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Abstract

I study the dynamics of default-free bond yields and term premia using a novel equi-

librium term structure model with a New-Keynesian core and imperfect information

about productivity. Imperfect information can justify a shock to signals about produc-

tivity that does not lead to actual changes in productivity, which can be interpreted

as a demand shock. When incorporated in a DSGE term structure model with a

standard productivity shock, this demand shock generates term premia that are on

average higher, with sizable countercyclical variation that arises endogenously. The

model helps reconcile the empirical evidence that term premia have been on average

positive and countercyclical, with numerous studies pointing to demand shocks as a

key driver of business cycles over the last few decades.
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1 Introduction

Among various risk premia of financial assets, the term premium—a function purely of the

term structure of pricing kernels—has implications that span beyond default-free bonds, and

especially for monetary policy in terms of extracting market expectations accurately from

bond prices. In this paper, I propose a structural explanation of the term structure of in-

terest rates, with a primary focus on the economic forces behind the (counter)cyclicality of

longer-maturity term premia. A number of studies have shown empirical evidence of coun-

tercyclical term premia, consistent with the ample evidence of countercyclical risk premia

across multiple asset classes. Meanwhile, a large macroeconomic literature based on dynamic

stochastic general equilibrium (DSGE) models or structural vector autoregressions has found

that “demand” shocks—shocks that move inflation and aggregate quantities such as output

in the same direction—have been an important source of business cycle fluctuations in recent

decades, after the great inflation period.1 Taken together, these findings seem to suggest

that demand shocks should play an important role in making term premia countercyclical.

Nonetheless, studies that use DSGE models to analyze yield dynamics, such as Rudebusch

and Swanson (2012), have typically considered supply shocks to play a dominant role in

generating the empirical pattern of yields and term premia. This is because supply shocks

can generate inflation risk premia that are on average positive, which helps explain the

significantly positive nominal term premia observed over the last several decades. While

term premia can be countercyclical in that setting, the mechanism seems at odds with the

aforementioned empirical support for demand shocks in explaining business cycles.

To show how the countercyclicality of term premia can endogenously arise from demand

shocks, I explore a novel channel in which imperfect information about productivity plays a

crucial role. A number of studies, such as Fajgelbaum et al. (2017) have shown that a form of

rational learning about the unobservable states where the precision of the signal is increasing

in economic activity can explain key aspects of the business cycle, such as countercyclical

uncertainty. My contribution is to show that this framework can be embedded tractably in

a nonlinear DSGE term structure model, and generate meaningful demand-side effects that

can help explain the dynamics of the term structure of interest rates.

There are, in fact, relatively few studies that systematically analyze the cyclicality of

longer-maturity term premia including the post-financial crisis sample. Hence, before I

present the model, I offer regression-based evidence on the countercyclicality of longer-

maturity term premia using a number of business cycle indicators. I find that there is,

1Similarly, I refer to “supply” shocks as shocks that move inflation and quantities in the opposite direc-
tion. This is consistent with the “traditional interpretation” (Blanchard (1989)) used in many studies.
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overall, statistically significant countercyclicality over the sample period from the beginning

of 1990 to the end of 2019. I further confirm that term premia are also positively correlated

with measures of aggregate uncertainty.

Motivated by the empirical findings, I first build a simple equilibrium term structure

model with imperfect information to clarify the intuition for why a shock to productivity

and a shock to signals about productivity that does not lead to actual changes in productivity

(“noise” shock) can both generate countercyclical term premia. The model consists of a state

space model of productivity, a consumption rule, and an Euler equation. Productivity is the

sum of a persistent and a transitory component, both unobservable. The agent infers levels

of the unobservables from productivity itself and a noisy public signal about the persistent

component. Importantly, signal precision is increasing in economic activity, which, in turn,

is increasing in productivity or the signal. Intuitively, more economic activity leads to

further information about productivity via social learning, and hence the collective signal

becomes more precise, i.e., uncertainty about productivity is countercyclical. Since term

premia are on average positive in the model, this endogenous countercyclicality of uncertainty

leads to the countercyclicality of term premia. In contrast, under perfect information, term

premia are still positive but constant. The model is nonlinear, but simple enough to be

solved without approximation, and allows for some analytical characterizations of the term

premium. However, it remains illustrative, and without featuring inflation, it is difficult to

interpret the shocks as “demand” or “supply” shocks.

To address these issues, I build a DSGE term structure model with imperfect information

by embedding the productivity structure and the learning process of the simple model into an

otherwise standard New-Keynesian setup. The New-Keynesian model allows me to analyze

the economic determinants of nominal and real yields in a more realistic setting where

inflation is determined endogenously through nominal price rigidities and monetary policy.

In this model, intermediate goods firms infer the states of productivity from a public signal

that becomes more informative as the output gap increases. While models with information

frictions can face computational challenges and be hard to solve without linearization, my

specification remains relatively tractable. I solve the model using a high-order perturbation

method to account for time-varying uncertainty and term premia.

I calibrate the model to US data and show that the mechanism elucidated in the simple

model carries over to the DSGE model in a quantitatively meaningful way. In addition, the

noise shock can be clearly interpreted as a demand shock. This is because a noise shock, by

raising the belief about supply capacity, motivates consumption without the actual increase

in supply, causing upward pressure on prices. I also find that imperfect information amplifies

the countercyclicality of term premia due to supply shocks through an intuitive mechanism
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of endogenous countercyclical uncertainty, without resorting to exogenous volatility shocks.

Thus, I show that incorporating imperfect information significantly increases average nom-

inal term premia and amplifies the countercyclicality of term premia through both demand

and supply shocks, bringing the model-implied term premium dynamics more in line with

empirical estimates.2 I conclude the analysis by clarifying the role of the key parameters

that govern the information friction in my model, and show that real term premia have an

important role in the amplification of the volatility and countercyclicality of nominal term

premia. The result is consistent with recent papers by Duffee (2018) and Chernov et al.

(2021) in emphasizing the real term structure to explain the variation of the nominal term

structure of interest rates. I further offer a new explanation based on imperfect information.

The structure of the paper is as follows. Following a literature review, Section 2 presents

motivating empirical evidence on the countercyclicality of term premia. Section 3 presents a

simple term structure model with imperfect information that fleshes out the key mechanism

of the DSGE term structure model, which is analyzed in Section 4. Section 5 concludes.

Literature Review This work is related to a few strands of the literature. First, it

builds on macroeconomic models with imperfect information that dates back as early as

Kydland and Prescott (1982). It is particularly related to New-Keynesian models that

embed imperfect information featuring Bayesian learners about unobservable states with

homogeneous expectations, such as Blanchard et al. (2013) and Faccini and Melosi (2022).

However, a key difference in the information friction is the feature of procyclical signal

precision, bringing my work closer to a smaller set of papers such as Van Nieuwerburgh and

Veldkamp (2006), Fajgelbaum et al. (2017), and Ilut and Saijo (2021). While these papers

focus on how the information friction helps explain the business cycle, my paper argues

that the friction has implications beyond that, and is useful to understand term structure

dynamics as well.

Second, it complements studies on production-based asset pricing models with imperfect

information, such as Cagetti et al. (2002), Ai (2010), Ai et al. (2018), Winkler (2020), and

Bianchi et al. (2022). These papers, however, do not focus on Treasury yields and term

premia, as I do.

Third, it follows the large literature on equilibrium term structure models. Compared

to endowment economy models (e.g., Campbell (1986) or Piazzesi and Schneider (2007),

among many others), the DSGE-based models which this paper directly builds on have been

developed relatively recently; a selective list includes: Rudebusch and Swanson (2008, 2012),

2While not the scope of this paper, term premia can also be procyclical in important ways. For example,
procyclicality can arise from preference shocks (Andreasen et al. (2018)), or safety and liquidity of Treasury
bonds (Krishnamurthy and Vissing-Jorgensen (2012)) can become more valuable during recessions.
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Doh (2011), Andreasen (2012a), Van Binsbergen et al. (2012), Chen et al. (2012), Dew-Becker

(2014), Kung (2015), Lopez et al. (2015), Carlstrom et al. (2017), Andreasen et al. (2018),

Swanson (2019), Andreasen and Jørgensen (2020), Gourio and Ngo (2020), and Hsu et al.

(2021). A common assumption across these papers is perfect information. By contrast,

the key feature of my model is imperfect information. This feature leads to endogenous

heteroskedasticity in the pricing kernel, and provides a deeper microfoundation to studies

that incorporate exogenous stochastic volatility, such as Andreasen (2012b), Nakata and

Tanaka (2016), Bianchi et al. (2023), and Bretscher et al. (2020).

2 Empirical Motivation

I start with a discussion on the empirical pattern of term premia that motivates the paper.

In line with risk premia across a broad set of asset classes, the countercyclicality of nominal

term premia has been documented in a number of empirical studies. However, analyses

that include the post-financial crisis period are somewhat limited in the scope of the term

premium measures and the business cycle indicators they consider (see Appendix B.1 for

references). Thus, I conduct a regression analysis using a different set of term premium

estimates and a range of business cycle indicators. The sample period ends before 2020,

since the unprecedented economic impact of the pandemic questions the suitability of the

standard statistical methods I use for the analysis. Details of the data are relegated to

Appendix A.
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Figure 1: 5-to-10-year Forward Term Premium

Notes: Quarterly time series from 1990.Q1 to 2019.Q4. ACM is the term premium of Adrian et al. (2013).
BR is the term premium estimated from a version of the model by Bauer and Rudebusch (2020). KW is the
term premium of Kim and Wright (2005). Shaded grey areas correspond to NBER recession periods. The
left panel plots the original term premium series, while the right panel plots the same series detrended using
the method of Hamilton (2018).

Figure 1 shows three well-known estimates of the nominal term premium—first, from

Adrian et al. (2013) (ACM), second, from a version of Bauer and Rudebusch (2020) (BR), and

third, from Kim and Wright (2005) (KW). I focus on longer-maturity measures; in particular,

the 5-to-10-year forward measure to mitigate potential measurement issues since the models

do not account for the effective lower bound (ELB).3 Term premia have generally been

positive but trending down and were near zero by the end of 2019 (left panel). Meanwhile,

the rise in term premia in the last three recessions before 2020 is visually evident, particularly

from the detrended series using the method of Hamilton (2018) (right panel).

For the dependent variables, I use these three estimates of nominal term premia. Also,

following many other studies, I consider the 1-year expected excess holding return of a 10-year

nominal bond.4 For a sharper focus on the business cycle component of these variables, I use

3All three models assume yields and term premia are driven by multiple latent factors, and use no-
arbitrage restrictions to help identification, but the three models differ significantly in other aspects. For
instance, only KW uses survey forecasts to assist identification, while only BR allows for a non-stationary
factor, which may better account for the downward trend in interest rates than strictly stationary models.

4Since the excess return per se is not the term premium, I use the expected component of the excess
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the detrended series except for the expected excess return, which does not show a significant

trend. The independent variables are nonfarm payroll, industrial production, real GDP (all

year-on-year changes), GDP gap, unemployment gap, and capacity utilization. I run a series

of univariate regressions where each term premium series and the expected excess return

are regressed separately on to one of the independent variables with a constant. I take this

approach since the goal of the analysis is to gauge the robustness of the countercyclicality of

term premia across different indicators rather than to single out the relative importance of

a particular one. The results are summarized in Table 1, Panel A, which reports the slope

coefficient associated with the macroeconomic indicator for each individual regression.

Results show that the coefficients are negative regardless of the specification, consistent

with notable evidence of countercyclicality of the term premium. While the statistical signif-

icance varies, it is strong for many specifications, especially for the ACM and the expected

excess return. As a robustness check, I provide additional regression results in Appendix B,

using the non-detrended series and year-on-year differences of term premia, and find similar

countercyclicality. I also show that the evidence of countercyclicality is similarly strong since

2000. This period is interesting since it largely coincides with a period in which the correla-

tion between inflation and consumption growth turned from negative to positive (e.g., Song

(2017)) while the correlation between returns on Treasury bonds and equity turned from

positive to negative (e.g., David and Veronesi (2013), Campbell et al. (2020)), which could

be interpreted as increased relevance of demand shocks as a source of the business cycle.5

return as the dependent variable based on Fama and Bliss (1987). Using alternative canonical specifications
of Campbell and Shiller (1991) and Cochrane and Piazzesi (2005) lead to broadly similar results.

5The subsample from 2000 puts more emphasis on the post-financial crisis period in which unconventional
monetary policy such as large scale asset purchases was implemented. Countercyclical term premia can still
arise in such an environment if asset purchases contain a shock that lowers term premia and increase economic
activity at the same time, as shown by Chen et al. (2012) and Carlstrom et al. (2017).
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Table 1: Regression of Nominal Term Premia on Business Cycle Indicators

ACM BR KW FB

Panel A: Macroeconomic Indicators

∆NFP −44.00∗∗∗ −25.30∗∗∗ −22.76∗∗∗ −77.18∗∗∗

(8.39) (5.58) (4.16) (13.33)
∆IP −7.18∗∗ −2.74 −4.63∗∗∗ −17.27∗∗∗

(3.26) (2.63) (1.52) (4.67)
∆GDP −24.64∗∗∗ −10.05∗ −10.67∗∗∗ −45.54∗∗∗

(6.63) (5.61) (3.99) (12.40)
GDP gap −29.60∗∗∗ −12.53 −10.28∗ −89.14∗∗∗

(9.33) (8.06) (6.17) (7.32)
UE gap (negative of) −25.58∗∗ −10.36 −6.87 −93.94∗∗∗

(11.15) (10.41) (8.16) (12.11)
CU −22.11∗∗∗ −10.65∗∗∗ −9.71∗∗∗ −48.08∗∗∗

(3.46) (2.33) (1.80) (7.34)

Panel B: Uncertainty Indicators

VIX 8.90∗∗∗ 4.33∗∗∗ 3.68∗∗∗ 12.58∗∗

(2.34) (1.61) (1.27) (5.64)
TFP Vol 1.25∗∗∗ 0.66∗∗∗ 0.44∗∗ 2.99∗∗∗

(0.30) (0.24) (0.20) (0.51)
JLN (Macro) 4.61∗∗∗ 2.64∗∗∗ 2.56∗∗∗ 6.79∗∗

(1.35) (0.96) (0.75) (3.24)

Notes: The sample period is 1990.Q1 through 2019.Q4 with quarterly frequency. Each value represents the
slope coefficient from a univariate regression of a measure of term premium on to either a macroeconomic or
uncertainty indicator plus a constant. The ACM, BR, and KW measures are detrended using the method
of Hamilton (2018). The FB measure is the expected excess return based on Fama and Bliss (1987). The
first three regressors are year-on-year changes. The regression coefficients are in basis point units per one
percentage point change in the regressor. ***, **, and * indicate 1%, 5%, and 10% significance based on
Newey-West standard errors with 6 lags (in brackets), respectively.

Given these results, a natural question would be to ask what are the potential macroe-

conomic drivers behind the countercyclicality. To this end, it is useful to note that DSGE

models designed to analyze the source(s) of macroeconomic dynamics have generally implied

that, particularly since the mid-1980s, demand shocks have been an important driver of the

business cycle. These demand shocks are often shocks to the level of a variable (or “first-

moment” shocks), but can also be shocks to volatility, as recent studies have emphasized.6

6Examples from a vast DSGE literature are: Smets and Wouters (2007), Justiniano et al. (2010), Chris-
tiano et al. (2014), Blanchard et al. (2013), Gust et al. (2017), Chahrour and Jurado (2018). For a less
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Most DSGE models abstract from Treasury yields and term premia, but taken at face

value, the findings imply that demand shocks should be a predominant driver of counter-

cyclical term premia. Nevertheless, canonical studies that use DSGE models to analyze the

term structure, such as Rudebusch and Swanson (2008, 2012) or Andreasen et al. (2018),

have typically considered supply shocks to play a dominant role. This is because supply

shocks can generate positive inflation risk premia on average, which helps explain the posi-

tive nominal term premia over the last several decades. Recent exceptions to this approach

rely on exogenous volatility shocks (e.g., Bretscher et al. (2020), Bianchi et al. (2023)).

To understand the dynamics of yields and term premia in a world of significant de-

mand shocks, I propose an explanation based on imperfect information. As discussed in the

rest of the paper, the key mechanism is the link between countercyclical term premia and

countercyclical macroeconomic uncertainty, which in turn is caused endogenously through

procyclical information production about productivity. Indeed, numerous papers have doc-

umented evidence of countercyclical uncertainty. For completeness, I plot several relevant

measures of aggregate uncertainty in Figure 2 (left panel): (1) the VIX, (2) the conditional

volatility of TFP growth from a GARCH(1,1) model similar to Bloom et al. (2018), (3) the

macroeconomic uncertainty index by Jurado et al. (2015), and (4) the standard deviation

of the 1-quarter-ahead aggregate forecast distribution of GDP growth from the Survey of

Professional Forecasters (SPF). Countercyclical uncertainty can be visually confirmed.

I further run regressions of term premia on measures of uncertainty to provide formal

evidence on the link between term premia and uncertainty. Analogous to the previous

exercise, I run a series of univariate regressions where each term premium series and the

expected excess return are regressed separately on to one of the uncertainty measures with

a constant. In particular, I use the first three measures of uncertainty listed above as

the independent variables, and report the results in Table 1, Panel B. The results confirm

that a rise in uncertainty leads to an increase in term premia, as well as to an increase in

expected excess returns. These results complement similar analyses using different measures

of uncertainty and sample periods, such as Wright (2011) and Bansal and Shaliastovich

(2013). Additional details and robustness checks can be found in Appendix B.7

structural approach, see, e.g., Bekaert et al. (2021). Leduc and Liu (2016) and Basu and Bundick (2017) are
examples which identify uncertainty shocks as demand shocks.

7While measures of aggregate uncertainty are most relevant for the model I develop, I provide some
discussion on using a related measure—“disagreement”—in the appendix.
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Figure 2: Measures of Uncertainty and Information

Notes: “VIX” is the option-based measure of the 30-day expected volatility of the S&P 500 Index. “TFP”
is the conditional standard deviation of TFP growth estimated from a GARCH(1,1) model, using the unad-
justed TFP growth data by Fernald (2014). “JLN-Macro” is the macro uncertainty index by Jurado et al.
(2015). “SPF-GDP” is the standard deviation of the 1-quarter-ahead average forecast distribution of real
GDP growth from the Survey of Professional Forecasters. The uncertainty series are quarterly from 1990.Q1
to 2019.Q4 except for “SPF-GDP”, which is measured for the last quarter of each year. All uncertainty
series are normalized such that they have zero mean and one standard deviation. Patent application is from
the dataset compiled by Marco et al. (2015), and the annual growth rate is computed at the quarterly fre-
quency from 1990.Q1 to 2014.Q4. The dashed line portions indicate omitted data corresponding to periods
of idiosyncratic volatility due to regulatory changes in 1995.Q2 and 2013.Q1. Shaded grey areas correspond
to NBER recession periods.

Meanwhile, the relation between countercyclical uncertainty and procyclical information

production has been analyzed by a strand of macroeconomic studies such as Van Nieuwer-

burgh and Veldkamp (2006) and Fajgelbaum et al. (2017), among others. These studies

provide a compelling framework of rational learning with imperfect information which I

build on, but they do not necessarily show direct evidence of how information on produc-

tivity evolves over time. While such evidence is generally difficult to obtain, I offer one

suggestive evidence based on the growth rate of total patent applications in the U.S. (Fig-

ure 2, right panel). Intuitively, patent applications provide only informative signals about

potential technological advances, and do not necessarily measure productivity itself.8 The

8Based on the data, the ratio of patent issuance to application was about 60 percent (assuming a 2-year
lag between application and issuance), suggesting that a notable share did not result in issuance. That said,
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panel shows that the growth rate of applications tends to fall sharply around recessions and

recover afterwards, implying that information about new technology may be procyclical.

3 Simple Term Structure Model with Imperfect Infor-

mation

To build intuition, I first analyze a simple equilibrium term structure model of default-free

interest rates with imperfect information.

3.1 Model

The model consists of three parts: (1) a state space system of productivity with unobservable

components, (2) a consumption rule that is linear in productivity, and (3) a consumption

Euler equation that prices the term structure of interest rates. Apart from transparency, an

advantage of its simplicity is that, despite being a nonlinear model, it can be solved easily

in a sequential fashion, without approximation methods. In Appendix C, I show that this

model is consistent with a stylized real business cycle model without capital.

State space system of productivity Productivity zt (in logs) consists of a “persistent”

component at and a “transitory” component εz,t:

zt = at + σzεz,t. (1)

zt is observable to the agent (the representative consumer), whereas its components at and

εz,t are unobservable. at follows an AR(1) process: at = ρaat−1 + σaεa,t, where ρa ∈ (0, 1).

Both εa,t and εz,t are i.i.d. standard normal. All parameters are observable.

In addition to zt, the agent observes a large number Jt/∆j of noisy signals sj,t about at,

where the indices j are evenly spaced in the interval [0, Jt]. Each signal is characterized as:

sj,t = at + σsεs,j,t, (2)

where εs,j,t is i.i.d normal with respect to j and t, and has a mean of zero and a variance

of 1/∆j. εs,j,t and at are unobservable, but each signal is observable. These signals can

be interpreted intuitively as “data” (following e.g., Farboodi et al. (2019)) or “news”. By

patent applications are found to be informative about future technological advances, and used in recent
studies such as Bluwstein et al. (2020) to identify news shocks.
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aggregating the signals and taking the limit as ∆j approaches zero, a sufficient statistic for

the collection of signals st can be constructed:

st ≡
1

Jt

∫ Jt

0

sj,tdj = at + σs,tεs,t, (3)

where εs,t is i.i.d standard normal, and σ2
s,t = σ2

s(J
−1
t ).9 εs,t can be considered a “noise” shock

in line with the literature, since it is the component of st which is orthogonal to productivity.

This formulation is similar to Fajgelbaum et al. (2017), but while they link Jt specifically to

the number of firms entering into production, I interpret the source of Jt more broadly and

assume it is an increasing function of an (observable) measure of economic activity from the

previous period, defined as ht−1, i.e., Jt = φ(ht−1), where φ′ > 0. For simplicity, I assume

φ(·) is exponential, hence ln J is linear in h:

ln Jt = ξht−1.

ξ > 0 controls the rate of signals produced by ht−1. Since σs,t is inversely related to Jt,

ht−1 increases the amount of information about at, and makes the aggregate signal st more

precise. This mechanism may be understood intuitively as a “social learning” process where

firms, by producing more goods, disseminate noisy information about aggregate productivity

in the form of data or news from various media outlets, and in turn, learn about productivity

more precisely among themselves as economic activity of others increase.10

ht is specified as an AR(1) process: ht = ρhht−1 + σh,aεa,t + σh,sεs,t, where σh,a, σh,s ≥ 0,

i.e., ht loads positively on εa,t and/or εs,t. I also assume the agent only observes ht−1 at

t, and cannot infer εa,t or εs,t at t to avoid the model becoming trivial. While ht should,

in principle, be explicitly linked to equilibrium variables such as consumption or output,

here I simply interpret ht as representing various activities that produce information about

productivity. This specification simplifies the computation considerably, while capturing the

“cyclicality” of ht, and allowing for some endogeneity of the process (in the sense that ht is

not generated from shocks other than what are already in the model). In the DSGE model

developed in Section 4, Jt will be fully endogenized as a function of equilibrium output.

9st can be understood as the limiting distribution of J−1
∑N
n=1 s(mn)∆j as ∆j → 0, where mn is the

midpoint of interval [jn−1, jn] ⊆ [0, J ] with length ∆j , and N = J/∆j . As mentioned in Fajgelbaum et al.
(2017), adjusting the variance of εs,j,t by ∆j is necessary to prevent the signals from perfectly revealing at
when the number of signals is large and the mass of signals disseminated as sj,t becomes infinitesimal.

10My formulation is a simple way to generate procyclical signal precision, which can also be done by
alternative mechanisms, such as Van Nieuwerburgh and Veldkamp (2006) and Ilut and Saijo (2021).
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The agent updates her belief about at via a Kalman filter:

at|t ≡ Et[at] = ρaat−1|t−1 +Kt−1(st − st|t−1), (4)

where st is the vector of signals (st ≡ [zt, st]
′), and Kt is the time-varying Kalman gain

matrix. σ2
a,t is the conditional forecast variance of at+1 (σ2

a,t ≡ Vart(at+1)), and is updated

according to the standard Ricatti equation:

σ2
a,t = ρ2

a

(
φ(ht−1)

σ2
s

+
1

σ2
z

+
1

σ2
a,t−1

)−1

+ σ2
a. (5)

Consumption Rule and Euler Equation Consumption (in logs) is linear in productivity

zt:

ct = θczt. (6)

The yield of a n-period default-free (real) bond, r
(n)
t , is priced by the Euler equation:

r
(n)
t = r̄ − 1

n
lnEt

[
exp

(
−χc

n∑
i=1

∆ct+i

)]
. (7)

θc, r̄, and χc are exogenous parameters. If derived from a fully-specified equilibrium model,

the Euler equation is consistent with power utility that has risk aversion of χc. It also must

be consistent with (6), which imposes a cross-restriction on θc and χc (see Appendix C).

However, such a restriction is largely irrelevant for the discussion in this section.

The term premium is constructed in a standard way. First, define a hypothetical price

of an n-period bond P
Q(n)
t formed by discounting cashflows by the risk-free bond price:

P
Q(n)
t = P

(1)
t Et[PQ(n−1)

t+1 ]. Then the n-period hypothetical yield priced under risk-neutrality

r
Q(n)
t = − 1

n
lnP

Q(n)
t = − 1

n
lnEt

[
exp

(
−
∑n−1

i=0 r
(1)
t+i

)]
. The n-period term premium is the

difference between the n-period yield r
(n)
t and r

Q(n)
t :

tp
(n)
t ≡ r

(n)
t − r

Q(n)
t . (8)

3.2 Results

I analyze the model dynamics using impulse responses. Since ht acts as a “time-varying

coefficient” in the state space system, the model is nonlinear. Nevertheless, I present standard

impulse responses from the ergodic mean for ease of exposition.11 Parameter values for the

11I assume no shocks after the initial one. See Fernández-Villaverde et al. (2011) for a similar approach.
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model are chosen for illustrative purposes, and set as follows: ρa = 0.98, ρh = 0.5, σa = 0.03,

σz = 0.08, σs = 0.12, σh = 0.1, ξ = 30, θc = 1, χc = 10, r̄ = 0.12

3.2.1 Impulse Responses to a Persistent Productivity shock

The dark blue lines in Figure 3 show how the baseline model with imperfect information

(“model-BL”) responds to a positive one standard deviation (unobserved) shock to at. For

reference, I also plot impulse responses for a version of the model with perfect information

(“model-PI”, light blue lines), in which σs = 0, and a version with imperfect information,

but when the mass of signals does not vary with respect to economic activity and thus has

constant precision (“model-CP”, dashed dark blue lines), in which ξ = 0. This last version

is a popular specification of imperfect information adopted widely in the literature.

12For each impulse response, only one of σh,a and σh,s is assigned the value σh while the other is set to
zero. σz is set relatively larger than σa so that learning about at is gradual, and the additional signal st
plays a meaningful role in the learning process. The signal production rate ξ needs to be sufficiently high
to generate countercyclical uncertainty of consumption and term premia. χc is set to generate meaningful
variation in yields and term premia. The values for θc and r̄ are chosen for simplicity.
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Figure 3: Impulse Responses to εa,t

Notes: All impulse responses are to a +1σ shock. Dark blue lines indicate impulse responses of the baseline
model with imperfect information (model-BL). Dashed dark blue lines indicate impulse responses of the
model with imperfect information with constant precision (model-CP). Light blue lines indicate impulse
responses of the model with perfect information (model-PI). The yield maturity is n = 5.

The top left panel shows the hump-shaped response of the contemporaneous belief about

at (at|t) under model-BL and CP, which reflects learning about (and hence asymptotes to)

the true at over time. By contrast, the response of at|t completely tracks the response of at

under model-PI. The difference between model-CP and PI is well known (e.g., Edge et al.

(2007)). However, compared to model-CP, the agent in model-BL learns faster as economic

activity increases and more information about at improves signal precision. Indeed, σa,t

decreases in model-BL (top middle), but is unchanged in the other models. This is also

evident from the characterization of σa,t, (5), which implies
∂σ2
a,t

∂ht−1
< 0 .

Due to the underlying increase in at, productivity zt and consumption ct increases (ct =

zt), but this does not affect the conditional volatility of ct (zt) in model-PI and CP (top

right). However, in model-BL, we see a significant decrease (dark blue line). In other words,

model-BL can generate the well-documented empirical pattern of countercyclical uncertainty.
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The bottom three panels of Figure 3 show corresponding impulse responses of the term

structure of interest rates. The bottom left and middle panel plot the responses of the

1-period risk free rate (r
(1)
t ) and the n-period yield (r

(n)
t ), respectively. I set n = 5 as an

example. The declines in r
(1)
t and r

(5)
t across models are consistent with the Euler equation

(7). In the models, an increase in productivity raises consumption, but since consumption is

(trend) stationary, consumption growth is expected to decline, which can only be supported

with a lower equilibrium rate to induce borrowing. The decline in rates of model-BL and CP

are sharper compared to model-PI because when information is imperfect, the agent suspects

the shock is transitory, leading to a larger contraction in expected consumption growth.13

The key result is the countercyclical drop in the term premium under model-BL (bottom

right panel, in dark blue). The reason is twofold. First, with perfect information, the model is

basically homoskedastic, with a constant positive term premium. This is because stationarity

in consumption leads to a negative autocorrelation in consumption growth, and hence, the

pricing kernel.14 Second, since the term premium is positive for a given level of consumption

volatility, countercyclical consumption volatility generated by imperfect information results

in countercyclical term premia. The results of model-BL is in stark contrast with model-PI

and CP which generate little variation in the term premium. In Section 3.2.3, I make this

point more formally through an analytical characterization of the 2-period term premium.

3.2.2 Impulse Responses to a Noise Shock

I now discuss the impulse responses to a positive noise shock εs,t. For ease of comparison

with the impulse responses to εa,t, the shock is of the same size as εa,t, which results in

the same positive response of ht. The top left panel of Figure 4 shows distinct responses

of at|t compared to the responses to εa,t. Since the shock does not impact at itself, there is

no response to at|t under model-PI, while under imperfect information, the agent attributes

part of εs,t to εa,t and learns that the signal was actually false only gradually. Similar to the

impulse responses to εa,t, model-BL displays faster learning about at compared to model-CP.

Since the shock has no impact on productivity, there is no impact on consumption.

13The responses of r
(5)
t are smaller in magnitude compared to the response of r

(1)
t due to the stationarity

of interest rates, which is consistent with the empirical evidence of a downward sloping term structure of
yield volatility. See Section 4, and studies such as Cieslak and Povala (2016).

14This implies that “bad (good)” times are likely to be followed by “good (bad)” times, i.e., there is a
stronger demand to hedge for the near-term than for the longer-term, generating a positive term premium.
This mechanism has been documented in studies as early as Campbell (1986).
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Figure 4: Impulse Responses to εs,t

Notes: All impulse responses are to a +1σ shock. Dark blue lines indicate impulse responses of the baseline
model with imperfect information (model-BL). Dashed dark blue lines indicate impulse responses of the
model with imperfect information with constant precision (model-CP). Light blue lines indicate impulse
responses of the model with perfect information (model-PI).The yield maturity is n = 5.

Although the responses of at|t and ct (zt) differ significantly from the responses to εa,t,

the increase in ht nevertheless lowers conditional uncertainty of at|t (top middle panel) as the

flow of information increases, which, in turn lowers the uncertainty about ct, as in the case

of a positive εa,t (top right panel). Since the initial shock size is the same for both cases, the

impulse responses for the conditional volatilities are in fact, equivalent.

Yields rise in response to εs,t since the shock has no effect on current consumption,

but yet increases beliefs about future consumption under imperfect information (model-BL

and model-CP in Figure 4, bottom left and middle panels). However, consumption beliefs

are still stationary, and the countercyclical uncertainty generated from εs,t then leads to a

countercyclical term premium for model-BL (bottom right). In contrast, both model-PI and

CP cannot generate variation in term premia, similar to the responses to εa,t.
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3.2.3 An Analytical Characterization

The model is stylized enough to make the key mechanism of countercyclical term premia

transparent. Furthermore, the 2-period term premium has a simple analytical expression

that confirms the intuition explained in the previous sections. The conditional log-normality

of consumption implies that the term premium of a 2-period real bond is:

tp
(2)
t ≡ r

(2)
t − r

(2)Q
t ∝ Covt(mt+1, r

(1)
t+1)

= (1− ρa)σ2
a,t + σ2

z .
(9)

Note for simplicity, I assume χc = θc = 1. Then, mt+1 = −∆ct+1 is the (real) stochastic

discount factor (See Appendix D for the derivation).15 σ2
a,t is the uncertainty about at given

by (5). Since ρa ∈ (0, 1), (9) shows that the 2-period term premium is always positive.

Intuitively, due to the (trend) stationarity of at, the 1-period bond provides a better hedge

against economic fluctuations than the 2-period bond.

Recall from (5),
∂σ2
a,t

∂ht−1
< 0. This inequality and (9) further imply

∂tp
(2)
t

∂ht−1
< 0. Therefore,

the term premium is decreasing in h, and hence in both εa and εs, i.e., the term premium

is countercyclical. The impulse response analysis above suggests that this intuition extends

beyond two periods. Note that at is observable under perfect information, in which case:

tp
(2)
t ∝ (1− ρa)σ2

a + σ2
z . (10)

Hence, there is no variation in risk quantity and the term premium is constant. By contrast,

imperfect information generates endogenous time-varying term premium from homoskedastic

shocks. Also, compared to the term premium with imperfect information, the term premium

is smaller with perfect information, since σ2
a,t > σ2

a from (5). In this sense, imperfect infor-

mation helps to increase the level of the term premium, in addition to its variability.

4 DSGE Term Structure Model with Imperfect Infor-

mation

The analysis of the simple model shows that both the persistent productivity shock εa,t and

the noise shock εs,t generate a decrease in the conditional volatility of productivity zt, which

leads to a drop in, or the countercyclicality of, the term premium. Importantly, this is the

case though only εa,t impacts zt, and each shock leads to different belief dynamics.

15If the term premium was defined as the 1-period expected excess return of the 2-period bond (with a
Jensen’s correction), the final expression holds exactly.
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However, the model remains fairly illustrative, and without incorporating inflation, it

is difficult to interpret the shocks as “demand” or “supply” shocks. Hence, I next build a

DSGE term structure model with imperfect information embedding the core of the simple

model. This allows me to further assess the quantitative relevance of the featured mechanism

of countercyclical term premia.

4.1 Model

The model has a mostly standard New-Keynesian core with nominal price rigidities and a

monetary policy rule. The key departure is the inclusion of imperfect information. While

features such as Epstein-Zin preferences with habit formation are added to improve the

model’s quantitative performance, I deliberately keep the rest of the model relatively simple

and close to canonical models such as Rudebusch and Swanson (2012), so that the impact

of imperfect information remains transparent. In this section, I elaborate mostly on the

nonstandard features of the model, and relegate a complete characterization to Appendix E.

4.1.1 Households

The representative household has Epstein-Zin preferences (Epstein and Zin (1989)). Its value

function Vt takes the following recursive form:

Vt = Ut(Ct, Nt)− β
{
Et
[
(−Vt+1)1−γ̃]} 1

1−γ̃ , (11)

where the minus signs in (11) account for the fact that period utility Ut ≤ 0 in my calibration.

Ut takes a standard form with external habits: Ut(Ct, Nt) ≡
(Ct−χhC̃t−1)

1−χc

1−χc − G1−χc
t

N1+χn
t

1+χn
,

where χc, χn > 0. Gt is a deterministic trend in total factor productivity (TFP). Ct is the

household’s aggregate consumption of final goods, and C̃t−1 is consumption in the previous

period taken as given by the household. Nt is the labor supply in a frictionless labor market.

The case γ̃ = 0 corresponds to expected utility, with values of γ̃ < 0 corresponding to

risk aversion greater than expected utility (Swanson (2018)). The household faces complete

financial markets, and maximizes (11) subject to a standard budget constraint. Thus, assets

are priced by the unique pricing kernel Mt+1, consistent with (11).

4.1.2 Firms and Imperfect Information

There are a continuum of monopolistically competitive intermediate goods producers (firms)

i ∈ [0, 1] which faces nominal rigidities á la Calvo (1983). If a firm i cannot optimize its price

Pi,t, it indexes the price to a weighted average of previous-period aggregate inflation Πt−1 ≡
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Pt−1

Pt−2
and steady-state inflation Π̄. Each firm is also subject to demand: Yi,t =

(
Pi,t
Pt

)−θ
Yt

and a production function: Yi,t = K1−α
t (GtZtNi,t)

α, where Yt is aggregate output taken as

given by i, and Kt = K̄Gt is capital that grows deterministically with Gt.

TFP consists of two observable components Gt and Zt. Gt grows at a deterministic rate

of ζ ≡ Gt
Gt−1

. Zt is a stationary component. Similar to the simple term structure model,

zt ≡ lnZt is composed of a “persistent” component at and a “transitory” component et:

zt = at + et. (12)

at and et are unobservable and follow independent AR(1) processes:

at = (1− ρa)ā+ ρaat−1 + σaεa,t (13)

et = ρeet−1 + σeεe,t, (14)

where εa,t and εe,t are (unobservable) i.i.d standard normal shocks, and 1 > ρa > ρe ≥ 0.16

Note the state space system in the simple model was a special case where ρe = 0.

As in the simple model, firms also observe a continuum of noisy signals sj,t about at, where

j ∈ [0, Jt]. By assuming sj,t are common knowledge across firms, the individual signals can

be aggregated to a noisy public signal st. I further assume the mass of signals Jt is increasing

in the log “output gap” from the previous period: ỹt−1 ≡ ŷt−1− ȳ, where ŷt−1 ≡ ln Ŷt ≡ ln Yt
Gt

and ȳ ≡ ln Ȳ is its steady state. Thus, Jt = φ(ỹt−1) with φ′ > 0, and st is given by:

st = at +
σs√
φ(ỹt−1)

εs,t, (15)

where εs,t is i.i.d standard normal and unobservable to the firms (the noise shock). Following

the simple model, I specify φ(·) to be exponential, and hence ln Jt is linear in ỹt−1, i.e.,

ln Jt = ξỹt−1. ξ > 0 is now the parameter that controls the amount of productivity signals

generated by the output gap. Note Jt is increasing with respect to an endogenous variable

(output gap) in contrast to the simple model, in which Jt was largely exogenous. That said,

Jt is taken as given by each firm, and there is no active learning. The setup abstracts from

heterogeneous expectations and higher-order beliefs, making it highly tractable.17

16While the assumption that at is stationary is standard in the macro literature, it is also important in
generating positive real term premia (e.g., Rudebusch and Swanson (2012)). Nevertheless, at is estimated
to be a near random walk, consistent with empirical evidence. Note that although I assume TFP does not
have a stochastic trend, it still allows for a deterministic trend.

17In reality, agents can utilize various signals about productivity, including endogenous variables such as
inflation. Incorporating these variables explicitly into the belief formation is out of the scope of this paper,
but part of these effects may be captured through the parameters ξ and σs estimated from the data, as the
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Firms form (common) beliefs about at and et by learning from observations of zt and st

via a Kalman filter. In other words, the beliefs are updated through:

xt|t ≡ Et[xt] = ρxt−1|t−1 +Kt−1(st − st|t−1), (16)

where xt = [ât, et]
′, st = [ẑt, ŝt]

′, ρ = [ρa, 0; 0, ρe] (“hat”s indicate “demeaned”). Kt is the

Kalman gain matrix. Conditional expectations E[·|It] are defined over the information set

It common across households and firms, which precludes {at−τ , et−τ , εs,t−τ}τ≥0.

4.1.3 Monetary Policy/Aggregation/Term Structure of Interest Rates

The central bank sets the nominal 1-period interest rate, R
(1)
t , following a standard Taylor

rule: R
(1)
t =

(
R

(1)
t−1

)ρr (
R̄
[

Πt
Π̄

]φπ [ Ŷt
Ȳ

]φy)1−ρr
. The market clearing condition for final goods

is: Yt = Ct + (ζ + δ − 1)K̄Gt, where δ is the capital depreciation rate.

The price of a n-period zero-coupon nominal bond that pays one dollar at maturity P
(n)
t

is derived recursively via the (nominal) pricing kernel Mt+1: P
(n)
t = Et[Mt+1P

(n−1)
t+1 ], with

P
(0)
t = 1. The yield to maturity then follows: r

(n)
t = − 1

n
lnP

(n)
t (note R

(1)
t = exp(r

(1)
t )). As

described in Section 3.1, the n-period term premium tp
(n)
t is computed from equation (8).

Real yields and term premia are derived analogously using the real pricing kernel Mt+1Πt+1.

4.1.4 Parameters

I determine the model parameters through a combination of calibration and estimation to

fit key moments of macroeconomic variables and the term structure of interest rates in the

U.S., over a sample period from the beginning of 1990 to the end of 2008. The end point is

a conservative choice to avoid complications due to the ELB.18 The chosen parameter values

are summarized in Table 2.

signal structure (15) does not take a stand on the exact source of the signal.
18The data is mostly standard, and described in Appendix A. For an analysis on how the ELB affects

yields and term premia using a DSGE term structure model, see for example, Nakata and Tanaka (2016).
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Table 2: Parameter Values for the DSGE Term Structure Model

Parameter Description Value

Household

β̃ Time discount rate 0.990
χc 1/EIS 5
χh External habit 0.2
χn 1/Frisch elasticity 3
RRA Risk aversion 55

Firm
θ Demand elasticity 6
ϕ 1 - price adjust. freq. 0.8
ιp Indexation weight 0.5
α Labor share in prod. 0.67
δ Capital depreciation rate 0.02

ξ̃† Signal prod. 29.2

Parameter Description Value

Monetary Policy
φπ Inflation gap coeff. 2.5
φy Output gap coeff. 0.05
ρr Interest-rate smoothing coeff. 0.5
Π̄ Steady state inflation 1.009

Exogenous Processes†
ρa AR(1) of persistent TFP 0.992
ρe AR(1) of transitory TFP 0.779
σa Std of persistent TFP 0.010
σe Std of transitory TFP 0.013
σs Std of noisy signal 0.029

Notes: Parameters are calibrated except for those with a dagger (†), which are estimated by GMM.

χc, the inverse of the elasticity of intertemporal substitution (EIS, without habits), is set

to 5. Accounting for habits, the EIS is 0.16.19 Habit persistence (χh) is set to 0.2. These

values are within the range found in previous macro studies.20 χn is set such that the Frisch

elasticity of labor supply is 1/3, in line with estimates from micro studies. The risk aversion

parameter (γ̃) is set such that it implies a relative risk aversion of 55, based on the measure

by Swanson (2018) that accounts for the household’s ability to hedge risk by adjusting its

labor supply.21 This value is largely standard in the macro-finance literature, especially

for production-based models designed to match yields and term premia. As discussed in

Swanson (2019), the parameter can be interpreted as a stand-in for mechanisms that the

model abstracts from, which increase the price or quantity of risk (e.g., ambiguity aversion,

timing attitude or heterogeneous agents).22 The trend growth in TFP is set to 0.9 percent

19Log-linearizing the Euler equation implies an elasticity of (1− χhζ−1)/χc.
20Many macro studies find EIS to be less than 1. For ranges of χh, see, e.g., Del Negro et al. (2015).
21Swanson’s risk aversion measure for recursive utility with external habit can be computed as:

RRA =
χc

1− χhζ−1

1

1 + χcW̄ N̄
χn(1−χhζ−1)C̄

+
γ̃(1− χc)
1− χhζ−1

1

1 + (χc−1)W̄ N̄
(1+χn)(1−χhζ−1)C̄

.

X̄ is the steady state of normalized Xt, i.e., Xt/Gt. Intuitively, the first and third terms on the right hand
side constitute the traditional measure of relative risk aversion abstracting from the flexible labor margin,
while the second and fourth terms scale down that measure when labor supply is determined endogenously.

22In fact, a wide range of values are used in the literature. For example, Rudebusch and Swanson (2012)
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per year, consistent with Fernald (2014). The time discount rate β̃ is set to 0.99, implying

an average 1-quarter real interest rate of 2.0 percent.

The parameters for the firms’ problem are standard; the elasticity of substitution among

intermediate goods (θ) is set to 6, and the probability with which a firm cannot readjust its

price each period (ϕ) is set to 0.8. The firm uses price indexation which places equal weight

(ιp) on previous-period inflation and steady-state inflation. The labor-share parameter (α)

is set to 0.67, and the capital depreciation rate (δ) to 0.02. The choices of the steady

state capital stock (K̄) and persistent component of technology (ā) mostly determine the

capital-output ratio of 2.6, similar to Rudebusch and Swanson (2012).

For the monetary policy rule parameters, I set the coefficient on inflation (φπ), the output

gap (φy), and policy inertia (ρr) to be 2.5, 0.05, and 0.5, respectively. These values are largely

in line with the literature.23 Steady state inflation (Π̄) is set to 1.009 to match an average

annual inflation of 2.0 percent, close to the average core PCE inflation over the sample.

The parameters that characterize the aggregate signal, ξ and σs, as well as those for the

unobserved productivity processes {ρa, ρe, σa, σe} do not have obvious empirical counterparts,

and are hard to calibrate from past studies. Thus, I estimate these parameters with the

Generalized Method of Moments.24

As discussed above, the key implication of imperfect information is endogenous time-

varying uncertainty about beliefs. Hence, to further assess the plausibility of the estimates,

I compare the model-implied moments with measures of conditional uncertainty about GDP

growth from the SPF, similar to Fajgelbaum et al. (2017). Specifically, I compute the

standard deviation of the average forecast distribution of current-year GDP growth in the

SPF as of the start of each fourth quarter, and check whether the model counterpart is in

line with the mean and volatility of this standard deviation (results are in Section 4.2).25

While models with information frictions can face computational challenges and be hard

to solve without linearization, my particular specification remains relatively tractable. I

solve the model using a third-order perturbation method to account for time-variation in

uses 110, but values close to 200 can also be found (Bretscher et al. (2020)).
23See e.g., Del Negro et al. (2015). φπ is somewhat larger to account for the low volatility of inflation

relative to consumption over the sample.
24I target the unconditional volatility and first-order autocorrelation of consumption growth, inflation,

and labor hours; the unconditional mean, volatility, and first-order autocorrelation of the 1-quarter and
5-to-10-year forward nominal rates, and the 5-to-10-year term premium, with a weighting matrix assigning
equal weights to the distance between each model-generated (analytical) moment and its data counterpart.

In the table, I report ξ̃ ≡ ξ/4/(1 + ¯σa,t
2/σ2

s) instead of ξ as a more intuitive measure that indicates the
percentage increase in signal precision to an annualized percentage increase in the output gap.

25See Figure 2 for a visual of the series. I consider this standard deviation as a proxy for conditional
volatility of year-over-year GDP growth 2-quarters ahead in the model, taking into account the uncertainty
from future revisions of GDP data.
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volatility and term premia. The state-space system is pruned, and the moments are computed

analytically based on the method of Andreasen et al. (2018).

4.2 Moments

Table 3 summarizes the quantitative performance of the model by comparing model-implied

moments with those of the data. The first column reports the moments from the data, and

the second column reports the moments from the baseline model with imperfect information

(model-BL). For reference, the last column reports the moments from the model with perfect

information (model-PI), which shuts down the noise shock (σs = 0) while keeping the rest

of the parameters unchanged from model-BL.

The standard deviations of macro variables (consumption growth, inflation, labor hours,

and real wages) from model-BL are broadly in line with the data. The model also captures

the negative correlation between consumption growth and inflation (ρ[∆c, π]). Model-PI

generates a somewhat reduced standard deviation of consumption growth and labor hours.

This is intuitive since imperfect information adds uncertainty to the economy by introducing

a shock to the signal (though inflation volatility rises a bit). The correlation between con-

sumption growth and inflation is less negative for the model-PI, but this is not necessarily

obvious, and I discuss the mechanism in Appendix G.26

The table also reports the mean (E[σ[∆c]]) and standard deviation (σ[σ[∆c]]) of condi-

tional volatility of consumption (= GDP) growth 1-quarter ahead. The means of conditional

volatility from both models are in line with the surveys. In terms of the standard deviation

of conditional volatility, both models fall short of fitting the surveys. However, in terms of

model-BL, I interpret this result favorably as the model fitting the large variation in yields

and term premia without creating excess time-variation in consumption uncertainty from

imperfect information. That said, model-BL generates a significantly larger variation than

what is implied by model-PI. This ability to generate time-varying uncertainty in macro

variables translates to better performance in fitting interest rates, as I explain below.

26I report the correlation of year-on-year changes as it is better linked with longer-term interest rates
than the 1-quarter changes.
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Table 3: Selected Moments

Data Model-BL Model-PI
(Imperfect Info.) (Perfect Info.)

Macro Variables

σ[∆c] 2.07 1.86 1.67
σ[π] 0.97 1.07 1.23
σ[n] 3.71 4.35 3.98
σ[w] 2.52 3.51 3.42

ρ−1[∆c] 0.23 0.22 0.22
ρ−1[π] 0.79 0.91 0.91
ρ−1[n] 0.98 0.96 0.95
ρ−1[w] 0.90 0.80 0.74
ρ[∆c, π] -0.24 -0.16 -0.12

E[σ[∆c]] 0.66 0.65 0.63
σ[σ[∆c]] 0.18 0.07 0.01

Yields

E[r(1)] 4.00 4.09 4.54

E[r(20→40)] 6.44 6.07 6.04

E[tp(20→40)] 2.03 2.07 1.60

σ[r(1)] 1.82 2.12 2.53

σ[r(20→40)] 1.29 1.20 1.00

σ[tp(20→40)] 0.81 0.66 0.05

ρ−1[r(1)] 0.95 0.95 0.96

ρ−1[r(20→40)] 0.94 0.99 0.99

ρ−1[tp(20→40)] 0.90 0.99 0.99

Notes: Data is quarterly and in annualized percent. The sample period is from 1990.Q1 to 2008.Q4. E[·], σ[·],
and ρ−1[·] indicate the unconditional mean, standard deviation, and 1-quarter autocorrelation, respectively.

Model-BL fits the nominal term structure moments well. As a proxy for long-term

yields, I use the 5-to-10-year forward rate for ease of comparison with the empirical analysis

in Section 2. The model broadly matches the average level of the yield curve data, as can

be seen from the fit to the average 1-quarter rate (E[r(1)]) and the 5-to-10-year forward rate

(E[r(20→40)]). The model also fits the standard deviations of the 1-quarter rate (σ[r(1)]) and

the 5-to-10-year forward rate (σ[r(20→40)] ) reasonably well. Conversely, the average slope in

model-PI is notably smaller, and the yield volatility curve is much more downward sloping

than what the data and model-BL suggest.

It is worth emphasizing the model’s fit to empirical estimates of the nominal term pre-
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mium.27 In particular, model-BL can generate a sizable average term premium for the 5-to-

10-year rate (E[tp(20→40)]). The term premium is positive because, in the model, (1) average

real term premium is positive due to the (trend) stationarity of consumption, and (2) aver-

age inflation risk premium is positive due to the negative correlation between (longer-run)

consumption growth and inflation. Additionally, while the term premium is not as volatile

as what an average of the empirical estimates suggests, it still explains about 80 percent of

the standard deviation of its empirical counterpart (σ[tp(20→40)]). This is in clear contrast

to model-PI, in which both the average and especially the volatility of term premia are sig-

nificantly smaller. Importantly, the increase in term premium volatility by incorporating

imperfect information is not simply a reflection of higher volatility in the macro variables.

For example, the ratio of term premium volatility to consumption growth (inflation) volatility

is 36 (61) percent in model-BL, but only 3 (4) percent for model-PI.

While I focused on the nominal term structure thus far, the model also has implications

for the real term structure. In particular, model-BL can generate a real yield curve that

has a sizable upward slope on average, with plausible variation in longer-term real yields.

Further details of the real term structure moments can be found in Appendix F.

4.3 Impulse Responses

To understand the role of imperfect information further, I next turn to impulse responses,

which can isolate the contribution of each shock to the dynamics of macro variables and

interest rates. The format of Figures 5 and 6 closely follows the analysis for the simple term

structure model, but here I plot the (nonlinear) generalized impulse responses of Koop et al.

(1996). The dark blue lines show responses of model-BL. For reference, I also plot responses

of model-PI (light blue lines), and responses of a model with imperfect information and

constant precision (“model-CP”, dashed dark blue lines) in which ξ = 0.

4.3.1 Impulse Responses to a Persistent Productivity shock

The first two rows of Figure 5 show responses of the macro variables to an (unobserved)

positive εa,t shock. Consumption (top left) rises as inflation drops (top middle), allowing

εa,t to be interpreted as a “supply” shock for all models. Consumption shows an empirically

plausible hump-shaped response, which is partly due to habit formation (common across all

models), but more importantly for model-BL and CP, generated from imperfect informa-

tion which leads to a gradual learning of at. Moreover, consumption in model-BL shows a

27The moments of the 5-to-10-year term premium listed in the data column are the averages over the
three term premium estimates analyzed in Section 2.
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somewhat faster increase compared to model-CP, due to the mechanism similar to that in

the simple model. Indeed, model-BL shows a decrease in the uncertainty of beliefs about at

(top right) as well as zt (2nd-row right)—responses that cannot be observed in model-CP

and PI. In terms of matching consumption and the term structure data jointly, the endoge-

nous hump-shaped consumption response due to learning is an appealing feature. While the

trend stationarity of consumption ensures the average (real) term premium to be positive,

the gradual increase in consumption after the response leads to a positive autocorrelation of

consumption growth in the near-term, consistent with the data.

Compared with model-PI, inflation in model-BL decreases more, reflecting the slower

pickup in consumption. The decrease in inflation is most pronounced for model-CP, since

households learn about at the slowest, and thus demand is held back the most. Labor hours

(2nd-row left) decrease upon the shock for all specifications, which is consistent with some

leading (perfect information) DSGE models such as Smets and Wouters (2003).28 Real wages

(2nd-row middle) generally rise as productivity increases, but the rise is slower for model-BL

and CP, in which it takes time to learn that the increase in productivity will persist.

The bottom two rows show the responses of interest rates and term premia. The 1-

quarter nominal rate (policy rate) declines in model-BL (3rd-row left); a standard response

to a positive supply shock as the central bank accommodates deflationary pressure. The

degree of accommodation is most pronounced in model-CP, followed by model-BL, reflecting

the size of the decline in inflation. The relatively large drop in the policy rate compared

to longer-term yields leads to an increase in the nominal yield spread in model-BL and CP

(3rd-row middle). These yield spread responses are consistent with similar models with

perfect information. The 1-quarter real rate (bottom left) and the real yield spread (bottom

middle) show a qualitatively similar pattern as their nominal counterparts.

28Labor hours can be made to respond positively by using a utility function proposed by Greenwood et al.
(1988). The impulse responses for the other variables are qualitatively similar with this modification.
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Figure 5: Impulse Responses to εa,t

Notes: All impulse responses are to a +1σ shock. Dark blue lines indicate impulse responses of the baseline
model with imperfect information (model-BL). Dashed dark blue lines indicate impulse responses of the
model with imperfect information with constant precision (model-CP). Light blue lines indicate impulse
responses of the model with perfect information (model-PI).
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The key feature of model-BL is the term premium responses, as both nominal (3rd-row

right) and real (bottom right) term premia fall in response to εa,t. The countercyclicality of

real term premia follows from countercyclical uncertainty about at, as in the simple model.

Moreover, the nominal term premium shows similar countercyclicality, but with a larger

magnitude. This is because the inflation risk premium is also countercyclical in the model,

as I discuss further in Section 4.4. Conversely, since the mechanism for countercyclicality

is absent in model-PI and CP, term premia vary much less in both models. Interestingly,

the smaller term premium response in model-CP shows that time-varying signal precision is

crucial in generating variation in term premia, and not imperfect information per se.

4.3.2 Impulse Responses to a Noise Shock

I next analyze the impulse responses to an (unobserved) positive εs,t shock. The responses are

summarized in Figure 6. Since this shock plays no role in model-PI, the relevant comparison

with model-BL will only be model-CP.

A positive εs,t shock increases consumption (top left) and inflation (top middle) in both

models because under imperfect information, a positive εs,t shock makes the consumer believe

her present value of wealth has increased due to a persistent increase in TFP, boosting

consumption. However, since TFP did not actually increase, supply cannot increase in

tandem, creating upward pressure on inflation. The initial impact of a one standard deviation

εs,t shock is about 40 percent of the impact of a εa,t shock of the same magnitude, and the

impact on inflation is about 80 percent of a εa,t shock in model-BL. The positive correlation

between consumption and inflation suggests that the shock can be clearly interpreted as a

“demand” shock, which confirms the results of related studies.29

Labor hours and real wages (2nd-row left and middle) rise following the shock. Similar to

when a positive εa,t shock hits, the increase in output lowers the uncertainty of beliefs about

at (top right) and about zt for model-BL (2nd-row right). Again, such a countercyclical

response of volatility is absent in the other models.

The bottom two rows show the responses of interest rates and term premia. Both the

policy rate (3rd-row left) and to a lesser extent, the real policy rate (bottom left) increase;

a standard (monetary policy) response to a positive demand shock. The relatively large

increase in the policy rate compared to longer-term yields narrows the nominal yield spread

in both models (3rd-row middle). As the decrease in the yield spread is followed by a decrease

in consumption and inflation, such a response is largely consistent with empirical evidence

of the slope of the yield curve being a leading indicator of the business cycle.

29See, for example, Lorenzoni (2009) and Blanchard et al. (2013). Note these models fall into the class of
model-CP, as they do not exhibit time-varying signal precision.
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Figure 6: Impulse Responses to εs,t

Notes: All impulse responses are to a +1σ shock. Dark blue lines indicate impulse responses of the baseline
model with imperfect information (model-BL). Dashed dark blue lines indicate impulse responses of the
model with imperfect information with constant precision (model-CP). Light blue lines indicate impulse
responses of the model with perfect information (model-PI).
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Similar to the case of a εa,t shock, the countercyclical response of volatility to a εs,t

shock depresses both the nominal and real term premia in model-BL (3rd-row and bottom

right). The key difference is that the drop in term premia is now associated with a demand

shock that has distinct effects on the macroeconomy compared to a supply shock. While

term premia in model-CP also show a countercyclical decline, the magnitude is significantly

smaller.

In sum, my model with imperfect information offers an intuitive mechanism which signif-

icantly amplifies term premium variation due to a standard supply shock.30 In addition, the

model justifies a demand shock—the noise shock about productivity—as being an important

driver of term premia. The model does not require an independent shock to the volatility of

TFP, providing a deeper microfoundation to setups with exogenous stochastic volatility.

4.4 Further Discussion on the Effect of Imperfect Information

I further discuss how imperfect information affects the model dynamics, in particular, the

variation of term premia, by isolating the roles of the two key parameters characterizing the

information friction; the noise shock volatility (σs) and the signal production rate (ξ).

The top left panel of Figure 7 shows how the signal affects the model-implied volatility

of the 5-to-10-year nominal term premium (σ[tp(20→40)]) with respect to σs, and for different

values of ξ. σs and ξ affect the term premium volatility in distinct ways; the volatility has a

hump-shape with respect to σs, which becomes more pronounced as ξ increases. Importantly,

a sufficiently large ξ is key in generating time variation in the term premium.

The top right panel further decomposes this effect into the effect on the real term premium

volatility (σ[tpr,(20→40)], solid lines) and the inflation risk premium volatility (σ[irp(20→40)],

dashed lines). Both volatilities show comparative statics similar to those of the nominal term

premium, but the impact of both σs and ξ on the volatilities are outsized for the real term

premium compared to the inflation risk premium.

The bottom left panel shows how σs and ξ affect the model-implied slope coefficient

of a regression of the 5-to-10-year nominal term premium on year-over-year consumption

growth (“beta”). In line with my analysis so far, beta becomes more negative, i.e., the

term premium becomes more countercyclical, as ξ increases. Interestingly, the effects of σs

and ξ are nonlinear, and beta is most negative for intermediate parameter values. While ξ

generates countercyclicality of both real term premia and inflation risk premia, it impacts

the real beta more strongly, similar to its impact on term premium volatility (bottom right).

30Thereby complementing models that generate countercyclical term premia from supply shocks through
other mechanisms, e.g., Rudebusch and Swanson (2012), Andreasen et al. (2018), and Swanson (2019).
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Figure 7: Effect of the Noisy Signal on Term Premia

Notes: Each line corresponds to the moments generated from the indicated value of ξ. The black triangle
indicates the moment from the baseline model.

The intuition for the effects of σs and ξ on the real term premium can be understood

clearly by revisiting the 2-period real term premium expression (9) in Section 3.2.3. From

equations (9) and (5), the volatility of the real term premium is monotonically increasing

in σs when ξ = 0, but is hump-shaped when ξ > 0. When ξ > 0, the term φ/σ2
s in (5)

can become an important source of term premium variation, and ξ increases its variability,

all else fixed. However, the effect of a time-varying φ disappears either as σs → 0 or as

σs →∞.31

The effects of σs and ξ on the inflation risk premium turns out to be qualitatively similar,

and the mechanism is analogous to the effects on the real term premium. To guide intuition,

31This is because φ/σ2
s → ∞ as σs → 0, and hence σ2

a,t → σ2
a (constant), while φ/σ2

s → 0 as σs → ∞,

and hence σ2
a,t → σ̄a

2 (another constant), where σ̄a solves σ̄a
2 = ρ2

a

(
σ−2
z + σ̄a

−2
)−1

+ σ2
a.
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consider a simple extension of the 2-period term premium analysis, where I add inflation

πt specified as πt = −θπzt, where I assume θπ > 0 is an exogenous parameter. Then, the

2-period inflation risk premium (irp
(2)
t ) is:

irp
(2)
t ∝ Covt(mt+1, πt+2) = θπρaσ

2
a,t. (17)

In other words, the inflation risk premium is an increasing function of σa,t just like the real

term premium. Hence, the effects of σs and ξ work through σa,t analogously.32

Imperfect information offers a channel that can increase the average and the volatility

of nominal term premia by largely impacting real term premia. This emphasis on real term

premia is a notable departure from the literature that stresses positive inflation risk premia

as the primary factor behind positive nominal term premia. The result can be seen as lending

theoretical support to studies such as Duffee (2018), which argues that a small portion of

the variation in yield news can be explained by the variation in expected inflation news.

In Appendix G, I use the comparative statics to further discuss the increase in the

correlation of consumption growth and inflation observed over the last few decades and its

relation to term premia through the lens of my model.

5 Conclusion

In this paper, I studied the dynamics of default-free bond yields and term premia using a

novel equilibrium term structure model which combined a New-Keynesian core with imper-

fect information about the persistence of shocks to productivity. I showed that imperfect

information could justify a noise shock, which, incorporated in a DSGE term structure model

with standard productivity shocks, generated term premia that are on average higher, with

sizable countercyclical variation that arose endogenously. I argued that this feature helped

reconcile the empirical evidence that term premia had been on average positive and counter-

cyclical, with numerous studies pointing to demand shocks as being an important driver of

business cycles over the last few decades. While the focus on a specific form of information

frictions proved to be tractable and effective in understanding some important features of

the yield curve, other, perhaps more elaborate variants could explain more aspects of agents’

beliefs. I leave such an investigation for future research.

32θπ is affected by σs and ξ in the DSGE model, and in particular, θπ can decrease as consumption and
inflation becomes more positively correlated under imperfect information. However, the simple example is
useful in clarifying the channel through the effect on σa,t.
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Appendix

A Data

For the BR estimate of the term premium, I use an estimate of the trend real interest rate

that is somewhat different from BR, constructed from the estimates of Holston et al. (2017)

and Del Negro et al. (2017) (both the VAR-based and DSGE-based estimates), which are

all publicly available. The estimate is a bit smoother than BR. Otherwise, the model is

identical to their “observed shifting endpoint” model. I find that the correlation between

the term premia from BR and my estimates over the sample period of BR (1971.Q4 to

2018.Q1) is nearly perfect, with a coefficient of over 0.98. The ACM and KW estimates

are available on the websites of the Federal Reserve Bank of New York and the Board of

Governors of the Federal Reserve System, respectively. The 1-year excess holding return

of the 10-year (nominal) Treasury bond is computing using the zero-coupon yields from

Gürkaynak et al. (2007) (xhr
(40)
t+4 ≡ −9r

(36)
t+4 +10r

(40)
t − r(4)

t ). The FB estimate is the expected

excess holding return (Et[xhr(40)
t+4 ]) computed from the Fama and Bliss (1987) regression:

xhr
(40)
t+4 = β0 + β1(r

(36→40)
t − r(4)

t ) + ut+4, where r
(36→40)
t is the 9-to-10-year nominal Treasury

forward rate, and r
(4)
t is the 1-year nominal Treasury yield.

The macroeconomic data source used for the regression analysis in Section 2 is as follows.

Nonfarm payroll, industrial production, capacity utilization, and real GDP data are taken

from the FRED database. The GDP gap is the CBO measure of the output gap, from the

Haver Analytics database, and the unemployment gap is the Civilian Unemployment Rate:

16 yr + (seasonally adjusted) minus the CBO measure of the natural rate of unemployment,

also from Haver. I remove a linear trend from capacity utilization, estimated from monthly

observations from January 1990 to December 2019. The VIX series is taken from the FRED

database. The conditional volatility of TFP growth is computed by applying a GARCH(1,1)

model similar to Bloom et al. (2018) to the unadjusted TFP growth data by Fernald (2014).

The JLN macroeconomic uncertainty index is available on Sydney Ludvigson’s website. I

use the 3-month-ahead index for my calculations.

The patent data used in Figure 2 is compiled by Marco et al. (2015), and available on

the website of the U.S. Patent and Trademark Office. I sum the monthly total application

series for each quarter, and compute the annual growth rate for each quarter. I do not show

growth rates that include data for 1995.Q2 and Q3, as well as 2013.Q1 and Q2 since there

were large swings in applications due to regulatory changes, as described in Marco et al.

(2015).

Additional data is used for calibrating the DSGE term structure model. For the short-
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term nominal interest rate, I use the 3-month T-bill rate from the Federal Reserve Board’s

H.15 statistical release. For nominal yields of 5-, and 10-year maturities, I use the zero-

coupon yields from Gürkaynak et al. (2007).

For real rates, I rely on multiple sources to construct reference rates that cover 1990.Q1 to

2008.Q4. In particular, for the 5-to-10-year real forward rate, TIPS yields are not available

from 1990.Q1 to 1998.Q4, so I use real yield estimates from D’Amico et al. (2018) and

Chernov and Mueller (2012). From 1999.Q1 to 2008.Q4, the TIPS yield data by Gürkaynak

et al. (2010) is available. However, it is well known that TIPS yields, especially around the

inception of the TIPS market and during the financial crisis, likely contained a significant

liquidity premium. Since the DSGE model-implied real yields do not contain any liquidity

premia, the appropriate reference is yields that remove such premia. Thus, I consider the

following two series: (1) from 1990.Q1 to 1998.Q4, estimated real yields from the model

of D’Amico et al. (2018), and from 1999.Q1 to 2008.Q4, zero-coupon yields interpolated

from TIPS data by Gürkaynak et al. (2010) subtracting the D’Amico et al. (2018) liquidity

premium estimates, and (2) from 1990.Q1 to 1998.Q4, estimated real yields from the model

of Chernov and Mueller (2012), and from 1999.Q1 to 2008.Q4, the same series as (1).33

I compute the mean, standard deviation, and the 1-quarter autocorrelation of these two

series, and average the respective moments (across the two series), which I take as the mean,

standard deviation, and autocorrelation of the 5-to-10-year real forward rate. The data for

the 1-quarter real rate also requires estimation, and for this series I use the estimates of

Chernov and Mueller (2012) from 1990.Q1 to 1997.Q4, and the estimates of Aruoba (2020)

from 1998.Q1 to 2008.Q4.

For consumption data, I compute per capita consumption from personal consumption

expenditures (nondurables + services, seasonally adjusted). I use the quarterly change in

the core CPI as a measure of inflation. Labor hours are calculated as the ratio of hours of

all persons (seasonally adjusted) in the nonfarm business sector to the sum of the civilian

labor force (16 years+) and the population not in the labor force (all seasonally adjusted).

I use real compensation per hour of the nonfarm business sector (seasonally adjusted) as a

measure of real wages, and detrend it using the method by Hamilton (2018). All of these

measures are taken from Haver.

I use the Survey of Professional Forecasters (SPF), published by the Federal Reserve

Bank of Philadelphia, to construct a measure of conditional uncertainty about GDP growth.

In each quarterly survey, the SPF includes average forecast distributions of year-over-year

GDP growth for the current year (and the next). Assuming the probability assigned to each

bin represents the probability of the mid-point of that bin, I compute the standard deviation

33The real yield estimates from Chernov and Mueller (2012) are only available up to 2002.Q4.
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of the average forecast distribution. The nature of the data is somewhat disconnected before

and after 1992.Q1; the forecasts are based on real GNP before 1992.Q1 and on real GDP

since then. The bins also vary across the two periods. I construct a time series using only

surveys in the fourth quarter so that the forecast horizon is effectively constant at about a

quarter.

B Additional Empirical Results

B.1 Empirical Literature on the Countercyclicality of Term Pre-

mia

Cochrane and Piazzesi (2005), Ludvigson and Ng (2009), and Piazzesi and Swanson (2008)

are prominent examples establishing the countercyclicality of term premia using data before

the financial crisis. Piazzesi and Swanson (2008) focus on excess returns of fed funds futures

rates up to 6-months maturity. Further evidence of countercyclical term premia including the

post-financial crisis observations is provided by Adrian et al. (2013) (although they do not

provide a regression analysis), Wright (2011), Bauer et al. (2014), and Bauer and Rudebusch

(2020), among others. Econometric analysis that include observations beyond 2009 appears

relatively limited. Exceptions include Gargano et al. (2019), who show the countercyclicality

of expected excess bond returns, and Bekaert et al. (2021), who find term premia implied from

the Blue Chip surveys show countercyclicality with respect to a recession dummy. Bianchi

et al. (2021) adapt machine learning techniques to forecast excess bond returns, and show

that their measures of expected excess returns are countercyclical, and comove positively

with measures of macroeconomic uncertainty. My analysis complements these studies, and

find results that are broadly consistent with them, but uses different measures of term

premia and business cycle indicators. In addition, while the aforementioned studies cover a

longer sample period that includes the 1970s, my analysis focuses on a later period, which is

arguably more relevant for understanding term structure dynamics in an environment where

demand shocks are likely to be dominant.

B.2 Regression on Macroeconomic Indicators

In Table B.1, I show the results of the baseline regression on macroeconomic indicators

discussed in the main text, using the sample period from 2000.Q1 to 2019.Q4. As described

in the main text, I run a series of univariate regressions where each term premium series and

the expected excess return are regressed separately on to one of the independent variables
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with a constant. The table reports the slope coefficient associated with the macroeconomic

indicator for each individual regression.

Table B.1: Regression of Nominal Term Premia on Macroeconomic Indicators
(2000.Q1 - 2019.Q4)

ACM BR KW FB

∆NFP −51.23∗∗∗ −30.75∗∗∗ −23.47∗∗∗ −77.02∗∗∗

(10.34) (6.57) (5.04) (18.82)
∆IP −8.49∗∗ −3.71 −4.82∗∗∗ −13.29∗∗

(3.64) (2.89) (1.83) (6.26)
∆GDP −35.01∗∗∗ −15.80∗∗∗ −12.67∗∗∗ −47.67∗∗∗

(7.23) (4.77) (4.41) (15.44)
GDP gap −28.75∗∗∗ −11.23 −7.83 −91.23∗∗∗

(9.34) (9.19) (7.13) (10.56)
UE gap (negative of) −23.91∗∗ −9.89 −4.15 −83.07∗∗∗

(11.00) (11.26) (8.83) (12.76)
CU −23.50∗∗∗ −11.68∗∗∗ −9.25∗∗∗ −45.40∗∗∗

(3.74) (3.05) (2.39) (8.98)

Notes: The sample period is 2000.Q1 through 2019.Q4 with quarterly frequency. Each value represents the
slope coefficient from a univariate regression of a measure of term premium on to a macroeconomic indicator
plus a constant. The ACM, BR, and KW measures are detrended using the method of Hamilton (2018).
The FB measure is the expected excess return based on Fama and Bliss (1987). The first three regressors are
year-on-year changes. The regression coefficients are in basis point units per one percentage point change in
the regressor. ***, **, and * indicate 1%, 5%, and 10% significance based on Newey-West standard errors
with 6 lags (in brackets), respectively.

Coefficients are negative regardless of the specification, implying countercyclicality of

term premia. Many of the coefficients are statistically significant, and significance is partic-

ularly strong for the ACM and the expected excess return measures. Overall, the evidence

of countercyclicality is about equally strong since the beginning of 2000 compared to the

baseline regression results which used the sample period starting from 1990.34

In Table B.2, I show the results of the baseline regression on macroeconomic indicators,

when the term premium measures (excluding the expected excess return) are not detrended.

As described in the main text, I run a series of univariate regressions where each term

premium series and the expected excess return are regressed separately on to one of the

independent variables with a constant. The table reports the slope coefficient associated

34Splitting the sample periods further generally results in reduced statistical significance due to the
smaller sample size, but evidence of countercyclicality can still be observed for the subsamples from 1990.Q1
to 1999.Q4, from 2000.Q1 to 2008.Q4, and from 2009.Q1 to 2019.Q4, respectively.
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with the macroeconomic indicator for each individual regression. Note the results for the

expected excess return is identical to what is reported in the main text, since it is not

detrended in the first place.

Table B.2: Regression of Nominal Term Premia on Macroeconomic Indicators
(Without Detrending)

ACM BR KW FB

∆NFP −36.29∗∗∗ −18.37∗∗ −12.82 −77.18∗∗∗

(9.83) (8.32) (9.76) (13.33)
∆IP −2.96 1.13 1.59 −17.27∗∗∗

(3.75) (3.35) (3.12) (4.67)
∆GDP −16.64∗∗ −2.60 0.10 −45.54∗∗∗

(7.78) (7.49) (8.76) (12.40)
GDP gap −37.22∗∗∗ −16.38∗ −10.96 −89.14∗∗∗

(9.44) (8.55) (9.60) (7.32)
UE gap (negative of) −35.51∗∗∗ −14.52 −4.59 −93.94∗∗∗

(11.48) (10.23) (10.26) (12.11)
CU −22.84∗∗∗ −11.64∗∗∗ −8.57∗ −48.08∗∗∗

(5.42) (4.27) (4.77) (7.34)

Notes: The sample period is 1990.Q1 through 2019.Q4 with quarterly frequency. Each value represents the
slope coefficient from a univariate regression of a measure of term premium on to a macroeconomic indicator
plus a constant. The first three regressors are year-on-year changes. The regression coefficients are in basis
point units per one percentage point change in the regressor. ***, **, and * indicate 1%, 5%, and 10%
significance based on Newey-West standard errors with 6 lags (in brackets), respectively.

Coefficients are negative regardless of the specification, except for a few cases in which the

coefficients are fairly small and statistically insignificant, implying countercyclicality of term

premia. Many of the coefficients are statistically significant, and significance is particularly

strong for the ACM and the expected excess return measures, similar to when term premia

are detrended. While the preferred specification adopted in the main text uses the detrended

series, as they allow for a sharper focus on the business cycle dynamics of term premia, overall

the results appear robust to whether or not we factor in the trend.

As an additional robustness check, I rerun the baseline analysis using the year-on-year

differences of the three term premium measures and the expected excess return instead of

their detrended counterparts, as an alternative way to deal with the downward trend in

term premia observed over the sample period. I also take year-on-year differences of the gap

measures and capacity utilization. Table B.3 summarizes the results. Similar to the baseline

results, the coefficients are negative regardless of the specification and largely statistically
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significant.

Table B.3: Regression of Nominal Term Premia on Macroeconomic Indicators
(Difference Specification)

∆ACM ∆BR ∆KW ∆FB

∆NFP −24.46∗∗∗ −12.67∗∗∗ −11.61∗∗∗ −60.30∗∗∗

(6.37) (4.51) (3.25) (17.69)
∆IP −7.94∗∗∗ −3.69∗ −4.28∗∗ −20.04∗∗∗

(2.47) (1.94) (1.74) (6.77)
∆GDP −18.63∗∗∗ −5.21 −6.95∗ −53.60∗∗∗

(6.27) (5.52) (4.00) (15.38)
∆GDP gap −0.26∗∗∗ −0.09 −0.10∗∗ −0.73∗∗∗

(0.07) (0.06) (0.04) (0.18)
∆UE gap (negative of) −0.50∗∗∗ −0.30∗∗∗ −0.24∗∗∗ −1.17∗∗∗

(0.15) (0.10) (0.07) (0.37)
∆CU −0.12∗∗∗ −0.06∗∗ −0.06∗∗∗ −0.31∗∗∗

(0.04) (0.03) (0.02) (0.10)

Notes: The sample period is 1990.Q1 through 2019.Q4 with quarterly frequency. Each value represents the
slope coefficient from a univariate regression of a measure of term premium on to a macroeconomic indicator
plus a constant. All variables are year-on-year changes. The regression coefficients are in basis point units
per one percentage point change in the regressor. ***, **, and * indicate 1%, 5%, and 10% significance
based on Newey-West standard errors with 6 lags (in brackets), respectively.

B.3 Regression on Uncertainty Indicators

In terms of the baseline regressions of term premia on measures of uncertainty, I use the

first three of the four measures plotted in Figure 2 (left panel) of the main text: (1) the

VIX, (2) the conditional volatility of TFP growth from a GARCH(1,1) model, and (3) the

1-quarter-ahead macroeconomic uncertainty index by Jurado et al. (2015) (JLN). I do not

use the measure based on the SPF since it is constructed only at an annual frequency. The

measure will nevertheless be useful to calibrate the term structure model in Section 4. While

the conditional volatility of TFP growth is theoretically closest to the source of time-varying

uncertainty in the term structure model I develop, the connection between the theoretical

model and the other two measures is somewhat looser. Nevertheless, the VIX and JLN

represent a fairly popular measure of financial and macroeconomic measure of uncertainty,

respectively. Thus I take the 1-year moving average of these two variables and include them

in the set of independent variables.

In Table B.4, I show the results of the baseline regression on uncertainty indicators
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discussed in the main text, using the sample period from 2000.Q1 to 2019.Q4. As described

in the main text, I run a series of univariate regressions where each term premium series and

the expected excess return are regressed separately on to one of the independent variables

with a constant. The table reports the slope coefficient associated with the uncertainty

indicator for each individual regression.

Table B.4: Regression of Nominal Term Premia on Uncertainty Indicators
(2000.Q1 - 2019.Q4)

ACM BR KW FB

VIX 12.51∗∗∗ 6.40∗∗∗ 4.77∗∗∗ 19.62∗∗∗

(1.52) (1.44) (1.21) (4.36)
TFP Vol 1.25∗∗∗ 0.62∗ 0.44∗ 3.12∗∗∗

(0.33) (0.35) (0.27) (0.64)
JLN (Macro) 6.49∗∗∗ 3.99∗∗∗ 3.01∗∗∗ 5.97∗

(1.22) (1.23) (0.99) (3.37)

Notes: The sample period is 2000.Q1 through 2019.Q4 with quarterly frequency. Each value represents the
slope coefficient from a univariate regression of a measure of term premium on to an uncertainty indicator
plus a constant. The ACM, BR, and KW measures are detrended using the method of Hamilton (2018).
The FB measure is the expected excess return based on Fama and Bliss (1987). The regression coefficients
are in basis point units per one percentage point change in the regressor. ***, **, and * indicate 1%, 5%,
and 10% significance based on Newey-West standard errors with 6 lags (in brackets), respectively.

Coefficients are positive and statistically significant regardless of the specification, imply-

ing that a rise in uncertainty leads to an increase in term premia, as well as an increase in

expected excess returns, consistent with the baseline results. Overall, the positive relation

between term premia and uncertainty appears to remain equally strong since the beginning

of 2000.

In Table B.5, I show the results of the baseline regression on uncertainty indicators

discussed in the main text, when the term premium measures (excluding the expected excess

return) are not detrended. As described in the main text, I run a series of univariate

regressions where each term premium series and the expected excess return are regressed

separately on to one of the independent variables with a constant. The table reports the

slope coefficient associated with the uncertainty indicator for each individual regression.

Note the results for the expected excess return is identical to what is reported in the main

text, since it is not detrended in the first place.
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Table B.5: Regression of Nominal Term Premia on Uncertainty Indicators
(Without Detrending)

ACM BR KW FB

VIX 7.37∗∗ 4.06∗ 2.35 12.58∗∗

(3.15) (2.33) (2.43) (5.64)
TFP Vol 1.65∗∗∗ 0.95∗∗∗ 0.77∗∗ 2.99∗∗∗

(0.37) (0.31) (0.39) (0.51)
JLN (Macro) 2.90 1.03 −0.08 6.79∗∗

(1.80) (1.40) (1.48) (3.24)

Notes: The sample period is 1990.Q1 through 2019.Q4 with quarterly frequency. Each value represents the
slope coefficient from a univariate regression of a measure of term premium on to an uncertainty indicator
plus a constant. The regression coefficients are in basis point units per one percentage point change in the
regressor. ***, **, and * indicate 1%, 5%, and 10% significance based on Newey-West standard errors with
6 lags (in brackets), respectively.

Coefficients are positive regardless of the specification, except for one case in which the

coefficient is fairly small and statistically insignificant, implying that a rise in uncertainty

generally leads to an increase in term premia, as well as an increase in expected excess returns,

consistent with the baseline results. Many of the coefficients are statistically significant.

As an additional robustness check, I rerun the baseline analysis using the year-on-year

differences of the three term premium measures and the expected excess bond return instead

of their detrended counterparts, as an alternative way to deal with the downward trend in

term premia observed over the sample period. I also take year-on-year differences of the

uncertainty measures. Table B.6 summarizes the results. I find that the coefficients are

mostly positive, but the evidence is weaker compared to the baseline results. Nevertheless,

several specifications remain significant. In addition, the uncertainty measure based on the

conditional volatility of TFP—which, in theory, has the strongest connection to the term

structure models I develop—appears to have a statistically significant correlation with various

term premium measures.
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Table B.6: Regression of Nominal Term Premia on Uncertainty Indicators
(Difference Specification)

∆ACM ∆BR ∆KW ∆FB

∆VIX 2.94 −0.47 0.23 8.23∗

(2.04) (1.67) (1.13) (4.39)
∆TFP Vol 0.72∗∗ 0.32 0.35∗ 1.95∗∗∗

(0.31) (0.31) (0.19) (0.53)
∆JLN (Macro) 0.96 −0.14 0.56 2.98

(1.04) (0.87) (0.64) (2.65)

Notes: The sample period is 1990.Q1 through 2019.Q4 with quarterly frequency. Each value represents the
slope coefficient from a univariate regression of a measure of term premium on to an uncertainty indicator
plus a constant. All variables are year-on-year changes. The regression coefficients are in basis point units
per one percentage point change in the regressor. ***, **, and * indicate 1%, 5%, and 10% significance
based on Newey-West standard errors with 6 lags (in brackets), respectively.

Lastly, I briefly consider the relationship between term premia and “disagreement”—a

concept that is occasionally referred to as a proxy for uncertainty. Disagreement is commonly

defined as the cross-sectional standard deviation of point forecasts (see, for example Clements

et al. (2023)), and can be measured through survey forecasts. I take the disagreement

measures of 1-year ahead real GDP growth and CPI inflation from the SPF, which are defined

as the difference between the 75th and 25th percentile of the individual point forecasts of

the respective variables. I run the baseline regressions replacing the uncertainty measures

with the disagreement measures, and report the results in Table B.7.

Table B.7: Regression of Nominal Term Premia on Disagreement Indicators

ACM BR KW FB

∆GDP 1.91∗∗∗ 1.33∗∗∗ 0.78∗∗∗ 2.00∗

(0.47) (0.36) (0.27) (1.20)
CPI 2.20∗∗∗ 1.35∗∗∗ 0.71∗∗ 3.17∗∗

(0.66) (0.45) (0.35) (1.33)

Notes: The sample period is 1990.Q1 through 2019.Q4 with quarterly frequency. Each value represents the
slope coefficient from a univariate regression of a measure of term premium on to a disagreement measure
plus a constant. The ACM, BR, and KW measures are detrended using the method of Hamilton (2018).
The FB measure is the expected excess return based on Fama and Bliss (1987). The regression coefficients
are in basis point units per one percentage point change in the regressor. ***, **, and * indicate 1%, 5%,
and 10% significance based on Newey-West standard errors with 6 lags (in brackets), respectively.
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Similar to the regressions using the uncertainty measures, the positive relation between

disagreement measures and term premia appears statistically significant. These results are in

line with Wright (2011) and Buraschi and Whelan (2022), who conduct a similar analysis but

using somewhat different measures. However, whether disagreement can be a good proxy for

uncertainty remains heavily contested in the literature (see, for example, the recent studies of

Clements et al. (2023) and Zohar (2024)). Since my term structure model does not formalize

an explicit role for disagreement, I treat the above regression results as only suggestive.

C The Simple Term Structure Model as an RBC Model

In this section, I show that the simple term structure model in Section 3.1 can be derived

from a stylized real business cycle model without capital.

The representative household maximizes lifetime expected utility:

E0

[
∞∑
t=0

βt
(
C1−χc
t

1− χc
− N1+χn

t

1 + χn

)]
, (C.1)

subject to its budget constraint:

Ct + Et [Mt+1Wt+1] ≤ WtNt +Wt. (C.2)

Ct is consumption, Nt is labor, and Wt is (real) wages. Assuming complete financial markets,

Wt+1 is the payoff from the household’s wealth portfolio of state contingent claims chosen by

the end of period t. These claims are priced by the unique (real) stochastic discount factor

Mt+1 ≡ β(Ct+1/Ct)
−χc implied by the household’s optimizing behavior. Assets are in zero

net supply.

The perfectly competitive firm with a production function Yt = ZtNt maximizes its profits

Yt −WtNt each period. Zt is an exogenous productivity process. Market clearing imposes

Ct = Yt.

The model is simple enough to solve analytically. The equilibrium condition from the

labor market implies:

Cχc
t N

χn
t = (ZtNt)

χcNχn
t = Zt. (C.3)

Solving for Nt:

nt =
1− χc
χc + χn

zt, (C.4)

where small-case variables correspond to their log counterparts e.g., nt ≡ ln(Nt). The
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decision rules for consumption immediately follows from (C.4) and the production function:

ct =
1 + χn
χc + χn

zt, (C.5)

which corresponds to the consumption rule (6) in Section 3.1 with θc = 1+χn
χc+χn

.

Since this solution holds for any arbitrary exogenous process zt, it must also hold for

the state space system characterized by equation (1) up to the process for ht in Section 3.1.

Lastly, the stochastic discount factor of the household implies that default-free bonds are

priced according to the Euler equation (7) where r̄ = − ln β.

D Derivation of the 2-period Term Premium

This section shows the derivation of the 2-period term premium with imperfect information

(equation (9) in Section 3.2.3).

tp
(2)
t ≡ r

(2)
t − r

(2)Q
t = −1

2
Covt(mt+1,R(2)

t+1)

= −1

2
Covt(−χc∆ct+1,Et+1[−χc∆ct+2] +

1

2
Vart+1[χc∆ct+2])

= −1

2
χ2
cCovt(∆ct+1,Et+1[∆ct+2])

= −1

2
χ2
cθ

2
cCovt(∆zt+1,Et+1[∆zt+2])

∝ −Covt(∆zt+1,Et+1[∆zt+2]),

(D.1)

where R(2)
t+1 = p

(1)
t+1−p

(2)
t is the (log) return from holding a 2-period (real) bond for 1-period.

The second equality follows from mt+1 ≡ −r̄ − χc∆ct+1, and p
(1)
t = −r(1)

t = Et[mt+1] +
1
2
Vart[mt+1]. The third equality uses the fact that Vart+1[χc∆ct+2] is measurable at time t.

The fourth equality follows from ct = θczt.

zt follows:

zt = ρaat−1|t−1 + (st − st|t−1) (D.2)

at|t = ρaat−1|t−1 +Kt−1(st − st|t−1), (D.3)

where Kt is the Kalman gain matrix, and st ≡ [zt, st]
′.

Generalizing Lemma 2 in Blanchard et al. (2013) to the case of time-varying coefficients,

(D.3) and (D.2) are observationally equivalent to the system:

zt = ρaãt−1 + Σs,t−1ε̃t (D.4)
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ãt = ρaãt−1 +Kt−1Σs,t−1ε̃t, (D.5)

where ãt and ε̃t are observable, ε̃t are mutually independent, i.i.d. standard normal shocks,

and Σs,t−1Σ
′
s,t−1 = Vart−1[st]. Substituting (D.5) and (D.4) into (D.1), and after some

algebra, I obtain (9) in the main text.

E Details on the DSGE Term Structure Model

In this section, I fully describe the DSGE term structure model with imperfect information.

The content partly overlaps with the description in the main text, but I keep it such that

the section is self-contained.

E.1 Households

The representative household has Epstein-Zin (EZ) preferences (Epstein and Zin (1989)).

Its value function Vt takes the following recursive form:

Vt =

Ut(Ct, Nt) + β
{
Et
[
V 1−γ̃
t+1

]} 1
1−γ̃

for Ut ≥ 0

Ut(Ct, Nt)− β
{
Et
[
(−Vt+1)1−γ̃]} 1

1−γ̃ for Ut ≤ 0.
(E.1)

β is the time discount rate. The period utility function Ut(Ct, Nt) takes a standard form

with external habits and separable labor disutility:

Ut(Ct, Nt) ≡

(
Ct − χhC̃t−1

)1−χc

1− χc
−G1−χc

t

N1+χn
t

1 + χn
, (E.2)

where χc > 0 captures the attitude towards intertemporal substitution of consumption (net

of habits), and χn > 0 is the inverse Frisch elasticity. Gt is a deterministic trend in total

factor productivity (TFP) to be described later in the section. The scaling of labor disutility

by Gt ensures the existence of a balanced growth path in equilibrium.

Ct is the household’s aggregate consumption of final goods based on a CES aggregator

of intermediate goods Ct ≡
(∫ 1

0
C

1− 1
θ

i,t di
) θ
θ−1

, where θ > 1 is the elasticity of demand for

the intermediate goods. C̃t−1 is aggregate consumption in the previous period which is

taken as given by the household (external habits). Nt =
∫ 1

0
Ni,tdi denotes the household’s

total supply of labor, which is the integral of labor Ni,t supplied to each intermediate good

producer i ∈ [0, 1] in a perfectly competitive labor market. The household takes nominal

wage Wt as given. γ̃ parameterizes the household’s risk aversion. γ̃ = 0 corresponds to the
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special case of expected utility. Note that a larger γ̃ implies higher risk aversion when Ut ≥ 0

and lower risk aversion when Ut ≤ 0. The calibrated model satisfies Ut ≤ 0, so values of

γ̃ < 0 correspond to risk aversion greater than expected utility (Swanson (2018)).

The household maximizes (E.1) by choosing state contingent paths for Ct, Nt, and asset

holdings subject to its initial wealth and the following sequence of flow budget constraints:

PtCt + Et [Mt+1Wt+1] ≤ WtNt +Wt +Dt, (E.3)

where the aggregate price level of the consumption basket Pt ≡
(∫ 1

0
P 1−θ
i,t di

) 1
1−θ

is implied by

the household’s cost minimization problem (or equivalently, the optimization of a perfectly

competitive representative final good producer combining intermediate goods). Assuming

complete financial markets, Wt+1 is the payoff from the household’s wealth portfolio of state

contingent claims chosen by the end of period t. These claims are priced by the unique

nominal pricing kernel Mt+1 implied by the household’s problem (for Ut ≤ 0):

Mt+1 = β

(
UC,t+1

UC,t

)[
−Vt+1

[Et [(−Vt+1)1−γ̃]]
1

1−γ̃

]−γ̃
1

Πt+1

, (E.4)

where UC,t =
(
Ct − χhC̃t−1

)−χc
and Πt+1 ≡ Pt+1

Pt
is the (gross) aggregate inflation rate. The

term with squared brackets is the additional term that appears by assuming EZ preferences,

implying that the household is sensitive to the distribution of future consumption (and labor

supply) in addition to current consumption growth. Dt =
∫ 1

0
Di,tdi is aggregated firms’

dividends rebated back to the household.

E.2 Firms

There are a continuum of intermediate goods producers (firms) indexed by i ∈ [0, 1] who

are monopolistically competitive, and maximize their equity value. Each firm faces nominal

rigidities in the form proposed by Calvo (1983) where a firm can reoptimize the price of its

good Pi,t with only a fixed probability 1−ϕ in each period. Firm i’s equity value V f
i,t is then:

V f
i,t = Et

[
∞∑
τ=0

ϕτMt+τ

{
Pi,t

(
τ∏
s=1

Π
ιp
t+s−1Π̄1−ιp

)
Yi,t+τ −Wt+τNi,t+τ

}]
. (E.5)

When a firm cannot optimize its price, it indexes the price to a weighted average of inflation

in the previous period and steady state inflation Π̄. Each firm i is also subject to the demand
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and production functions for its own good Yi,t:

Yi,t =

(
Pi,t
Pt

)−θ
Yt (E.6)

Yi,t = K1−α
t (GtZtNi,t)

α, (E.7)

where Yt is aggregate output taken as given by each firm, and Kt = K̄Gt is the level of

capital that grows deterministically with Gt (see next paragraph).

Productivity with imperfect information TFP consists of two observable components

Gt and Zt. Gt grows at a deterministic rate of ζ ≡ Gt+1

Gt
. Zt is a stationary component. Sim-

ilar to the simple term structure model, zt ≡ lnZt is composed of a “persistent” component

at and a “transitory” component et:

zt = at + et. (E.8)

at and et are unobservable, and follow independent AR(1) processes:

at = (1− ρa)ā+ ρaat−1 + σaεa,t (E.9)

et = ρeet−1 + σeεe,t, (E.10)

where εa,t and εe,t are (unobservable) i.i.d standard normal shocks, and 1 > ρa > ρe ≥ 0.

Note the state space system in the simple model was a special case where ρe = 0.

As in the simple model, firms also observe a continuum of noisy signals sj,t about at,

where j ∈ [0, Jt]. By assuming sj,t are common knowledge across firms, the individual

signals can be aggregated to a noisy public signal st. I further assume the mass of signals

Jt is increasing in the log “output gap” from the previous period: ỹt−1 ≡ ŷt−1 − ȳ, where

ŷt−1 ≡ ln Ŷt ≡ ln Yt
Gt

, and ȳ ≡ ln Ȳ is its steady state. Thus, Jt = φ(ỹt−1) with φ′ > 0, and st

is given by:

st = at +
σs√
φ(ỹt−1)

εs,t, (E.11)

where εs,t is i.i.d standard normal and unobservable to the firms (the noise shock). Following

the simple model, I specify φ(·) to be exponential, and hence ln Jt is linear in ỹt−1, i.e.,

ln Jt = ξỹt−1. ξ > 0 is now the parameter that controls the amount of productivity signals

generated by the output gap. Note Jt is increasing with respect to an endogenous variable

(output gap) in contrast to the simple model, in which Jt was largely exogenous. That said,

Jt is taken as given by each firm, and there is no active learning. The setup abstracts from
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heterogeneous expectations and higher-order beliefs, making it highly tractable.

Firms form beliefs about the unobservable components at and et by learning from obser-

vations on zt and st via a Kalman filter. In other words, the beliefs are updated through the

following system of equations (E.12) through (E.15):

st = Ψρxt−1|t−1 + (st − st|t−1) (E.12)

xt|t ≡ Et[xt] = ρxt−1|t−1 +Kt−1(st − st|t−1) (E.13)

Kt−1 = V t|t−1Ψ
′(ΨV t|t−1Ψ

′ + Σs,t−1Σ
′
s,t−1)−1 (E.14)

V t+1|t = ρ(V t|t−1 − V t|t−1Ψ
′(ΨV t|t−1Ψ

′ + Σs,t−1Σ
′
s,t−1)−1ΨV ′t|t−1)ρ′ + ΣxΣ

′
x, (E.15)

where xt = [ât, et]
′, st = [ẑt, ŝt]

′, ρ = [ρa, 0; 0, ρe], Ψ = [1, 1; 1, 0], Σx = [σa, 0; 0, σe], Σs,t =

[0, 0; 0, σs/
√
φ(ỹt)]. The “hat” variables indicate the demeaned versions. Kt is the Kalman

gain matrix, and V t|t−1 is the forecast variance matrix of xt (not to be confused with the

value function Vt).

The timeline of events within a period for each firm is summarized in Figure E.1. After the

unobserved shocks εa,t, εe,t, and εs,t are realized, firms update their beliefs about productivity

based on signals st, the precision of which is affected by the output gap in the previous

period ỹt−1. Then goods are produced based on the beliefs and dividends are paid out to

the household.

t t+ 1

shocks realized update beliefs production

pay dividend

Figure E.1: Timeline of Events for the Firm
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E.3 Monetary Policy

The central bank sets the (gross) nominal 1-period interest rate, R
(1)
t , following a standard

Taylor rule:

R
(1)
t =

(
R

(1)
t−1

)ρr R̄ [Πt

Π̄

]φπ [ Ŷt
Ȳ

]φy1−ρr

, (E.16)

where R̄ and Ȳ denote the steady state of R
(1)
t and normalized output Ŷt ≡ Yt

Gt
, respectively.

I abstract from monetary policy shocks for simplicity.

E.4 Market Clearing

In equilibrium, the goods market, labor market, and asset market must clear at all dates

and states. The clearing condition for final goods is:

Yt = Ct + (ζ + δ − 1)K̄Gt. (E.17)

Aggregating the supply of intermediate goods by integrating each producer’s supply leads

to:

Yt =
1

∆t

K1−α
t (GtZtNt)

α, (E.18)

where ∆ is a measure of cross-sectional price dispersion, which follows:

∆
1
α
t = (1− ϕ)

(
P ∗t
Pt

)− θ
α

+ ϕ

(
Πt

Π
ιp
t−1Π̄1−ιp

) θ
α

∆
1
α
t−1 (E.19)

where P ∗t is the price set by the optimizing firm. For the asset market, I make a standard

assumption that state contingent claims are in zero net supply.

E.5 Term Structure of Interest Rates

Given the equilibrium under complete markets, the price of a n−period zero-coupon nominal

bond that pays one dollar at maturity P
(n)
t can be derived recursively using the nominal

stochastic discount factor (E.4):

P
(n)
t = Et[Mt+1P

(n−1)
t+1 ], (E.20)

where P
(0)
t = 1 for ∀t. The continuously compounded yield to maturity of this bond follows

directly from its price: r
(n)
t = − 1

n
lnP

(n)
t . Note r

(1)
t is the 1-period nominal risk-free rate,
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and R
(1)
t = exp(r

(1)
t ) in the monetary policy rule.

As described in Section 3.1, the n−period nominal term premium tp
(n)
t is computed from

equation (8) with the risk neutral yield r
Q(n)
t computed by recursively discounting cashflows

using the nominal risk-free rate (instead of the real risk-free rate). The yield to maturity

and the term premium of a n−period zero-coupon real bond can be derived analogously,

by simply replacing the nominal stochastic discount factor with the real stochastic discount

factor Mt+1Πt+1, and replacing the nominal 1-period interest rate used for discounting the

risk-neutral prices with their real counterparts.

E.6 Equilibrium Characterization

Given the initial condition {R(1)
−1, C−1,Π−1,∆−1,x−1|−1,V 0|−1} and the exogenous processes

{Gt, at, et, εs,t}t≥0, a monopolistically competitive rational expectations equilibrium is de-

fined in a standard way as a set of stochastic processes for quantities and prices such that

(1) households maximize utility, (2) firms set prices and maximize profits, (3) the central bank

conducts monetary policy according to the interest rate rule, and (4) goods, labor, and asset

markets clear. Conditional expectations E[·|It] are defined over the information set It com-

mon across households, firms, and the central bank, which precludes {at−τ , et−τ , εs,t−τ}τ≥0.

To obtain a stationary equilibrium I follow the standard procedure of normalizing all

relevant variables by the deterministic trend Gt.

E.7 Summary of the Equilibrium Conditions

In this section, I list the equilibrium conditions of the DSGE term structure model in full

(excluding the equations for the term structure to save space). Defining the normalized

variables using hats (e.g., Ĉt ≡ Ct
Gt

), the normalized equilibrium conditions are (for Ut ≤ 0):

V̂t =
Ĉ1−χc
t

1− χc
− N1+χn

t

1 + χn
− β̃ζ

{
Et
[
(−V̂t+1)1−γ̃

]} 1
1−γ̃

(E.21)

Mt+1 = β̃

(
Ĉt+1

Ĉt

)−χc  −V̂t+1[
Et
[
(−V̂t+1)1−γ̃

]] 1
1−γ̃


−γ̃

1

Πt+1

(E.22)

Ŵ r
t = Nχn

t Ĉχc
t (E.23)

Et
[
Mt+1R

(1)
t

]
= 1 (E.24)
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F̂t =
θ

θ − 1
λ̂rt Ŷt + Et

[
ϕMt+1Πt+1

(
Πt+1

Π
ιp
t Π̄1−ιp

) θ
α

F̂t+1ζ

]
(E.25)

Ĥt = Ŷt + Et

[
ϕMt+1Πt+1

(
Πt+1

Π
ιp
t Π̄1−ιp

)θ−1

Ĥt+1ζ

]
(E.26)

(
P ∗t
Pt

)1+
θ(1−α)
α

=
F̂t

Ĥt

(E.27)

λ̂rt =
Ŵ r
t

αZtK̄
1−α
α Ŷ

α−1
α

t

(E.28)

P ∗t
Pt

=

1− ϕ
(

Πt
Π
ιp
t−1Π̄1−ιp

)θ−1

1− ϕ


1

1−θ

(E.29)

∆
1
α
t = (1− ϕ)

(
P ∗t
Pt

)− θ
α

+ ϕ

(
Πt

Π
ιp
t−1Π̄1−ιp

) θ
α

∆
1
α
t−1 (E.30)

R
(1)
t =

(
R

(1)
t−1

)ρr R̄ [Πt

Π̄

]φπ [ Ŷt
Ȳ

]φy1−ρr

(E.31)

Ŷt =
1

∆t

K̄1−α(ZtNt)
α (E.32)

Ŷt = Ĉt + (ζ + δ − 1)K̄ (E.33)

st = Ψρxt−1|t−1 + (st − st|t−1) (E.34)

xt|t ≡ Et[xt] = ρxt−1|t−1 +Kt−1(st − st|t−1) (E.35)

Kt−1 = V t|t−1Ψ
′(ΨV t|t−1Ψ

′ + Σs,t−1Σ
′
s,t−1)−1 (E.36)

V t+1|t = ρ(V t|t−1 − V t|t−1Ψ
′(ΨV t|t−1Ψ

′ + Σs,t−1Σ
′
s,t−1)−1ΨV ′t|t−1)ρ′ + ΣxΣ

′
x, (E.37)

where Ĉt ≡ Ĉt − χh
ζ
Ĉt−1, V̂t ≡ Vt

G1−χc
t

, β̃ ≡ βζ−χc , and all other variables are defined above.

F Moments of the Real Term Structure

In this section, I discuss how the model-implied moments with respect to the real term

structure of interest rates fare against their data counterparts. The results are summarized

in Table F.1. The construction of the data-implied moments is discussed in A. I do not

report data counterparts for the real term premium since it is difficult to find consensus
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estimates over the sample period.

The baseline model with imperfect information (model-BL) fits the real term structure

reasonably well, given that the moments are not targeted in the estimation. In addition,

the moments of model-BL improve notably in some aspects compared to the moments of

the model with perfect information (model-PL). For example, the average yield slope is

steeper and closer to the data in model-BL, and yield volatility declines more gradually in

maturity for model-BL, consistent with the data. These results are partly due to the model-

implied real term premia—the average and volatility of the real term premium (E[tpr,(20→40)]

and σ[tp(20→40)]) are larger in model-BL, compared to those in model-PL. In particular, the

volatility of the real term premium is negligible for model-PI, similar to the nominal term

premium.

Table F.1: Moments on the Real Term Structure

Data Model-BL Model-PI
(Imperfect Info.) (Perfect Info.)

Yields

E[rr,(1)] 1.52 1.95 2.25

E[rr,(20→40)] 3.01 2.98 2.97

E[tpr,(20→40)] — 1.06 0.76

σ[rr,(1)] 1.54 1.28 1.55

σ[rr,(20→40)] 0.73 0.52 0.44

σ[tp(20→40)] — 0.41 0.03

ρ−1[rr,(1)] 0.92 0.94 0.94

ρ−1[rr,(20→40)] 0.88 0.99 0.99

ρ−1[tp(r,20→40)] — 0.99 0.99

Notes: The real yield data is adjusted for liquidity premia in TIPS yields; see Appendix A for details. The
data is in quarterly frequency and in annualized percent. The sample period is from 1990.Q1 to 2008.Q4.
E[·], σ[·], and ρ−1[·] indicate the unconditional mean, standard deviation, and 1-quarter autocorrelation,
respectively.

Of note, Duffee (2018) proposes an alternative way to assess a macro-finance term struc-

ture model’s fit to the data, by looking at the ratio of the variance of news about expected

inflation to the variance of yield shocks. Specifically, the inflation variance ratio for yield

maturity m is computed as
Var[η

(m)
π,t ]

Var[r̃
(m)
t ]

, where η
(m)
π,t ≡ Et

[
1
m

∑m
i=1 πt+i

]
−Et−1

[
1
m

∑m
i=1 πt+i

]
and

r̃
(m)
t ≡ r

(m)
t − Et−1[r

(m)
t ]. Duffee argues that at a quarterly frequency, this ratio is between

10 to 20 percent in the data. It turns out that the model with imperfect information implies
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a variance ratio of 12 and 13 percent at the 5- and 10-year maturity, respectively, which

is consistent with Duffee’s observation and my finding that the model reasonably fits other

moments of the data. The model with perfect information under my specification implies a

higher variance ratio, but the increase turns out to be modest.

G Term Premia and the Changing Correlation of Con-

sumption Growth and Inflation

While a detailed study is out of the scope of this paper, the comparative statics can offer

some insight into the determinants of a longer-term relationship between term premia and

the increasing correlation of consumption growth and inflation (or similarly, the correlation

of output gap and inflation) that has been documented in the literature (e.g., Song (2017),

Campbell et al. (2020)). Figure G.1 shows the model-implied correlation of consumption

growth and inflation with respect to σs and ξ. Recall a noise shock can be interpreted as a

demand shock, in the sense that it moves consumption and inflation in the same direction,

as shown by the impulse responses. Hence, it may be natural to expect an increase in the

correlation of consumption and inflation by adding a noise shock. However, the figure shows

that this is not necessarily the case. In particular, when the signal precision is constant

(ξ = 0), the correlation becomes more negative as σs increases from the perfect information

case when there are only TFP shocks (σs = 0). Correlation can increase only when the signal

precision is sufficiently time-varying, i.e., ξ is large, but even in this case, the correlation is

not monotonically increasing with respect to σs.

The reason why a larger volatility of the noise shock can lead to a (further) negative

correlation between consumption and inflation is that a noise shock changes how a TFP

shock affects consumption and inflation by influencing agents’ beliefs about productivity.

For instance, under imperfect information, an increase in TFP due to an increase in the

persistent component of TFP is perceived to be partly driven by an increase in the tran-

sitory component. Hence, compared with the case under perfect information, the increase

in consumption is dampened, exacerbating the deflationary pressure of the TFP shock and

resulting in a stronger negative correlation.35

35By assuming no habit formation, no monetary policy reaction to the output gap, ρa = 1 and ρe = 0 for
the TFP process, the linearized solution of the DSGE model admits an analytical expression where inflation
is orthogonal to εa under perfect information, but negatively correlated with εa under imperfect information.
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Figure G.1: Effect of the Noisy Signal on the Correlation of ∆c and π

Notes: Each line corresponds to the correlations generated from the indicated value of ξ. The black triangle
indicates the statistic from the baseline model.

The time-variation in signal precision is critical in reversing this mechanism. If signal

precision is procyclical, this dampening effect is offset as the increase in consumption leads

to an increased flow of information.36 This result shows that the increase in the correlation

may not be simply due to an increase in the volatility of a demand shock, but rather, the

origin may be traced to a combination of moves in σs and ξ. This point can actually be made

without considering the term structure of interest rates, but it is an interesting byproduct

of introducing time-varying signal precision to improve the DSGE model’s fit to the term

structure, and a point that appears overlooked in the literature.

As discussed in Section 2 and Appendix B, the countercyclicality of term premia did not

necessarily weaken after 2000, while there was an increase in the correlation of consump-

tion (growth) and inflation. Through the lens of my model, this phenomenon would be

qualitatively consistent with an increase in σs or ξ, especially when ξ is sufficiently large.

Alternatively, and perhaps more realistically, the mechanism through which imperfect infor-

mation affects the term premium can be combined with other possible explanations in the

literature. For instance, the model of Nakata and Tanaka (2016) suggests that an increase

in the volatility of a demand shock can depress term premia while increasing the correlation

of consumption and inflation. In this case, however, term premia end up being procyclical.

36As σs → ∞, the correlation asymptotes to a unique level that is more negative than the case with
perfect information, regardless of ξ. This is because, as st becomes completely uninformative, the only
effective signal is productivity itself, the precision of which does not vary over time.

57



Imperfect information could reverse this procyclicality, potentially offering an explanation

that brings the model more in line with the data.
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