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Abstract

Endogenously optimistic beliefs about future house prices can account for the in-
crease, time-path, and volatility of house prices in the U.S. housing boom of the 2000s
without shocks to housing preferences. In a general equilibrium model with incomplete
markets and aggregate risk, heterogeneous agents endogenously form beliefs about fu-
ture house prices in response to shocks to fundamentals. When fundamentals like
credit conditions loosen, agents can only partially revise up their beliefs, resulting in
increasingly optimistic beliefs that are consistent with both novel and existing empir-
ical evidence. Because endogenous beliefs are sensitive to policy interventions, how
beliefs are formed in housing booms has direct implications for prudential policy.
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1 Introduction

Record house prices in the 2000s preceded one of the of the worst recessions in modern

U.S. history. Understanding what drove this housing boom has been a central question

for researchers and policymakers as they seek to safeguard against a repeat of the economic

damage. The two most commonly proposed drivers are looser credit conditions and optimistic

beliefs about futures house prices.1 This paper combines these two drivers in a general

equilibrium model with incomplete markets and aggregate risk to address why beliefs became

more optimistic in the 2000s and how belief formation matters for assessing the effectiveness

of prudential policies.

Incomplete information about the evolution of house prices in an economic expansion

with looser credit conditions can generate endogenously optimistic beliefs and hence higher

house prices. Given today’s ongoing debate about the degree to which credit conditions

affect house prices, it is unlikely that everyone in the early 2000s had a clear understanding.

And how could they have known if expectations about future house prices were in line with

fundamentals when innovations in mortgage finance that allowed for looser credit conditions

had never before been experienced on a nation-wide scale? For these reasons, this paper

models loose credit conditions as an aggregate state where the exact effect of fundamentals on

house prices is unknown. This is achieved by relaxing the complete information assumption

that the evolution of house prices is time invariant and fully known in all aggregate states.

When credit conditions loosen, agents must form beliefs to forecast future house prices

and do so via adaptive learning—for which this paper is one of the first to embed in a

framework with incomplete markets and aggregate risk to study housing.2 Under adaptive

learning, the partial updating of beliefs prevents agents from fully internalizing the increase

in demand for housing services as credit conditions loosen, which results in house prices rising

by more than expected. Agents interpret this forecast miss as a signal that their beliefs were

not optimistic enough, revise their beliefs upward, and will continue to do so absent a new

1See Favilukis et al. (2017), Greenwald (2018), Arslan et al. (2022), Lind (2021), Johnson (2019), Land-
voigt (2016), Kermani (2012), Justiniano et al. (2019), Mian and Sufi (2017) and Di Maggio and Kermani
(2017) for the role of loose credit conditions in the housing boom. See Kaplan et al. (2020), Burnside et
al. (2016), Piazzesi and Schneider (2009), Gelain and Lansing (2014), Adelino et al. (2018), Nathanson and
Zwick (2018), Glaeser and Nathanson (2017), Albanesi et al. (2022), and Foote et al. (2012, 2018) for the
role of optimistic beliefs. See Duca et al. (2021) for an overview of the drivers of housing cycles in the U.S.
and other countries.

2As noted by Moll (2024), models with incomplete markets and aggregate risk require multiple steps
when solving for a Krusell and Smith (1998) approximate equilibrium as a fixed point, but can be solved in
one step by forecasting prices directly with a rule that is updated via learning and disciplined with survey
evidence like in this paper. Giusto (2014) and Hoffman (2016) embed adaptive learning with incomplete
markets and aggregate risk, the former in the canonical Krusell and Smith (1998) model and the later to
study the interactions of beliefs and income fluctuations. Broer et al. (2022, 2023), Porapakkram and Young
(2007), and Kübler and Scheidegger (2021) explore aggregate risk under information frictions more generally.
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signal suggesting that their beliefs are too optimistic. Because agents pull forward demand

for housing services when they expect house prices to rise in the future, optimistic beliefs

bring to fruition higher house prices.

The model’s key mechanism for generating optimistic beliefs—and hence higher house

prices—is persistently positive house price forecast errors. To corroborate this mechanism

with external empirical evidence, this paper develops a novel proxy for house price beliefs in

the 2000s from the University of Michigan Survey of Consumers. Although Kuchler et al.

(2023, Table 2) document limited availability of empirical house price expectations prior to

2007, this paper exploits the tight correlation of a question on beliefs that is only available

starting in 2007 with a question going back to 1992 to construct the empirical proxy. Adam

et al. (2024) and Kindermann et al. (2024) also provide supporting evidence of forecast error

persistence in their own applications of learning to housing.

Because optimistic beliefs are formed endogenously from incomplete information in this

paper, shocks to income and credit conditions can generate the U.S. housing boom of the

2000s without exogenous beliefs in the form housing preference shocks. Under endogenous

beliefs, model generated house prices can match 75 percent of the empirical level increase

observed from 1997 to 2007, which is similar to the fit under exogenous beliefs as in Kaplan

et al. (2020). However, this paper’s external empirical evidence developed from the Michigan

Survey validates the model’s persistently positive house price forecast errors generated under

endogenous beliefs instead of the negative forecast errors generated under the exogenous

beliefs of Kaplan et al. (2020). Finally, endogenous beliefs can match additional features of

house prices including the time path, 96 percent of the autocorrelation, and 89 percent of

the volatility.

In the model, looser credit conditions unaccompanied by optimistic beliefs have only a

slight direct effect on house prices, but are key for matching the housing boom dynamics of

homeownership, mortgage leverage, and foreclosures. The small effect of credit conditions

on house prices is the result of 1) only a fraction of heterogeneous households—those who

are younger and have lower income—being constrained from homeownership and 2) these

households buying similar sized properties as those they were renting.3 None-the-less, in the

3Constrained households are thus the closest parallel to subprime borrowers who have been shown by
Mian and Sufi (2009, 2017), Griffin et al. (2021), and others to account for the dynamics of the housing boom.
Additional channels could result in credit conditions having a larger effect on house prices, but may still fall
short of matching house price statistics other than the level increase as is the goal of this paper. Favilukis
et al. (2017) also include aggregate risk and incomplete markets, but instead link credit conditions to house
prices via a potentially counterfactually high risk aversion, a less simplified financial sector, and influx of
foreign borrowers. Subsequent work explores the role of market segmentation of renters and homeowners
[Greenwald and Guren (2024)], the type of credit conditions [Greenwald (2018) and Justiniano et al. (2019)],
and the feedback between households and the financial sector [Arslan et al. (2022)].
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framework of this paper, any increase in demand for housing services—like the slight increase

from constrained households—can generate persistently positive house price forecast errors

and hence endogenously optimistic beliefs.

In addition to explaining several features of house prices during the 2000s housing boom

and unifying the explanations of beliefs and credit conditions, this paper contributes one

of the first studies of how belief formation affects the management of housing booms. The

prudential policies studied are similar to those of Allen and Greenwald (2022) and Graham

and Sharma (2024) who assess the effects of borrowing limits and higher interest rates on

housing dynamics, respectively. Under the endogenous beliefs proposed by this paper, these

prudential policies dampen or eliminate an outsized increase in house prices. By contrast,

the same prudential policies have little effect on house prices under exogenous beliefs.

House prices are sensitive to prudential policy under endogenous beliefs because beliefs are

1) time-varying and 2) depend on recent house price forecast errors. Changes in fundamentals

like higher interest rates or lower borrowing limits can dampen demand for housing services

which, in turn, pushes down forecast errors resulting in relatively less optimistic beliefs in

current and subsequent periods. By contrast, under exogenous beliefs, optimism is the result

of a news shock to preferences where agents expect higher demand for housing services in

the future. Unless a change in fundamentals such as higher interest rates or lower borrowing

constraints can counteract the news shock to preferences, optimistic beliefs and the resulting

housing boom will continue. Chodorow-Reich et al. (2023) similarly find that housing boom

dynamics are sensitive to interest rates under incomplete information. Both Igan and Kang

(2011) and Kuang et al. (2024) relatedly document that house price expectations respond

to changes in borrowing constraints.

2 Related Literature

Why beliefs about future house prices became optimistic in the 2000s is also addressed

by Howard and Liebersohn (2023) and Chodorow-Reich et al. (2023) who propose regional

divergence and relocation to downtown neighborhoods, respectively, as fundamentals-based

explanations relying on regional heterogeneity. Although regional heterogeneity is beyond

the scope of this paper, it is complementary to household heterogeneity and incomplete

information, the latter of which is also a key feature of Landvoigt (2016).

By allowing for an interaction of beliefs and fundamentals via incomplete information

about the evolution of house prices, this paper contributes a new methodological frontier

to study housing booms with incomplete markets and aggregate risk. This paper builds off

of the state-of-the art quantitative frameworks of Favilukis et al. (2017) and Kaplan et al.

(2020) which rely on complete information. Relatedly, work by Hoffman (2016) also forms
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endogenous beliefs via adaptive learning to study the interactions of beliefs and income

fluctuations across several economic cycles rather than credit conditions in the 2000s. The

interactions between beliefs and fundamentals in other frameworks is also featured in Johnson

(2019), Cox and Ludvigson (2021), and Dong et al. (2022).

More specifically, this paper contributes a tractable computational method to incorporate

adaptive learning into rich quantitative models to study house prices. Although other struc-

tural models with learning have successfully accounted for housing market dynamics, these

studies typically rely on representative agents which may result in an overstated direct effect

of looser credit conditions on higher house prices [Adam et al. (2012), Boz and Mendoza

(2014), Kuang (2014), and Caines (2020)]. Chodorow-Reich et al. (2023) and Kindermann

et al. (2024) are an exception by allowing for regional heterogeneity and learning about local

fundamentals. While they, and most other adaptive learning applications, assume imperfect

information about model quantities, Adam and Marcet (2011) provide microfoundations for

learning about market clearing prices, as is the case in this paper.

Because this paper’s contribution of endogenous belief formation adds several additional

dimensions to already computationally intensive frameworks, assuming homogeneous beliefs

allows for tractability and clean interpretation of mechanisms. In structural models with

heterogeneous beliefs, Piazzesi and Schneider (2009), Burnside et al. (2016), Glaeser and

Nathanson (2017), Dong et al. (2022) show that optimists push up house prices to generate

the housing boom, which is also consistent with the survey evidence of Kindermann et

al. (2024). This paper’s homogeneous beliefs can thus be interpreted as a first step towards

incorporating these richer forms of beliefs into computationally intensive quantitative models,

as advocated by Moll (2024).

Even though explicit measures of house price expectations are only available starting

in 2007, this paper’s novel empirical proxy and other evidence supports optimistic beliefs

during the 2000s. Surveys by Case and Shiller (1988, 2004), Case et al. (2012), and Shiller and

Thompson (2022) document high expectations for house price growth during local booms.

For the 2000s boom specifically, Piazzesi and Schneider (2009), Ben-David et al. (2019), and

Soo (2018) all document optimism rising with house prices.

Optimistic beliefs and loose credit conditions are not the only explanations of the U.S.

housing boom of the 2000s. Low interest rates have also been studied with mixed success.

Even though Adam et al. (2017), Garriga et al. (2019), Jordà et al. (2015), Chodorow-Reich

et al. (2023) and Diamond and Landvoigt (2022) successfully link low interest rates to high

house prices, Dokko et al. (2011) and Glaeser et al. (2013) do not find a similar connection.

To that end, the counterfactual prudential policy simulations in this paper are in line with

previous studies of interest rate policy under learning. Adam and Woodford (2021), Adam et
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al. (2024), and Caines and Winkler (2021) show that it may be optimal for monetary policy

to lean against house prices and other assets when information is incomplete. While this

paper abstracts away from the rich general equilibrium feedback from other sectors of the

economy, like those also shown to be important by Kinnerud (2024), the prudential policy

counterfactual simulations none-the-less provide a clean mechanism for showing how belief

formation can matter in housing boom management.

3 Model

3.1 Environment

The model introduces incomplete information about future house prices into the frame-

work of Kaplan et al. (2020) to allow for endogenously optimistic beliefs.4 Time is discrete

and the economy is populated by a continuum of measure one finitely lived households who

are heterogeneous in ages and idiosyncratic income endowments. These households trade

goods and services with a lending sector, a rental housing sector, housing construction firms,

and final goods firms. Lowercase letters denote individual household quantities and upper-

case letters denote aggregates.

Preferences: Households are active in economic life for j = 1, . . . , J periods where they

work from j = 1 to Jret−1 and retire at Jret until they exit the economy with certainty

at J . Households have preferences over final goods consumption and housing expendi-

tures {cj, sj}Jj=1 with final goods consumption as the numeraire. All j subscripts have been

dropped unless needed. The utility function is given as:

uj(cj, sj) = ej
[(1− ϕ)c1−γ

j + ϕsj
1−γ]

1−σ
1−γ − 1

1− σ

Where ϕ is the taste for housing relative to goods consumption, 1/γ is the elasticity of sub-

stitution between housing expenditures and goods consumption, and σ is the intertemporal

elasticity of substitution. A deterministic equivalence scale {ej}Jj=1 adjusts consumption for

changes in household size over the life-cycle. Expected life-time utility at time t for 0 < β < 1

is given as:

Et

[
J∑

j=1

βj−1uj(cj, sj) + βJv(♭+ ♭)

]
Where the warm-glow bequest motive at the end of life J follows the functional form of De

4Any discrepancies between the environment described in this section (3.1) and that of Kaplan et al.
(2020) stem from their code sometimes differing slightly from their text. Although these discrepancies do
not affect the main findings of beliefs as a driver of the U.S. housing boom of the 2000s, there are other
corrections to their code that do have some effect on the calibration as shown in Appendix E.
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Nardi (2004) which modifies that of Carroll (2002):

v(♭) = ψ
(♭+ ♭)1−σ − 1

1− σ
(1)

The bequest motive prevents households from counterfactually ramping up debt and drawing

down housing when they exit the economy. The strength of the bequest motive is regulated

by ψ ≥ 0 and the extent to which bequests are luxuries is given by ♭ ≥ 0.

Income endowments: While working, households receive an income endowment comprised

of an aggregate stochastic endowment Θ(Z), a deterministic life-cycle profile that varies by

age χj, and an idiosyncratic stochastic endowment ϵj(z) that follows a Markov process.

log y = logΘ(Z) + χj + ϵj(z), when j < Jret

The transition matrix for earnings ϵj+1(z
′) ∼ Υj+1|j(ϵj(z)) is age dependent which helps

account for rising income volatility throughout working life.

In retirement, households receive a fraction ρSS of their last working period income

with aggregate income averaged across states Θ̄. Heterogeneity in retirement income helps

preserve the wealth distribution of retired agents.

y = ρSS(log Θ̄ + χJret−1 + ϵJret−1), when Jret ≤ j ≤ J (2)

Income tax follows the functional form of Heathcote et al. (2017) where τ 0y sets the average

level of taxation and τ 1y sets the degree of tax progressivity. To capture the tax benefits of

homeowning, households can deduct ϱ fraction of the interest paid on their mortgage rmm

for the first $1,000,000 of mortgage debt, m̄.

T (y,m) = y − τ 0y (y − ϱrmmin{m, m̄})1−τ1y (3)

If a household does not have a mortgage, the expression simplifies to, T (y) = y− τ 0y (y)
1−τ1y .

Housing: Households can either rent or own houses. To capture the lumpy dynamics

of housing over the life-cycle—as described by Chambers et al. (2009)—housing units are

indivisible and available in discrete fixed sizes H ∈ {h0, . . . , hN} for homeowners and H̃ ∈
{h̃0, . . . , h̃N} for renters. If housing units were instead a continuum of sizes households would

make a counterfactually large number of adjustments to square footage over the life-cycle as

they could upsize or downsize by a fraction of a room.

Markets for rental and owner-occupied housing are both frictionless and competitive
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where the law of one price holds and selling is instantaneous.5 Rental units cost ρ(µ, Z) and

owner-occupied units cost p(µ, Z). Renting generates housing services equal to the size of the

housing unit, s = h̃ while homeownership offers additional utility s = ωh for ω ≥ 1. Home-

owners pay per-period taxes and maintenance costs (δh + τh)p(µ, Z)h where maintenance

offsets the depreciation of the housing unit. When selling, homeowners pay a transaction

cost κp(µ, Z)h that is linear in housing value. Renters do not pay these costs and can adjust

the size of their housing unit without transaction costs.

Liquid savings: Households can save in one-period bonds b at the exogenous risk-free

rate qb. Unsecured borrowing is prohibited and households cannot trade among themselves.

Households transact bonds with risk-neutral non-modeled foreign agents with deep pockets.

Assuming an exogenous financial sector implies that the model is essentially a small

open economy which is a fairly standard assumption in the literature [Arslan et al. (2022),

Kaplan et al. (2020), Greenwald and Guren (2024), Chodorow-Reich et al. (2023)]. Arslan

et al. (2022) explain that at the onset of the housing boom in the late 1990s, net exports

decline and stay negative, which in turn implies that there is a net capital inflow to the U.S.

consistent with the data. Although allowing for endogenous determination of the risk-free

rate qb would lend to more rigorous counterfactual simulations, it would also require zero

net supply of financial instruments or capital rented to final goods firms. Not only would

the dynamics and mechanisms be complicated by an additional endogenous price, but qb

would also need to be approximated via a Krusell and Smith (1998) equilibrium such that

the coefficients on the evolution of qb(µ, Z0) would need to be solved for in addition to house

prices p(µ, Z).

Mortgages: Homeowners finance housing purchases with multi-period defaultable mort-

gages subject to a fixed origination cost κm(Z). These mortgages are amortized over the life

of the household at interest rate rm = (1 + ι)rb which is equal to the risk-free rate scaled

by an intermediation wedge.6 Default risk is thus priced by the mortgage pricing function

qj(x
′, y;Z, µ) rather than the interest rate. This function depends on variables that predict

future repayment which include the age j of borrowing households, individual state variables

x′ = {b′, h′,m′}, individual income y, and aggregate states Z and µ.

When a household aged j obtains a mortgage with principal balance m′ they receive

qj(x
′, y;Z, µ)m′ from the lender where qj(x

′, y;Z, µ) < 1. The down payment at origination

5See Hedlund (2016) for the role of search frictions such as time delays in housing market dynamics.
6Allowing homeowners to choose the length of mortgages with borrower-specific interest rates would add

more realism at the cost of more state variables. Tractability is assured by 1) mortgages being due at the
deterministic end of economic life and by 2) amortization at the common mortgage interest rate rm.
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is thus p(µ, Z)h′ − qj(x
′, y;Z, µ)m′. Households make J − j mortgage payments until the

mortgage is fully repaid, πmin
j (m) ≤ m(1 + rm)−m′. The minimum payment is determined

by constant amortization:

πmin
j (m) =

[
rm(1 + rm)

J−j+1

(1 + rm)(J−j+1) − 1

]
m (4)

A loan-to-value (LTV) constraint limits mortgage size to a fraction of the value of hous-

ing collateral m′ ≤ θLTV (Z)p(µ, Z)h′ and the payment-to-income constraint (PTI) caps the

minimum mortgage payment at a fraction of household income πmin
j (m′) ≤ θPTI(Z)y. Be-

cause mortgages are multi-period debt, households are only subject to these constraints

in the period when mortgages are originated. If mortgages were instead one-period debt,

households would be subject to these constraints in every period. One-period debt would

make housing a riskier asset because a house price decline or negative income shock would

tighten these constraints to the extent that some homeowners would de-lever or default. To

avoid these potential negative outcomes, homeowners would take on less leverage than what

is observed in the data. Multi-period debt is therefore important for both a more realistic

household problem and matching the empirical cross section of household mortgage leverage.

HELOCs: Home equity lines of credit (HELOCs) allow homeowners to borrow one-period,

non-defaultable debt up to a fraction of the value of housing collateral −b′ ≤ θHELOCp(µ, Z)h

with an interest rate equal to that on mortgages rm. Although only a small fraction of home-

owners have HELOCs, including these debt instruments is important for matching targeted

net worth moments in the calibration of the cross-sectional distribution of households. Ev-

idence is mixed as to whether or not HELOCS account for mortgage debt dynamics in the

U.S. housing boom. Chen et al. (2020) find an important role while Kim (2021) argue that

it is more negligible.

Shocks: Z indexes an aggregate state where income Θ(Z) fluctuates via a two state Markov

chain with transition matrix Z ′ ∼ ΓZ(Z) and credit conditions

C(Z) = {θLTV (Z), θPTI(Z), κm(Z), ζm(Z)} loosen via a one-time unanticipated shock as in

Favilukis et al. (2017).7 Because agents expect permanently looser credit conditions in the

housing boom, the tightening of credit conditions in the housing bust is also a one-time

7A two-state Markov chain for credit conditions as in Kaplan et al. (2020) would be ideal. However,
solving under endogenous beliefs is more computational tractable when assuming a one-time loosening like
other papers in the literature. Appendix E shows that the quantitative rise in house prices in the exogenous
beliefs framework of Kaplan et al. (2020) is quite similar with credit conditions that loosen one-time as in
this paper, or are Markov as in their original formulation. Given the negligible differences in these results,
abstracting away from Markov credit conditions under endogenous beliefs allows for them to be compared.
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unanticipated shock.

The two aggregate states of the economy are a high and low state (Z = high, low). In the

housing boom, income and credit conditions simultaneously attain their high state values

while the subsequent bust is thus a contraction back to their low state values.

Individual income ϵj(z) follows an AR(1) process with persistence ρ and an age-dependent

standard deviation σεj resulting in an age dependent transition matrix ϵj+1(z
′) ∼ Υj+1|j(ϵj(z))

ϵj(z) = ρϵj−1(z−1) + εj(z), εj(z) ∼ N (0, σ2
εj
) (5)

Aggregate state space: The distribution of individual household states µ is a necessary

state variable for agents to correctly forecast next period prices under incomplete markets

and aggregate risk. Γµ(µ;Z,Z
′) is the equilibrium law of motion of the measure of agents

such that µ′ = Γµ(µ;Z,Z
′). The aggregate state space of the economy is thus the distribu-

tion over individual states and the aggregate shock {µ, Z}. Let X h = B ×H×M× E × J
denote the set of individual states for homeowners and X r = B×E ×J that of renters with

measure ∫Xh µhdµh + ∫X r µrdµr = 1.

Beliefs: This paper introduces a framework where agents form boundedly rational expecta-

tions with respect to fully known shocks {Z, ϵj(z)} and only form beliefs about house prices

p(µ, Z), which are a subset of endogenous prices that are not pinned down by modeling

assumptions like the other prices. I solve for a Krusell and Smith (1998) equilibrium by

approximating the potentially infinitely dimensional distribution µ and its law of motion

µ′ = Γµ(µ;Z,Z
′) with a forecasting rule for house prices. Under this paper’s contribution

of endogenous beliefs, agents know the form of the forecasting rule for house prices but do

not know its parameter values. As discussed by Moll (2024), this approximate equilibrium

does not require any additional moments such as means or variances and allows for tractable

computation with aggregate non-linearities like booming house prices.8 Section 3.7 discusses

in more detail the equilibrium properties of the model and Appendix B discusses the solution

method with endogenous beliefs.

3.2 Households’ Problem

See Appendix A.1 for the full recursive households’ problems.

Renters are endowed with savings b > 0 and income y. They must choose to stay a renter

8Although additional statistics, lags, or forms of a forecasting rule may be used, Krusell and Smith (1998)
find that more complexity only incrementally improves accuracy. Moreover, Pancrazia and Pietrunti (2019)
find that models relying on simple forecasting rules are best at fitting the path house prices throughout the
housing boom.
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or purchase a house and become a homeowner solving the problem:

V r
j (b, y;µ, Z) = max{V rent

j (b, y;µ, Z), V own
j (b, y;µ, Z)} (6)

Newly originated mortgages are subject to loan-to-value and payment to income constraints:

m′ ≤θLTV (Z)ph(µ, Z)h
′ (7)

πmin
j (m′) ≤θPTI(Z)y (8)

Relative to renting, homeowning offers households the benefits of extra utility, tax deductible

mortgage interest payments, and collateral for borrowing liquid assets in the form of HE-

LOCs. Renting has the advantage of shielding households from capital gains fluctuations

due to movements in house prices. When model simulated house prices match the empirical

standard deviation as is the case under endogenous beliefs, renting becomes relatively more

advantageous due to more volatile house prices.

Homeowners have four options: sell their house to purchase a new house or become a

renter, default and become a renter, stay in their house and pay their existing mortgage, or

stay in their house and refinance a new mortgage.

V h
j (x, y;µ, Z) = max{V r

j (b
n, y;µ, Z), V default

j (b, y;µ, Z), V stay,pay
j (x, y;µ, Z), V stay,refi

j (x, y;µ, Z)} (9)

3.3 Lending Sector

The lending sector originates mortgages m′ to households aged j at price

qj(x
′, y;µ, Z) ≤ 1. Although lenders are competitive, uninsurable aggregate risk may induce

profits and losses along the equilibrium path. Lenders are owned by non-modeled foreign

agents with deep pockets who receive these profits and losses as net exports. The mortgages

market clears loan-by-loan with the pricing of mortgage points depending on individual

future default probabilities and collateral of foreclosed homes.9

qj(x
′, y;µ, Z) = −ζ(Z) + EZ′,ϵ′



1 sell/refi

(1− δdh − τh − κh)p
′(µ′, Z ′)h′

(1 + rm)m′ default

(1 + rm)m
′ −m′′ + qj+1(x

′′, y′;µ′, Z ′)m′′

(1 + rm)m′ pay

(10)

9In their text Kaplan et al. (2020) have the intermediation cost ζ(Z) as a proportional cost while in their
code it is a fixed cost as in this paper.
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If a homeowner sells or refinances, they repay the full balance of their mortgage so that the

lender receives the principal plus interest less the intermediation cost ζ(Z). If the household

defaults, the lender forecloses and sells the house to recover the market value of the house

as a fraction of the original mortgage. If the homeowner pays their existing mortgage, the

lender values the contract as the next period mortgage payment (1 + rm)m
′ −m′′ plus the

continuation value of the contract qj+1(x
′′, y′;µ′, Z ′)m′′.

3.4 Final Goods and Construction Firms

See Appendix A.2 for the full recursive problems of final goods and housing construction

firms. The competitive final goods sector has a linear constant returns to scale technology

Y = Θ(Z)Nc with inelastic labor supply Nc. Profit maximization delivers an aggregate wage

equal to aggregate productivity:

w(µ, Z) = Θ(Z) (11)

A competitive construction sector produces houses with technology Hh = (ΘNh)
αL̄1−α where

Nh is labor services and L̄ is the amount of newly available buildable land. Using the

equilibrium wage in equation (11) housing supply is:

Hh = [αp(µ, Z)]
α

1−α L̄ (12)

The profit maximization of the construction sector thus pins down a single price for housing

p(µ, Z) via aggregate housing supply Hh and the aggregate productivity shock Θ(Z).

3.5 Rental Sector

The rental rate is pinned down by a user-cost formula that is a function of current and

future house prices along with a per-period operating cost Ξ as shown in Appendix A.2.

The competitive rental sector frictionlessly buys and sells housing units to convert them into

rental housing which incurs the same depreciation and taxes as owner-occupied housing.

ρ(µ, Z) = Ξ + p(µ, Z)− (1− δh − τh)EZ′,ϵ′|Z,ϵ[qbp
′(µ′, Z ′)] (13)

Greenwald and Guren (2024) show that looser credit conditions can quantitatively ac-

count for the drop in the rent-price ratio observed throughout the housing boom when

landlords are heterogeneous with disperse ownership costs. Although Kaplan et al. (2020,

Appendix D) and Arslan et al. (2022) introduce these important frictions in their frame-

works, doing so in this paper is complicated by aggregate risk. With costs on the conversion

of newly purchased housing units into rentals, the aggregate stock of rental housing H̃ ′ be-

comes an additional state variable with an unknown evolution that must be solved as a fixed

point along with house prices p(µ, Z). In this setting, it would also require the formation
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of endogenous beliefs about the future stock of rental housing in addition to house prices.

Although frictions on the stock of rental housing would give credit conditions a more im-

portant direct role and beliefs potentially less, this conclusion is not inconsistent with the

goal of this paper to unify these two explanations of the housing boom and relate the shift

in beliefs to fundamentals.

3.6 Government

The sum of income tax revenues T (y,m) less mortgage interest rate deductions, property

tax revenues p(µ, Z)τh
∫
Xh hdµ

h, and land permit revenues p(µ, Z)Hh − w(µ, Z)Nh net of

pension outlays
∫
X yretdµJ ret are always positive and spent on government services G that

are not valued by households and thus discarded.

3.7 Computation of Equilibrium

See Appendix A.3 for the definition of the recursive competitive equilibrium and Appendix

B for the computational algorithm and its goodness of fit. The solution method developed

in this paper is a variation of the Krusell and Smith (1998) algorithm where aggregate

risk and incomplete markets rule out an equilibrium distribution over individual states µ

corresponding to a steady state. To determine prices, agents must keep track of a poten-

tially infinitely dimensional object to compute the distribution’s equilibrium law of motion

µ′ = Γµ(µ;Z,Z
′).10 An approximate equilibrium thus achieves computational tractability by

tracking house prices directly and updating them with a forecasting rule for each combination

of current and future aggregate states, Z ∈ {Z,Z ′}.11

log p′(p(Z);Z) = a0Z + a1Z log p(Z) ⇐⇒ µ′ = Γµ(µ;Z) (14)

The log-linear AR(1) forecasting rule for house prices in equation (14) is standard in

macro housing applications and assumes that the conditional sample log means of house

prices µp
Z = a0Z/(1 − a1Z) are sufficient statistics to accurately predict future prices. While

the aggregate capital stock in Krusell and Smith (1998) is predetermined, aggregate housing

is not and requires explicit market clearing, which makes the computational algorithm in

this paper closer to that of Krusell and Smith (2006).

The standard Krusell and Smith (1998) solution method assumes that agents have full

10Ahn et al.’s (2018) alternative to the Krusell and Smith (1998) method first solves for a stationary
equilibrium with only idiosyncratic shocks and then linearizes around the steady state of aggregate shocks.
Linearization may only be suitable if the wealth distribution remains close to the aggregate steady state
and this may not be the case when allowing for time-varying beliefs and hence booming house prices. The
Krusell and Smith (1998) method may thus be more robust than linearization in the setting of this paper.

11A single housing price p(µ,Z) is the only price determined via market clearing. The lending sector,
rental sector, final goods firms, and construction firms are all perfectly competitive with linear objective
functions. The number of prices is thus reduced from four to one.
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knowledge of the forecasting coefficients in equation (14) and solves for these coefficients

as fixed point. To compute an approximate equilibrium, one first guesses values for these

coefficients aZ = (a0Z , a
1
Z)

′ and then solves and simulates the model. Using the time series

of simulated market clearing prices pt, one estimates new coefficients via an ordinary least

squares regression shown in equation (15). These steps are repeated until the new coefficients

are close to the originals, aZ ≈ anew
Z . Let Z, t ∈ {Z,Z ′} index the partition of current and

future aggregate states at time t.

log pZ,t+1 = a0Z + a1Z log pZ,t︸ ︷︷ ︸
x′
Z,taZ

+eZ,t+1, anew
Z =

(
T∑
t=1

xZ,tx
′
Z,t

)−1 T∑
t=1

xZ,t log pZ,t+1

(15)

Embedding adaptive learning into the Krusell and Smith (1998) solution method relaxes

the assumption that agents know the true values of the forecasting coefficients in states of

the economy lacking a historical precedent. Rather than solving for converged forecasting

coefficients as a fixed point, agents instead update the coefficients each period aZ,t with

a combination of past coefficients and weighted lagged forecast errors et−1 as shown by

the recursive stochastic gradient mechanism for adaptive learning in equation (16).12 Let

xt−2 = (1, log pt−2)
′.

aZ,t =aZ,t−1 + gtxt−2 (log pt−1 − x′
t−2aZ,t−1)︸ ︷︷ ︸

et−1

(16)

Following the convention of Evans and Honkapohja (1999), agents form beliefs at time t

using information available at t−1.13 Because the next period aggregate state Z ′ is unknown

at time t, agents will need to calculate as many vectors of coefficients as there are next

period aggregate states Z ′. With four possible aggregate states, agents will compute four

different coefficients each period. The time t expected future house prices is Et[log pt+1] =∑
Z′ πZ,Z′ exp

{
a0Z,t + a1Z,t log pt

}
.14 The functional form of gt is the mixed learning gain of

12Evans et al. (2010) show that stochastic gradient learning does not weight the forecast error by the inverse
of the matrix of second moments, RZ,t = RZ,t−1− gt(x′

t−2xt−2−RZ,t−1). Stochastic gradient learning has
the advantages of simplicity and ease of interpretation when embedding in a general equilibrium framework.
Furthermore, Mele et al. (2020) argue that stochastic gradient learning keeps the state space small by
abstracting from the evolution of the estimated second moments. However, stochastic gradient learning has
different convergence criteria than least squares learning as shown by Barucci and Landi (1997).

13A forecasting rule like that in Malmendier and Nagel (2016) where time t information is included in time
t beliefs via the forecast error, et = log pt −x′

t−1aZ,t−1, would induce a simultaneity problem in this general
equilibrium setting as agents would be determining house prices pt while also using them to form beliefs.

14There are several alternative forms of equation (16) and Appendix F.2 shows that these have little
material difference on the main housing boom simulation results.
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Marcet and Nicolini (2003) and is discussed in detail in section 4.1. The learning gain gt = g

is constant if the economy is in an aggregate state characterized by loose credit conditions,

Zt ∈ {Z loose
high , Z

loose
low }. If credit conditions are instead tight, the learning gain is decreasing

gt = gt−1/(1 + gt−1).

gt =

 g if Zt ∈ {Z loose
high , Z

loose
low }

gt−1

1 + gt−1

otherwise

As agents learn the true values of the forecasting coefficients, beliefs about future house

prices may not yet correspond to the actual evolution of prices. The resulting temporary

equilibria may be self-referential where optimism leads to relatively higher market clearing

realizations or pessimism leads to relatively lower. How the values of time-varying coefficients

aZ,t differ from their near-rational known counterparts aZ depends on the evolution of the

house price forecast error, which, in turn, depends on two key parameters: the gain parameter

gt governing the speed of updating and the initial coefficients aZ,0.

As shown in figure (1), the convergence of coefficients to an ergodic distribution is used

for equilibrium selection under either the standard known coefficients aZ or adaptive learning

with unknown time-varying coefficients aZ,t. How coefficients converge differs between the

two solution methods—the standard known coefficients converge via a fixed point while the

time-varying coefficients converge sequentially. Under the standard known coefficients, the

fixed-point solution method solves and simulates the model many times at many different

coefficient values. These coefficients remain fixed throughout simulation and are updated at

each iteration until the original guess is close to the simulated value as shown by the dashed

lines in figure (1). By contrast, under adaptive learning, the model is solved on a grid of future

prices so that coefficients can vary throughout simulation. Although the resulting sequence

of coefficients may diverge from the near-rational fixed-point counterparts temporarily—as

shown by the solid line in Figure (1)—the sequence does eventually converge to a nearby

ergodic distribution.

Given that there are the many forms of expectations that allow for incomplete infor-

mation, this paper does not claim that the adaptive learning rule given by equation (16) is

uniquely suitable for endogenizing beliefs to quantitatively account for booming house prices.

In fact, the solution method in Appendix B is generalizable to many forms of time-varying

beliefs. Nonetheless, adaptive learning has the advantages of tractability when embedded

in a detailed quantitative model and well-studied equilibrium convergence properties.15 Al-

ternatives such as extrapolative, diagnostic, or natural expectations may be equally suitable

15See Evans and Honkapohja (2001) for adaptive learning convergence to rational expectations equilibria.
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Figure 1: House price forecast coefficient a0Zlowt
,Z′

low
solved for as a fixed point or sequentially or

under learning, which starts in period 200. The spikes in the coefficients under learning (solid thick
line) are periods where the economy changes aggregate states. The coefficients eventually return
to near their ergodic distribution (pre 200 values) by about period 220.

for explaining the housing boom, their equilibrium properties in macroeconomic models are

less well developed relative to those for adaptive learning. Furthermore, Gelain et al. (2016),

Glaeser and Nathanson (2017), Case and Shiller (1989), Pancrazia and Pietrunti (2019), and

Granziera and Kozicki (2015) all find that house price forecasts with a backward looking

component, like that found in adaptive learning, best fit house price data.

4 Parameterization and Calibration

4.1 Parameters

The model’s parameters are set to resemble the U.S. economy in the late 1990s with

the cross-sectional moments from the 1998 Survey of Consumer Finances via Kaplan et al.

(2020) and a novel proxy on house price beliefs constructed from the University of Michigan

Survey of Consumers. Table (1) lists targeted moments from the model’s stochastic steady

state which is characterized by tight credit conditions and fluctuations in income. These

parameters follow Kaplan et al. (2020) and are discussed in detail in Appendix C.1. Pa-

rameters that differ from Kaplan et al. (2020) are discussed below along with this paper’s

contribution of external empirical evidence on belief formation.

Housing Preferences: The preference for housing relative to goods consumption ϕ pins

down housing demand so that the average share of housing expenditure to total expenditures

15



from the model is 0.16, as in the data. When beliefs are exogenous, this parameter is not

fixed and instead follows a stochastic process where it can take on a low value ϕlow = 0.12

and a high value ϕhigh = 0.20. However, the stochastic process follows a new shock such that

ϕ cannot transition directly from the low to high value and must first enter an intermediate

state where the transition has not yet occurred, but is highly likely. This intermediate state

is what generates exogenously optimistic beliefs and thus the boom in house prices.

Moment Parameter Empirical Value Model Value
Agg. net worth/annual agg. labor income β 5.5 4.9
Median ratio of net worth to labor income β 1.2 1.2
Median net worth: age 75/age 50 ψ 1.55 1.48
% of bequests in bottom 1/2 of wealth dist. ♭ 0 0
Housing/total cons. expenditures ϕ 0.16 0.16
Aggregate home-ownership rate ω 0.66 0.68
Foreclosure rate ξ 0.005 0.0002
P10 housing/total net worth of owners minH 0.11 0.13
P50 housing/total net worth of owners #H 0.5 0.33
P90 housing/total net worth of owners gap H 0.95 0.74

Average sized owned house/rented house min H̃ 1.5 2

Average earnings of owners to renters #H̃ 2.1 2.8
Annual fraction of houses sold κh 0.1 0.09
Homeownership rate of < 35 y.o. Ξ 0.39 0.34
Employment in construction sector L̄ 0.05 0.04

Table 1: Targeted moments in calibration corresponding to model parameters.

Aggregate shocks: The economy has aggregate shocks to income Θ(Z) and credit con-

ditions C(Z) = {θLTV (Z), θPTI(Z), κm(Z), ζm(Z)}. Aggregate income follows a two-state

Markov chain with values {Θ(Zlow),Θ(Zhigh)} following a discrete approximation of an AR(1)

process estimated from a linearly de-trended series of total U.S. labor productivity. The

accompanying transition probabilities πΘ
Z,Z′ are similarly obtained from the Markov chain

approximation.

Aggregate credit conditions loosen via a one-time unanticipated shift to characterize

the onset of the housing boom in the 1990s. They are represented by perfectly correlated

movements in the loan-to-value constraint θLTV (Z), payment-to-income-constraint θPTI(Z),

the fixed mortgage origination cost κm(Z), and the mortgage intermediation wedge ζ(Z).

Although higher loan-to-value constraints are the most common representation of looser

credit conditions in macro housing models, other innovations in mortgage finance also played

a role in extending relatively more credit to households and are hence included.16 Dokko

16Loan-to-value constraints also make the households’ problems well defined as explained by Engelhardt
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et al. (2019) find that 60 percent of all mortgages contained at least one non-traditional

feature by 2005 and Greenwald (2018) and Ma and Zubairy (2020) show that payment-to-

income constraints θPTI(Z) are quantitatively more important than loan-to-value constraints

θLTV (Z) in accounting for mortgage debt throughout the 2000s.

The loan-to-value constraint is equal to 0.95 in the low state which is slightly higher

than Duca et al.’s (2011) estimates for cumulative loan-to-value ratios of first-time home

buyers in the 1990s. Following Kaplan et al. (2020), the value 0.95 replicates the 90th

percentile of the loan-to-value distribution observed in the pre-boom data. The high state

value of 1.1 targets a 15 percentage point rise in combined loan-to-value ratios from the late

1990s to 2006. The payment-to-income constraint values are set at θPTI(Zhigh) = 0.5 and

θPTI(Zlow) = 0.25 which are slightly lower than the values of Greenwald (2018) to account

for the life time amortization of mortgages being longer than the typical 30 years. Falling

financial intermediation and funding costs are represented by a decrease in the fixed mortgage

origination costs κm(Z) from $2,000 to $1,200 as described by Favra and Imbs (2015) and a

decrease in the mortgage intermediation wedge ζm(Z) from 100 basis points to 60 capture

as described by Arslan et al. (2022).

By assuming that shifts in aggregate credit conditions along with fluctuations in aggre-

gate income trigger adaptive learning about house price forecasts, this paper takes the stance

that beliefs respond to credit conditions. Although some evidence suggests the opposite di-

rection of causality, identification remains debated and difficult to disentangle.17

Beliefs: This paper’s contribution of endogenous beliefs via adaptive learning introduces

two parameters that affect the formation of house price expectations.

First, the learning gain gt assigns the speed at which agents update their beliefs with

incoming information. Following Marcet and Nicolini (2003) and Milani (2014), a switching

gain specifies a constant gain gt = g in boom states so that beliefs are updated more aggres-

sively to more recent house price observations and a decreasing gain gt = gt−1/(gt−1 + 1) in

non-boom states so that beliefs more closely track the sample mean of house price observa-

tions. The aggregates state characterized by loose credit conditions (with either high or low

income) are the boom states with constant gain and all other states are the non-boom states

(1996). Along with Kiyotaki et al. (2011), Engelhardt (1996) notes that loan-to-value constraints are a
reduced-form representation of contract enforcement frictions in credit markets. Lenders require both a
down payment and the house to be pledged as collateral because they fear that households might not repay
mortgages. By forcing households to hold equity in their homes, loan-to-value constraints distribute some
of the down-side risk of house price declines from lenders to borrowers.

17While Mian and Sufi (2009, 2017) find that changes in credit conditions increased expected future house
prices, Adelino et al. (2018) and Foote et al. (2012) suggest the opposite direction of causality. Cox and
Ludvigson (2021) find contemporaneous correlation between beliefs and credit conditions.
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Interpretation Parameter Value

Aggregate income Θ(Z)

Aggregate income {Θ(high),Θ(low)} {1.035, 0.965}
Transition probability πΘh,h = πΘl,l 0.9
Aggregate credit
conditions C(Z)
Loan-to-value ratio {θLTV (loose), θLTV (tight))} {1.1, 0.95}
Payment-to-income ratio {θPTI(loose), θPTI(tight)} {0.5, 0.25}
Fixed origination cost {κm(loose), κm(tight)} {$1, 200, $2, 000}
Proportional origination cost {ζ(loose), ζ(tight)} {0.006, 0.010}
Beliefs/learning

Constant gain gt = g 0.508

Initial learning coefficients aZ,0 = atight
Zhigh,Z

′
high

{-0.102,0.838}

Table 2: Parameters for aggregate shocks to income and credit conditions along with those for
endogenous beliefs characterized via adaptive learning. The model period is two years and values
are not annualized.

with a decreasing gain.

A switching gain has the benefit of rapid adjustments in boom states and dampened

oscillations in non-boom states. Updating beliefs aggressively with incoming information

under a constant gain is useful in the boom states when agents do not know the evolution

of house prices, which can be interpreted as them not knowing the sample mean as µp
Z =

a0Z/(1−a1Z). If agents interpret large forecast errors as a signal that their beliefs are far from

the sample mean, it may be advantageous to adjust their beliefs as quickly as possible in the

direction of the forecast error, as prescribed by the constant gain. By contrast, aggressive

belief updating in non-boom states may assign too much signal to noisy observations and

pull beliefs away from their average values. Consequently, because the decreasing gain puts

successively less weight on recent observations, beliefs are less likely to assign much signal to

new information. Although decreasing gain learning can potentially guarantee convergence

to a rational expectations equilibrium, the Krusell and Smith (1998) approximate equilibrium

solved for in this paper may not necessarily be a true rational expectations equilibrium, and

convergence may only be to an ergodic distribution.

Following Caines (2020), this paper calibrates the housing boom’s constant gain gt = g

for the boom states by minimizing the difference between mean squared house price forecast

errors from the model and an empirical proxy constructed from the University of Michigan

Survey of Consumers detailed in Appendix D and shown in Figure (2). Even though series of

expected house price growth are only available at the end of the housing boom in 2007, the

“next 12 months” expectations series is tightly correlated with a series on selling conditions
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that dates back to 1992. Backcasting the shorter series from the longer can deliver a proxy of

house price expectations throughout the 2000s. This proxy and its counterpart of expected

house price growth for the next 5 years were elevated in the 2000s housing boom as shown in

Panel (2a). Because the series for the next 5 years was at an all-time high even after house

price growth peaked, it is reasonable to conclude that households were optimistic about

housing. The resulting forecast errors used to calibrate the constant learning gain gt = g are

large and have a steady upward path following that of house prices as shown in Panel (2b).

0
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1990 2000 2010 2020

Expected house price growth in the next 12 months, proxy
Expected house price growth in the next 5 years

(a) Expectations of house price growth

-10
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20
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Forecast error
House price growth

(b) House price growth and forecast errors

Figure 2: 12-month percent change in expected house price growth and 4-quarter percent change
in house price growth with forecast errors calculated as house price growth less the proxy. Shaded
bar between the dashed vertical lines marks the U.S. housing boom (1999 to 2007).

With an annualized value of about g = 0.3 (0.508 non-annualized), this paper’s constant

gain is on the larger end of values typically found elsewhere in the literature. Milani (2014)

notes that when forecast errors are large, agents may be concerned that the economy is

experiencing a structural break and assign a large weight to incoming information and hence

a high value for the constant gain. Caines (2020), Adam et al. (2012), Adam et al. (2024) use

annualized gains of about 0.03 to 0.06 in their applications of adaptive learning to housing.

These smaller values may arise from 1) agents learning about house price growth instead

of house price forecasting coefficients and 2) differences in house price expectations used in

calibration. For example, both Caines (2020) and Adam et al. (2024) use post-boom house

price expectations from the Case-Shiller house price futures or the Michigan Survey. On the

other hand, Marcet and Nicolini (2003) estimate an annualized constant gain ranging from

0 to 0.5 in boom-like settings, Milani (2014) estimates constant gains ranging from 0.21 to

0.32, and Carvalho et al. (2023) close to 0.45 at an annualized frequency. Taken together,

this evidence suggests that an annualized constant gain of about 0.3 is high but still within

an established range of values.
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The decreasing gain gt = gt−1/(gt−1+1) only affects the non-boom states and is initialized

at gt = g/(1 + t× g) which follows the convention of Marcet and Nicolini (2003) and Milani

(2014) plus a decay parameter t = 5 that takes into account the number of periods since

the start of the housing boom and thus incomplete information about the evolution of house

prices. Appendix F.3 discusses simulations without the decay parameter.

The second learning parameter, initial beliefs a0, determines the initial forecast error and

there is no definitive convention, as noted by Lubik and Matthes (2016). This paper targets

the initial boom period forecast error of 1.36 percent and attain a value of 1 percent using

the known pre-boom coefficients for tight aggregate credit conditions and the high income

state atight
Zhigh,Z

′
high

as initial beliefs for the boom states. Appendix F.2 shows that quantitative

results are similar if the initial coefficient is set at values such that the initial forecast error

is exactly 1.36 percent. The advantage of the former approach of setting the coefficients to

their known values atight
Zhigh,Zhigh

is that agents start the housing boom with a forecasting rule

they have previously used.

4.2 Calibration

See Appendix C.2 for an in depth discussion of the cross-sectional distribution of house-

holds in the model’s stochastic steady state which assumes known forecasting coefficients,

tight aggregate credit conditions, and fluctuations in aggregate income.

Parameter Empirical Value Model Value
Fraction of homeowners w/mortgage 0.66 0.65
Fraction of Homeowners w/HELOC 0.06 0.02
Aggr. mortgage debt/housing value 0.42 0.48
P10 LTV ratio for mortgages 0.15 0.02
P50 LTV ratio for mortgages 0.57 0.5
P90 LTV ratio for mortgages 0.92 0.85
Share of NW held by bottom quintile 0 0
Share of NW held by middle quintile 0.05 0.09
Share of NW held by top quintile 0.81 0.66
Share of NW held by top 10 percent 0.7 0.43
Share of NW held by top 1 percent 0.46 0.06
P10 house value/earnings 0.9 0.94
P50 house value/earnings 2.1 1.8
P90 house value/earnings 5.5 4.1

Table 3: Untargeted moments in calibration.
Table (3) shows a comparison of untargeted moments from the model to their empirical

counterparts. The model matches the distributions of homeownership and mortgage debt

shown in the top panel and the bottom 90th percentile of the wealth distribution shown in

the bottom panel. As is common in models with heterogeneous households, the top 10th
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percentile of the model’s wealth distribution is far below that of the data because wealthy

households can only hold housing or liquid financial instruments and thus accumulate a

counterfactually high share.18 Appendix C.3 discusses the assumption on the partial seg-

mentation of housing unit sizes by renters and homeowners.

5 Housing Boom Simulations

This section shows the responses of prices and quantities to a sequence of aggregate

shocks. The results under endogenous beliefs formed via time-varying house price forecasting

coefficients are compared to counterparts 1) from the data and 2) the exogenous belief

specification of Kaplan et al. (2020).
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(b) Aggregate shocks under exogenous beliefs

Figure 3: Aggregate shocks corresponding to values in table (2) for 1997-2009.

The housing boom is initiated by the same sequence of aggregate shocks to income and

credit conditions under either belief formation, as shown in figure (3). In 1999, aggregate

income (blue lines with squares) transitions from the low state to the high state and aggregate

credit conditions (red dashed lines with Xs) unexpectedly loosen in 2001. After remaining

in this boom state for 4 periods (8 years), aggregate income transitions back to the low state

and aggregate credit conditions unexpectedly tighten back to their pre-boom values. The

housing boom is thus a period where agents do not anticipate looser credit conditions, but

then expect them to stay in place permanently.19

Under endogenous beliefs, there are no additional aggregate shocks. As shown in panel

(3a), adaptive learning about house price forecasting coefficient begins in 2001 when ag-

18Although allowing for risky assets with heterogeneous returns is a solution proposed by Cioffi (2021)
and Xavier (2021), it is beyond the scope of this paper as it would complicate how a shift in beliefs affects
house prices.

19Appendix E shows credit conditions evolving via a one-time shock or a Markov process has little effect
on the housing boom simulations under exogenous beliefs. A one-time shock is therefore assumed under
both exogenous and endogenous beliefs.
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gregate credit conditions unexpectedly loosen as this is an economic state that had little

historical precedent. Appendix F.3 shows that the results are similar if adaptive learning

instead begins at the start of the model simulation instead of in 2001.

Under exogenous beliefs, a third shock to housing preferences shown in panel (3b) gen-

erates the U.S. housing boom. This shock is a news shock that occurs in 2003, one period

following the shift in credit conditions in 2001. While the housing preference parameter ϕ

is fixed under endogenous beliefs it evolves according to a three state Markov process under

exogenous beliefs. In the first state, it is at its low value and has zero probability of shifting

to its high value. In the second state, it also has its low value but has a probability of 0.85

to shift to its high value.

As explained by Kaplan et al. (2020) and shown in Appendix F.1, the shocks to income

and credit conditions cannot generate a boom in house prices without optimistic beliefs.

Although demand for housing services—and hence house prices—is generally determined by

income, the 7 percentage point increase in aggregate income shown in figure (3) is not large

enough to generate the nearly 35 percentage point increase in house prices. Relatedly, the

increase in housing demand from looser credit conditions is limited to only a fraction of

households due to heterogeneous incomes and ages. Because these constrained households

tend to be younger and buy the same size of house they were renting when credit conditions

loosen in this framework, overall demand for housing services only increases slightly, which

results in almost no increase in house prices.20 As will be discussed in this section and

shown by Ma and Zubairy (2020), looser credit conditions are important for accounting for

homeownership dynamics across the age distribution.

Although shifts in income and credit conditions fall short of generating a boom in house

prices in this framework, shifts in beliefs can succeed because of the self-fulling dynamics

of beliefs. Essentially, households demand more housing when they expect prices to go up

in the future and this increase in demand brings to fruition higher house prices. Whether

beliefs are exogenous or endogenous affects the responses of prices and quantities as well as

the effectiveness of policy interventions as discussed later in section 5.1.

Figure (4a) shows that optimistic beliefs can match the boom in U.S. house prices in the

2000s. Empirical aggregate house prices peak about 35 percent above their pre-boom values

and model generated house prices under endogenous beliefs can generate peak house prices

about 30 percent above their pre-boom values. Although the model generated peak in house

prices is similar under either belief formation, endogenous beliefs can also match additional

20Greenwald and Guren (2024) show that this is not a general result and frameworks that incorporate
endogenous investment in the housing stock along with landlord heterogeneity can generate higher house
prices from looser credit conditions.
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moments of aggregate house prices because endogenous beliefs generate a persistent rise in

house prices rather than a counterfactual jump in a single period under exogenous beliefs.

More specifically, model generated house prices under endogenous beliefs can match the

standard deviation and autocorrelation of empirical house prices as shown in table (4). The

autocorrelation of 0.440 under endogenous beliefs nearly perfectly matches that of the data

and the standard deviation of 0.113 is 89 percent of the data. By contrast, exogenous beliefs

either severely undershoot or overshoot the data’s autocorrelation and standard deviation.
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Figure 4: House prices and forecast errors from the data and the model solved under endogenous
beliefs and exogenous beliefs. The model’s forecast error is log pt − Et−1[a

0
Z,t−1 + a1Z,t−1 log pt−1].

See Appendix G for sources and definitions of the data series and Appendix D for details on
the construction of the proxy for empirical forecast errors from University of Michigan Survey of
Consumers.

St. dev., σpt
σpt
σdata

Autocorr., ρ(pt, pt−1)
ρ(pt,pt−1)

ρdata

Exogenous beliefs, 2003-2007 0.020 16% 0.325 71%

Exogenous beliefs, 1999-2007 0.152 115% 0.225 39%

Endogenous beliefs, 1999-2007 0.113 89% 0.440 96%
Data, 1999-2007 0.127 100% 0.458 100%

Table 4: Biannual house prices statistics from the data and model for the U.S. housing boom.

The house price forecast errors shown in panel (4b) provide external empirical validation

of belief formation in the model and shed light on why endogenous beliefs can successfully

replicate the path of empirical aggregate house prices. The empirical proxy form the Uni-

versity of Michigan Survey of Consumers (dotted black lines) shows that forecast errors

throughout the 2001 to 2007 period are positive and persistent. The partial updating of
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endogenous beliefs via adaptive learning allows the model to successfully replicate these fea-

tures of the data, as shown by the solid blue lines. Agents can only partially internalize the

increase in aggregate demand when credit conditions loosen, which results in house prices

coming in higher than expected. This positive forecast error is interpreted as signal that

beliefs were too low and agents then form even more optimistic beliefs. If updating were

full instead of partial, agents could form beliefs with more weight on recent forecast misses

resulting in forecast errors that alternative between positive and negative values rather than

ones that are persistently positive as observed in the data. Under exogenous beliefs, the

forecast errors display this counterfactual sign change as they are negative in all periods

except for 2003.

How closely model generated house prices and forecast errors match what is observed in

the data under endogenous depends on the constant gain parameter g as shown in Figure (5).

Under all constant gain values shown, agents underpredict house prices because their initial

beliefs do not fully internalize the increase in housing demand from looser credit conditions.

Since beliefs are combination of past values and recent forecast errors, partial updates of large

positive forecast errors can result in persistently underpredicted house prices, as observed in

this paper’s novel empirical proxy.

1998 2000 2002 2004 2006 2008
0.9

1

1.1

1.2

1.3

1.4

(a) House prices, 1997=1

1999 2000 2001 2002 2003 2004 2005 2006 2007

0

5

10

15

20
Data,        MSE=28.66
g=0.33      MSE=41.65
g=0.31      MSE=32.38
g=0.3        MSE=28.26
g=0.29      MSE=26.16
g=0.27      MSE=18.76

(b) House price forecast errors, percent

Figure 5: House prices and forecast errors from the data and model solved under endogenous beliefs.
The model’s forecast error is log pt−Et−1[a

0
Z,t−1+a

1
Z,t−1 log pt−1]. The parameter g is the learning

gain and is annualized in the legend. See Appendix G for sources and definitions of the data series
and Appendix D for details on the construction of the proxy for empirical forecast errors from
University of Michigan Survey of Consumers.

Panel (5a) shows that although house prices steadily rise under all values of the constant

gain g shown, a smaller constant gain results in a more muted housing boom while a larger

constant gain results in one that is more pronounced. There is a positive correlation between

the constant gain and house price growth because the constant gain determines the speed at
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which agents incorporate new information into their beliefs—a larger value of the constant

gain g thus updates beliefs more aggressively.

Self-referential dynamics and lack of historical experience in the boom state account for

larger values of the constant gain g resulting in larger forecast errors as shown in Panel

(5b). Because agents do not know the evolution of house prices in the boom, they revise up

their beliefs absent incoming information suggesting too much optimism. Under all values of

the constant gain g, forecast errors match the upward path observed in the data, but with

less volatility due to their observation at a lower two year frequency.21 At 28.66, the mean

squared error for the annualized constant gain g = 0.2986 (g=0.508 at a two-year frequency)

is the closest fit to the data and hence used in the main results.

Appendix F.1 shows that if the economy did not revert back to the non-boom state in

2009, agents would form pessimistic beliefs about future house prices as they realize that their

beliefs were too optimistic given that aggregate housing demand only increases slightly in

response to looser credit conditions. However, in the main simulations shown, the boom does

not last long enough for agents to self-correct their over optimism. Furthermore Appendix

F.4 shows that beliefs do eventually converge to an ergodic distribution in a longer simulation

with a counterfactual recurrence of the housing boom state.

Given that endogenous beliefs generate house prices that better match the path, auto-

correlation, and standard deviation of the data, this paper next investigates how endogenous

beliefs affect the homeownership rate which is a key determinant of housing demand and

hence house prices.
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Figure 6: The homeownership rate from the data and the model solved under endogenous and
exogenous beliefs. See Appendix G for sources and definitions of the data series.

21Because it is unclear if it is better to aggregate via end of period observations or averages, I do not
transform the quarterly data to a 2-year frequency.
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Figure (6) shows that the homeownership rate largely matches its empirical counterpart

over time and in the cross section. Panel (6a) shows that the aggregate homeownership

rate under endogenous beliefs matches the gradual rise and decline observed in the data

throughout the boom. The increase in the homeownership rate in both the model and the

data is mostly driven by households under the age of 40 purchasing homes as shown in Panel

(6b). The size of this increase in homeownership among these young households in panel (6b)

is reflected in the aggregate homeownership in (6a). Looser credit conditions allow a larger

fraction of young households to overcome payment-to-income and loan-to-value constraints

earlier in life than under tighter credit conditions. New homeowners tend to purchase the

same sized housing unit they were previously renting, which results in slightly more aggregate

demand for housing services and only accounts for a small fraction of the increase in house

prices. Higher house prices can mostly be attributed to unconstrained household upsizing

their housing units in response to wealth effects from higher expected future house prices.

Figure (7) shows that other prices and quantities also match the data under either exoge-

nous or endogenous beliefs. Matching the volatility of house prices under endogenous beliefs

leads to the rent-price ratio and aggregate consumption better matching the path observed

in the data which is useful for understanding the consumption response to house prices.

Panel (7a) shows that the decline in the rent-price ratio under either exogenous or en-

dogenous beliefs matches about half of the decline observed in the data. Although macro

housing models succeed at generating an increase in prices and homeownership, it is often at

the expense of counterfactually rising rents. The rental rate in equation (13) shows that high

expected future house prices—like those from optimistic beliefs—are key to rents decreasing

and thus a drop in the rent-price ratio. When model generated house prices more closely

track the gradual increase throughout the boom, as under endogenous beliefs, the model

generated rent-price ratio also better tracks its empirical counterpart.

Panel (7b) shows that modeled generated mortgage leverage remains near its pre-boom

values throughout most of the boom and then rises in the bust, similar to what is observed

in the data. The only shortcoming of endogenous beliefs is a counterfactual one-time jump

during the boom that is not present in their exogenous beliefs counterparts.

The model’s foreclosure rate shown in Panel (7c) rises in 2009 when income contracts

and credit conditions tighten in the bust. The rise in the foreclosure rate is smoother under

endogenous beliefs relative to exogenous beliefs reflecting a smoother path of house prices

rather than a one-time jump under exogenous beliefs.

Finally, panel (7d) shows that optimistic beliefs and higher house prices lead to an empir-

ically consistent increase in goods consumption throughout the housing boom. In line with

a housing wealth effect, the paths of consumption under either exogenous or endogenous
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Figure 7: Housing boom prices and quantities from the data and the model solved under endogenous
and exogenous beliefs. See Appendix G for sources and definitions of the data series.

beliefs show a strong correlation with the respective paths of house prices.22 The model

under endogenous beliefs can thus better match the data’s steady rise in the path of goods

consumption due to its corresponding steady rise in house prices.

5.1 Policy counterfactuals

Although model generated house prices under endogenous beliefs are validated by external

empirical evidence and match many features of house prices beyond the level increase, other

prices and quantities from the model are quite similar under either type of belief formation.

This section addresses the implications of belief formation by showing that endogenous beliefs

are more sensitive to prudential policy interventions than their exogenous counterparts.

These findings stem from two counterfactual scenarios during the house boom, one where

interest rates increase and another where credit conditions tighten during the housing.

22The size of the housing wealth effect remains debated. While Berger et al. (2018) find large consumption
responses to house price movements, Guren et al. (2020) note that responses in the 2000s are smaller than
those of the 1980s.
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Using monetary policy to “lean against” rising house prices has been studied as a pru-

dential policy for housing boom management because higher policy rates push up mortgage

rates, thereby dampening demand for housing services. However, because higher interest

rates also 1) dampen output along with house prices and 2) may make homeownership less

affordable, researchers have cautioned that lowering house prices may be too costly [Benati

(2021), Lambertini et al. (2013), Ehrenbergerova et al. (2021), Svensson (2017)]. On the

other hand, researchers have also shown that leaning against house prices maybe optimal

under imperfect information [Caines and Winkler (2021) and Adam and Woodford (2021)].

The higher interest rate scenario relies on the same aggregate shocks as the main housing

boom simulation shown previously, along with an additional unexpected shock to the risk-

free rate that occurs in 2001 when credit conditions loosen. More specifically, the risk-free

rate rb rises 50 basis points from 3 percent to 3.5 percent on an annual basis resulting in the

mortgage rate rm = (1 + ι)rb rising from 4 percent to 4.5 percent on an annual basis.

Figure (8) shows that house prices under endogenous beliefs are much more sensitive to

a 50 basis point increase in the risk-free rate than their exogenous counterparts. In fact,

the thin solid blue line in panel (8a) shows that there is a bust instead of a boom under

endogenous beliefs and higher interest rates. House prices drop because the decrease in

demand from higher interest rates leads to a negative forecast error that persists due to

the slow updating of beliefs under adaptive learning, as shown in panel (8b). The lower

expected future house prices—or pessimistic beliefs—push down house prices. By contrast,

under exogenous beliefs house prices and forecast errors are little different in the scenario

with higher interest rates (thin dashed purple lines) relative to the main simulation (thick

dashed purple lines). Because exogenous beliefs rely on households pulling forward higher

expected demand that never materializes, house prices will only be substantially lower if the

dampening effects of higher interest rates can offset these amplifying effects of beliefs. The

counterfactual shows that this unlikely with only a 50 basis point increase in interest rates.

Raising interest rates to lean against high house prices is one of many prudential policies in

housing boom management. Statutory borrowing limits on loan-to-value ratios and payment-

to-income ratios are more widely studied as these policies directly limit leverage, thereby

reducing demand for housing services and decreasing house prices [ Kelly et al. (2018),

Fuster and Zafar (2016), and Bolliger et al. (2024)]. However statutory borrowing limits

may be costly for younger and less well-off borrowers who remain renters for longer [Gete

and Reher (2016), Carozzi (2019), and others].

The statutory tighter credit conditions scenario is the same as the main housing boom

simulation shown previously, but with credit conditions tightening in 2005 instead of 2009.

This scenario can be interpreted as one where innovations in mortgage finance allow for looser
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Figure 8: House prices and forecast errors with counterfactually higher interest rates. The model’s
forecast error is log pt − Et−1[a

0
Z,t−1 + a1Z,t−1 log pt−1].

credit conditions, but the government reacts by imposing statutory limits at pre-boom values.

Figure (9), like figure (8), shows that house prices are more sensitive to macroprudential

policy under endogenous belief than under exogenous beliefs. Under endogenous beliefs,

house prices begin to contract as credit conditions, as shown via the thin solid blue line in

panel (9a). When house prices are high and credit conditions tighten, households that are

younger and with relatively lower income can no longer afford to become homeowners and

this dampens demand for housing. The decrease in house prices pushes down the house price

forecast error, as shown in panel (9b), which then dampens house prices. By contrast, under

exogenous beliefs there is little difference between the simulations when credit conditions

contract earlier in the boom (thin and thick dashed purple lines).
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Figure 9: House prices and forecast errors with counterfactually tighter credit conditions midway
through the boom. The model’s forecast error is log pt − Et−1[a

0
Z,t−1 + a1Z,t−1 log pt−1].
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The two counterfactual scenarios studied have several caveats. First, the model is as-

sumed to be a small open economy where interest rates are taken as given and fixed rather

than endogenously responding to macroeconomic conditions as they would in other settings.

Second, the rich household heterogeneity along with incomplete markets and aggregate risk

necessitates simplifying some of the general equilibrium feedback from other sectors of the

economy. None-the-less, these counterfactual scenarios shows that belief formation affects

the sensitivity of house prices to macroprudential policy, which is important for the man-

agement of housing booms.

6 Conclusion

This paper first addresses why beliefs about future house prices shifted in the early 2000s

to push up house prices throughout the 1999-2007 U.S. housing boom. When the evolution of

house prices is unknown in an economic expansion accompanied by looser credit conditions,

agents are more likely to underpredict future house prices and update their time-varying

beliefs in the direction of these positive forecast errors. The resulting endogenously opti-

mistic beliefs are externally validated with empirical evidence obtained via a novel proxy

developed from the University of Michigan Survey of Consumers. Furthermore, endoge-

nous optimistic beliefs can match the time path, autocorrelation, and standard deviation of

empirical aggregate house prices in addition to the level increase.

Next, this paper shows that the effectiveness of prudential policies can depend on be-

lief formation. Prudential policies like higher interest rates or tighter credit conditions can

dampen endogenously formed optimistic beliefs such that the boom in house prices is shorter

or non-existent. By contrast, these policies have little material effect on house prices under

exogenously optimistic beliefs. Because raising interest rates may lower output, and tight-

ening credit conditions decrease homeownership, studying the effectiveness of these policies

is important for understanding when benefits outweigh costs.

Finally, this paper’s contribution of endogenous belief formation in a model with incom-

plete markets and aggregate risk can generalize to settings beyond adaptive learning and

the 2000s housing boom. An unexpected shift to an economic state without precedent could

describe events such as the onset of the COVID-19 pandemic in 2020 where house prices also

boomed.23

23Loewenstein and Willen (2024) find that beliefs explain the 2000s boom, but a combination of beliefs
and preference for larger house account for that of the 2020s.
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A Appendix: Recursive Problems

A.1 Recursive Households’ Problem

Households are renters r or homeowners h with distribution µr + µh = µ = 1. In the final

period, (j = J), all solve the bequest problem. Let Υj+1|j(y) denote the distribution of y′|y
which embeds the Markov transition for the individual shocks ϵj(z) and deterministic χj.

Renters’ Problem (j < J)

Renters have two choices: stay renters or purchase a house and become homeowners.

V r
j (b, y;µ, Z) = max{V rent

j (b, y;µ, Z), V own
j (b, y;µ, Z)} (6)

Rent to rent: if renters choose to stay renters, they solve

V rent
j (b, y;µ, Z) = max

{b′,h̃′,c}

{
uj(c, s) + βEZ′,ϵ′|Z,ϵ[V

r
j+1(b

′, y′;µ′, Z ′)]
}

(6.a)

s.to. c+ qbb
′ + ρ(µ, Z)h̃′ =y − T (y) + b

0 ≤b′

s =h̃′ ∈ H̃

µ′ =Γµ(µ;Z,Z
′)

Z ′ ∼ΓZ(Z)

y′ ∼Υj+1|j(y)

Liquid financial instruments b, income y, and age j are individual state variables. Rental

housing h̃′ costs ρ(µ, Z) and enters the budget constraint as a cost of foregone consumption.

Rent to own: if renters choose to purchase a house and become homeowners, they solve

V own
j (b, y;µ, Z) = max

{b′,h′,c}

{
uj(c, s) + βEZ′,ϵ′|Z,ϵ[V

h
j+1(b

′, h′,m′, y′;µ′, Z ′)]
}

(6.b)

s.to. c+ p(µ, Z)h′ + qbb
′ =y − T (y) + b+ qj(b

′, h′,m′, y;µ, Z)m′ − κm(Z)

0 ≤b′

0 ≤ m′ ≤θLTV (Z)ph(µ, Z)h
′

πmin
j (m′) ≤θPTI(Z)y

s =ωh′, h′ ∈ H

µ′ =Γµ(µ;Z,Z
′)

Z ′ ∼ΓZ(Z)

y′ ∼Υj+1|j(y)
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Where the minimum mortgage payment is defined in equation (4) as:

πmin
j (m) =

[
rm(1 + rm)

J−j+1

(1 + rm)(J−j+1) − 1

]
m (4)

Renters who purchase a house have the homeowners’ continuation value V h
j+1(b

′, h′,m′, y′;µ, Z)

which has a state space that also includes the newly originated mortgage m′ and the pur-

chased house h′.

Homeowners’ Problem (j < J)

Homeowners have five options: sell their house and purchase a new house, sell their house

and become a renter, default and become a renter, stay in their house and pay their existing

mortgage, or stay in their house and refinance a new mortgage. Let x ≡ {b, h,m}.

V h
j (x, y;µ, Z) = max



V sell,buy
j (bn, y;µ, Z)

V sell,rent
j (bn, y;µ, Z)

V default
j (b, y;µ, Z)

V stay,pay
j (x, y;µ, Z)

V stay,refi
j (x, y;µ, Z)

(9)

Sell to rent or buy: homeowners who sell their house solve the renters’ problem (6) with

financial assets bn equal to one-period liquid financial instruments b plus the equity from the

sale of the house—the sale price less housing costs and the outstanding mortgage balance.

bn = b+ (1− δh − τh − κh)p(µ, Z)h− (1 + rm)m

Default: homeowners who default become renters, incur a utility penalty ξ, and live in

the smallest rental housing unit h̃0. Their property is foreclosed and the lender receives the

proceeds from the sale of the housing unit less property taxes and depreciation. In default,

depreciation is higher δδh > δh.
24 Defaulters are not subject to recourse meaning that the

lender cannot lay claim to other assets should the housing collateral not cover all of the

defaulted mortgage balance.

24As studied by Gabriel et al. (2021), not all defaults lead to foreclosure and there is sometimes a time
lag between the two events. A default is failure to meet the terms of mortgage contract and a defaulted
mortgage is foreclosed when the homeowner’s rights are to the property are eliminated. See Fannie Mae’s
glossary: https://www.knowyouroptions.com/find-resources/information-and-tools/glossary.
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V default
j (b, y;µ, Z) = max

{b′,c}

{
uj(c, h̃

0)− ξ + βEZ′,ϵ′|Z,ϵ[V
r
j+1(b

′, y′;µ′, Z ′)]
}

(9.a)

s.to. c+ qbb
′ + ρ(µ, Z)h̃0 =y − T (y) + b

0 ≤b′

h̃0 =min H̃

µ′ =Γµ(µ;Z,Z
′)

Z ′ ∼ΓZ(Z)

y′ ∼Υj+1|j(y)

Stay and pay: homeowners who stay in their house and pay their existing mortgage solve

V stay,pay
j (x, y;µ, Z) = max

{b′,m′,c}

{
uj(c, s) + βEZ′,ϵ′|Z,ϵ[V

h
j+1(x

′, y′;µ′, Z ′)]
}

(9.b)

s.to. c+ qbb
′ + (δh + τh)p(µ, Z)h+m(1 + rm) =y − T (y,m) + b+m′

πmin
j (m) ≤(1 + rm)m−m′

0 ≤m′

−b′ ≤θHELOCp(µ, Z)h

s =ωh, h′ = h

µ′ =Γµ(µ;Z,Z
′)

Z ′ ∼ΓZ(Z)

y′ ∼Υj+1|j(y)

Because these homeowners stay in the same house h′ = h, there is no housing choice.

Instead, these homeowners pay the housing depreciation costs and tax (δh+ τh)p(µ, Z)h and

a mortgage payment greater than the minimum payment πmin
j (m) described in equation (4).

These homeowners can also borrow against the value of their house in the form of HELOCs.
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Stay and refi: homeowners who stay in their house and refinance a new mortgage solve:

V stay,refi
j (x, y;µ, Z) = max

{b′,m′,c}

{
uj(c, s) + βEZ′,ϵ′|Z,ϵ[V

h
j+1(x

′, y′;µ′, Z ′)]
}

(9.c)

s.to. c+ qbb
′ + (δh + τh)p(µ, Z)h+m(1 + rm) =y − T (y,m) + qj(x

′, y;µ, Z)m′ − κm(Z)

0 ≤ m′ ≤θLTV (Z)ph(µ, Z)h
′

πmin
j (m′) ≤θPTI(Z)y

−b′ ≤θHELOCp(µ, Z)h

s =ωh, h′ = h

µ′ =Γµ(µ;Z,Z
′)

Z ′ ∼ΓZ(Z)

y′ ∼Υj+1|j(y)

These homeowners stay in their house h and pay housing maintenance costs (δh+τh)p(µ, Z).

They pay off their existing mortgage m with the proceeds of a new mortgage m′ that is

subject to points qj(x
′, y;µ, Z) ≤ 1, the fixed mortgage origination cost κm(Z), and loan-to-

value and payment-to-income constraints described in equations (7)-(8).

Homeowners can thus extract equity from HELOCS or mortgage refinancing which is

essentially a cash-out equity extraction because all mortgages amortize at the same rate

rm.
25 Because mortgage refinancing requires the payment of fixed origination cost κm(Z) and

mortgage points qj(x
′, y;µ, Z), it is preferred to HELOCS when homeowners are extracting

relatively large amounts of equity or have a higher income such that qj(x
′, y;µ, Z) is closer

to 1. Otherwise, HELOCs may be preferred.

Bequest Problems (j = J)

When households exit economic life, they solve the following problems with the bequest

motive VJ+1 = v(♭+ ♭) described in equation (1).

Renters’ Bequest Problem

Renters must stay renters and cannot become homeowners in the final period of economic

life. Their value function is thus V r
J (b, y;µ, Z) = V rent

J (b, y;µ, Z).

25Wong (2019) relaxes the fixed interest rate assumption when modeling mortgage refinancing and finds
that younger households or those with larger mortgages are more likely to refinance.
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V rent
J (b, y;µ, Z) = max

{b′,h̃′,c}
{uj(c, s) + βv(♭+ ♭)} (17)

s.to. c+ qbb
′ + ρ(µ, Z)h̃′ =y − T (y) + b

♭ =b′

0 ≤b′

s =h̃′ ∈ H̃

Homeowners’ Bequest Problem

Homeowners have three choices in the final period of economic life. They can sell their

houses and become renters, default and become renters, or stay in their house and leave it

as a bequest after paying off the residual mortgage.26 Homeowners can neither purchase a

new house nor refinance a new mortgage in the final period of economic life.

V h
J (x, y;µ, Z) = max


V sell,rent
J (bn, y;µ, Z)

V default
J (b, y;µ, Z)

V stay,pay
J (x, y;µ, Z)

(18)

Sell to rent: when homeowners sell their house and choose to become renters, they solve

the renter’s bequest problem (17) with liquid financial instruments bn.

bn = b+ (1− δh − τh − κh)p(µ, Z)h− (1 + rm)m

Default: homeowners who default in the last period of economic life solve:

V rent
J (b, y;µ, Z) = max

{b′,c}

{
uj(c, h̃

0)− ξ + βv(♭+ ♭)
}

(18.a)

s.to. c+ qbb
′ + ρ(µ, Z)h̃0 =y − T (y) + b

0 ≤b′

♭ =b′

26Strategic bequests and dynasties are beyond the scope of this paper, see Brandsaas (2024) for a study.
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Stay and pay: homeowners who pay off their mortgage and leave their house in bequest

solve:

V pay,stay
J (x, y;µ, Z) = max

{b′,c}

{
uj(c, s) + βEZ′|Z [v(♭+ ♭)]

}
(18.b)

s.to. c+ qbb
′ + (δh + τh)p(µ, Z)h+ (1 + rm)m

′ =y − T (y,m) + b

0 ≤b′

♭ =b′ + (1− κh)p
′(µ′;Z,Z ′)h

s =hω, h ∈ H

µ′ =Γµ(µ;Z,Z
′)

Z ′ ∼ΓZ(Z)

A.2 Final Goods, Construction, and Rental Firms’ Problems

Final goods firms: Vc denotes the value function of final goods producing firms.

Vc(Nc;µ, Z) =max
Nc

{Y − w(µ, Z)Nc}

s.to. Y =Θ(Z)Nc

0 ≤Nc

µ′ =Γµ(µ;Z,Z
′)

Because final goods consumption C is the numeraire, the price for final goods has been

normalized to one. Taking the first order condition with respect to labor Nc pins down the

aggregate equilibrium wage:

w(µ, Z) = Θ(Z) (11)

Housing construction firms: Vh denotes the value function of housing construction firms.

Vh(Nh;µ, Z) =max
Nh

{p(µ, Z)Hh − w(µ, Z)Nh}

s.to. Hh =[Θ(Z)Nh]
αL̄1−α

0 ≤Nh

µ′ =Γµ(µ;Z,Z
′)

Taking the first order condition with respect to labor Nh and using the above equilibrium

expression for aggregate wage w(µ, Z) yields:

αΘ(Z)p(µ, Z)[Θ(Z)Nh]
α−1L̄1−α = Θ(Z)

Re-arranging delivers the expression for housing supply:
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[Θ(Z)Nh]
αL̄1−α︸ ︷︷ ︸

≡Hh

= [αp(µ, Z)]
α

1−α L̄ (12)

Rental housing sector: Vr denotes the value function of the rental housing sector with

the stock of housing units owned by the rental company given as H̃ ′ and the rental ready

housing units given as X ′.

Vr(H̃,X;µ, Z) =max
H̃′,X′

{
[ρ(µ, Z)− Ξ]X ′ − p(µ, Z)[H̃ ′ − (1− δh − τh)H̃] . . .

. . .+ qbEZ′,ϵ′|Z,ϵ[Vr(H̃
′, X ′;µ′, Z ′)]

}
s.to. X ′ ≤H̃ ′

0 ≤H̃ ′, X ′

µ′ =Γµ(µ;Z,Z
′)

First order and envelope conditions yield the rental housing pricing equation:

ρ(µ, Z) = Ξ + ph(µ, Z)− (1− δh − τh)qbEZ′,ϵ′|Z,ϵ[p
′(µ′, Z ′)] (13)

See Appendix D of Kaplan et al. (2020) for a more general version that allows for financial

and convertibility frictions.
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A.3 Recursive Competitive Equilibrium

A recursive competitive equilibrium consists of:

• A sequence of income endowments y to households.

• Prices for owner-occupied housing p(µ, Z), rental housing ρ(µ, Z), wages w(µ, Z), and

mortgages qj(x
′, y;µ, Z) where x = {b, h,m}.

• Government parameters for constraints on loan-to-value θLTV (Z) and payment-to-

income θPTI(Z), land permits L̄, taxes T (y,m), and social security payments ρSS.

• Perceived laws of motion for the state space µ = Γµ(µ;Z,Z
′) where µ = µr + µh is

the measure over the set of individual states for renters r and homeowners h. Let

µ = 1 and the respective state spaces be defined as X h = (B ×H ×M× E × J ) and

X r = (B × E × J ).

• Value functions for renters V r
j (b, y;µ, Z) with policy functions for consumption, liquid

financial instruments, owner-occupied housing, and rental housing {c, b′, h′, h̃′} solve

the renters’ problem. Value functions for homeowners V h
j (x, y;µ, Z) with policy func-

tions for consumption, liquid financial instruments, owner-occupied housing, rental

housing, and mortgages {c, b′, h′, h̃′,m′} solve the homeowners’ problem.

Markets clear:

• The lending sector maximizes profits and the mortgage market clears loan-by-loan with

homeowner specific pricing functions qj(x
′, y;µ, Z).

∫Xh m′dµh =M ′

• The rental sector maximizes profits with policy function H̃ ′ at price ρ(µ, Z) to supply

rental housing.
∫X r h̃′dµr︸ ︷︷ ︸

renters

+ ∫Xh h̃′dµh︸ ︷︷ ︸
sellers
&

defaulters

= H̃ ′

• Housing construction firms maximize profits with policy functions for labor demand

Nh and the supply of new housing units Hh. There is a single housing price p(µ, Z)

that clears the housing market so that housing outflows (LHS) equal inflows (RHS).

H̃ ′ − (1− δh)H̃︸ ︷︷ ︸
rental sector

housing purchases

+ ∫X r h′dµr︸ ︷︷ ︸
purchases

by renters

+ ∫Xh h′dµh︸ ︷︷ ︸
purchases

by owners

= Hh − δh ∫Xh hdµh︸ ︷︷ ︸
new construction
less depreciation

+ ∫Xh h[1sell + 1default(1− δdh + δh)]dµ
h︸ ︷︷ ︸

sales by owners & sales of foreclosures

+ ∫Xh 1bequesth
′dµh︸ ︷︷ ︸

estate sales
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• Final goods firms maximize profits so that the labor market clears at

Θ(Z) = w(µ, Z) with the total labor supply from housing construction and final goods

firms Nh +Nc normalized to 1.

∫X exp(χj + ϵj(z))dµJwork
= Nh +Nc︸ ︷︷ ︸

1

• The government collects revenue from income taxes T (y,m), property taxes τh, and

the sale of land permits [p(µ, Z)Hh − w(µ, Z)Nh] to finance expenditures on social

security income for retirees yret and non-valued government spending G:

T (y,m) + τhp(µ, Z) ∫Xh hdµh + [p(µ, Z)Hh − w(µ, Z)Nh] = ρss ∫X yretdµJret +G

• Profits or losses from the financial and rental sectors are expressed as net exports:

NX = ∫X r [b− qbb
′]dµr + ∫Xh [b− qbb

′
1[b′>0] −

(
rb(1 + ι)

)−1
b′1[b′<0]]dµ

h︸ ︷︷ ︸
lenders’ net expenses from liquid financial instruments

. . .+ ∫Xh [(1 + rm)m+ qj(x
′, y;µ, Z)m′]dµh︸ ︷︷ ︸

lenders’ net revenue from mortgages

. . .+ (ρ(µ, Z)− Ξ)H̃ ′︸ ︷︷ ︸
rental sector revenue
less operating costs

− p(µ, Z)[H̃ ′ − (1− δh − τh)H̃]︸ ︷︷ ︸
rental sector housing

purchases

• The aggregate resource constraint is satisfied where household consumption C, gov-

ernment spending G, net exports NX equal output Y less housing and mortgage

adjustment costs.

∫Xh cdµh + ∫X r cdµr +G+NX + ΞH̃ ′

= Y − κp(µ, Z) ∫Xh h(1sell + 1default)dµ
h − ιrb ∫Xh(m+ b1{b<0})dµ

h

−(ζ + κm) ∫Xh m′(1buy + 1refi)dµ
h

• Consistency is satisfied and perceived laws of motion of the state space µ′ = Γµ(µ, Z, Z
′)

is consistent with individual behavior
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B Appendix: Computational Algorithm

The algorithms with either fixed known or time-varying unknown forecasting coefficients

rely on the assumption that agents keep track of house prices via a log-linear forecasting rule

for each combination of current and future aggregate states Z ∈ {Z,Z ′} as an approximation

of the entire distribution over individual states µ and its law of motion Γµ(µ;Z).

log p′(p(Z);Z) = a0Z + a1Z log p(Z) ⇐⇒ µ′ = Γµ(µ;Z)

The model is first solved under known coefficients that are obtained via a fixed point. Next,

the model is solved with beliefs where time-varying coefficients are tracked throughout the

simulation. Because beliefs require as many additional grids as there are aggregate states,

the households’ problem must be solved 32 = 9 times for two belief grids with 3 points

each.27 Fortunately, the increase in dimensionality is not too much of a computational

burden because the belief grids can be parallelized.28 The model has been solved on the high-

throughput computing clusters at Indiana University (Karst and Carbonate), the University

of Texas at Dallas (BigTex), and the Federal Reserve Board.

1. Define grids over ages j = 1, . . . , J , liquid financial instruments b, liquid financial

instrument choices b′, rental housing choices h̃′, owner-occupied housing h, owner-

occupied housing choices h′, mortgage balances m, mortgage choices m′, aggregate

income Θ(Z) ∈ {Θ(Zhigh),Θ(Zlow)}, aggregate credit conditions

C(Z) ∈ {C(Zhigh), C(Zlow)}, and house prices p.

2. Define coefficients:

• Fixed: to pin down next period house prices, guess coefficients aZ for each Z for

a total of #Z2 = 4 vectors of coefficients.29

log p′(p(Z);Z) =a0Z + a1Z log p(Z)

• Beliefs: define additional grids over future house prices in each future state

{p′(Z ′
low), p

′(Z ′
high)} for a total of #Z ′ = 2 additional grids.

With a risk-neutral lending sector, the mortgage price qj(x
′, y; p(Z), Z) is pinned down

27Experiments with 5 grid points instead of 3 show that although individual aggregate housing demand
may vary, the demand schedule for housing is roughly similar.

28Allowing independent aggregate shocks to credit conditions and income would require defining four belief
grids instead of two. With 3 points for each grid, the households’ problem would then need to be solved
34 = 81 times instead of 32 = 9 times. Computation times increase drastically as a result of increasing the
dimensions of the arrays and interpolation in two additional dimensions.

29The forecasting equation is log pZ,t+1 = 1Za
0
Z + a1Z log pZt

for Z ∈ {Z,Z ′} which is slightly different,
but practically equivalent to equation (14), log pZ,t+1 = a0Z + a1Z log pZ,t.
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by the lenders’ mortgage pricing function in equation (10). The price for financial

assets qb is taken as given. The price of rental housing ρ(µ, Z) is pinned down by

the rental sector’s maximization problem (13) and aggregate wages w(µ, Z) are pinned

down by the final goods firms’ maximization problem (11).

3. Solve the households’ problem at each point on the house price grid p (and at each

point on the belief grids if time-varying). I use value function iteration with grid search

for housing and mortgages and a golden section solver for liquid financial instruments.

4. Simulate a long time series of aggregate states Zt for t = 1, . . . , T where T =5000 with

a burn in period of 100.

5. Fix an initial distribution of liquid financial instruments, idiosyncratic incomes, and

ages assuming that all households are initially renters µt ∈ B × E × J for t = 1. Be-

ginning realizations {B, E ,J } denote liquid financial instruments, income realizations,

and ages, respectively. There are N =125000 households.

Some notes on initialization:

– endowments of liquid financial instruments equal zero for all households at t = 1.

– because all agents are renters at t = 1, there is no initial housing endowment

– initial household ages are drawn from a uniform distribution30 j ∼ [1, . . . , J ]

– when household i reaches the final period of economic life, ji,t = J , a new house-

hold replaces them with ji,t+1 = 1 as renters with no mortgage debt mi,t = 0.

These new households inherit a random draw of liquid financial instruments bi,t

that are correlated with individual income so that household with a higher income

are more likely to inherit larger quantities.

– if solving with beliefs, set calibrated initial coefficients a0.

6. Simulate

• Fixed: coefficients are already set at aZ at the beginning of the problem.

• Beliefs: compute period t coefficients to pin down p′(p(Z);Z). Coefficients for

each future aggregate state aZt,Z′
low

and aZt,Z′
high

are necessary because the value

of Z ′ is not yet known. For this reason, time-varying beliefs require as many

additional grids as there are aggregate states.

7. Compute the aggregate demand schedule for housing at each point on the house price

grid p from the housing policy functions for renters h̃′ and homeowners h′. Interpolate

over bi,t for renters and {bi,t, hi,t,mi,t} for homeowners. Average by housing type:

30This assumption follows Kaplan and Violante (2014). Matching the distribution of ages would introduce
generational demographic changes into equilibrium dynamics which is beyond the scope of this paper.
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Renters: H̃t+1(p,Xt) =
1

N

∑Nr

i=1
h̃′(bi,t, yi,t, ji,t; p,Xt)

Homeowners: Ht+1(p,Xt) =
1

N

∑Nh

i=1
h′(bi,t, hi,t,mi,t, yi,t, ji,t; p,Xt)

The number of aggregate states in the vector Xt depends on the algorithm:

• Fixed: Xt = {Zt}
• Beliefs: Xt = {Zt, p

′(Z ′
low), p

′(Z ′
high)} which requires additional interpolation over

p′(Z ′
low) and p

′(Z ′
high) to incorporate the effects of time-varying beliefs.

8. Compute excess demand for aggregate housing at each point on the house price grid p

and recover the equilibrium house price p∗t (Zt) from the market clearing condition:

Ht+1(p
∗
t (Zt),Xt) + H̃t+1(p

∗
t (Zt),Xt) = Hh + (1− δh)[Ht + H̃t]

9. Interpolate the individual policy functions b′, h′, h̃′, and m′ at the equilibrium house

price p∗t (Zt) and then average to calculate the aggregate equilibrium quantities.

B∗
t+1(p

∗
t (Zt),Xt) =

1

N

∑N

i=1
b′(bi,t, hi,t,mi,t, yi,t, ji,t; p

∗
t (Zt),Xt)

H̃∗
t+1(p

∗
t (Zt),Xt) =

1

N

∑Nr

i=1
h̃′(bi,t, yi,t, ji,t; p

∗
t (Zt),Xt)

H∗
t+1(p

∗
t (Zt),Xt) =

1

N

∑Nh

i=1
h′(bi,t, hi,t,mi,t, yi,t, ji,t; p

∗
t (Zt),Xt)

M∗
t+1(p

∗
t (Zt),Xt) =

1

N

∑N

i=1
m′(bi,t, hi,t,mi,t, yi,t, ji,t; p

∗
t (Zt),Xt)

Again, the number of aggregate states Xt depends on the algorithm:

• Fixed: Xt = {Zt}
• Beliefs: Xt = {Zt, p

′(Z ′
low), p

′(Z ′
high)}

p′(p∗t (Zt)) =

(
exp{a0Zt,Z′

low
+ a1Zt,Z′

low
log(p∗t (Zt))}

exp{a0Zt,Z′
high

+ a1Zt,Z′
high

log(p∗t (Zt))}

)

10. Simulate for t = 1, . . . , T periods by repeating steps (6)-(9).

11. Compare coefficients:

• Fixed: partition the time series of market clearing house prices {p∗t (Zt)}Tt=burn

by Z ∈ {Z,Z ′} to generate #Z2 = 4 sub-samples. Estimate new forecasting

coefficients for each sub-sample Z via ordinary least squares regression:

anew
Z =

(
T∑

t=burn

xZ,tx
′
Z,t

)−1 T∑
t=burn

xZ,t log pZ,t+1
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Repeat steps (2) - (11) until coefficients converge, anew
Z ≈ aZ

• Beliefs: adjust belief parameters to verify that the time-varying coefficients {aZ,t}Tt=burn

from step (9) converge to their near-rational counterparts aZ .

Chipeniuk et al. (2022) propose a solution check called auctioneer iteration to avoid
relying on potentially misleading R2 statistics as measures of accuracy. Their method adds
the following steps after coefficients are obtained via a fixed point:

12. Use converged aZ and a price grid that is a subset of simulated prices, p =⊂ {p∗t (Zt)}Tt=1.

13. Repeat steps (1)-(11) to obtain new converged coefficients and new prices {pnewt (Zt)}Tt=1.

14. Stop if {pnewt (Zt)}Tt=1 ≈ {p∗t (Zt)}Tt=1, otherwise go to step (1).

B.1 Computational Details

The known forecasting coefficients aZ shown in Table (5) are solved as a fixed point in

the model’s stochastic steady state characterized by tight aggregate credit conditions and

fluctuations in aggregate income. The coefficients have similar values in all combinations of

current and future income states which is consistent with Kaplan et al. (2020) and suggests

that shocks to aggregate income do not have much effect on house price forecasts. Ap-

proximating the sample mean of house prices p̄Z via the coefficients points to slightly more

variation in the highest and lowest values attained in the transitions between income states.

Income states a0Z a1Z p̄Z ≈ a0Z
1−a1Z

R2 Den Haan Chipeniuk et. al

High, High -0.102 0.838 0.53

0.9999 0.01 0.01
High, Low -0.111 0.838 0.50
Low, High -0.091 0.847 0.55
Low, Low -0.100 0.847 0.52

Table 5: Converged forecasting coefficients under tight aggregate credit conditions.

Like Kaplan et al. (2020) and Favilukis et al. (2017), the model’s R2 statistic is close to 1

which suggests adequate goodness of fit standards. Because R2 statistics can be misleading

gauges of accuracy, Den Haan (2010) and Chipeniuk et al. (2022) propose alternative tests

which both come in sufficiently low at 0.01.
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C Appendix: Calibration

C.1 Parameter Values

The model’s parameters are set to resemble the U.S. economy in the late 1990s with the

cross-sectional moments from the 1998 Survey of Consumer Finances via Kaplan et al. (2020).

Demographics: Each model period is equal to two years. Households begin economic life

at age 21 (j = 1), retire at age 65 (Jret = 23), and exit economic life at age 79 (J = 30).31

Preferences: The elasticity of substitution between goods consumption and housing expen-

ditures 1/γ is set to 1.25 based on the estimates of Piazzesi et al. (2007). The elasticity of

intertemporal substitution equals 0.5 by setting σ = 2. A McClements (1977) scale sets the

consumption equivalence scale {ej} to match the OECD average number of children across

different age groups. The discount factor β is set to replicate the 1998 ratio of aggregate net

worth to annual labor income of 5.5 for which the model comes in slightly below at 4.9.

Two parameters, the strength of the bequest motive ψ and the extent to which bequests

are luxuries ♭, pin down the warm-glow bequest motive given in equation (1). The strength

of bequests ψ is chosen to replicate the ratio of net worth at age 75 to age 50 of 1.55 which

indicates the importance of bequests as a saving motive. The model comes in slightly below

at 1.48. The luxuriousness of bequests ♭ is chosen so that households in the bottom half of

the model’s wealth distribution do not leave bequests, as observed in the data.

Homeowners’ additional utility ω sets the average homeownership rate which was 66 per-

cent in the late 1990s and is slightly higher at 68 percent in the model. Defaulters’ disutility

ξ is set to match the average foreclosure rate in the late 1990s of 0.5 percent and is slightly

lower at 0.02 percent in the model.

Income endowments: The deterministic life-cycle component of earning {χj} is from Ka-

plan and Violante (2014). Stochastic individual earnings ϵj(z) in equation (5) follow an

AR(1) process in logs with an annual persistence of 0.97, annual standard deviation of 0.2,

and an initial standard deviation of 0.42. The variance of log earnings rises by 2.5 between

ages 21 and 64 which follows Heathcote et al. (2010). Bequested inheritances are correlated

with individual income so that higher income households are more likely to inhert more.

Housing: The following three parameters discipline the size of owner-occupied housing

31Krueger and Kübler (2004) find that computational accuracy decays rapidly if the length of economic
life extends beyond 30 periods when using aggregate risk in a life-cycle economy.
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units H: the size of the smallest unit h0, the number of house sizes available #H, and the

gap between housing sizes. The values of these parameters are obtained from targeting the

10th, 50th, and 90th percentiles of the distribution of the ratio of housing net worth to total

net worth. The model matches the 10th percentile but comes in a bit below the 50th and

90th percentiles, as is common this class of model. The size of rental housing units H̃ is

chosen to target a ratio of median owner-occupied to rental housing of 1.5 square feet per

person as detailed in Chatterjee and Eyigungor (2015) and a ratio of the average earnings of

homeowners to renters equal to 2.1. The model generates moments that are mostly in line

with these empirical targets.

The maintenance cost of housing that offsets depreciation δh equals 0.015 and replicates

the empirical depreciation rate of the housing stock of 1.5 percent per year.32 Defaulted

housing has a higher depreciation rate δdh equal to 0.22 to account for the loss of value from

foreclosure. The linear transaction cost of housing adjustments κh equals 7 percent which

falls within the 6 to 12 percent range estimated by Quigley (2002).33 In line with the data, 9

percent of homeowners in the model buy or sell houses each year. The relative cost of renting

versus owning is determined in part by the operating cost of the rental company Ξ and is

particularly salient for young households. Ξ is chosen to match the 39 percent homeownership

rate of households younger than 35 and comes in slightly lower at 34 percent.

Housing construction technology α is set so that the price elasticity of housing supply

α/(1 − α) equals 1.5, the median among MSAs in Saiz (2010). Land permits L̄ pin down

employment in the construction sector at 5% of total employment which is consistent with

the 1998 employment share of construction measured by the Bureau of Labor Statistics.

Financial instruments: The risk-free rate r is 2.5 percent per year and the lending wedge

ι is 0.33 so that the interest rate on loans rb is equal to 3 percent per year to replicate the

gap between the average rate on 30-year fixed-term mortgage and the 10-year Treasury rate

in the late 1990s. The maximum HELOC value θHELOC is 0.2.

Government: The property tax τh is set to 1% per year which is the median tax rate

across U.S. states according to the Tax Policy Center. The income tax function in equation

(3) follows the functional form of Heathcote et al. (2017). The parameter τ 0y indicates the

average level of taxation and is set so that aggregate income tax revenues are 20% of income.

The parameter τ 1y measures the degree of progressivity of the tax and transfer system and is

32Kaplan et al. (2020, p. 18) use the Bureau of Economic Analysis’ Table 7.4.5 which details the con-
sumption of fixed capital of the housing sector divided by the stock of residential housing at market value.

33Ghent (2012) finds a value of 13 percent and Ngai and Sheedy (2020) settle on 10 percent suggesting
that 7 percent may be on the lower end of the established range.
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set at 0.15 based on the estimates of Heathcote et al. (2017). The share of mortgage interest

deducted ϱ is set at 0.75 to so that only the first $1,000,000 of mortgage debt is deductible.

Social security payments in equation (2) maintain income heterogeneity by scaling the last

realization of earnings ywJret−1 by the replacement rate ρss. Kaplan et al. (2020) compute the

ratio of average benefits to average lifetime earnings and find a replacement rate equal to 0.4.

Interpretation Parameter Value Annualized

Demographics

Maximum age J 30 N

Retirement age Jret 23 N

Preferences

Inverse elasticity of substitution γ 0.8 N

Risk aversion σ 2 N

Discount factor β 0.97 Y

Strength of bequest motive ψ 100 N

Extent of bequests as a luxuries ♭ 7.7 N

Taste for housing ϕ 0.13 N

Additional utility from owning ω 1.015 N

Utility cost of foreclosure ξ 0.8 N

Individual income

Deterministic income {χj} Kaplan & Violante (2014) N

Annual persistence, ind. income ρϵ 0.97 Y

Annual st. dev., ind. income σϵ 0.20 Y

Initial st. dev., ind. income σϵ0 0.42 Y

Distribution of bequest to new hhs bj=1 = b′j=J Kaplan & Violante (2014) N

Housing

Owner-occupied housing unit sizes H {1.5, 1.92, 2.46, . . .
. . . 3.15, 4.03, 5.15} N

Rental housing unit sizes H̃ {1.125, 1.5, 1.92} N

Depreciation rate of housing δh 0.015 Y

Housing loss in foreclosure δdh 0.22 Y

Housing transaction cost κh 0.07 N

Operating cost of rental company Ξ 0.002 N

Housing supply elasticity α/(1− α) 1.5 N

New land permits L̄ 0.311 N

Financial instruments

Risk-free interest rate r 0.025 Y

Interest rate wedge on borrowing ι 0.33 N

Maximum HELOC θHELOC 0.2 N

Government

Property tax on housing τh 0.01 Y

Income tax function τ0y , τ
1
y 0.75,0.151 N

Mortgage interest deduction fraction ϱ 0.75 N

Mortgage interest deduction limit m̄ $1 mil. N

Social Security replacement rate ρSS 0.42 N

Table 6: Parameter values. A period is two years and annualized values are noted in the final
column with a Y. 1=$52,000 which is the average value of income in the 1998 SCF.
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C.2 Cross-sectional Distribution across the Life-Cycle

Before simulating the U.S. housing boom under this paper’s contribution of endogenous

beliefs, it is important to first discuss the cross-sectional distribution of households in the

model’s stochastic steady state which assumes known forecasting coefficients, tight aggregate

credit conditions, and fluctuations in aggregate income.34 Figure (10) shows that the life-

cycle profiles of the means and variances of model quantities are largely consistent with a

typical incomplete markets model where households succeed at some smoothing of goods

consumption and housing expenditures by accumulating a buffer stock of liquid financial

instruments.
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Figure 10: Life-cycle statistics from the model in thousands of 1998 dollars.

Panel (10a) shows that the average and log variance of income rise over the life-cycle

consistent with the data from the 1998 Survey of Consumer Finances. The non-stationary

age-dependent variance for idiosyncratic income helps match the more volatile earnings in

the pre-retirement phase as is observed in the data.

Panel (10b) shows that households accumulate liquid financial instruments, on average,

as a buffer against both idiosyncratic shocks and the decrease in earnings at retirement.

34Appendix C.4 shows that the calibration is similar assuming the credit conditions can fluctuate between
their loose and tight values via a Markov chain. Appendices E and F.1 confirm for impulse response functions
are similar under credit conditions that shift one time or are Markov.
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The pronounced hump-shape profile in both the average and variance (in levels, not logs)

arises from a desire to smooth both consumption and housing expenditures in retirement.

Average liquid financial instruments drop at the end of economic life because of bequest

heterogeneity—only households in the top half of the wealth distribution leave inheritances.

The relatively flat profiles of both goods consumption and housing expenditures over the

life-cycle shown in Panels (10c)-(10d) suggest that households partially self-insure against

idiosyncratic shocks and retirement. Housing illiquidity and the availability of liquid financial

assets are also both key for generating the flat profile of average housing expenditures, which

is, in turn, key for matching the data and solving for a Krusell and Smith (1998) approximate

equilibrium. Iacoviello and Pavan (2007) explain that illiquid housing results in households

accumulating a buffer stock of wealth in liquid financial instruments instead of housing since

households cannot adjust housing without paying additional transaction costs. If liquid

financial instruments were not available, the average housing expenditure profile would look

like that of liquid financial instruments with the hump-shape indicating more variation in

marginal propensities to consume within and across households. The simple AR(1) forecast

given by equation (14) would then be insufficient to approximate the evolution of house

prices and would generate worse goodness of fit measures than those in Appendix B.

An empirically consistent distribution of housing is key for pinning down aggregate house

prices throughout the housing boom and Figure (11) shows the model also matches the

homeownership rate and mortgage leverage ratio over the life-cycle. Young households are

particularly important because they are less likely to own homes and more likely to have

maximum leverage which makes them the most sensitive to looser credit conditions.
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Figure 11: Housing statistics over the life-cycle, 1998 dollars.

Panel (11a) shows that households remain renters, on average, in the first part of economic

life in order to accumulate enough wealth and earnings to overcome the loan-to-value and
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payment-to-income constraints. The size of inheritances and initial income endowments

determine the age in which households can afford to purchase housing.35 Consistent with

the data, the worse off households can never afford housing and remain life-long renters.

Panel (11b) shows that mortgage leverage—homeowners’ ratio of mortgage debt to hous-

ing value—is highest at age 22 and declines thereafter as household amortize mortgage

balances. Model simulated leverage is slightly below but mostly in line with its empirical

counterpart until age 65. Thereafter, it takes on counterfactual oscillations and low values

due to assumptions on mortgages. In the model, homeowners can take out a mortgage that

lasts for only a few years while in practice mortgages may only be available longer tenures.

35See Brandsaas (2024) for an overview of how parental transfers help young households overcome mortgage
constraints. Including intervivos transfers is beyond the scope of this paper.
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C.3 Segmentation of Housing Unit Sizes

This Appendix evaluates the assumptions on the partial segmentation of housing unit

sizes and shows that the model’s distributions match those of the data minus a few discrep-

ancies. Because housing size enters the households’ utility function, empirically consistent

partial segmentation can be represented by certain sizes of housing units only being available

to a subset of households.36 To best fit the pre-boom homeownership rate of 66 percent, I

follow Kaplan et al. (2020) and assume that the smallest housing unit cannot be owned and

the larger housing units cannot be rented. Table (7) shows that in the data only 9 percent

of homeowners occupy the smallest sized unit and only 10 percent of renters occupy the

largest sized unit which suggests that the partial segmentation assumption only restricts the

model from matching a fraction of the overall size distribution. The model’s distributions of

owner-occupied and rental units overstate the demand for the smallest available units but

match the rest of the distributions relatively well. Alternative segmentation assumptions

shown in Table (7) provide small fixes to these shortcomings at the expense of distorting

other targeted moments such as the homeownership rate or the housing expenditure share

as shown in Table (8).

House
Size

Data
Owners

Benchmark
Model No seg. Full seg. Partial seg. Smaller size 1 Larger size 1

1 9 19 19
2 24 55 23 22 46 49
3 25 9 23 24 17 14
4 18 13 13 89 12 13 13
5 10 17 16 2 16 18 18
6 9 4 5 9 5 5 4
7 6 2 1 0 1 1 1

House
Size

Data
Renters

Benchmark
Model No seg. Full seg. Partial seg. Smaller size 1 Larger size 1

1 51 79 76 75 76 73 77
2 28 14 14 12 14 18 14
3 11 7 6 13 10 9 9
4 5 2
5 2 2
6 1 1
7 2 0

Table 7: Distribution of housing unit sizes in percentage points by segmentation assumptions.
Source: American Housing Survey, Kaplan et al. (2020).

36Landvoigt et al.’s (2015) empirical evidence points to partial segmentation of housing markets by quality
of units rather than size which is beyond the scope of most macro housing models. Absent a standard
segmentation convention, Arslan et al. (2022) rely on rental sector convertibility frictions and Greenwald
and Guren (2024) assume separate housing stocks similar to the full segmentation shown in Table (7).
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Moment
Empirical
Value

Benchmark
Model No seg. Full seg.

Smaller
size 1

Larger
size 1

Housing/total cons. expenditures 0.16 0.16 0.15 0.18 0.15 0.16
Aggregate home-ownership rate 0.66 0.68 0.7 0.54 0.71 0.68
Av. sized owned/rented house 1.5 2 1.6 2 1.6 1.7
Av. earnings of owners/renters 2.1 2.8 2.6 2.6 2.6 2.7
Homeownership rate of < 35 y.o. 0.39 0.34 0.38 0.26 0.38 0.36

Table 8: Moments by segmentation assumptions. Source: American Housing Survey, Kaplan et al.
(2020).

The segmentation assumptions are:

• Benchmark: renters can only choose the smallest three housing unit sizes and owners
cannot choose the smallest size.

• No segmentation: renters and owners can choose all available housing unit sizes.
• Full segmentation: homeowners can only choose the largest four housing unit sizes
so that there is no overlap between the units available to renters and homeowners.

• Smaller unit 1: size 1 is decreased to 1.07 (1.125 in the benchmark).
• Larger unit 1: size 1 is increased to 1.17 (1.125 in the benchmark).

Data Rent-to-own Rent-to-rent Own-to-rent Own-to-own
Data 0.25 (0.01) 0.04 (0.01) -0.29 (0.01) 0.4 (0.01)
Model 0.29 0.15 −0.34 0.03

Table 9: Average log-changes in house size by type of transition. House size is the number of rooms
of a house in the data which is the PSID form 1968 to 1996 via Kaplan et al. (2020). Standard
errors are in parentheses.
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C.4 Cross-sectional Calibration under Markov Credit Conditions

Moment Parameter Empirical Value Model Value
Agg. net worth/annual agg. labor income β 5.5 4.9
Median ratio of net worth to labor income β 1.2 1.2
Median net worth: age 75/age 50 ψ 1.55 1.47
% of bequests in bottom 1/2 of wealth dist. ♭ 0 0
Housing/total cons. expenditures ϕ 0.16 0.16
Aggregate home-ownership rate ω 0.66 0.7
Foreclosure rate ξ 0.005 0.0014
P10 housing/total net worth of owners minH 0.11 0.08
P50 housing/total net worth of owners #H 0.5 0.29
P90 housing/total net worth of owners gap H 0.95 0.76

Average sized owned house/rented house min H̃ 1.5 2

Average earnings of owners to renters #H̃ 2.1 2.7
Annual fraction of houses sold κh 0.1 0.1
Homeownership rate of < 35 y.o. Ξ 0.39 0.42
Employment in construction sector L̄ 0.05 0.04

Table 10: Targeted moments in calibration corresponding to model parameters. The table is similar
to table (1) in the main text but with credit conditions that evolve according to a Markov process
rather than a one-time shift.

Parameter Empirical Value Model Value
Fraction of homeowners w/mortgage 0.66 0.72
Fraction of Homeowners w/HELOC 0.06 0.01
Aggr. mortgage debt/housing value 0.42 0.51
P10 LTV ratio for mortgages 0.15 0.02
P50 LTV ratio for mortgages 0.57 0.52
P90 LTV ratio for mortgages 0.92 0.92
Share of NW held by bottom quintile 0 0
Share of NW held by middle quintile 0.05 0.09
Share of NW held by top quintile 0.81 0.66
Share of NW held by top 10 percent 0.7 0.43
Share of NW held by top 1 percent 0.46 0.06
P10 house value/earnings 0.9 0.94
P50 house value/earnings 2.1 1.8
P90 house value/earnings 5.5 4.1

Table 11: Untargeted moments in calibration. The table is similar to table (3) in the main text
but with credit conditions that evolve according to a Markov process rather than a one-time shift.
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D Appendix: Learning Calibration

When constant, the learning gain g is set to minimize the mean squared errors of house

price forecasts from the model relative to an empirical proxy constructed from the University

of Michigan Surveys of Consumers. Because the Michigan Survey’s questions about future

house prices are only available starting in 2007, there are no direct measures of house price

expectations from 1999 to 2007 as shown by Kuchler et al. (2023, Table 2). To construct a

house price expectations proxy, I exploit the 0.92 correlation between expected house price

growth in the next 12 months (2007 start) and whether or not it is a relatively good time to

sell a house (1992 start).37

correlation= 0.92
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Figure 12: Responses from the University of Michigan Surveys of Consumers, percent of respondents
who say it is a good time to sell a house less those who say it is a bad time plus 100 and the median
expected house price growth in the next 12 months expressed as 12-month percentage change. The
shaded bar between the dashed vertical lines denotes the U.S. housing boom (1999 to 2007).

Given the tight correlation between the two series, I create a backcast of the expected

change in house prices going back to 1992 by projecting expectations yt onto selling conditions

xt for t = {Jan. 2007, . . . , Jun. 2022}.

yt = β0 + β1xt + et
37The Relative column of Table 43 is the Good time to sell column minus the Bad time to sell

column plus 100. The survey asks, “Generally speaking, do you think now is a good time or a bad time
to sell a house?” The Median column of Table 46 is the median response to the question, “By about what
percent do you expect prices of homes like yours in your community to go (up/down), on average, over the
next 12 months?”
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Using the estimated coefficients β̂, I then backcast the expectations series ŷt from the selling

conditions series xt when the former is not yet available, t = {Jan. 1992, . . . ,Dec. 2006}.

ŷt = β̂0 + β̂1xt

Figure (13) shows that the backcasted empirical proxy has a good in sample fit with an

r2 near 1. Although the higher frequency movements of the two series differ, the backcast

captures the path of expectations which is key for the study of the U.S. housing boom.
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Figure 13: Median expected house price growth in the next 12 months from the University of
Michigan Survey of Consumers, 12-month percentage change. Shaded bar between the dashed
vertical lines marks the U.S. housing boom (1999 to 2007).

r2= 0.84

House price expectations from the model and the empirical proxy have four key differ-

ences that affect their comparability. Those from the model are for two-year real detrended

house prices in levels while those from the data are for nominal expected 12-month growth

rates. Calculations below discuss which differences affect the mean squared forecast error

used to calibrate the constant learning gain.

Growth rates vs. levels: Forecast errors from growth rates and levels are roughly equiv-

alent as shown by equations (19) and (20). Assuming the current month’s house prices pτ

are known to survey participants, the h period ahead forecast error esurveyτ for month τ can

be defined as:
esurveyτ ≡ log pτ+h − logFτpτ+h
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Noting that the Michigan survey provides an expected 12-month growth rate Fτgτ+h for

h = 12, the above definition becomes:

esurveyτ ≡ log pτ+h − log
(
pτ (1 + Fτgτ+h)

)
Re-arranging and letting log(1 + Fτgτ+h) ≈ Fτgτ+h, the above expression becomes:

esurveyτ ≡ log
(
pτ+h/pt

)
− Fτgτ+h (19)

In the model, the f period ahead forecast for period t in aggregate state Zt with

Z, t ∈ {Z,Z ′} is given as:

emodel
t ≡ log pt+f − EZt+f

[a0Z,t + a1Z,t log pt] (20)

Where the period t is two years and f = 1 so that the forecast is one period ahead.

Forecast horizon: To compare the empirical proxy’s 12-month forecast horizon to the two-

year forecast horizon from the model, I assume that survey respondents expect house price

growth for the next 12 months to remain for the following 12 months. The imputed forecast

for the next 2× h = 24 can be written as:

esurveyτ ≡ log pτ+2×h − logFτpτ+2×h

log pτ+2×h − log
(
pτ (1 + Fτgτ+h)

2
)

log(pτ+2×h/pτ )− 2× Fτgτ+h (21)

Imputing the forecast for the next two years via compounding may overstate expected house

price growth in the next two years, 2×Fτgτ+h > Fτgτ+2×h. Although Figure (14) shows that

the forecast errors of house price growth at the 12-month and two-year horizons (equations

19 and 21) are quite similar throughout the housing boom, they differ in the later part when

the two-year series is higher resulting in a larger mean squared error. However, because

expected house prices for the next five years are at their all-time high at the end of the

housing boom as shown in Panel (2a) in the main text, house price expectations for the next

two years may have indeed been higher than those for the next 12 months.38

38The expectations for the next give years are the median column of Table 47, “Expected Change in Home
Values During the Next Five Years.” The survey asks, “By about what percent per year do you expect
prices of homes like yours in your community to go (up/down), on average, over the next five years or so?”
Two problems prevent interpolation of the two-year expectations from the one- and give-year expectations.
First, the one- and five-year expectations do not have a monotonic ordering. Survey respondents expected
higher house price growth in the next five years than in the next one year from early 2007 to mid-2013, but
the opposite ordering from mid-2013 throughout the remainder of the period shown in Panel (2a). Second,
there is no tight correlation of five-year series with other series in the Michigan survey thereby precluding a
backcasting exercise to obtain proxies for the pre-2007 period.
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Given the concerns about imputing the house price expectations for the next two years,

one could instead calibrate the learning gain to the one-year forecast error. The resulting

housing boom simulations would be like those shown in Figure (5) with a gain lower than

g=0.508. With the lower value of the learning gain, the mean squared forecast error is closer

to the 7.93 value of the one-year horizon rather than the 28.66 value at the two-year horizon.

House prices still boom, but to a peak that is lower than the 75 percent match to the data

observed in the main specification.

MSE nominal:  7.93
MSE real:        9.67
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(a) 1-year nominal and real forecast errors
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(b) 2-year nominal and real forecast errors

Figure 14: Panel (a): Real house price growth is the FHFA house price index scaled by the price
index for non-durable consumption. Expected house price growth for the next 12 months is the
empirical proxy constructed from the University of Michigan Survey of Consumers and is scaled
by responses for expected inflation from the survey. Panel (b) is same as Panel (a), but with
house price and inflation expectations both imputed to a two-year forecast horizon. The panels are
given in the quarterly average of the 12-month percentage change. Shaded bar between the dashed
vertical lines marks the U.S. housing boom (1999 to 2007).

Nominal vs. real: The real house price forecast error can be calculated by dividing both

realized and expected house prices by actual and expected inflation. Let πτ+h be one-year

realized inflation and Fτπτ+h be its expected value for month τ . The real forecast error is:

esurvey,realτ ≡ log

(
pτ+h

1 + πτ+h

)
− log

(
pτ (1 + Fτgτ+h)

(1 + Fτπτ+h)

)
log(pτ+h/pτ )− Fτgτ+h︸ ︷︷ ︸

esurveyτ

−
(
πτ+h − Fτπτ+h

)
(22)

The real house price forecast error is the forecast error of nominal house price growth less

the forecast for the inflation rate.39 Figure (14) shows that the real and nominal house price

39The realized inflation series is the PCE price index for durables less consumption which is what is used
elsewhere in the paper. Results are similar if the headline PCE price index is used instead.
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forecasts are roughly similar for both the one-year expectations and the two-year imputed

expectations throughout the housing boom.40 Within each forecast horizon, there is little

difference between the real or nominal mean squared errors at the one-year horizon. At the

two-year horizon, the real error is larger than the nominal error and corresponds most closely

to the value of 37.88 obtained under a larger constant shown in Figure (5).

De-trending: The empirical real house price forecast errors are not affected by subtracting

out a time trend like the one used to construct house prices in the model. The predicted

linear time trend Γ̂pτ+h cancels from both sides of equation (22):

log (pτ+h(1− Γ)/(1 + πτ ))− log (pτ (1− Γ)(1 + Fτgτ+h)/(1 + Fτπτ+h))

Additional caveats: Evidence from other surveys suggest that responses from the Uni-

versity of Michigan Survey of Consumers may actually underestimate expected house price

growth which could lead to lower forecast errors than those presented above.41 For this rea-

son, I use the median house price expectations for the next 12 months instead of the mean

as the former tends to run higher thus resulting in lower forecast errors. Moreover, figure

(15) shows that the median point prediction for house price growth in the next 12 months

from the NY Fed Survey of Consumer Expectations is not always higher than the empirical

proxy used in this paper for the period in which they are both available.

40The 2-year real forecast error is: log(pτ+2×h/pτ )− 2× Fτgτ+2×h −
(
πτ+2×h − 2× Fτπτ+2×h

)
.

41Kuchler et al. (2023) note in footnote 5 that house price expectations from the NY Fed Survey of
Consumer Expectations (2013 start) show patterns similar to those of the University of Michigan Survey of
Consumers with average one-year expectations usually about 2 percentage points higher. De Stefani (2021)
notes that house prices expectations from the University of Michigan Survey of Consumers are only available
for homeowners which may be problematic because Kindermann et al. (2024) find that renters looking to
buy houses are the most informed about house price expectations.

65



-5

0

5

10

2013 2016 2019 2022

Expected house price growth in the next 12 months, proxy
SCE median house price growth in the next 12 months

Figure 15: Expected house price growth for the next 12 months is the empirical proxy constructed
from the University of Michigan Survey of Consumers and the median point prediction of expected
house price growth for the next 12 months from the Federal Reserve Bank of New York Survey of
Consumer Expectations, 12-month percentage change.
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E Appendix: Comparison to Kaplan et al. (2020)

As noted in section 3.1, there are some small differences between the implementation in

this paper relative to that of Kaplan et al. (2020). These differences require a slightly lower

operating cost of the rental company Ξ to calibrate to the correct homeownership rate for

households under 35 years of age and are listed below:

• The McClement’s scale on utility ej is set so that {ej}30j=21 = 1 while in Kaplan et al.

(2020) it is instead set at {ej}30j=21 = {ej}8j=1 > 1.

• At age 30, agents who choose to stay in their house do not borrow HELOCs.

• Retired agents have −ζ(Z) in the mortgage pricing function.42

Figure (16) shows that these differences have almost no implications on the main findings

of Kaplan et al. (2020) and only affect magnitudes and time paths of impulse responses. All

purple lines shown in Figure (16) are results from Kaplan et al. and all blue lines are from

the code in this paper solved under the latter’s forecasting coefficients for house prices.

The differences noted above result in a slightly smaller boom in house prices, slightly

larger drop in the rent-to-price ratio, and smaller rise in consumption, as shown in panels

(16a), (16b), and (16f), respectively.

The effects are more substantial for the impulse responses for the normalized and un-

normalized homeownership rate, leverage, and foreclosure rate as shown in panels (16c),

(16g), (16d), and (16e), respectively. First, I note that leverage and the foreclosure rate

(panels (16d) and (16e), respectively) both increase sharply in the bust with the degree of

the increases depending on the operating cost of the rental company Ξ. The increases in the

bust are relatively higher under the original high value of Ξ as shown by the dotted purple

and blue lines than under the re-calibrated low value of Ξ as shown by the dashed purple

and blue lines. Although the increase in both leverage and the foreclosure rate are lowest

under this paper’s implementation with the re-calibrated low value of Ξ, panels (16d) and

(16e) show that this can be accounted for, in part, due to the re-calibration.

Furthermore, the homeownership rate can also account for differences in the increase in

leverage and foreclosures in the bust. The un-normalized homeownership rate shown in panel

(16g) is relatively higher under the original high value of Ξ and lower under the re-calibrated

lower value, as seen by the differences between the dotted and dashed lines. The purple lines

from Kaplan et al. (2020) generally start from a higher level of the homeownership rate than

the blue lines of this paper. Finally, I note that for both the dashed lines and the dotted

lines, the shape of the homeownership rate is quite similar.

42The mortgage pricing function was updating before it finished the age loop. This was fixed by closing
off several loops before going into the value function iteration step.
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Figure (17) compares the exogenous beliefs version of Kaplan et al. (2020) to a version

with credit conditions that loosen one time instead of credit conditions that evolve according

to a Markov process. The figure shows that the impulse response of housing boom simulations

are nearly identical for all prices and quantities. This is the case because the probability of

Markov credit conditions shifting is incredibly low at 1% so shutting it to 0% and having the

shift be a surprise is quantitatively little different. This figure suggest that the model solved

under endogenous beliefs and a one-time shift in credit conditions is readily comparable to

its endogenous beliefs counterpart with Markov credit conditions.
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Figure 16: Housing boom impulse responses under exogenous beliefs, 1997=1.

Note: purple lines are results from Kaplan et al.’s (2020) code repository and blue lines are from the code of

this paper, set to the same values of forecasting rule coefficients. The solid purple line is the original impulse

responses. The dashed and dotted lines correct from some small discrepancies with the former solved under

the original value of the operating cost of the rental company Ξ which is higher than the re-calibrated lower

value.
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Figure 17: Housing boom impulse responses under exogenous beliefs, 1997=1.

Note: simulations are from this paper’s code solved under Markov credit conditions as in (2020) and under

a one-time shift in credit conditions as in this paper.
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F Appendix: Alternative Housing Boom Simulations

F.1 Alternative fundamentals

Figure (18) shows counterfactual housing boom simulations that parse the contributions

of beliefs and credit conditions. Panel (18a) shows that house prices are highest and thus

closest to matching the data in the main specification when there is a shift in income and

credit conditions accompanied by endogenously optimistic beliefs.

Panel (18a) shows via the dashed light blue lines that shutting down the shift in credit

conditions, but still allowing for endogenous beliefs and the shock to income results in house

prices that boom, albeit less than the main specification . This suggests that incomplete

information plays an important role in generating an empirically consistent housing boom.

Panels (18c)-(18e) show that without the loosening of credit conditions there are counter-

factually low responses in the homeownership rate, mortgage leverage, and the foreclosure

rate, respectively.

Shutting down endogenous beliefs, but allowing for shocks to income and credit condi-

tions (red lines with circles) results in no boom in house prices as shown in Panel (18a).43

Although there is an increase in homeownership as shown in Panel (18c), new homeowners

are mostly purchasing the same sized house as they previously rented rather than upsizing.

Homeowners must upsize housing units to push up house prices and this does not occur

without optimistic expectations about future house prices. The rent-price ratio (Panel 18b)

remains flat, mortgage leverage counter factually rises (Panel 18d) and consumption and

foreclosures remain counterfactually low (Panels 18f-18e).

Together, these counterfactual simulations suggest that beliefs are quantitatively most

important for determining booming house prices. Credit conditions, however, must loosen

to account for other model housing dynamics.

Finally, figure (18) shows that simulations are similar whether credit conditions loosen

via a one-time shock (red lines with circles) or are Markov (dotted black lines).

43For the housing boom simulation, one must first obtain the forecasting coefficients aloose
Z so that agents

know how house prices evolve when credit conditions loosen. Assuming that coefficients are fixed and known,
these coefficients are solved as a fixed point with fluctuations in aggregate income only and credit conditions
set at their loose values. As in the main specification, the housing boom simulation then starts with the econ-
omy in the state with low aggregate income and tight aggregate credit conditions {Θ(Zlow), C(Zlow)} along

with the corresponding coefficients atight
Zlow,Z′ . As the economy transitions to the state with high aggregate

income and loose credit conditions {Θ(Zhigh), C(Zhigh)} coefficients take on the values aloose
Zhigh,Z′ .
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Figure 18: Counterfactual housing boom simulations from the model decomposition the effects of
beliefs and credit conditions.
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F.2 Alternative Forecast Error Formations

In equation (16) the lagged forecast error is defined as:

aZ,t =aZ,t−1 + gtxt−2 (log pt−1 − x′
t−2aZ,t−1)︸ ︷︷ ︸

et−1

(16)

Because there is no definitive convention, this forecast error could take on other forms such

as the lagged forecast error from a particular aggregate state or the realized forecast error

shown below in equation (23) and (24), respectively.

et−1 = log pt−1 − x′
t−2aZ,t−2 (23)

eZ,t−1 = log pZ,t−1 − x′
Z,t−2aZ,t−1 (24)

Figure (19) shows that these forecast error formations, “Alternative forecast error 1” and

“Alternative forecast error 2” shown by the light blue dashed and solid red lines with a circle,

respectively, have little material effect on housing boom simulations in most cases. They

are quite close to the main results shown by the solid blue line. The simulation “Optimized

initial forecast error” has the initial forecast error set at its empirical value of 1.24 percent

instead of the value of 1 percent that arises under the main calibration when assuming initial

using boom beliefs are atight
Zhigh,Z

′
high

.
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Figure 19: housing boom simulations from the model under alternative forecast error formations.
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F.3 Exploring learning mechanisms

The results shown in figure (20) explore the properties of adaptive learning.

The simulation titled “Learning starts earlier” (dashed light blue lines), starts adaptive

learning at the beginning of the simulation rather than when the economy transitions to the

aggregate state characterized by looser credit conditions and high income in 2001 as under

the main result (solid blue lines). The results are quite similar with notable differences

being a steeper spike in the rent-price ratio, leverage, and foreclosures, shown in panels

(20b), (20d), and (20e), respectively.

In the simulation titled “Longer boom” (solid red lines with circles), the housing boom

state characterized by high income and looser credit conditions counterfactually lasts for

another 10 years rather than ending in 2009. The simulation paths are exactly the same

as those of the main result (solid blue lines) until 2009. Thereafter, house prices under the

counterfactual, as shown in panel (20a), contract less suddenly and reach a deeper trough by

2013 than under the main result. Prices rebound above their pre-boom values around 2018

which actually results in a second housing boom that peaks in late 2022. Although this path

tracks the actual rebound in aggregate house prices in the data quite closely, it also results

in counterfactual movements in other model prices and quantities shown. For example, the

counterfactually large rebound in the price-to-rent ratio is the result of large oscillations in

the house price forecast error pushing up rents counterfactually high.

The simulation titled “Alternative non-boom gain” (dotted black lines) initializes the

post-boom learning gain at gt = g/(1 + g) as in Marcet and Nicolini (2003) rather than

gt = g/(1 + t × g) as in the main simulation. The simulations shown are exactly the same

in the housing boom, but the slower decaying of gt post-boom results in a deeper decline in

house prices and other model quantities. Like in the “Learning starts earlier” simulation,

the protracted bust in house prices is at the expensive of a counterfactually high rent-price

ratio.
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Figure 20: housing boom simulations from the model that explore the properties of adaptive
learning.
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F.4 Convergence of Learning Coefficients

Figures (21) and (22) show that coefficients under adaptive learning settle at an ergodic

distribution near their known counterparts. A counterfactual return to the housing boom

state 100 periods (200 years) after the 2000s boom shows that coefficients adjust in response

to forecast errors but revert back to an ergodic distribution in the non-boom state. Although

there are observable differences between the learning coefficients and their known counter-

parts in panels (21a) and (22a), panels (21b) and (22b) show that these differences are well

within the convergence tolerance used to solve for the fixed coefficients.
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Figure 21: Time path of beliefs for 400 periods. Period 0 is the start of the housing boom near
period 100 there is another counterfactual unexpected loosening of credit conditions.
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Figure 22: Time path of beliefs for 400 periods. Period 0 is the start of the housing boom and near
period 100 there is another counterfactual unexpected loosening of credit conditions.
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G Appendix: Data Definitions

The aggregate data definitions follow those in Appendix E.1 of Kaplan et al. (2020).

They have been detrended using a linear time trend estimated from 1975 to 1997.

• Consumption: Quarterly nominal nondurable expenditures (line 8 of NIPA Table

2.3.5 Personal Consumption Expenditures by Major Type of Product) divided by the

price index for nondurable consumption (line 8 of NIPA Table 2.3.4. Price Indexes for

Personal Consumption Expenditures by Major Type of Product).

• Homeownership: Census Bureau U.S homeownership rate (Table 14) and by the age

of household head (Table 19).

• House Prices: House price index for the entire United States (Federal Housing Fi-

nance Agency (FRED: USSTHPI)) divided by the price index for nondurable consump-

tion (line 8 of NIPA Table 2.3.4. Price Indexes for Personal Consumption Expenditures

by Major Type of Product).

• Rent-Price Ratio: Rents (Bureau of Labor Statistics Price Index for Rent of Primary

Residences) divided by the FHFA house price index described above.

• Foreclosures: Number of consumers with new foreclosures and bankruptcies (Federal

Reserve Bank of New York Quarterly Report on Household Debt and Credit) divided

by the civilian noninstitutional population (FRED: CNP16OV).

• Leverage: Flow of Funds Table B.101 Balance Sheet of Households and Nonprofit Or-

ganizations. Home mortgage liabilities (FL163165505) divided by the sum of household

owner occupied housing at market value (LM155035015) and nonprofit organization

real estate at Market Value (LM165035005).

• Labor Productivity: U.S. Total Labor Productivity (FRED: ULQELP01USQ661S)

• Mortgage and Treasury Interest Rates: 30-year fixed rate mortgage (FRED:

GAGE30US) and 10-year Treasury at a constant maturity (FRED: GS10)

• House price expectations: University of Michigan Surveys of Consumers. The

construction of the empirical proxy and data definitions are discussed in detail in

Appendix D. New York Fed Survey of Consumer Expectations.
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