section III.B.1 provides further details on the data sources and the input construction.
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Figure 2. Dividend Strip Weights Data

Panel A: Time series of dividend strip weights
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Panel B: Average dividend strip weights (dividend futures sample period)
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This figure shows the dividend strip weight data. Panel A plots the time series of the 1-year dividend strip weight
(left hand side) and the sum of the first 10 and 30 years of dividend strip weights (right hand side). Panel B plots
the average dividend strip weight (left hand side) and average cumulative dividend strip weight (right hand side) by
maturity over the sample period where dividend futures are available (2017-2023). The shaded area on the figures
denoted the first 10 years, which are maturities where weights are directly observable from traded dividend futures
prices, while the unshaded area shows maturities where Result 6 is used to estimate dividend strip weights. Table
I and Section III.B.2 provides further details on the data sources and the input construction.
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Figure 3. Real Yield Data

Panel A: Measures of the 30-year real yield
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Panel B: Components of the 30-year real yield
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This figure shows the evolution of measures of the 30-year real yield (Panel A) and its component parts (Panel B)
over the sample 2005-2023. The two measures in panel A are the real yield implied by the TIPS market and real
yield implied by the nominal Treasury yields combined with inflation swap rates. In panel B, the evolution of the
30-year nominal yield, the breakeven inflation rate implied by the difference between nominal Treasury and TIPS
yields, and the inflation swap rate are plotted. We omit yields related to TIPS in the pre-2010 period as there was
no 30-year TIPS in issuance at this time. Table I and Section III.B.3 provides further details on the data sources
and the input construction.
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Figure 4. Equity Premium Data

Panel A: Equity options data
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Panel B: Equity options with asset manager expectations data
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This figure shows equity premium data. Panel A focuses on equity option-implied equity premium based on the
Martin (2017) method with the left hand side plotting the evolution of constant maturity equity premium through
the sample 2005-2023 and the right hand side plotting the cumulative equity premium by maturity on two illustrative
trade dates. Panel B compares the 1-year option implied equity premium to the 10-year equity premium estimates
of asset managers in the Dahlquist and Ibert (2021) dataset. Table I and Section III.B.4 provides further details
on the data sources and the input construction.
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Figure 5. Earnings Forecast Data

Panel A: Cumulative growth of real earnings and real earnings forecasts
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Panel B: 12-month growth of real earnings forecasts
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This figure shows near-term earnings per share forecast data for the S&P500. Panel A plots the cumulative growth
in actual real earnings and constant maturity forecasts of real earnings 1-year to 5-years ahead. Panel B plots the
12-month growth rates on the earnings forecasts. Table I and Section III.B.5 provides further details on the data
sources and the input construction.
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Figure 6.
Capital Gain Decomposition Using Financial Market Data (Decomposition A)

Panel A: Gross capital gain decomposition
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Panel B: Log capital gain decomposition
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Figure continues on the next page...
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Panel C: Annual log return decomposition
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This figure presents results from the implementation of Decomposition A on the S&P500 over the period 2005-2023.
Panel A plots the cumulative gross capital gain on the market along with the cumulative gross capital gain from
individual return factors. Panel B plots the same decomposition but for cumulative log capital gains, and Panel C
plots the decomposition of annual log returns by calendar year.
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Figure 7. The Cash Flow and Long-Term Discounting Factor

Panel A: Cash flows versus long-term discounting

Y9

S

SY9

l

lY9

k
,n
L
nI
�j
Cq
3h
<a
Rc
ch
a3
jn
aN

zSE�Nlzz9 zSE�NlzSz zSE�NlzS9 zSE�Nlzlz zSE�Nlzl9

+�c@8IRsh�hHih0Cc,RnNjCN<
�N�Iwcj_ch2�aNCN<ch7Ra3,�cj

Y9

S

SY9

l

lY9

k

zSE�Nlzz9 zSE�NlzSz zSE�NlzS9 zSE�Nlzlz zSE�Nlzl9

+�c@8IRsh�hHih0Cc,RnNjCN<
HRN<Aj3aLh0Cc,RnNjCN<

Panel B: 12-month return factors
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Figure continues on the next page...
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Panel C: Cumulative gross returns (excluding December 2008)
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This figure decomposes the cash flow and long-term discounting factor from Decomposition A into two components.
The left hand side of Panel A plots the cumulative gross return of the cash flow and long-term discounting factor
against the cumulative return of a cashflow component that is estimated from analyst’s forecasts of earnings per
share for S&P500 firms. The right hand side of Panel A plots the cumulative gross return of the cash flow and long-
term discounting factor against the remaining component not explained by analyst’s earnings forecasts (labeled
long-term discounting). Panel B plots the same decomposition as Panel A but shows 12-moth gross returns, and
Panel C plots the same decomposition as Panel A but sets all component returns in December 2008 to zero.
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Figure 8. What Drives the Long-Term Discounting Component?

Panel A: Long-term discounting mainly driven by equity premium movements
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Panel B: Equity premium movements partially offset yield curve shifts
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This figure explores the drivers of the long-term discounting return factor. Panel A plots the long-term discounting
factor against the yield curve factor (left hand side) and against a long-term equity premium factor from 2010
(right hand side) where the equity premium factor is computed using asset manager equity premium estimates.
The left hand side of Panel B shows plots the yield curve return factor, the equity premium (all maturities) factor
and a combined equity return factor. The right hand side of Panel B shows asset manager 10-year expected equity
returns, the 10-year Treasury yield, and the implied asset manager 10-year equity premium.
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Figure 9. Decomposition B, 2005m1 - 2023m12

Panel A: Cumulative log returns
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Panel B: Annual log returns
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This figure presents results from the implementation of Decomposition B on the S&P500 over the period 2005-2023.
Panel A plots the cumulative gross capital gain on the market along with the cumulative gross capital gain from
individual return factors. Panel B plots annual log returns of Decomposition B by calendar year. The left hand
side plot of each panel presents results with the equity premium and yield curve factors separated, and the right
hand side plot of each panel shows the results with these factors combined for a total expected equity return factor.
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Figure 10. Three Eventful Years in US Stock Market history

Panel A: Global financial crisis, 2008
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Figure continues on the next page...
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Panel B: Monetary tightening, 2022
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Figure continues on the next page...
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Panel C: COVID crash and rebound, 2020
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This figure shows capital gains at the monthly frequency in three eventful years for the US stock market: the
global financial crisis in 2008 (Panel A), the monetary tightening in 2022 (Panel B) and the COVID crash and
rebound in 2020 (Panel C). The top row of each panel shows Decomposition A (left hand side), the cashflow and
long-term discounting return factor and the growth rate in analyst’s 1-year to 4-year ahead earnings expectations
(middle) and Decomposition B (right hand side). Panel A is supplemented with a plot of Decomposition A at
a daily frequency and Panel C is supplemented with decompositions that also incorporate asset manager 10-year
expected returns.
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VII. Tables

Table I. Overview of Observable Data.

This table reports the observable data on the S&P 500 index that we use for our implementations of Result
4. It includes information on the underlying financial instrument and survey measure, the data source,
the start of sample availability and the maximum maturity of the traded instrument or survey. Section III
provides further details on the data sources and the input construction.

 

NONCONFIDENTIAL // FRSONLY 

Observable Input   Financial Instrument or Survey Source   Starts  Maximum maturity   

Realized total return   SPXT Index    Bloomberg  1988 -    

Realized capital gain   SPX Index    Bloomberg  1927 -  

Realized dividend yield  SPXT return - SPX return   Bloomberg  1988 - 

Dividend strip weights  Dividend futures    Bloomberg  2016 5-year (2016), 10-year (2017) 

S&P500 equity options OptionMetrics  1996 2-year (1996), 3-year (2005) 
 (or CBOE)   5-year (2021)  

Real yield curve   Zero-coupon TIPS yields  FRB   1999  20-year (1999), 30-year  
(2010) 

     Zero-coupon nominal treasury FRB and  2004  30-year (2004) 
yields and inflation swaps   Bloomberg 

Equity risk premium   S&P500 equity options  OptionMetrics  1996  2-year (1996), 3-year (2005) 
(or CBOE)   5-year (2021-)  

Analyst’s cashflow forecasts  Earnings per share   I/B/E/S  1976  2-year (1976) 4-year (2003)  
5-year (2011) 

Asset-Manager expected returns Capital market projections  Dalquist&Ibert(2024) 2005  7-year (2005), 10-year (2010) 
[proprietary data]  30-year (2012) 
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Table II.
Decomposition A: Summary statistics and variance decomposition, 2005-2023

This table shows summary statistics, the correlation matrix and a variance decomposition from our imple-
mentation of Decomposition A on the S&P500 index over the sample 2005-2023. Returns, capital gains, the
yield curve factor and the cashflow and long-term discounting factor are all in real terms.

Panel A: Annual gross returns, gross and log capital gains, and capital gain factors and log factors

N Avg. SD min median max cumulative

Gross total return 19 1.084 0.170 0.630 1.130 1.304 3.563
Dividend yield 19 0.021 0.004 0.013 0.021 0.029

Gross capital gain 19 1.063 0.167 0.615 1.108 1.277 2.443
Yield Curve (1y-30y) factor 19 1.012 0.179 0.573 1.044 1.275 0.908
Equity Premium (1y-2y) factor 19 1.000 0.040 0.896 1.003 1.103 0.986
Cashflow & LT discounting factor 19 1.079 0.228 0.554 1.079 1.637 2.728

Log capital gain 19 0.047 0.180 -0.486 0.103 0.244 0.893
ln(Yield Curve factor) 19 -0.005 0.195 -0.558 0.043 0.243 -0.096
ln(Equity Premium factor) 19 -0.001 0.040 -0.110 0.003 0.098 -0.014
ln(Cashflow & LT disc. factor) 19 0.053 0.226 -0.590 0.076 0.493 1.003

Panel B: Correlation matrix, annual log capital gains and log capital gain factors

Gross Yield Equity Cashflow
Capital Gain Curve Premium & LT disc.

Gross Capital Gain 1.00
Yield Curve (1y-30y) 0.07 1.00
Equity Premium (1y-2y) 0.74 -0.35 1.00
Cashflow & LT discounting 0.61 -0.75 0.71 1.00

Panel C: Variance decomposition, annual log capital gain and log capital gain factors

value contribution

Var(Gross capital gain) 0.032 100%
= Var(Yield Curve) 0.038 118%
+ Var(Equity Premium) 0.002 5%
+ Var(Cashflow & LT disc.) 0.051 158%
+ 2 Cov(Yield Curve, Equity Premium) -0.0054 -17%
+ 2 Cov(Yield Curve, Cashflow & LT disc.) -0.066 -204%
+ 2 Cov(Equity Premium, Cashflow & LT disc.) 0.013 40%
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Table III.
Decomposition B: Summary statistics and variance decomposition, 2005-2023

This table shows summary statistics, the correlation matrix and a variance decomposition from our imple-
mentation of Decomposition B on the S&P500 index over the sample 2005-2023. Returns, capital gains, the
yield curve factor and the analyst’s earnings forecast factor are all in real terms. In this table we separate
the two expected return factors, the yield curve factor and the equity premium factor, in the decomposition
implementation.

Panel A: Annual capital gains factors and log capital gain factors

N Avg. SD min median max cumulative

Gross capital gain 19 1.063 0.167 0.615 1.108 1.277 2.443
Analyst’s Earnings Forecast factor 19 1.045 0.078 0.792 1.056 1.169 2.171
Yield Curve (1y-30y) factor 19 1.012 0.179 0.573 1.044 1.275 0.908
Equity Premium (all years) factor 19 1.033 0.220 0.627 1.007 1.574 1.239

Log capital gain 19 0.047 0.180 -0.486 0.103 0.244 0.893
ln(Analyst’s Earnings factor) 19 0.041 0.081 -0.233 0.055 0.156 0.775
ln(Yield Curve factor) 19 -0.005 0.195 -0.558 0.043 0.243 -0.096
ln(Equity Premium factor) 19 0.011 0.212 -0.467 0.007 0.454 0.214

Panel B: Correlation matrix, annual log capital gains and log capital gain return factors

Gross Analyst’s Yield Equity
Capital Gain Earnings Curve Premium

Gross Capital Gain 1.00
Analyst’s Earnings 0.76 1.00
Yield Curve (1y-30y) 0.07 -0.15 1.00
Equity Premium (all years) 0.49 0.41 -0.80 1.00

Panel C: Variance decomposition, annual log capital gain

value contribution

Var(Gross capital gain) 0.032 100%
= Var(Yield Curve) 0.038 118%
+ Var(Equity Premium) 0.045 140 %
+ Var(Earnings) 0.006 20%
+ 2 Cov(Yield Curve, Equity Premium) -0.066 -206%
+ 2 Cov(Yield Curve, Earnings) -0.005 -15%
+ 2 Cov(Equity Premium, Earnings) 0.014 43%
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Table IV. Decomposition B with expected equity return factors combined, 2005-2023

This table shows summary statistics, the correlation matrix and a variance decomposition from our imple-
mentation of Decomposition B on the S&P500 index over the sample 2005-2023. Returns, capital gains, the
expected equity return factor and the analyst’s earnings forecast factor are all in real terms. In this table we
combine the two expected return factors, the yield curve factor and the equity premium factor from Table
III, into one factor for the decomposition implementation.

Panel A: Annual capital gains factors and log capital gain factors

N Avg. SD min median max cumulative

Gross capital gain 19 1.063 0.167 0.615 1.108 1.277 2.443
Analyst’s Earnings Forecast factor 19 1.045 0.078 0.792 1.056 1.169 2.171
Expected Equity Return factor 19 1.014 0.127 0.777 1.021 1.246 1.125

Log capital gain 19 0.047 0.180 -0.486 0.103 0.244 0.893
ln(Analyst’s Earnings factor) 19 0.041 0.081 -0.233 0.055 0.156 0.775
ln(Equity Return factor) 19 0.006 0.129 -0.253 0.021 0.220 0.118

Panel B: Correlation matrix, annual log capital gains and log capital gain return factors

Gross Analyst’s Equity
Capital Gain Earnings Return

Gross Capital Gain 1.00
Analyst’s Earnings 0.76 1.00
Equity Return 0.92 0.44 1.00

Panel C: Variance decomposition, annual log capital gain

value contribution

Var(Gross capital gain) 0.032 100%
= Var(Expected Equity Return) 0.017 52%
+ Var(Earnings Forecast) 0.006 20%
+ 2 Cov(Equity Return, Earnings) 0.009 28%
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Appendix to “A Stock Return Decomposition Using Observables”

This Appendix provides theoretical proofs, additional descriptive and empirical evidence to supplement

the analyses provided in the main text. Below, we list the content.

• Appendix A provides the proof of Result 3.

• Appendix B describes when expected repurchases/issuance lead to effects of discount rates on

expected future dividends using simple illustrative examples.

• Appendix C provides a recap of the Martin (2017) lower bound of equity risk premium that is

estimated from equity option prices, details our data construction, provides empirical support for

the tightness of the lower bound, and also includes theoretical analysis of how the change in the

lower bound relates to the change in the true equity risk premium.

• Appendix D documents the robustness of our estimated dividend strip weights to potential liquidity

concerns in the dividend futures market.

• Appendix E details our data construction for earnings forecasts using the I/B/E/S dataset.
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A. Proofs

Proof of Result 3:

(a) Define the date t+ 1 terminal payoff as Tt+1 = Dt+1 + Pt+1 and use it to express Pt as

Pt =
Et (Tt+1)

Et (Rt+1)
=

Et (Tt+1)

(1 + fY C,1t )(1 + fEP,1t )
. (A.1)

The return on the date t + 1 terminal payoff (i.e., the right to the dividends at t + 1 and later) is the

return on the market since no dividends are paid before t + 1. If only the market equity premium for

year 1 changes then Pt+1

Pt
= 1

GEP,f1
t+1

, proving that Result 3(a) is exact for any return process.

(b) Write the stock price as a function of the date t+ n terminal payoff, Tt+n = Dt+n + Pt+n:

Pt = P
(1)
t + ...+ P

(n−1)
t +

Et (Tt+n)

Et

(
R
Tt+n

t+1 ...R
Tt+n

t+n−1Rt+n

) . (A.2)

Notice that, in period t + n, the return on the terminal payoff (i.e., the right to the dividends at t + n

and later) is the return on the market (i.e., R
Tt+n

t+n = Rt+n) since the prior dividends have already been

paid out.

If returns are independent over time, then

Et

(
R
Tt+n

t+1 ...R
Tt+n

t+n−1Rt+n

)
= Et

(
R
Tt+n

t+1 ...R
Tt+n

t+n−1

)
Et (Rt+n) (A.3)

= Et

(
R
Tt+n

t+1 ...R
Tt+n

t+n−1

)
(1 + fY C,nt )(1 + fEP,nt ).

Since the terminal payoff term in equation (A.2) has weight 1− w(1)
t − ...− w

(n−1)
t in Pt, it follows that

the effect on the stock price of a change in the forward equity premium for period n is:

Pt+1

Pt
= 1 +

(
1− w(1)

t − ...− w
(n−1)
t

)( 1

GEP,fnt+1

− 1

)
(A.4)

If returns are not independent over time, then

Et

(
R
Tt+n

t+1 ...R
Tt+n

t+n−1Rt+n

)
= Et

(
R
Tt+n

t+1 ...R
Tt+n

t+n−1

)
Et (Rt+n) + covt

(
R
Tt+n

t+1 ...R
Tt+n

t+n−1, Rt+n

)
(A.5)

= Et

(
R
Tt+n

t+1 ...R
Tt+n

t+n−1

)
(1 + fY C,nt )(1 + fEP,nt ) + covt

(
R
Tt+n

t+1 ...R
Tt+n

t+n−1, Rt+n

)

Since the first term in equation (A.5) has weight
Et

(
R

Tt+n
t+1 ...R

Tt+n
t+n−1

)
Et(Rt+n)

Et

(
R

Tt+n
t+1 ...R

Tt+n
t+n−1Rt+n

) in Et

(
R
Tt+n

t+1 ...R
Tt+n

t+n−1Rt+n

)
,
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it follows that the effect on the stock price of a change in the forward equity premium for period n is:

Pt+1

Pt
= 1 +

(
1− w(1)

t − ...− w
(n−1)
t

)
 1

1 +
Et

(
R

Tt+n
t+1 ...R

Tt+n
t+n−1

)
Et(Rt+n)

Et

(
R

Tt+n
t+1 ...R

Tt+n
t+n−1Rt+n

) (
GEP,fnt+1 − 1

) − 1

 (A.6)

If returns on terminal values follow a CAPM structure then regardless of the values of alphas

and betas,
Et

(
R

Tt+n
t+1 ...R

Tt+n
t+n−1

)
Et(Rt+n)

Et

(
R

Tt+n
t+1 ...R

Tt+n
t+n−1Rt+n

) will be near one if the market return has little autocorrelation so

Et(Rt+1...Rt+n−1)Et(Rt+n)
Et(Rt+1...Rt+n−1Rt+n) is close to one. To see this, start from a CAPM structure for multi-period returns

on terminal values:

R
Tt+n

t+1 ...R
Tt+n

t+n−1 −R
f
t+1...R

f
t+n−1 = α

(n)
t + β

(n)
t

(
RTt+1...R

T
t+n−1 −R

f
t+1...R

f
t+n−1

)
+ ε

Tt+n

t+1 to t+n−1

=⇒ R
Tt+n

t+1 ...R
Tt+n

t+n−1 =
[
α

(n)
t +

(
1− β(n)

t

)
Rft+1...R

f
t+n−1

]
+ β

(n)
t

(
RTt+1...R

T
t+n−1

)
+ ε

Tt+n

t+1 to t+n−1

Define at = α
(n)
t +

(
1− β(n)

t

)
Rft+1...R

f
t+n−1. Then

Et

(
R
Tt+n

t+1 ...R
Tt+n

t+n−1

)
Et (Rt+n)

Et

(
R
Tt+n

t+1 ...R
Tt+n

t+n−1Rt+n

)
=

atEt (Rt+n) + β
(n)
t Et (Rt+1...Rt+n−1)Et (Rt+n)

atEt (Rt+n) + β
(n)
t Et (Rt+1...Rt+n−1Rt+n)

= 1 + β
(n)
t

Et (Rt+1...Rt+n−1)Et (Rt+n)− Et (Rt+1...Rt+n−1Rt+n)

atEt (Rt+n) + β
(n)
t Et (Rt+1...Rt+n−1Rt+n)

= 1 +

[
Et (Rt+1...Rt+n−1)Et (Rt+n)

Et (Rt+1...Rt+n−1Rt+n)
− 1

]
β

(n)
t Et (Rt+1...Rt+n−1Rt+n)

atEt (Rt+n) + β
(n)
t Et (Rt+1...Rt+n−1Rt+n)

59



We estimate the ratio Et(Rt+1...Rt+n−1)Et(Rt+n)
Et(Rt+1...Rt+n−1Rt+n) using returns on the overall US stock market back to

1926 for value of n from 1 to 30. Across these values of n, the estimated ratio averages 1.01 with a range

from 1.00 to 1.02. This does not change materially if we using conditional expectations focusing on obser-

vations with P/E ratios in the top half of the sample, or on observations with P/E ratios in the bottom

half of the sample. Therefore, Et(Rt+1...Rt+n−1)Et(Rt+n)
Et(Rt+1...Rt+n−1Rt+n) − 1 is close to zero and

Et

(
R

Tt+n
t+1 ...R

Tt+n
t+n−1

)
Et(Rt+n)

Et

(
R

Tt+n
t+1 ...R

Tt+n
t+n−1Rt+n

)
therefore is close to one, implying that the approximation resulting from omitting this ratio in Result 3

is very small.

B. When do expected repurchases/issuance lead to effects of discount rates on

expected future dividends?

Consider a firm that generates a perpetual stream of free cash flows of C at times t = 0, 1, 2,.... The

firm has a cost of capital of r and for simplicity assume there is no uncertainty. The firm has N shares

outstanding at t = 0 and no debt outstanding. Compare the following cases.

Case 1 (base case, no repurchases): The firm pays all free cash flows as dividends, period by period.

Dividends per share are Dt = C/N for all t. By the formula for the present value of a perpetuity, the

stock price per share at t = 0 and at all later dates is

P0 =
D

r
=
C/N

r
(A.7)

The duration of dividend payments (i.e., the present-value weighted time-to-maturity of payments) is

D =

∞∑
i=1

i
P

(i)
0

P0

= r

∞∑
i=1

i (1 + r)−i

=
1 + r

r
(A.8)

where the last line uses the following property of geometric sums:
∑∞

i=1 i x
i−1 = (1− x)−2 for 0 < x < 1.

At the same time, the price elasticity with respect to the cost of capital (in all periods, as opposed to

just one period in our earlier derivations) is

ΨR =
∂P0/P0

∂r/(1 + r)
= −1 + r

r
, (A.9)

With fixed dividend payments, the base case therefore produces the classic fixed income result that
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ΨR = −D.

Case 2 (repurchase at t = 1, funded with debt issuance): At t = 1, the firm issues debt with market

value of C and uses the proceeds to buy back X shares at the market price P1. X and P1 solve:

P1X = C (A.10)

P1(N −X) =
C

r
− C (A.11)

In the second expression, C/r is the present value of free cash flows as of t = 1, of which a value of C in

present value terms will go to repaying debt. Solving for X and P1,

X = Nr, P1 =
C/N

r
. (A.12)

The price at t = 1 is thus unaffected by the repurchase as is the price at t = 0 which remains P0 = C/N
r

(because the dividend at t = 1 and the price at t = 1 are both unaffected by the repurchase). Assuming

that the debt issued is perpetual or rolled over perpetually, interest payments are rC at t = 2, 3, ... and

dividends per share are C/N at t = 1 and (1− r)C/(N −X) = C/N at t = 2, 3, .... Dividends per share

are thus the same period by period as in Case 1 and therefore unaffected by the share repurchases. In

this case, there is no effect of r on dividends even with repurchases.

Case 3 (repurchases at t = 1, funded by reduced dividends): At t = 1, the firm pays no dividend and

instead spends all free cash flows C on buying back X shares at the market price P1. X and P1 solve:

P1X = C (A.13)

P1(N −X) =
C

r
(A.14)

which imply

X = Nr
1

1 + r
= N

1

1 + 1
r

(A.15)

P1 =
C/N

r
(1 + r) = (C/N)

(
1 +

1

r

)
(A.16)

The price per share at t = 0 is unaffected since P0 = 1
1+r

C/(N−X)
r = C/N

r . The duration of dividends

is one year longer than in case 1, since shareholders get a perpetuity but starting only at t = 2. Since P0

is unchanged relative to Case 1, the price elasticity with respect to r (accounting for effects of r via both
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discounting and dividends) is unchanged relative to Case 1. It is thus no longer the case that ΨR = −D.

The dividend duration overstates the overall interest rate risk because a higher interest rate improves

cash flows from t = 2 onward: At a higher r, P1 is lower, allowing the firm to buy back more shares with

C at t = 1. This increases dividends per share from t = 2 onward.

These cases illustrate how discount rate effects on expected dividends emerge if a firm is expected

to buy back shares and is expected to fund repurchases by lowering dividends (Case 3). By contrast,

no discount rate effects on expected dividends emerge from repurchases if the firm is expected to fund

repurchases with debt issuance (and the debt is rolled over perpetually) (Case 2). A third way to fund

repurchases would be to use resources available inside the firm that would otherwise have been kept

invested in the firm. This would work out much like Case 2, with no discount effects of repurchases

on expected dividends. Expected share issuance will work with opposite effects of share repurchases,

leading to discount rate effects on expected dividends if issuance proceeds are expected to be used to pay

dividends, but no such effects if issuance proceeds are expected to be used to reduce debt.

C. The Martin lower bound of the equity premium

A. Theoretical motivation

Martin (2017) starts from the fact that the time t price of a claim to a cash flow XT at time T can either

be expressed using the stochastic discount factor MT or using risk-neutral notation

Pricet=Et (MTXT ) =
1

Rf,t
E∗t (XT )

where the expectation E∗t is defined by

E∗t (XT ) = Et (Rf,tMTXT ) .

The return on an investment can similarly be written in terms of the SDF or using risk-neutral notation

1 = Et (MTRT ) =
1

Rf,t
Et (Rf,tMTRT ) =

1

Rf,t
E∗t (RT ) .

The conditional risk-neutral variance can be expressed as

var∗tRT = E∗tR
2
T − (E∗tRT )2 = Rf,tEt

(
MTR

2
T

)
−R2

f,t
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The risk premium expressed as a function of the risk-neutral variance is then

EtRT −Rf,t =
[
Et
(
MTR

2
T

)
−Rf,t

]
−
[
Et
(
MTR

2
T

)
− EtRT

]
=

1

Rf,t
var∗tRT − covt (MTRT , RT )

≥ 1

Rf,t
var∗tRT if covt (MTRT , RT ) ≤ 0

Thus 1
Rf,t

var∗tRT provides a lower bound on EtRT −Rf,t if covt (MTRT , RT ) ≤ 0, denoted the “negative

correlation condition” (NCC).

The Martin (2017) lower bound is the discounted risk-neutral variance and can thus be calculated

from put and call option prices as follows

1

Rf,t
var∗tRT =

2

S2
t

[∫ Ft,T

0
putt,T (K) dK +

∫ ∞
Ft,T

callt,T (K) dK

]
(A.17)

where putt,T (K) and callt,T (K) are time t put and call option prices for strike price K and maturity T .

The forward price Ft,T is the unique solution K where putt,T (K) = callt,T (K). One can then estimate

the equity risk premium by discretizing the right-hand side of equation (A.17) using the range of date t

option prices that expire on date t+ T .

B. Data cleaning and construction

For our baseline results we use option price data from OptionsMetrics. For the application to 2020, we

have replicated the equity premium results using use option price data from CBOE intra-day traded price

data. The results mirror those reported in the main results using OptionMetrics end of day quotes.

To clean the OptionMetrics data and generate the equity premium estimates we take the following

steps. First we drop observations if the bid price or ask price is missing and if the best bid price is

zero. We then calculate the mid price as the average of the best bid and best ask price and, for date-

maturity-strike-type combinations where there are multiple mid-prices, we use the option with the highest

open interest.30 We next keep date-maturity-strike observations where there is both a call and put mid-

price, and then select the option with the lowest mid-price. This step automatically deletes put options

greater than Ft,T and deletes call option prices less than Ft,T , as required for equation (A.17). Before

implementing the discretizion of the integral, we then take two extra steps to ensure the accuracy of the

30Type refers to call or put option. The existence of multiple maturity-strike-type observations is caused by the increase in
the number of options issued. For example, if a newly issued weekly option has the same expiry as an existing annual option
that is expiring in a weeks time, then we observe two mid-prices. Typically, shorter horizon options are the most liquid and
have highest open interest (i.e. weekly options are more liquid than annual options). We drop all quarterly options (expiring
end of quarter) from the sample as these are particularly illiquid throughout their issuance period.
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discretizion approximation. First, we drop date-maturity observations where the number of unique strikes

is less than 10. Second, we drop date-maturity observations where the difference between the maximum

put strike and the minimum call strike is greater than 50 (100) for maturities less (greater) than 1-year.

This step makes sure discretization is not too coarse in the most important range of the integral (where

prices are at the highest levels). We allow a larger gap between strike prices for long-maturity options as

these are typically issued with a lower range of strikes.

Equation (A.17) is then estimated, providing date-maturity equity risk premium estimates at the

maturities that correspond to the expires of the options in issue. To generate constant maturity risk

premium estimates across dates, we linearly interpolate risk premium estimates across maturities within

dates. We also extrapolate to extend maturity. However, to avoid over extrapolation, we limit this

extrapolation to a maximum of half a year greater than the longest maturity option available at that

date.

C. Is the Martin lower bound a good measure of the equity risk premium?

We proxy the equity risk premium with the Martin lower bound, thus assuming the bound is tight. This

section provides additional empirical evidence to support this assumption as well as theoretical results

on how the change in the bound relates to the change in the true equity premium.

C.1. The tightness of the Martin lower bound

Martin (2017) documents an average lower bound over the 1996-2012 period of about 5%, close to the

equity premium estimates obtained by Fama and French (2002) using average realized dividend (or

earnings) growth rates as an estimate of ex-ante expected capital gains. Martin also tests whether the

lower bound is a good predictor of the realized excess return, with small intercepts. He estimates the

relation
1

T − t
(RT −Rf,t) = a+ b× 1

T − t
var∗tRT
Rf,t

+ εi,t (A.18)

We extend the Martin (2017) empirical results by first re-estimating equation (A.18) over the 1996-June

2022 for the S&P500 index.31 The estimated parameters are shown in Table A.1, Panel A. We cannot

reject the null of b = 1, a = 0 for horizons T − t = 1, 2, 3, 6 and 12 months.

We re-estimate equation A.18 over the 1996-2022 as shown in Table A.1. Over this longer sample,

we find that β is higher than one for most horizons, though not significantly so for most horizons. The

intercept is close to zero and insignificant across all horizons.

31Martin’s defines a variable SV IX2
t→T = 1

T−t
var∗t

(
RT
Rf,t

)
and his regressor is thus expressed as Rf,tSV IX2

t→T .
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Table A.1. The Martin lower bound as a predictor variable.
This table reports the parameter estimate from the following time series regression: 1

T−t (RT −Rf,t) =

a+ b× 1
T−t

1
Rf,t

var∗tRT together with Newey-West standard errors with lag selection based on the number

of overlapping observations. Columns refer to separate estimations with T − t = 1, 2, 3, 6 and 12 months
respectively. The sample period is January 1996 - June 2022.

Realized Return

1 month 2 month 3 month 6 month 1 year

Martin lower bound 1.43 1.41 1.36 2.04∗∗ 1.70∗∗

(1.00) (1.03) (1.26) (0.86) (0.82)

Constant 0.00 0.00 0.00 -0.01 -0.00
(0.00) (0.01) (0.01) (0.02) (0.04)

R2 (perc.) 1.14 1.76 2.04 5.45 4.09
Observations 6,618 6,618 6,618 6,595 6,470

We find that b is greater than one in all estimations, though not significantly. Our decomposition

relies on changes in equity risk premia. The b estimates above one imply that the true risk premium

change exceeds that of the change in the lower bound. It is possible, however, that realized excess returns

exceeded expected returns over this particular time period, more so in times of stress (high values of the

risk-neutral variance). Fama and French (2002) argue that realized returns exceeded expected returns

even over a sample as long as 1951-2000. Cieslak, Morse, and Vissing-Jorgensen (2019) argue that over the

post-1994 period, unexpectedly accommodating monetary policy has contributed to much of the realized

excess return on the stock market. If the unexpected positive component of realized returns is sufficiently

correlated with risk-neutral variance, then an estimated b above one may not imply that changes in the

lower bound are smaller than the true changes in the equity risk premium for a given horizon.

Given the lack of conclusive empirical evidence on whether b = 1 or b > 1 it is relevant to ask what

theory says about how the change in the bound relates to the change in the true equity risk premium.

C.2. Theoretical results for the Martin lower bound in changes

We supplement the above empirical evidence with theoretical analysis for the log-normal case, the CRRA

log-normal case and more generally for a unconstrained investor who is fully invested in the market. In

each case, we show that the same parameters and conditions that ensure that the lower bound is in fact a

lower bound (Martin’s negative correlation condition) also ensure that the change in the lower bound is

smaller than the change in the true risk premium. To the extent the lower bound is not right, our return

decomposition will thus tend to understate the role of risk premium changes.

Suppose an underlying state variable st changes and that st is signed such that
∂

[
1

Rf,t
var∗tRT

]
∂st

> 0.
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Then

∂ [EtRT −Rf,t]
∂st

=
∂
[

1
Rf,t

var∗tRT

]
∂st

− ∂covt (MTRT , RT )

∂st

≥
∂
[

1
Rf,t

var∗tRT

]
∂st

iff
∂covt (MTRT , RT )

∂st
≤ 0

It follows that the change in the lower bound is, on average, equal to the true change in the risk premium

if the regression coefficient b in (A.18) equals one. If instead b > 1 that would suggest that the regressor

is positively correlated with the omitted variable −covt (MTRT , RT ) implying that ∂covt(MTRT ,RT )
∂st

< 0

and thus that the true change in the risk premium is larger than the change in the lower bound.

To assess theoretically whether b > 1 is likely, assume conditional log-normality as follows:

MT = e−rf,t+σM,tZM,T− 1
2
σ2
M,t

RT = eµR,t+σR,tZR,T− 1
2
σ2
R,t

where ZM,t and ZR,t are (potentially correlated) standard normal random variables. Martin (2017)

shows that in the log-normal case, the NCC holds iff the conditional Sharpe ratio exceeds the conditional

standard deviation:

covt (MTRT , RT ) ≤ 0 iff erf,t+σ
2
R,t ≤ eµR,t ⇐⇒ σR,t ≤

µR,t − rf,t
σR,t

The following result states conditions that allow us to relate the true change in the risk premium to the

change in the lower bound.

Result 7 (True change vs. lower bound change in equity risk premium).

Suppose an underlying state variable st changes such that
∂

[
1

Rf,t
var∗tRT

]
∂st

> 0 and
∂σR,t

∂st
≥ 0. The true

change in the equity risk premium is at least as large as the change in the lower bound iff ∂covt(MTRT ,RT )
∂st

≤

0. Under log-normality, it is sufficient for ∂covt(MTRT ,RT )
∂st

≤ 0 that

(1) The NCC holds: covt (MTRT , RT ) ≤ 0⇐⇒ µR,t−rf,t
σR,t

≥ σR,t, and

(2) ∂
∂st

[
µR,t−rf,t
σR,t

]
≥ ∂σR,t

∂st
.

In addition to log-normality, assume CRRA utility,

MT = β

(
CT
Ct

)−γ
= elnβ−γ ln(CT /Ct)
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with ln (CT /Ct) ∼ N(µc,t, σ
2
c,t) conditional on information known at t. Define the consumption beta

relative to the market as βCt = covt(lnRT ,ln(CT /Ct))
σ2
R,t

. The following result emerges.

Result 8 (True change vs. lower bound change in equity risk premium).

In the log-normal CRRA case,
µR,t − rf,t

σR,t
= γβCt σR,t. (A.19)

so the NCC holds if γβCt ≥ 1. Furthermore,

∂

∂st

[
µR,t − rf,t

σR,t

]
= γβCt

∂σR,t
∂st

+ γ
∂βCt
∂st

σR,t

so it is sufficient for
∂

∂st

[
µR,t − rf,t

σR,t

]
≥
∂σR,t
∂st

that γβCt ≥ 1 and
∂βC

t
∂st
≥ 0.

Therefore, the same condition that ensures the NCC holds, γβCt ≥ 1, also helps to ensure that the

true change in the risk premium is larger than the change in the lower bound. Martin (2017) argues that

the NCC is very likely to hold in the log-normal case since the Sharpe ratio based on realized returns has

substantially exceeded the realized standard deviation. The additional condition,
∂βC

t
∂st
≥ 0 holds if βCt is

constant. This will be the case for an investor who is fully invested in the market, since then βCt = 1. It

will also (approximately) be the case for an investor who is not fully invested in the market as long as

the the investor has a roughly constant portfolio weight in the market and the covariance between the

market and non-market risky assets is roughly constant over time.

Overall, theoretical considerations suggest that to the extent that the Martin lower bound is not

exact, the most likely direction of any bias is that the true changes in the equity risk premium are larger

than the changes in the Martin lower bounds.

Proof of Result 7: Et (MTRT ) = 1 implies that

ln (Et (MTRT )) = Et (lnMT + lnRT ) +
1

2
Vt (lnMT + lnRT )

=

(
µR,t − rf,t −

1

2
σ2
M,t −

1

2
σ2
R,t

)
+

1

2

(
σ2
M,t + σ2

R,t + 2covt (lnRT , lnMT )
)

= µR,t − rf,t + covt (lnRT , lnMT ) = 0

and thus

µR,t − rf,t = −covt (lnRT , lnMT ) . (A.20)
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Et (MTRT ) = 1 furthermore implies that

covt (MTRT , RT ) = Et
(
MTR

2
T

)
− E (RT )

Consider each term on the right hand side separately.

lnEt
(
MTR

2
T

)
= Et (lnMT + 2 lnRT ) +

1

2
Vt (lnMT + 2 lnRT )

= −rf,t −
1

2
σ2
M,t + 2

(
µR,t −

1

2
σ2
R,t

)
+

1

2

(
σ2
M,t + 4σ2

R,t − 4 (µR,t − rf,t)
)

= rf,t + σ2
R,t

lnEt (RT ) = Et (lnRT ) +
1

2
Vt (lnRT )

= µR,t

Combining these two expressions

covt (MTRT , RT ) = erf,t+σ
2
R,t − eµR,t (A.21)

The derivative with respect to a state variable st is

∂covt (MTRT , RT )

∂st
= erf,t+σ

2
R,t

[
∂rf,t
∂st

+ 2σR,T
∂σR,t
∂st

]
− eµR,t

[
∂µR,t
∂st

]

If the NCC holds, covt (MTRT , RT ) ≤ 0 and thus erf,t+σ
2
R,t ≤ eµR,t . Therefore, it is sufficient for

∂covt(MTRT ,RT )
∂st

≤ 0 that
∂rf,t
∂st

+ 2σR,t
∂σR,t

∂st
≤ ∂µR,t

∂st
. Rewrite this sufficient condition as follows

(
∂µR,t
∂st

−
∂rf,t
∂st

)
1

σR,t
−
∂σR,t
∂st

≥
∂σR,t
∂st

Consider now the change in the conditional Sharpe ratio (for log returns):

∂

∂st

[
µR,t − rf,t

σR,t

]
=

1

σ2
R,t

[(
∂µR,t
∂st

−
∂rf,t
∂st

)
σR,t − (µR,t − rf,t)

∂σR,t
∂st

]
=

(
∂µR,t
∂st

−
∂rf,t
∂st

)
1

σR,t
−

(µR,t − rf,t)
σ2
R,t

∂σR,t
∂st

≥
(
∂µR,t
∂st

−
∂rf,t
∂st

)
1

σR,t
−
∂σR,t
∂st
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where the last line follows from (1) the fact that
(µR,t−rf,t)

σ2
R,t

≥ 1 under the NCC and (2) the assumption

that
∂σR,t

∂st
≥ 0. Thus, it is sufficient for ∂covt(MTRT ,RT )

∂st
≤ 0 that the change in the conditional Sharpe

ratio is at least as large as the change in the conditional standard deviation

∂

∂st

[
µR,t − rf,t

σR,t

]
≥
∂σR,t
∂st

.

Proof of Result 8: We can exploit equation (A.20) to get

µR,t − rf,t = −covt (lnRT , lnMT )

= γcovt (lnRT , ln (CT /Ct)) .

This implies (A.19),

µR,t − rf,t
σR,t

= γ
covt (lnRT , ln (CT /Ct))

σ2
R,t

σR,t

= γβCt σR,t

where βCt is the (potentially time-varying) beta of ln (CT /Ct) with respect to lnRT . The rest of Result 6

follows directly from equation (A.19).

D. Dividend strip weights: Liquidity and robustness

Our dividend strip weights are based on dividend futures prices. These are a relatively new product and

liquidity may be an issue. Our dividend futures prices are trade prices from Bloomberg. Bloomberg does

not provide bid-ask spreads for dividend futures. However, using a proprietary data source, Bansal et al.

(2021) document that over their sample period from January 2010 to February 2017, bid-ask spreads on

S&P500 dividend futures averaged around 2% for each maturity (out to 5 years in their data), with a time

series standard deviation around 1% for a given maturity. This is large enough to have an economically

large effect on the monthly returns generated by these contracts. Because dividend strip weights are

based on the level of dividend futures prices and not on dividend futures price changes (to calculate

dividend strip returns), the economic impact of bid-ask spreads on weights is far lower than the impact

on returns. To take an example, consider the first year’s dividend strip weight, which is 1.80% of the total

market on January 2nd, 2020. Even if we consider a bid-ask spread of 4% (the sample mean plus two

sample standard deviations), in the extreme the dividend strip weight would be 1.764% using bid prices

and 1.836% using ask prices. To illustrate the point, the top panel of Figure A.1 shows how the dividend
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strip weights and cumulative dividend strip weights vary with bid-ask spreads of 4%. The impact on

dividend strip weights is very small across all maturities.32

Figure A.1. Dividend strip weights and dividend futures liquidity.

This figure shows how dividend strip weights are impacted by bid-ask spreads and the choice of the maximum
maturity of dividend futures used in Result 6. For illustration purposes, the dividend strips are measured
using the first day of 2020.
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Beyond bid-ask spreads, another important issue in our context is that limited open interest in

dividend futures may lead to a risk that these are priced by particular investors, rather than a broad

set of investors relevant for the overall stock market. Across contracts from year 1 to year 10, open

interest has increased over time, with the average daily open interest across 2020 was 60% higher than

the average daily open interest across 2017. However, across maturities, open interest in 2020 (annual

32Gormsen and Koijen (2020) provide updated liquidity analysis on the dividend futures market in 2020, with a focus on
the euro-area. The bid-ask spreads observed in this period are slightly lower than those measured in the Bansal et al. (2021)
sample.
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average) declines from $802M at maturity 1, to $351M at maturity 3, $77M at maturity 5, $17M at

maturity 8, and less than $10M at maturity 9 and 10.

Dividend weights beyond the maximum maturity of observed dividend futures are estimated using

Result 6 in our methodology, with our baseline implementation using the maximum observed dividend

maturity ND = 10 years. We therefore assess the robustness of our results to shortening the maximum

dividend futures maturity used. The bottom panels of Figure A.1 show how the dividend strip weights

and cumulative divividend strip weights change when Result 6 is implemented with either the 8-year or

5-year dividend future selected as the maximum maturity. Dividend strip weights are broadly consistent

across specifications. As with the impact of bid-ask spreads, we therefore find that the sensitivity of

results to adjustments in the maximum maturity of dividends futures is limited.

E. Cashflow expectations: Data construction

This section details of our data construction for near-term earning forecasts, which largely follows the

approaches taken in De La O and Myers (2021) and Hillenbrand and McCarthy (2024).

To begin, we download the monthly CRSP data and the “DSP500LIST” file obtained from WRDS that

allows us to generate a panel of the S&P constituents along with each firm’s price per share, total shares

outstanding and thus market capitalisation. We merge this panel with Refinitiv’s I/B/E/S Unadjusted

Summary Statistics database using the “iclink” file, also obtained from WRDS, which allows us to generate

a panel of S&P500 firms with earnings forecasts.

We then interpolate firm-level fiscal year EPS estimates to generate constant maturity forecasts 1-

year to 5- years ahead. Because fiscal years don’t end at the same time, it is important to interpolate

forecasts at a firm-level before aggregating. Around 75 percent of S&P500 firms have fiscal year ending

in December, but the other firms have fiscal years closing across a variety of other months in the year. In

the interpolation procedure, we allow for extrapolation of up to 11 months. For example, for firm-month

observation, if we observe forecasts for fiscal year ends that are 1, 13 and 25 months away, we will use

the interpolated 12-month, 24-month and 36-month estimates. However, if the forecasts are for fiscal

year ends that are 11 and 23 months away, we will only use the interpolated 12-month and 24-month

estimates.

Once we have constant maturity EPS estimates that are for consistent horizons across all firms, we

then multiply EPS forecasts by the number of shares outstanding for each firm to get the dollar earnings

and aggregate across all firms to get a measure of expected earnings for the S&P500 index constituents

where we have EPS forecasts to each horizon. Finally, divide through by an adjusted S&P500 index

71



divisor to generate a EPS measure for the index.33

Note that the summary data of the monthly I/B/E/S forecasts is a snapshot of all forecasts made over

the previous 30-days, and is taken on the third Thursday of the month (so a bit after the middle of the

month). If forecasts occur uniformly between snapshots, the average forecast is thus taken approximately

at the end of the month prior to the summary release date. We make this assumption when merging

I/B/E/S forecasts with our stock return components.

33The index-level is the total market capitalisation of all firms in the index divided by the index divisor. We compute
an adjusted divisor that is representative of the sample of firms in our merged CRSP and I/B/E/S dataset by dividing the
market capitalisation of the S&P500 firms in our sample over the index price-level.
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