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Abstract

In standard macroeconomic models, the costs of inflation are tightly linked
to the price dispersion of identical goods. Therefore, understanding how price
dispersion empirically relates to inflation is crucial for welfare analysis. In this
paper, I study the relationship between steady-state inflation and price disper-
sion for a cross section of U.S. retail products using scanner data. By comparing
prices of items with the same barcode, my measure of relative price dispersion
controls for product heterogeneity, overcoming an important challenge in the lit-
erature. I document a new fact: price dispersion of identical goods increases
steeply around zero inflation and becomes flatter as inflation increases, display-
ing a Υ-shaped pattern. Current sticky-price models are inconsistent with this
finding. I develop a menu-cost model with idiosyncratic productivity shocks and
sequential consumer search that reproduces the new fact and exhibits realistic
price-setting behavior. In the model, inflation-induced price dispersion increases
shoppers’ incentives to search for low prices and thus competition among retailers.
The positive welfare-maximizing inflation rate optimally trades off the efficiency
gains from lower markups and the resources spent on search.
JEL Codes: E31, E50, L11, L16.
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1 Introduction

A salient feature of micro-level data is that the prices of identical goods vary across
sellers. In current macroeconomic models, inflation is a crucial determinant of price dis-
persion, and the costs of inflation mainly arise from inflation-induced price dispersion.
In this paper, I address three questions: What is the empirical relationship between
inflation and price dispersion? What does this relationship imply for current monetary
theories? What do we learn for the welfare analysis of inflation?

Studying how price dispersion empirically relates to inflation imposes several chal-
lenges. The first is to measure price dispersion accurately. For this, we need to observe
the prices different sellers charge for identical goods. Typically, granular datasets
which have been essential to establish facts on micro-price rigidity do not satisfy this
requirement. For instance, quotes in the micro-data underlying the CPI are grouped
into product categories with limited information about the specific product being mea-
sured or the ability to link identical products across sellers. Thus, the comparison of
prices across sellers, even within narrow product categories, would not take product
heterogeneity into account (Nakamura et al., 2018).

I overcome this challenge using highly detailed scanner data for retail products in
the U.S. The dataset contains prices and quantities of products sold in over 35,000
stores across the country between 2006 and 2020. The observations are identified by
the product barcode, the week, and the retailer where the transaction was carried out.
More than 3 million barcodes are available, each of them sold by 50 stores on average.
Each retailer belongs to one of over a thousand geographically dispersed counties.
With these data, I can compare prices of products with identical barcodes sold across
different retailers on the same date and county. Hence, my measure of relative price
dispersion controls for several sources of heterogeneity which a priori are unrelated to
inflation.

A shortcoming of this dataset is that it is only available for a relatively low and
stable aggregate inflation period. Therefore, the variation in aggregate inflation is
insufficient to statistically identify its time-series comovement with price dispersion.
In contrast, the variation in product-level inflation rates across markets and product
categories is substantial. While aggregate inflation fluctuated between -1% and 7%
over the sample period, product-level inflation ranged between -30% and 30%. Thus,
my approach is to study the relationship between inflation and price dispersion by
exploiting cross-sectional variation and derive implications of aggregate inflation using
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a multi-product model calibrated to match the disaggregate evidence.1

I contribute to the literature by documenting a new fact: in the cross section,
small deviations from zero inflation sharply increase price dispersion of identical goods.
As inflation increases, price dispersion becomes a flatter function of inflation. When
plotting price dispersion against inflation, the relationship resembles the Greek capital
letter upsilon; thus, I refer to it as Υ-shaped. The Υ-shaped pattern is prevalent in the
data and robust to various econometric specifications. Moreover, the cross-sectional
behavior of additional pricing moments such as the average frequency and the absolute
size of price changes is consistent with time-series evidence in the literature.

Standard sticky-price models cannot reproduce the Υ-shaped pattern while account-
ing for the other pricing moments. Thus, I develop a menu-cost model with idiosyn-
cratic productivity shocks and sequential consumer search that can. In the model,
the representative household has a worker who supplies labor and a continuum of
shoppers, each purchasing a continuum of goods. A continuum of retailers produces
and sells each homogeneous good using labor. Retailers set nominal prices and face a
menu cost; they adjust because relative prices erode at a deterministic inflation rate
– which varies among products because of differing productivity growth rates – and
idiosyncratic shocks hit their productivity. The non-degenerate and time-invariant
cross-sectional distribution of relative prices results from both product-level inflation
and idiosyncratic shocks.

Every period, a continuum of shoppers enter, search, purchase, and leave the mar-
ket for each product. They take the relative-price distribution as given and search
sequentially for the lowest price. For each additional price draw, shoppers pay a het-
erogeneous search cost. Their strategy is to search until finding an offer lower than
their reservation price. Each buyer ends up purchasing the homogeneous good from one
of many nearly identical retailers. Therefore, shopping behavior determines the equi-
librium demand curve. Product-level inflation, on the other hand, affects the returns
to search by directly impacting price dispersion.

A demand curve that changes endogenously with inflation through search is key to
replicate the Υ-shaped relationship between inflation and price dispersion in the data.
The intuition is as follows. At zero inflation, the only source of price dispersion is the
idiosyncratic productivity shocks. Thus, searching might be profitable only for low-
search-cost buyers. In this case, retailers with high productivity draws have incentives

1In what follows, I will use the terms “product-level inflation” and “inflation” indistinctively and
refer to economy-wide inflation as “aggregate inflation.”
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to set a price low enough to attract searchers. It turns out that, since relative prices
are fixed, sellers optimally bunch at the reservation price of searchers. Only retailers
with low productivity draws, serving high-search-cost shoppers who do not search, set
higher prices. Because of this bunching behavior, price dispersion at zero inflation is
relatively low.

A small deviation from zero inflation makes relative prices continuously drift down-
ward; bunching at any price would require retailers to pay the menu costs every period,
which is suboptimal. Therefore, retailers let their prices erode before adjusting, and
price dispersion increases. More dispersed prices increase the returns to search, pro-
ducing a feedback effect on price dispersion. On the one hand, highly productive sellers
have incentives to charge lower prices, attracting more customers and increasing their
sales volume. On the other hand, because searchers flee from high prices, the least
productive retailers end up serving a larger fraction of non-searchers or captive shop-
pers, even having incentives to increase their prices. As a result, price dispersion rises
sharply.

Furthermore, I provide empirical evidence on shopping behavior and inflation that
supports the theory. The model predicts the higher is absolute inflation in a given
market, the lower are the prices shoppers visiting several stores pay. I test this pre-
diction using consumer panel data for the same retail products in the scanner data.
These data contain the barcodes of the items households purchased on each shopping
trip, the quantities they bought, and the prices they paid. In addition, we can identify
the number of distinct retailers a household visited to purchase the good. I merge
shopping-behavior measures from these data to product-level inflation from the retail
scanner data. I find that a household visiting ten stores when absolute inflation is 10%
pays 1% less than when inflation is zero and 2.4% less than a household visiting only
one store.

I jointly calibrate the parameters of the model to match the average markup, the
absolute size and frequency of price changes, shopping behavior at zero inflation, and
the Υ-shaped pattern of product-level price dispersion in inflation. The latter is cru-
cial to identify the parameters of the search-cost distribution. When the density of
shoppers with a positive but negligible marginal search cost is relatively large, at zero
inflation, more productive retailers bunch at the highest price that low-search-cost
shoppers will accept because there are many of these searchers. For a small positive
level of inflation, dispersion at the lowest prices increases because of real price erosion,
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prompting the large density of low-search-cost shoppers to search more, which increases
price dispersion further, producing the data pattern.

In my model, the welfare effects of product-level and aggregate inflation are am-
biguous. The costs of inflation stem from adjustment costs, as in standard menu-cost
models, and from search costs: inflation-induced price dispersion increases shoppers’ re-
turns to search, and thus the resources spent on the search for the best prices. Through
price dispersion and costly search, inflation can be beneficial for welfare. The calibrated
model suggests that it is. Given that search activity is limited at zero inflation, retail-
ers set high markups and extract the surplus from consumers. A low positive inflation
rate increases price dispersion and the returns to search considerably. Highly produc-
tive retailers charge lower prices to attract more shoppers, particularly those who have
a lower search cost and search more. As a consequence, markups decrease, generat-
ing significant efficiency gains. These gains dissipate for large levels of inflation: the
least productive retailers, whose customers become mostly captive shoppers, optimally
charge higher prices, increasing average markups.

Related literature Extensive research on the theoretical relationship between price
dispersion and inflation exists. My paper is directly related to two types of models
in the literature. First, monetary models in which sticky prices and inflation generate
price dispersion. Second, models of monetary exchange in which price dispersion arises
from buyers’ incomplete information on the prices charged by each seller.

In models where nominal price changes are costly and no aggregate or idiosyncratic
uncertainty exists (Barro, 1972; Sheshinski and Weiss, 1977; Benabou, 1988), the op-
timal policy is an (S, s) pricing rule: the firm keeps the nominal price fixed while the
real price drifts continuously from the initial level S to the terminal level s, at which
point it jumps back to S. The higher the expected inflation, the larger the distance
between such bounds. If inflation is constant and firms follow a common (S, s) rule,
the cross-sectional distribution of real prices is log-uniform on [s, S].2 In this case,
the coefficient of variation is increasing and concave in the max-min price ratio, S/s.3

Because this ratio generally increases with inflation, price dispersion tends to be in-
creasing and concave in inflation. Such a prediction on cross-sectional pricing behavior

2Caplin and Spulber (1987) show a log-uniform on [s, S] is the only cross-sectional distribution
consistent with: (i) time-invariant common (S, s) rules, and (ii) a price index that grows at the
aggregate inflation rate.

3The coefficient of variation of a log-uniform distribution is
√(

S/s+1
S/s−1

)
log(S/s)

2 − 1.
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is in line with my findings. However, the predictions regarding firms’ dynamic price-
setting behavior are at odds with micro-level empirical evidence: at low to moderate
inflation rates, price decreases are as common as price increases, and the absolute size
of adjustments is significantly larger than aggregate inflation.

Golosov and Lucas (2007) replicate those features of firms’ dynamic pricing behavior
by introducing idiosyncratic productivity shocks in a menu-cost model. In their setting,
firms adjust not only because the real price is declining but also because the real cost
of production is changing stochastically. For low to moderate inflation levels, the large
idiosyncratic shocks induce firms to adjust before inflation erodes their real prices too
much; cross-sectional price dispersion is practically constant and increases smoothly
with inflation. When inflation is high, the main reason for firms to adjust is to catch up
with aggregate inflation, as in Sheshinski and Weiss (1977). Therefore, price dispersion
is U -shaped in inflation.

In contrast, New Keynesian models typically assume prices are sticky but adjusting
opportunities arrive at an exogenous rate, as in Calvo (1983). Because firms do not
have the option to adjust before their prices drift far from optimal levels, cross-sectional
price dispersion rises rapidly with inflation. Nevertheless, idiosyncratic shocks tend to
make price dispersion smooth at zero inflation. Thus, both models predict a U -shaped
relationship between inflation and price dispersion, at odds with my findings.

Head and Kumar (2005), on the other hand, study the effects of inflation on price
dispersion by embedding the price posting environment of Burdett and Judd (1983)
in a model of monetary exchange. In their setting, buyers hold fiat money and search
non-sequentially for a seller. The equilibrium price distribution is non-degenerate if
some buyers observe a single price quote, whereas others observe more than one. The
model predicts a positive relationship between inflation and price dispersion which, as
in my model, is tightly related to market power. Inflation erodes the purchasing power
of fiat money, so the fraction of buyers observing a single price increases. In response,
sellers pricing at the upper end of the distribution raise their prices by a relatively
large amount: since a higher share of their customers are captive buyers, the decline in
sales will be small. Conversely, sellers pricing at the lower end of the distribution are
constrained in their price increases by the fact that they can lose a significant volume
of sales to competitors. An important shortcoming of this framework is that prices are
fully flexible, contrary to what the data shows.4

4In the data, prices stay fixed for at least four months on average. See Nakamura and Steinsson
(2008) for a representative characterization of price changes in the U.S.
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Head et al. (2012) embed Burdett and Judd (1983) pricing into a dynamic New
Monetarist model that delivers price dispersion even without inflation or idiosyncratic
productivity shocks. In a similar setting, Burdett and Menzio (2018) introduce a menu
cost of adjustment: for high-enough values of this cost, the cross-sectional distribution
of real prices converges to a log-uniform, and for values close to zero, it converges to
Burdett and Judd (1983). The main drawback of these models is that they are unable
to generate price decreases for positive inflation. Burdett and Menzio (2017) overcome
this issue introducing idiosyncratic shocks to sellers. However, unless the menu cost is
sufficiently high, there is a negative relationship between inflation and price dispersion.5

In my theory, I assume sellers face idiosyncratic productivity shocks and a menu
cost of adjusting nominal prices. These assumptions generate realistic firm pricing
behavior and allow us to take the model to the data. I borrow the firm price-setting
block from Golosov and Lucas (2007), as is standard in the literature with micro-
founded sticky prices. On the consumer’s side, I assume heterogeneous shoppers search
sequentially for the lowest price. Sequential search facilitates the introduction of firm-
level heterogeneity and the mapping between model and data on the firms’ side. The
consumer search block is primarily based on Benabou (1992). As we will see, both price
stickiness and incomplete information of consumers are key to generate the Υ-shaped
relationship between inflation and price dispersion in the data.

My paper also contributes to the scarce literature studying the empirical relation-
ship between inflation and price dispersion.6 Tommasi (1993) finds a positive correla-
tion between absolute inflation and price dispersion of identical goods, but the scope
of the findings is limited: the sample is for 15 products sold by five supermarkets in
Argentina. Reinsdorf (1994) uses the micro-level data underlying the U.S. CPI to com-
pute price dispersion of similar goods. Assuming price dispersion is linear in inflation
– not absolute inflation – he finds the variables are negatively correlated.

Nakamura et al. (2018) extend the dataset used by Reinsdorf (1994) back to 1977;

5In this model, sellers follow a (Q,S, s) rule: they let inflation erode real prices until they reach s,
at which point they pay a menu cost and adjust to a random price in [S,Q]. As inflation increases, S
increases but Q and s remain constant. As a result, more sellers price in [s, S], where the distribution
is less dispersed than in [S,Q].

6Mostly due to data limitations, earlier research focused on price change dispersion – or relative
price variability (RPV) – instead of price level dispersion. Van Hoomissen (1988), Lach and Tsiddon
(1992), and Beaulieu and Mattey (1999) study the relationship between inflation and intra-market
RPV; Parsley (1996) and Debelle and Lamont (1997) focus on inter-market RPV and inflation. Al-
though some of these papers use RPV as a proxy for price dispersion, the relationship between both
variables is not straightforward in models or data (Nakamura et al., 2018).
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the resulting data exhibit significant variability in aggregate inflation. Nevertheless,
products are identified by narrow categories (e.g., “carbonated drinks”), not by barcodes
or brands. Therefore, as the authors state, much of the within-category dispersion likely
results from differences in product size and quality. To overcome this data limitation,
they analyze the relationship between inflation and the absolute size of price changes
instead. They argue that such a relationship should inform about inflation and price
dispersion because that is the case in current sticky-price models (i.e., New Keynesian
and Golosov and Lucas style menu-cost models). They show that, although annual
inflation has fluctuated between -2% and 12% since 1977, the mean absolute size of
price changes has been practically constant. They conclude that the main costs of
inflation in the models they study are absent in the data.

Alvarez et al. (2019) use the micro-level price data underlying the Argentinian CPI
between 1988 and 1997, a period in which monthly inflation ranged from 200% to less
than zero. These data allow comparing the prices of goods, with the same brand and
package, across stores every two weeks. The authors measure aggregate price dispersion
as the residual variance in a regression of prices on a rich set of fixed effects. They find
the elasticity of price dispersion with respect to absolute inflation is zero for inflation
below 10% per year and close to one-third at high inflation rates.

Sheremirov (2020) studies the cross-sectional relationship between inflation and
price dispersion using retailer scanner data. The main differences with the data I use,
aside from being gathered by a different company, are the period (2001-2011), the
coverage (31 categories comparable to the 1,000 I have), and the existence of flags for
temporary price reductions (i.e., sales). He documents a negative relationship between
inflation and dispersion of prices including sales. After removing sales, this correlation
becomes positive. Although my measures of price dispersion include sales, Sheremirov’s
findings suggest removing them should not affect my results qualitatively.

Because I observe products at the barcode level, I overcome the challenge Naka-
mura et al. (2018) and earlier research faced. In addition, by comparing prices of
identical goods before computing aggregates, my measure of price dispersion is closer
to the models than the measure in Alvarez et al. (2019). Unlike Reinsdorf (1994) and
Sheremirov (2020), I do not impose linearity when studying the comovement of infla-
tion and price dispersion; the flexibility of a non-parametric specification allows me to
uncover the Υ-shaped relationship between both variables.

Finally, I contribute to the literature on the costs and benefits of inflation. The costs
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of inflation are typically associated with price dispersion of identical goods. In current
sticky-price models (i.e., New Keynesian or menu-cost models with idiosyncratic shocks
and without consumer search), inflation-induced price dispersion tends to decrease
aggregate labor productivity and welfare. The intuition is that as nominal prices stay
fixed, relative prices drift away from their optimal levels under a positive inflation
rate. Hence, relative prices no longer reflect the relative costs of production, negatively
affecting efficiency. The welfare losses – even for low to moderate inflation rates – are
substantial in the New Keynesian model because price dispersion increases significantly
with inflation (Burstein and Hellwig, 2008; Nakamura et al., 2018).

Menu-costs models, on the other hand, predict the negative effects of low to mod-
erate inflation on welfare are negligible because: (i) price dispersion is essentially flat
in inflation, and (ii) the physical cost of changing prices is relatively small (Nakamura
et al., 2018; Alvarez et al., 2019).7 Moreover, in the presence of a zero lower bound on
nominal interest rates, the benefits from a positive level of inflation more than offset
such costs (Blanco, 2021).8

In monetary models with consumer search (Benabou, 1988, 1992; Diamond, 1993;
Head and Kumar, 2005), inflation-induced price dispersion can be welfare-improving.
In particular, if monopolistic competition arises from costly consumer search instead
of imperfect substitutability of the goods, consumers could exclusively buy from sellers
charging the lowest prices. Then, by increasing price dispersion, inflation can increase
the returns to search and decrease firms’ market power, potentially increasing welfare.

The article proceeds as follows. Section 2 presents evidence from scanner data on
the Υ-shaped relationship between price dispersion and inflation. Section 3 develops a
menu-cost model with consumer search that reproduces the Υ-shaped pattern. Section
4 explains the intuition behind this result. Section 5 presents evidence on shopping
behavior and inflation that supports the mechanism. Section 6 shows the model fit to
the data and Section 7 discusses the welfare implications of inflation in the calibrated
model. Section 8 concludes.

7Burstein and Hellwig (2008) consider, in addition, the effects of inflation on the opportunity cost
of holding real money balances. They find the welfare costs arising from price dispersion are negligible
compared to those from this extra channel.

8Danziger (1988) shows that in a menu-cost model without idiosyncratic shocks, a low positive
inflation rate can be better than zero. Intuitively, in the absence of inflation, firms charge the static
profit-maximizing price at all times; under positive inflation, lower real prices in the periods preceding
the adjustment make consumers better off.
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2 Evidence on inflation and price dispersion

How does price dispersion empirically relate to aggregate inflation? The first require-
ment to answer this question is to precisely measure the price dispersion of identical
goods. To do so, we need to observe the prices that several sellers in a particular geo-
graphic area charge for the same good on the same date. The NielsenIQ Retail Scanner
dataset for the U.S. satisfies this condition, as I explain in the next subsection.

Second, we would require these granular price data over different economy-wide
inflation regimes: we are interested in the relationship between aggregate inflation –
which can be influenced by the monetary authority – and price dispersion. Nonetheless,
the data is only available for a relatively short period with low and stable aggregate
inflation, implying the variation for a time-series analysis is insufficient. Conversely,
the variation in county- and product-level inflation rates is substantial. Thus, I identify
the relevant relationship by exploiting cross-sectional variation and derive aggregate
implications using a model calibrated to match the disaggregate evidence.

2.1 Data

The NielsenIQ Retail Scanner Data are available for the 2006-2020 period and have
non-durable items at the barcode level (Universal Product Code – UPC), sold mostly by
grocery, drugstore, and mass-merchandise chains. These products can be categorized
at the module level (i.e., highly substitutable products that differ only in their brand),
then at the group level (i.e., modules serving similar purposes), and finally at the
department level. An example of a module would be “Ground and Whole Bean Coffee”
in the product group “Coffee” from the department “Dry Grocery”. The data contain
10 departments, 125 groups, and 1,078 modules, approximately.

For each week and UPC, stores report total units sold and total revenues. At the
UPC level, we observe product description, brand, multi-pack, size, and additional
characteristics in some cases (e.g., flavor).9 Over 35,000 stores are located across the
U.S., classified into around 1,460 counties. Each store can be associated to a retail
chain.10 I use the Retail Scanner dataset to compute disaggregate inflation measures

9I exclude private-label products because NielsenIQ alters the barcode so a particular store cannot
be identified: for generics, the UPC does not represent a unique good.

10The retail chain identifier might refer to (1) the Corporate Parent if the company centralizes
their data release to NielsenIQ across all of their retail brands, or (2) the Retail Banner of the store if
the company decentralizes their data release to NielsenIQ through multiple data centers representing
each of their retail banners.
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and seller-level statistics on price dispersion.
Price dispersion is defined as contemporaneous discrepancies between the prices

offered by different sellers of the same good around an average price. Scanner data
allow us to be consistent with such a definition because a product is defined by its
barcode, so we compare prices of the same good across stores.11 Therefore, we can
compute price dispersion controlling for product heterogeneity. Moreover, each product
is linked to a store, and because each store is associated to a geographic market, we
can control for systematic regional differences. Lastly, weekly-level data allow us to
compare the prices across stores at a given instant of time.

2.2 Variable construction

I define products as items that have the same barcode and thus the same brand, size,
and characteristics. I compute inflation and price dispersion at the product × county ×
month (k,m, t) level. I use monthly instead of weekly prices to minimize the incidence
of missing values. For the same reason, I only keep product × store pairs that appear
in every month of a given year. To compute meaningful measures of price dispersion,
I require that each product is sold by at least ten stores in each county and month.

Inflation I define the price store i in county m and month t charges for product k as

Pikm,t =

∑Tt
τ=1Revikm,τ∑Tt
τ=1 qikm,τ

=
Revikm,t
qikm,t

,

where Revikm,τ and qikm,τ are total revenues and total units sold, respectively, in each
week τ of month t; Tt ∈ {4, 5}, depending on the month. Price-level inflation is the
annualized monthly average price change across stores selling product k in county m,

πkm,t = 12×
Nkm,t∑
i=1

(lnPikm,t − lnPikm,t−1)

Nkm,t

,

where Nkm,t is the total number of stores. To validate this inflation measure, I compute
a sales-weighted average over all food-related product × county pairs and compare it
with the official statistics. Figure A.1 shows aggregate inflation for food categories

11Since the retail chain identifier does not distinguish between parent companies and retail banners,
I focus my analysis on stores. In the robustness checks below, I compute price dispersion across retail
chains. The qualitative results remain unchanged.
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in these data closely tracks the food-at-home CPI reported by the BLS for the same
period.

Price dispersion The main measure of price dispersion that I use is the unweighted
standard deviation of log prices across stores for each product, county, and month:

σkm,t =

√√√√ 1

Nkm,t − 1

Nkm,t∑
i=1

(
lnPikm,t −

∑Nkm,t
i=1 lnPikm,t
Nkm,t

)2

.

In addition, I compute alternative measures of price dispersion (interquartile range,
90-10, 90-50, and 50-10 ratios of the price distribution) for each (k,m, t).12 13

2.3 Estimation and results

A comparative-statics analysis assumes inflation is constant and price dispersion is
computed using an invariant distribution. Therefore, to analyze the data, we need to
choose a time horizon within which we assume retailers’ behavior completely adjusts to
changes in inflation. Because the data show retailers adjust their prices every four to
six months on average, I conjecture that the adjustment period is 12 months. Annual
inflation and price dispersion for each product × county correspond to the average
across months for each year:

πkm,y =

∑12
t=1 πkm,t

12
; σkm,y =

∑12
t=1 σkm,t

12
.

Table A.1 shows descriptive statistics for these product-level measures and for a
sales-weighted average inflation. The final sample for estimation includes more than
9 million product × county pairs for 268,149 unique products and 904 counties. Each
pair is present in the data for an average of 4.4 years and contains information for an
average of 26 stores. Disaggregate inflation exhibits significantly larger variation than
aggregate inflation, with a coefficient of variation (CV) of 8.15 and 1.13, respectively.

12Weighting prices using annual store sales when constructing product-level inflation or price dis-
persion measures does not affect the main results.

13Other than computing sales-weighted measures, one could control for sellers’ heterogeneity by
removing seller-fixed effects from the price before obtaining price dispersion. However, eliminating
persistent price-level differences generates downward-biased estimates of price dispersion, thus causing
a downward shift in its relationship with product-level inflation. Despite the level shift, the qualitative
results regarding the shape of the relationship remain unchanged.
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Figure 1: Product-level price dispersion and inflation, raw data

Each dot corresponds to average price dispersion for each of 100 equally sized product-level
annual inflation bins. The unit of observation is a product × county × year, for 40.1 million
in total.

To understand the relationship between disaggregate price dispersion and inflation,
I start by constructing a binned scatterplot: I divide annual product-level inflation
πkm,y into 100 equally sized bins and average price dispersion σkm,y within each bin.
In this way, we can analyze the data without imposing any parametric structure. As
Figure 1 shows, price dispersion is at its lowest average levels when inflation is close to
zero; as inflation deviates from zero, price dispersion increases steeply, flattening at 2%.
Hence, the data suggest the relationship between both variables is non-differentiable
at zero. Because this pattern resembles the Greek capital letter upsilon, I hereafter
refer to it as upsilon-shaped, or Υ-shaped.

Next, I assess how the results change when controlling for observable and unob-
servable factors in the product, county, or time dimensions. In particular, I estimate
the following non-parametric regression of price dispersion on inflation:

σkm,y =
100∑
n=1

βn1{πkm,y∈Bn} + ak,y + bm,y + α logNkm,y + εkm,y. (1)
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Figure 2: Product-level price dispersion and inflation, predicted

The dots correspond to average price dispersion conditional on covariates for each of 100
equally sized product-level annual inflation bins as predicted by equation (1). The unit of
observation is a product × county × year, for 40.1 million in total.

The coefficients {βn}100
n=1 correspond to average price dispersion at each equally sized

inflation bin {Bn}100
n=1, conditional on covariates: ak,y and bm,y are product-year and

county-year fixed effects, respectively, and Nkm,y denotes the total number of stores.
This specification implies we identify {βn}100

n=1 by exploiting the cross-product inflation
variation within each county and year, taking into account unobservable product-level
differences that might be changing over time. In addition, we control for the number
of stores, because research has shown this variable explains a substantial degree of the
cross-sectional price-dispersion variation in the data (Hitsch et al., 2019).

Figure 2 shows the price dispersion predicted by inflation using estimates from
equation (1). The results confirm the Υ-shaped pattern between price dispersion and
inflation is prevalent in the data, even when comparing different products in a given
county-year, or a product across counties for the same year (Figure A.3). In particu-
lar, including fixed effects increases average price dispersion around zero inflation and
makes price dispersion a steeper function of absolute inflation for values larger than
2%.
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Moreover, the Υ-shaped relationship is robust to controlling non-parametrically
(Figure A.5) for the number of stores; that is, binned scatterplots of πkm,y and σkm,y
keeping products sold by at least 10, 25, or 50 stores display the same pattern.

On the other hand, price dispersion is approximately symmetric around zero. Fig-
ure A.6 plots estimates of equation (1) for 100 equally sized absolute inflation bins
and the curves in Figure 2 on the same x-axis. The figure shows that the relationship
between price dispersion and absolute inflation is increasing and concave around zero;
it becomes linear for values larger than 2%, and steeper for negative than positive
inflation.

2.3.1 Robustness checks

Category-level statistics With 268,149 unique products classified into 1,078 prod-
uct modules/categories, a few overrepresented categories could be driving the product-
level results. To show this is not the case, I aggregate product-level statistics into
categories using total annual sales as weights.14 As Figure A.4 shows, the category-
level analysis qualitatively reproduces the main product-level findings of this paper. I
also provide the robustness checks described below at the category level.

Statistical significance To assess the statistical significance of the estimated rela-
tionship, I compute confidence bands that reflect the underlying variance of the data.
I construct these bands with standard errors clustered by product × county pair to
control for within-pair error correlation over time. Because the confidence band in
Figure A.7 covers the entire function with probability 0.95 we cannot reject, visually,
that price dispersion is Υ-shaped in inflation.

Year-by-year estimates I test whether the relationship holds for each county and
year separately. I start by assuming price dispersion is a symmetric, continuous, and
differentiable function of inflation, which I identify exploiting within-county-year vari-
ation across products15:

σkm,y = fm,y (|πkm,y|) + α logNkm,y + εkm,y.

14I consider all k sold by at least five stores in each m and t. The category-level dispersion measure
is the squared root of the sales-weighted average product-level standard deviation of log prices.

15I estimate this function non-parametrically by fitting a second-degree polynomial within each bin
and forcing the curves to be smoothly connected at the boundaries of the bins.
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Under these assumptions, I test two hypotheses for each county-year function fm,y.
First, that the function is monotonically non-decreasing; second, that it is concave16:

inf
x>0

f ′m,y (x) ≥ 0; sup
x>0

f ′′m,y (x) ≤ 0.

The top panel in Table A.4 shows the first hypothesis is rejected for 25% and the second
for 35% of the total county-year combinations. When we restrict absolute inflation to
values lower than 2%, the same hypotheses are rejected for only 6% and 9%, respec-
tively, of the county-year pairs. The bottom panel of the table shows similar results
when we estimate the relationship for each product and year, exploiting cross-county
variation. Table A.5 shows that the results are even stronger when using categories
instead of products.

Sales and weekly-level statistics Temporary price reductions, or sales, are not
flagged in the data, so I use three different filters to remove them from weekly posted
prices and construct a weekly series of regular prices. Defining prices as total revenues
over quantity sold each week instead of month would allow for better identification of
price changes and, therefore, sales.17 To construct the monthly-level statistics, I keep
the regular price in the third week of the month and product × store pairs that appear
in every month of a given year.18 Figure A.9 shows the Υ-shaped pattern holds for
each of the regular-price series, having only a level difference with their posted-price
counterpart (Figure A.10).

Future inflation Up to this point, we have analyzed the relationship between current
inflation and price dispersion. One could argue, nonetheless, that price-setting behavior
depends on the inflation rate retailers expect between nominal price adjustments, not
the one they observe. Define future inflation as the average realized inflation rate for
the expected duration of the nominal price. As before, I choose 12 months as an upper
bound for price duration. Figure A.8 shows the Υ-shaped pattern also holds for price
dispersion and future inflation – an expected result in an environment with low and
stable aggregate inflation.

16Both tests require differentiability of fm,y. The estimates using pooled data suggest this function
might be non-differentiable at zero. I assume fm,y is symmetric around zero to overcome this issue.

17See Section B for further discussion, and details on data cleaning and the filters used.
18Although I chose the third week of the month, using any other week between the 1st and 4th

yields the same results.
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Alternative measures of price dispersion To verify that the results are not spe-
cific to the standard deviation of log prices, I repeat the estimation procedure using
different measures of price dispersion. Figure A.12 shows the relationship between
the 90-10 ratio of the price distribution and inflation, which, again, is Υ-shaped. The
same pattern holds for the variance of log prices (Figure A.11), the interquartile range
(Figure A.13), and the 90-50 and 50-10 ratios of the price distribution (Figure A.14).

Retail-chain pricing To make sure that the results are not driven by particular
pricing strategies of retail chains/parent companies across their stores, I construct a
chain-level price.19 For each product and month, I define the monthly price as total
revenues over quantity sold by a given retail chain/parent company. I compute inflation
and price dispersion statistics among chains/parent companies. Figure A.15 shows a
clear Υ-shaped relationship between product-level inflation and price dispersion among
retail chains.

3 Model

The empirical evidence in the previous section speaks to the relationship between
product-level inflation and price dispersion. Product-level inflation has a product-
specific real component – due to, for example, productivity or cost trends – and a
nominal component. Because the inflation variation I exploit is not purely nominal,
we cannot directly conclude the relationship between aggregate inflation and price
dispersion is Υ-shaped.

In this section, I develop a multi-product monetary model that generates a Υ-
shaped relationship between product-level price dispersion and allows us to study the
effects of aggregate inflation. We start by describing the general structure of the model,
which is illustrated in Figure 3.

Time is continuous and no aggregate uncertainty exists. A representative house-
hold has a worker who supplies labor and a measure-one continuum of heterogeneous
shoppers, each purchasing a continuum of products.

Each homogeneous product is sold by a measure-one continuum of monopolisti-
cally competitive retailers. Retailers are infinitely lived, set nominal prices, and have

19For example, DellaVigna and Gentzkow (2019) find retail chains charge nearly-uniform prices
across stores.
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Figure 3: General model structure

a production technology linear in labor. A fixed cost is incurred when changing nom-
inal prices, and retailers would like to adjust them for three reasons: (i) they face
idiosyncratic transitory shocks to their productivity, (ii) product-specific productivity
changes at a deterministic rate, and (iii) the nominal wage is increasing at a deter-
ministic rate. These elements change retailers’ production costs and therefore their
desired prices.20 At the same time, both wage inflation and idiosyncratic shocks are
key to produce a non-degenerate and stationary cross-sectional distribution of relative
prices, while product-specific productivity growth generates variation in product-level
inflation rates. Retailers make their price-setting decisions taking into account the
shopping behavior of buyers.

Each instant of time, a continuum of shoppers enter, search, purchase, and leave
the market for each product. Shoppers take the relative-price distribution as given and
search for the lowest price, paying a cost for each new price draw. The search cost
is heterogeneous across buyers. As in a McCall (1970) type of search, buyers follow
a reservation-price strategy: they accept offers up to a relative reservation price at
which they are indifferent between buying and searching again. Each buyer ends up
purchasing a product from one of many nearly identical retailers.

Monopolistic competition is an outcome of the model. Because search is costly,
each retailer sells the good to a positive share of buyers. In equilibrium, the magnitude
of this share depends inversely on the retailer’s price. The aggregation of consumer
search rules generates a downward-slopping demand curve for the retailer. Through

20Equivalently, we could assume the existence of a perfectly competitive sector of manufacturers
who produce one unit of the good using one unit of labor. Retailers purchase the good from manu-
facturers and face idiosyncratic shocks to the cost of selling – rather than producing – the good. As a
result of perfect competition, the price that retailers pay for one unit of the good equals the nominal
wage.
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shopping behavior, the equilibrium demand curve (thus, the profit function) depends
on the inflation rate. This feature will be at the center of the Υ-shaped pattern between
inflation and price dispersion.

In equilibrium, product-level inflation is determined by both nominal wage and
product-specific productivity growth; aggregate inflation is the average of product-
level inflation rates. We assume the nominal wage growth rate is the policy parameter
that the monetary authority can control to influence aggregate inflation, and that
productivity growth rates are the only difference among products.

3.1 Retailers

A measure-one continuum of monopolistically competitive retailers indexed by ik sell
the homogeneous product k. These retailers are infinitely lived, with discount rate ρ.
Money is used as the unit of account, so retailers set their prices Pik,t in nominal terms.
The production technology of a retailer selling good k is given by

yik,t = Ak,tvik,tlik,t,

where Ak,t is product-specific productivity, vik,t ∈ [v, v] is the retailer-specific produc-
tivity, and lik,t is labor. The retailer’s productivity follows the mean-reverting process:

d log vik,t = −ρv log vik,tdt+ σvdZik,t, ρv > 0, (2)

where Zik,t is a standard brownian motion with zero drift and unit variance, distributed
independently across retailers.

The labor market is competitive and retailers hire labor at a nominal wage Wt. We
assume the nominal wage and product-specific productivity grow at constant rates λW
and λA,k, respectively. Because relative prices are defined with respect to the nominal
wage and product-specific productivity, that is, pik,t ≡ Pik,tAk,t/Wt, a fixed nominal
price implies a relative price eroding at a rate πk ≡ λW − λA,k. Each nominal price
adjustment costs the retailer κ > 0 labor units.

A central aspect of the model is that the demand curve that a single retailer faces
(and more importantly, its elasticity) is endogenously determined by the optimal be-
havior of shoppers and other retailers. Denote this downward-sloping demand as a
function of the relative price by Ďk,t (p). The instantaneous nominal profit function for
a retailer charging a nominal price Pik,t, given the nominal wage Wt, product-specific
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productivity Ak,t, and the stochastically determined labor productivity vik,t, is

Π̌k,t (Pik,t, vik,t) =

(
Pik,t −

Wt

Ak,tvi,t

)
× Ďk,t

(
Pik,tAk,t
Wt

)
.

At any date t, retailers are characterized by a pair (Pik,t, vik,t). Because the nominal
wage and product-specific productivity grow at constant rates, and the retailer-specific
productivity follows a stationary process, real aggregates are expected to be time invari-
ant. Therefore, we can express the problem in terms of relative prices and conjecture an
equilibrium in which the current joint distribution of relative prices and productivity,
φk,t (p, v), is time invariant. The equilibrium instantaneous real profit function is

Πk (pik,t, vik,t) =

(
pik,t −

1

vik,t

)
×Dk (pik,t) ,

where Dk (p) ≡ A−1
k,tĎk,t (p) is the time-invariant component of demand.

Let ψk (pik,0, vik,0) denote the present value of a retailer i that begins at t = 0

with the relative price pik,0 and idiosyncratic productivity vik,0. Given the strategies of
shoppers and other retailers, i chooses a time T ≥ 0 to adjust and a price p′ to solve

ψk (pik,0, vik,0) = max
T

E
{∫ T

0

e−ρtΠk (pik,t, vik,t) dt+ e−ρT max
p′

[ψk (p′, vik,T )− κ]

}
.

This time-invariant Bellman equation is standard in the literature, and its solution is
well known.21 The optimal policy of a retailer with productivity level v is to leave its
nominal price unchanged if p is between pL,k (v) and pU,k (v). If the relative price hits
any of these bounds, the retailer pays the menu cost κ and adjusts to p̂k (v).

Before stating the problem of the representative household, defining the stationary
product-specific posted-price distribution Fk as the marginal of φk (p, v) over v is useful:

Fk (p) =

∫ p

p
k

∫
v

φk (x, v) dv dx, p ∈
[
p
k
, pk

]
,

where p
k
and pk are determined in equilibrium by retailers’ optimal pricing behavior.22

21In fact, firms in Golosov and Lucas (2007) solve the same problem. The main difference is that
in the present paper, monopolistic competition is a result of costly consumer search.

22Retailer pricing strategies are monotonic in productivity v ∈ [v, v], implying p
k

= pL,k (v) and
pk = pU,k (v) in equilibrium.
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3.2 Representative household

A representative household has a worker and a measure-one continuum of shoppers,
each buying a continuum of goods. The worker supplies labor and shares income
equally across shoppers. At instant dt, the shoppers enter, search, purchase, and leave
the market for each product. The worker and the shoppers are replaced by a new
household an instant later. Because the problem of the household is static, I drop the
time subscripts in what follows.23 24

Shoppers have incomplete information about the prices: they know the posted-
price distributions Fk, but not the price that each seller charges. Because each good
is homogeneous and price dispersion exists, buyers have incentives to search for the
lowest price. Shoppers j search sequentially for a retailer ik. They receive a first price
quote for free but need to pay a disutility cost for each subsequent draw. We assume
the search cost is heterogeneous.25 The shopper searches S times to find a retailer ik
from whom he buys q̌j,k units of the good k at the nominal price P .

Given the search outcomes of shoppers, P and S, the household head chooses labor
supply L and quantities of the consumption goods to solve

max
{q̌j,k(·)}

j,k
,L

Q1−σ

1− σ
− τL− αC̄

Q =

(∫ 1

0

Q
1− 1

θ

k dk

) 1

1− 1
θ

Qk =

(∫ 1

0

Z
1
η

k Ej,k
[
q̌j,k (P ) 1− 1

η

]
dj

) 1

1− 1
η

C̄ =

∫ 1

0

∫ 1

0

Ej,k [γC (S)] dj dk

s.t.

∫ 1

0

∫ 1

0

Ej,k [P q̌j,k (P )] dj dk = WL+D

23Under this assumption, we rule out complex issues such as learning and intertemporal arbitrage.
Then, we can focus on the main links between search and price-setting behavior.

24The assumption of instantaneous consumers also implies search happens quickly compared with
relative-price erosion. This implication is reasonable for the U.S. economy, where inflation is low and
sellers take between 4 and 10 months (Bils and Klenow, 2004; Nakamura and Steinsson, 2008) to
change the prices of goods that households purchase every week.

25Heterogeneity in the search cost is key to generate a link between inflation and search activity. If
buyers were identical, they would search at most once for any inflation level. Therefore, higher levels
of inflation would not increase the resource cost of search and affect welfare through this margin.

21



where utility comes from the consumption aggregate Q, and disutility from labor L and
search expenses C̄. The consumption aggregate Q nests product-level consumption,
Qk, which at the same time nests shoppers’ consumption, q̌j,k.26 The latter depends
on the nominal price to be paid by shopper j to retailer ik for product k, P , which is
made explicit for clarity. The total disutility that shopping for any product generates is
given by αγC (S), where γ is the heterogeneous component of the search cost and C (·)
is a function relating the total search cost to the total number of draws. I assume that
γ is randomly distributed across shoppers within the household according to G. Both
P and S are random outcomes of the search process, and the operator Ej,k indicates
that such process varies among shoppers j and products k.27 A deterministic demand
shifter Zk exists for each product. Finally, the household receives labor income, WL,
and dividends from retailers, D. We assume θ > 0 and η > 1.

The problem’s solution implies each shopper receives the same demand schedule,

q̌k (P ) =

τPZ− 1
η

k

W

−ηQ η
θ
−ησQ

1− η
θ

k . (3)

The associated indirect utility of the household is given by

U = σ
Q1−σ

1− σ
+ τ
D
W
− αC̄. (4)

Therefore, the marginal change in utility as a particular price changes is

∂U

∂P
= −Q( ηθ−ση)Q

(1− η
θ )

k

τZk
W

(
τP

W

)−η
≡ U ′k (P )

and the surplus that each shopper derives from buying q̌k (P ) units of k at P is

V̌k (P ) ≡
∫ ∞
P

−U ′k (x) dx = Q( ηθ−ση)Q
(1− η

θ )
k

1

η − 1

τPZ 1
1−η
k

W

1−η

. (5)

26We can interpret preferences for shopper’s j consumption as preferences for differentiated vari-
eties of k. While this nested CES structure facilitates the comparison with the literature, imperfect
substitutability among goods is not necessary to generate monopoly power or replicate the Υ-shaped
relationship between product-level price dispersion and inflation. A one-product model where shop-
pers have, e.g., quadratic or iso-elastic preferences and household’s surplus is the simple average of
shoppers’ surpluses can produce the same qualitative results.

27If searching is so costly that all shoppers accept the first free draw, this setting is equivalent to
Golosov and Lucas (2007).
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As in the literature, we assume Zk = A1−η
k and rewrite (3) and (5) in terms of p:

qk (p) = Ak (τp)−ηQ
η
θ
−ησQ

1− η
θ

k ;

Vk (p) = Q( ηθ−ση)Q
(1− η

θ )
k

(τp)1−η

η − 1
.

Shoppers take as given retailers’ pricing strategies Fk, the utility they contribute
to the household Vk (p), and the utility cost of the marginal search,

γ × c (S) ≡ γ × α [C (S)− C (S − 1)] .

Their objective is to find a stopping rule that maximizes

Ej,k

[
Vk (pS)− γj ×

S∑
s=2

c (s)

]
,

where pS is the random price at which they end up buying after S costly searches. The
common component of the marginal search cost, c (S), is monotonic in the integer S,
and the maximum number of draws, S, can be or not be finite. To explain the main
insights of the model, I will assume a constant marginal search cost (i.e., c (S) = α)
and an unlimited number of draws (i.e., S → ∞), and relax both assumptions in the
calibration section.

Under these assumptions, the optimal strategy of the shoppers is to search for a
retailer until they find an offer below their reservation price.28 To compute the optimal
stopping rule, we first define the value that an offer p to purchase k has for a shopper j,
Bk (p, γ). This value is the maximum between accepting such an offer and continuing
to search after paying the marginal search cost:

Bk (p, γ) = max

{
Vk (p) ,−γ × α +

∫ pk

p
k

Bk (u, γ) dFk (u)

}
.

Then, we define the reservation price rk as the relative price that makes shopper j

28Because utility is linear in search expenditures and the number of searches is not limited, the
solution to this problem is the same with or without recall of previous offers.
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indifferent between buying and searching again:

Vk (rk) =

∫ pk

p
k

[max {Vk (p) , Vk (rk)}] dFk (p)− γ × α.

If this equation has a solution, the optimal policy for the shopper is to accept any offer
p if p ≤ rk, and to continue searching otherwise.29 Alternatively, the reservation price
equates the expected benefit and the cost of the marginal search:

Γk (rk) ≡ α−1

∫ rk

p
k

[Vk (p)− Vk (rk)] dFk (p) (6)

⇒ Γk (rk) =
τ

αAk

∫ rk

p
k

qk (p)Fk (p) dp = γ. (7)

A buyer with γ < γ̃k ≡ limrk→∞ Γk (rk) would rather search than accept a zero-surplus
offer: the expected benefit of rejecting the first free offer and searching is greater than
the marginal search cost. Because the marginal return to search Γk (rk) is increasing
and continuously differentiable on [p

k
,∞), the reservation price is well defined and

given by rk = Rk (γ) ≡ Γ−1
k (γ), with p

k
≤ rk < ∞.30 Buyers with γ > γ̃k accept the

first free offer as long as it does not exceed their maximum willingness to pay, so we
let Rk (γ)→∞.

The reservation price Rk (γ) is an increasing function of the search cost. This result
implies that all types γ for which p ≤ Rk (γ) accept a given offer p. An equivalent
and convenient statement is that buyers whose search cost is larger than the marginal
return to search at offer p, that is, γ ≥ Γk (p), are the ones that accept such an offer.

3.3 Retailer-level demand function

Assume γ ∈
[
γ, γ
]
and that the distribution G is continuous and differentiable, with

an associated probability density function g. Therefore, g (γ) buyers exist with search
cost γ. They search at random until finding one of the Fk (Rk (γ)) retailers charging
p ≤ Rk (γ). Each of these retailers retains g (γ) /Fk (Rk (γ)) buyers type γ, and each
of them purchases qk (p) units of the good. From the previous section, we know the
buyers with γ ≥ Γk (p) would accept the offer p. Aggregating all the shoppers that a

29Lippman and McCall (1976) present a detailed discussion and proof.
30By integrating the left-hand side of equation (6) by parts, it is possible to obtain equality (7).

Therefore, Γ′k (rk) = τ
αAk

qk (rk)Fk (rk) ≥ 0.
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seller serves by setting price p gives:

Nk (p) ≡
∫ γ

Γk(p)

g (γ)

Fk (Rk (γ))
dγ.

This function indicates the total number of transactions at a given price p, and, using
equation (7), we can show it is decreasing in the price:

N ′k (p) = − τ

αAk
qk (p) g (Γk (p)) ≤ 0. (8)

Intuitively, shoppers can take advantage of price dispersion and flee from higher prices.
Nonetheless, in an equilibrium where γ > γ̃k, a fraction of the shoppers will accept the
first free draw, independently of the price. In this case, the number of transactions at
each price is

Nk (p) =

∫ γ̃k

Γk(p)

g (γ)

Fk (Rk (γ))
dγ + 1−G (γ̃k) ,

where 1−G (γ̃k) is the fraction of captive shoppers. On the other hand, the number of
shoppers that a retailer can attract by lowering its price is limited. Denote by rk the
minimum reservation price in the product k market, Rk

(
γ
)
. A seller who sets p ≤ rk

serves all shoppers and reaches the maximum number of transactions, Nk (rk).
Because the quantity each buyer purchases is independent of its type γ, we can

express the equilibrium demand function for a retailer charging p as the product of two
components:

Ďk (p) = qk (p)×Nk (p) . (9)

The first term on the right corresponds to the intensive margin of demand, or the
units that each buyer purchases at price p, qk (p). The second and novel component for
menu-cost models represents the extensive margin of demand, Nk (p). The extensive
margin plays a crucial role in determining the price elasticity of demand that a retailer
faces. For p ≥ rk, the extensive margin tends to increase the overall elasticity of the
demand curve:

εĎk (p) =

η p < rk

η + εNk (p) p ≥ rk

(10)

εNk (p) =
p

Nk (p)
× τ

αAk
qk (p) g (Γk (p)) ≥ 0. (11)
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An extensive-margin elasticity that is determined endogenously is at the center of
the relationship between inflation, price dispersion, and efficiency: optimal search rules
in equation (6) depend on the price distribution Fk, which in turn depends on product-
level inflation. Thus, the demand elasticity at each price changes with product-level
inflation through shopping behavior, affecting markups and efficiency. This feature is
absent in the standard Dixit-Stiglitz or Kimball demand systems typically used in the
literature, where the demand elasticity as a function of the price remains constant for
any level of inflation.

3.4 Equilibrium

In a stationary equilibrium, for each product k:

1. Worker chooses buying strategy q̌k (·) (with associated product-level aggregate
Qk) given shoppers’ search outcomes implied by their reservation prices Rk (γ);

2. Shoppers γ ∈
[
γ, γ
]
choose Rk (γ) given q̌k (·) and the time-invariant relative

posted-price distribution Fk (p);

3. Market demand Ďk (p) results from aggregating individual demand from shoppers
and is consistent with Rk (γ) and Fk (p);

4. Retailers choose optimal pricing strategies Ψk (v) = {pL,k (v) , pU,k (v) , p̂k (v)}
given Ďk (p);

5. Joint distribution of relative prices and productivity φk (p, v) and relative posted-
price distribution Fk (p) are consistent with Rk (γ) and Ψk (v).

Moreover, product-level consumption aggregatesQk must be consistent with the household-
level consumption aggregate Q.

The equilibrium is solved as a fixed-point problem. We start by guessing Q in an
outer loop, then solve the equilibrium for each product – equivalently, each πk – in an
inner loop. Given a guess for Qk, Nk (p), and the constant component of the market
demand,

D0
k

(
p;N0

k , Q
0
k

)
= (τp)−ηQ

η
θ
−ησ (Q0

k

)1− η
θ N0

k (p) ,

we solve the retailers’ problem to get the pricing strategies, Ψ0
k (v;D0

k), and the asso-
ciated relative posted-price distribution, F 0

k (p;D0
k). Given F 0

k , we compute the search
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strategies of shoppers and aggregate them to update the extensive margin of demand
N1
k (p;F 0

k , Q
0
k). Using both F 0

k and N1
k , we update the product-level aggregate Q1

k and
obtain D1

k (p;N1
k , Q

1
k). We stop iterating the inner loop when D1

k (p) ≈ D0
k (p) for every

p. After finding an equilibrium for each product k, we update Q by aggregating every
Qk, and repeat this process until Q converges.

In equilibrium, the total number of transactions equates the total number of buyers:∫ pk

p
k

Nk (p) dFk (p) = 1.

The posted-price distribution weighted by the number of transactions, NkdFk, can be
interpreted as the distribution of transaction prices – the distribution of prices paid
by shoppers. This distribution, which assigns a higher probability than Fk to lower
prices, is the one we use to express the product-level consumption aggregate in terms
of prices:

Qk = Q1−θσ
(∫ 1

0

Ej,k (τp)1−η dj

)− 1
1−η

= Q1−θσ

(∫ p̄k

p
k

(τp)1−ηNk (p) dFk (p)

)− θ
1−η

.

4 Inflation and price dispersion in the theory

The model in the previous section produces a Υ-shaped relationship between price
dispersion of identical goods and product-level inflation. A parametrization achieving
this result has a search cost distribution g where γ = 0, g (0) = 0, and limγ→0 g

′ (γ) =

+∞, meaning that, although search is costly for everyone, the density of shoppers with
a positive but negligible marginal search cost is relatively large.31 To understand the
mechanism, starting to analyze the equilibrium at zero inflation is useful.

Zero inflation Assume a trivial starting condition for our algorithm such asN0
k (p) =

1 ∀p. Without inflation, the problem of the retailer reduces to picking a price that will
stay fixed while idiosyncratic productivity changes. A retailer with initial productivity
v sets the nominal (and relative) price p̂k (v), and adjusts to p̂k (v′) whenever future

31Figure 6c plots such a search cost distribution. Table A.7 shows the exact parameters used in
this section.
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productivity v′ is too high or too low.32 Therefore, the support of the relative price
distribution is determined by the optimal prices conditional on adjustment: p

k
= p̂k (v)

and pk = p̂k (v).
Let φ̌ (v) denote the stationary distribution of productivity implied by the bounded

mean-reverting process (2). With φ̌ (v) > 0, the probability of a retailer charging the
lowest price is strictly positive. Optimal search rules (equation (7)) and Fk(pk) > 0

imply shoppers in the interval (0,Γk(pk + ε)] will search until finding p ≤ rk = p
k

+ ε,
as seen in Figure 6b. Under the assumption that limγ→0 g

′ (γ) = +∞, g (Γk (rk)) >

0: a retailer setting p ≤ rk will attract a strictly positive share of shoppers. From
equation (8), it is clear that the slope of the updated transaction function, N1

k (p),
changes discretely at p = rk, generating a sharp kink in the demand at this price.

In an equilibrium with a sharply kinked demand, as Figure 4 shows, rk maximizes
static profits of retailers with higher productivity draws. If they charge a price slightly
lower than rk, they will not attract more customers because they are already serving
the maximum possible, Nk (rk). On the other hand, if they charge a price slightly
higher than rk, low-search-cost shoppers will reject the offer and search: the extensive
margin of demand activates and demand elasticity jumps.

Moreover, pricing at the kink is not only optimal but also feasible for those retailers:
relative prices are fixed, because zero inflation implies that relative and nominal prices
are equal. Therefore, the more productive retailers bunch at rk, which generates a
point mass in the posted-price distribution as in Figure 5a. This point mass expands
the interval of buyer types searching for p ≤ rk, sustaining an equilibrium demand
function with a sharp kink at rk. Since high-search-cost shoppers accept prices greater
than rk, retailers with low productivity draws can set higher prices, explaining the
relatively low but positive price dispersion in an equilibrium with zero inflation.33

Non-zero inflation To illustrate the role of search in explaining our main result,
suppose inflation increases by a very small amount while the demand function stays
fixed at the zero-inflation one. For a positive level of inflation, relative prices are
continuously drifting downward. To stay at the kink, retailers would need to pay the

32That is, whenever productivity reaches the upper or lower boundaries, p−1U,k (p̂k (v)) and
p−1L,k (p̂k (v)), respectively.

33The kinked demand complicates the analytical proof of existence and uniqueness of the equilib-
rium at πk = 0 considerably. If an equilibrium exists, to evaluate whether it is unique, I solve the
model for different guesses of the transaction function, N0

k (p). For the parameters in the present
paper, I find convergence to the same equilibrium always exists.
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(a) Demand function
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(d) Elasticity of demand

0.8 1 1.2 1.4 1.6 1.8
3

3.5

4

4.5

5

5.5

6

6.5

Figure 4: Retailer-level equilibrium functions at πk = 0% and πk = 0.12%

The figures describe the retailer-level equilibrium functions at πk = 0% and πk = 0.12%

(annualized). The value rk indicates the lowest reservation price among shoppers. The upper-
right panel shows the profit function for retailers with 90th and 10th percentile productivity
draws.
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(a) dFk, demand fixed at πk = 0%
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(b) dFk, shopping behavior adjusts with πk = 0.12%
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(c) Fk, demand fixed at πk = 0%
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(d) Fk, shopping behavior adjusts with πk = 0.12%
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Figure 5: Equilibrium price distributions at πk = 0% and πk = 0.12%

The figures show the posted-price distribution for different levels of annualized product-level
inflation, πk. The top figures show the probability dFk, while the bottom ones show the
cumulative probability Fk truncated just above 0.5. The left panels show the posted-price
distribution at πk = 0% and at πk = 0.12% keeping the demand function fixed at πk = 0%.
The value rk indicates the lowest reservation price among shoppers.
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(a) Marginal return to search

1 1.2 1.4 1.6 1.8

0.05

0.1

0.15

0.2

0.25

(b) Expected price paid

0 0.05 0.1 0.15 0.2 0.25 0.3

-0.1

-0.05

0

0.05

0.1

0.15

0.2

(c) Search cost distribution

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

(d) Reservation price distribution
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Figure 6: Equilibrium search at πk = 0% and πk = 0.12%

The lower-right panel shows the search cost distribution g (γ), where γ ∼ Beta (ga, gb), ga =

1.05, gb = 4, and γ ∈ [0, 1]. The other panels show equilibrium search strategies for πk = 0%

and πk = 0.12% annualized, with the x-axis truncated above pk or Γk (pk) (upper-left plot)
for clarity. The expected relative price paid conditional on the type is defined as p̆k (γ) ≡
Ek [p|p ≤ Rk (γ)]. The value rk indicates the lowest reservation price among shoppers.
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(a) Demand fixed at πk = 0%
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(b) Shopping behavior adjusts with πk = 0.12%
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(c) Shopping behavior adjusts with πk = 2.04%
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(d) Shopping behavior adjusts with πk = 24.96%
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Figure 7: Optimal pricing strategies

The figures show the pricing bounds for different levels of annualized product-level inflation,
πk. The solid lines represent the upper and lower bounds pU,k (v) and pL,k (v); the dots
and crosses, p̂k (v). The upper-right panel shows the optimal pricing strategies at πk = 0%

and at πk = 0.12% keeping the demand function fixed at πk = 0%. The other panels show
equilibrium pricing strategies for different levels of πk when shopping behavior adjusts. The
value rk indicates the lowest reservation price among shoppers.
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menu cost every period: bunching at any price is not optimal. Thus, retailers let their
relative prices erode to save on menu costs, generating dispersion around p̂k (v) and
decreasing the minimum market price to p

k
= pL,k (v). Nevertheless, as Figure 5c

shows, the probability of a retailer charging the lowest price tends to zero: because of
the relatively large idiosyncratic productivity shocks, most retailers would have already
adjusted before reaching the lower bound of the inaction region. For the same reason,
and as in standard menu-cost models, the price distribution (thus price dispersion)
stays virtually constant around zero inflation (see Figure 5a).

Now, we let shoppers adjust their behavior to these inflation-induced changes in
the relative price distribution. A lower minimum market price and higher dispersion
at the bottom of the price distribution increase the returns to search of low-search-cost
shoppers. However, only those at the very bottom of the search cost distribution set
the lowest reservation price: as p

k
becomes harder to find (i.e., Fk(pk) → 0), only

buyers with γ = Γk(pk + ε) → 0 will search until finding p ≤ rk = p
k

+ ε (Figure 6a).
As dispersion at the left tail of the reservation price distribution increases (Figure 6d),
the kink in demand smooths out.34 Therefore, the bunching behavior is no longer
optimal for more productive retailers: they can attract shoppers by decreasing their
prices, increasing dispersion at low prices further (Figures 5b and 5d) and generating
the jump in price dispersion around πk = 0 we observe in the data. The retailer-level
equilibrium functions at a small positive level of inflation are represented in Figure 4.35

In sum, the feedback between inflation and shopping behavior is key to reproduce
the Υ-shaped relationship between price dispersion of identical goods and product-level
inflation. When inflation equals zero, price dispersion – especially at the lowest prices
– is relatively low: its only source is idiosyncratic productivity shocks since retailers’
relative prices stay fixed. Given that the lowest prices are relatively easy to find, a
large share of low-search-cost shoppers will be looking for these prices. Therefore, more
productive retailers bunch around the lowest prices to attract those shoppers.

From zero to positive inflation, price dispersion increases through two channels.
The first is the menu-cost channel: relative prices drift downward continuously, so
more productive retailers allow suboptimal price levels to pay the menu cost less often.

34From equation (8), we have that N ′k (rk)→ 0 if Γk (rk)→ 0.
35The mechanism is asymmetrical around zero inflation. When inflation is small but negative,

relative prices drift upward, generating dispersion around p̂k (v) and decreasing p
k
. Nevertheless,

Fk(p
k
) > 0 since retailers reach the lower bound of the inaction region because of productivity shocks,

not inflation as in the πk > 0 case. Therefore, there is a sharp kink in the demand at p = rk but such
a price is below the optimum for most retailers, so price dispersion jumps but less than when πk > 0.
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Absent search, price dispersion barely changes since the region of inaction is mainly
determined by idiosyncratic productivity shocks (Figure 7a). The second is the search
channel: lower prices and higher dispersion at the bottom of the price distribution
increase the returns to search, and to attract more shoppers, more productive retailers
charge even lower prices. Figure 7b shows that, through the search channel, inflation
changes the optimal price of these retailers considerably, increasing price dispersion
discretely around πk = 0. As inflation departs from zero, price dispersion increases
smoothly: the search channel becomes less relevant since only shoppers at the very
bottom of the search cost distribution change their behavior (Figures 7c and 7d).

5 Evidence on price dispersion and search

The model predicts that, within a market, buyers who visit more sellers pay lower
prices. Moreover, the expected price reduction from visiting an additional seller is
more significant the larger the absolute inflation.

To test this prediction and provide supporting evidence for the theory, I use the
NielsenIQ Consumer Panel Data. These data contain the barcodes of the items that
households purchased on each shopping trip, the quantities they bought, the prices they
paid, and whether they used coupons to pay. Although information about the physical
store is limited, every transaction can be associated to a retail chain. Therefore, we
observe from how many different retailers a household purchased a particular product
in a given time period. I assume the number of visits to distinct retailers is positively
correlated with the number of prices observed, where the latter is inversely correlated
with the search cost of shoppers in the model.

Households are sampled from 53 geographically dispersed Scantrack markets (each
roughly corresponding to an MSA), and detailed demographic information about them
is available.36 The product categories are the same as in the Retail Scanner Data.

A unique feature of NielsenIQ’s datasets is that they can be merged through product
categories and geographic markets, so household shopping patterns can be linked to
product × market variables such as inflation and price dispersion. In this way, we can
study how shopping behavior interacts with inflation to affect the prices buyers pay
for a given good while controlling for several sources of heterogeneity.

36NielsenIQ provides projection factors to make the sample demographically representative of the
Scantrack market population.
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5.1 Variable construction

The unit of analysis is a household × department × quarter. For each household in
the Consumer Panel Data, I compute the relative price paid for a basket of goods
belonging to a department in a given quarter, and the number of distinct retailers
visited to purchase such a basket in the same quarter. Then, I merge these data with
inflation and price dispersion at the department-quarter level in the geographic market
to which the household belongs.

I aggregate purchases and shopping trips at the department level for two reasons.
First, in an average shopping trip to a particular retailer, households purchase 7.4
distinct items. Thus, households likely consider the price of a bundle of goods when
deciding which store to visit. Working at the department level takes this element into
account. Second, this level of aggregation maximizes the amount of variation in the
variables of interest. At the household × category level, for instance, shoppers visit, on
average, 1.1 retailers each quarter (CV of 0.20), whereas at the household× department
level, they visit three retailers (CV of 0.70). Working at the household level produces
an even larger variation in the number of retailers visited (8.2 on average, with a CV
of 1.9) but limits the inflation variation required for the analysis.

Relative price paid For each product with barcode k in the market m and quarter
t, we define the average price paid among households as

P̄km,t =

∑Hkm,t
h=1

∑Lhkm,t
l=1 P h,l

km,tq
h,l
km,t∑Hkm,t

h=1

∑Lhkm,t
l=1 qh,lkm,t

,

where P h,l
km,t is the price household h paid for qh,lkm,t units of good k in shopping trip l;

Hkm,t denotes the number of households buying product k in market m and quarter t,
and Lhkm,t is total shopping trips by household h. Following Kaplan and Menzio (2015),
I construct the relative price that a household pays for the goods in a department as
total expenditure over hypothetical expenditure at market-average prices:

phdm,t =
Xh
dm,t

X̄h
dm,t

=

∑Ddm,t
k=1

∑Lhkm,t
l=1 P h,l

km,tq
h,l
km,t∑Ddm,t

k=1

∑Lhkm,t
l=1 P̄km,tq

h,l
km,t

,

where Ddm,t is the total number of products in department d for each m and t.

35



Number of retailers visited The expenditure by households in a department d and
quarter t, Xh

dm,t, can also be expressed in terms of shopping trips to distinct retailers:

Xh
dm,t =

Nh
dm,t∑
i=1

Lh,ikm,t∑
l=1

Xh,l
dm,t,

where Xh,l
dm,t is expenditure in shopping trip l; Lh,ikm,t denotes the total number of shop-

ping trips to retailer i; Nh
dm,t is the number of distinct retailers household h visited to

purchase items in department d and quarter t.
Table A.6 shows descriptive statistics for the sample. The total number of house-

hold × department × quarter observations is 24,468,527, with 149,324 households, 10
departments, 56 quarters, and 53 geographic markets.

5.2 Estimation and results

Let π̄dm,t denote department × market-level quarterly inflation, corresponding to a
sales-weighted average of product × market-level quarterly inflation.37 I study the
effects of inflation through shopping behavior on the relative prices paid by households
by estimating

log phdm,t =
10∑
S=1

β0,S1{Nh
dm,t=S} +

10∑
S=1

β1,S1{Nh
dm,t=S} × |π̄dm,t|

+ µ′Xh
dm,t + ad,t + bm,t + cB,t + εhdm,t. (12)

The indicator variables take the value of 1 when household h visits S ∈ [1, 10] distinct
stores in a given quarter to purchase items in department d; the coefficients {β0,S}10

S=1

correspond to average relative prices paid by households visiting S retailers when in-
flation is zero; more importantly, the coefficients {β1,S}10

S=1 indicate how and by how
much absolute inflation affects the relative prices paid by households according to their
shopping behavior. The theory predicts β1,10 < 0 and that the sequence {β1,S}10

S=1 is
decreasing: when absolute inflation is high, shoppers searching more find the lowest
prices.

As in the model, the unobservable search cost determines the number of retailers

37Quarterly inflation is computed as the average of the 12-month differences for the three months
in the quarter.
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visited and the price paid, so its omission might generate biased estimates of {β0,S}10
S=1

and {β1,S}10
S=1. In an effort to control for the search cost, I first divide households into

bins according to demographic observables.38 Under the assumption that households
within a bin B share a similar search cost, I then include bin × quarter fixed effects,
cB,t, in the estimation.39 In this way, we alleviate endogeneity concerns while exploiting
variation across buyers at the same date, which is the relevant variation in the model.

Note that, because we identify the coefficients {β0,S}10
S=1 using within-bin variation,

their interpretation changes: they indicate the effect that visiting S retailers has on
prices paid by buyers with a similar search cost. If, for example, the marginal search
cost is constant, the reservation prices will not change with S, and β0,S = β0,S′ ∀S 6= S ′

since a given buyer expects to pay the same price for any number of draws. Therefore,
these coefficients will inform about the marginal search cost structure, so we will use
them to calibrate the model.

In addition, I include department × quarter and market × quarter fixed effects,
so we identify {β1,S}10

S=1 by exploiting the cross-department inflation variation within
each geographic market and quarter, taking into account unobservable department-
level differences that might be changing over time. The vector Xh

dm,t contains a set of
shopping behavior controls (number of shopping trips and transactions, and fraction of
transactions paid with coupons) that might also affect prices paid. The observations are
weighted using NielsenIQ sampling weights, and standard errors are two-way clustered
by household and product department × market × quarter combination.

Figure 8 shows the average relative prices paid by households depending on the
number of distinct retailers they visit and the level of absolute inflation. The findings
support the theory: a household that visits 10 stores when absolute inflation is 10%
pays 1.0% less than when inflation is zero and 2.4% less than a household that visits
only one store. Moreover, for shoppers with a similar search cost, the average relative
price paid decreases with the number of visits when inflation is zero. Through the lens
of the model, this evidence suggests that reservation prices, thus the marginal search
cost, are decreasing in the number of visits.

38The variables are household size, household income bin, presence of children, household head age
and education, employment and marital status, number of household heads, and race. For a given
household, these characteristics can change over time.

39There are 49,600 households on average per quarter and 8,620 bins, so around 6 distinct house-
holds per bin and quarter.
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Figure 8: Shopping behavior and absolute inflation

The figure shows the relationship between log relative prices paid, number of retailers visited,
and department×market-level quarterly absolute inflation as predicted by equation (12). The
unit of observation is a household × product department × quarter, and the total number
of observations is 24,468,527. Observations are weighted using NielsenIQ sampling weights.
The confidence intervals (bars) use standard errors that are two-way clustered by household
and product department × market × quarter combination.

6 Parametrization and calibration

The model in Section 3 has the necessary elements to reproduce the Υ-shaped rela-
tionship between product-level inflation and price dispersion we observe in the data.
For calibration, we extend the model in two dimensions. First, on the buyers’ side, we
allow the marginal search cost to vary monotonically with the number of draws, which
now might be finite. With this extension, we can reproduce the patterns of average
prices paid when inflation is zero as discussed in the previous section.40 Second, on the
retailers’ side, we include random low-cost price adjustment opportunities (CalvoPlus
model in Nakamura and Steinsson, 2010). By introducing some “Calvoness”, we can
generate the small price changes found in the literature (more on this below) and also

40The generalized search problem is described and solved in Section D.
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show the results in Section 4 are not limited to a “pure” menu-cost model.
We assume the marginal search cost takes the form

c (S) = α

[
1− (1− χ2)

(
S − 2

S − 2

)]χ1

∀S ∈
{

2, . . . , S
}
,

where S̄ denotes the maximum number of draws, with χ1 ≥ 0 and χ2 ≥ 0. If χ2 < 1

(χ2 > 1), the marginal cost decreases (increases) with search so the reservation prices
also decrease (increase) with search. The parameter χ1 controls the curvature: χ1 < 1

(χ1 > 1) generates a concave (convex) search-cost structure. We choose a flexible search
cost distribution capable of producing the Υ-shaped pattern, as explained in Section
4: γ ∼ Beta (ga, gb), where ga > 1, gb > 1, and γ ∈ [0, 1].41

For simplicity, we assume log utility in consumption (σ = 1), set α = 1, and θ =

σ−1 so the product-level equilibrium is independent from economy-wide aggregates.
Following Nakamura and Steinsson (2010), we assume the low menu cost is 1/40 of
the high menu cost and has an arrival rate equal to the frequency of regular price
changes at πk = 2%. As in the previous literature, we set the monthly discount rate
to ρ = 0.961/12. Finally, we set S = 40, close to the maximum number of visits to
retailers in the data.

We jointly calibrate the size of the high menu cost κH , the persistence ρv and
volatility σv of idiosyncratic shocks, the shape parameters ga and gb of search-cost
distribution, the remaining parameters of the marginal search-cost structure {χ1, χ2},
the price elasticity of demand η of shoppers, and the disutility cost of labor τ to match
the following: (i) the product-level standard deviation of log regular prices and its Υ-
shaped relationship with product-level inflation at all levels of πk; (ii) the frequency of
regular price changes and the average size of regular price changes at πk = 2%; (iii) an
average markup of 30% at πk = 2%; (iv) a steady-state labor supply of 1/3 at πk = 2%;
and (v) the estimated average prices paid at zero inflation {β̂0,S}10

S=1.42

To produce the model counterpart of {β̂0,S}10
S=1, I take the equilibrium posted-price

41Under these assumptions, the density of shoppers at γ = 0 is zero.
42The regular prices for the statistics in this section result from removing V-shaped patterns where

the price returns to a regular price within 8 weeks after falling (what I call “Regular price A” in
Section B). Table A.2 describes the corresponding data sample; Figures A.16-A.18 plot the relationship
between different pricing statistics and product-level inflation controlling non-parametrically for the
total number of stores. Since in the model we assume a continuum of sellers offer the product, I target
the moments when there are at least 50 stores. I explain how I compute additional pricing moments
in appendix C.
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Table 1: Additional moments, model fit

Moment Model Data Target

Monthly frequency of regular price changes at πk = 2% 21.37% 22.00% Yes
Average abs. size of regular price changes at πk = 2% 9.70% 9.80% Yes

Average markup at πk = 2% 1.31 1.30 Yes
Steady-state labor supply at πk = 2% 0.329 0.333 Yes

Average fraction of regular price increases at πk = 2% 54.12% 58.00% No

distribution and the optimal search policies of shoppers j for each πk, and simulate
the search stage. Using the relative prices paid – constructed as in the data – and the
number of sellers visited, I estimate the equivalent of equation (12) in the model:

log pjk =
10∑
S=1

β0,S1{Nj
k=S} +

10∑
S=1

β1,S1{Nj
k=S} × |πk|+ cB + εjk.

A department × market pair in equation (12) is identified exclusively by its level of
product-level inflation in the model, so I replicate the empirical cross-sectional distri-
bution of product-level inflation when I simulate search outcomes. The fixed effects cB
include 100 equally sized search cost bins to control for shoppers’ heterogeneity.

Figure 9 shows the model closely fits the new empirical findings presented in this pa-
per. At the same time, the calibration produces pricing moments and average markups
consistent with the empirical evidence and the previous literature, as seen in Table 1.
It is noteworthy that, although the absolute size and frequency of regular price changes
is only targeted at πk = 2%, the model matches their relationship with inflation (Fig-
ure A.19). Moreover, as Figure 9b shows, the calibrated model replicates the untargeted
{β̂1,S}10

S=1, corresponding to the effect that search has on prices paid as product-level
inflation increases. The calibrated parameters are in Table 2.

6.1 Comparison with the literature

The calibrated model shows the theory in this paper explains the Υ-shaped relationship
between inflation and price dispersion in the data. At the same time, it is consistent
with two additional pricing facts for low inflation levels. The first is that, on average,
around half of the price changes are decreases (54% in the model, 58% in the data).
The second is that the absolute size of regular price changes is significantly larger than
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Figure 9: Price dispersion, shopping behavior, and inflation - model fit

The top figure shows the relationship between product-level inflation and price dispersion in
the calibrated model (line) and in the data (dots); the bottom figure shows the empirical
relationship between log relative prices paid and number of retailers visited for different levels
of absolute inflation (lines) and its model counterpart (markers). Price dispersion is computed
for regular prices of products sold by at least 50 stores.
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Table 2: Calibrated parameter values

Retailers

Size of the high menu cost κH = 0.032
Mean-reversion rate of idiosyncratic shocks ρv = 0.870
Volatility of idiosyncratic shocks σv = 0.063

Shoppers

Curvature of the marginal search-cost structure χ1 = 1
Direction of the marginal search-cost structure χ2 = 0.100
Shape of search cost distribution, Beta (ga, gb) ga = 1.164
Shape of search cost distribution, Beta (ga, gb) gb = 2.000
Price elasticity of demand of shoppers η = 3.000
Disutility cost of labor τ = 2.350

average inflation (10% versus 2%). I argue that the alternative models in the literature
cannot replicate these three pricing facts at the same time.

To develop the argument, it is convenient to note that the model in this paper nests
others in the literature: (i) if σ → 0 and ρ→ 1, we mute the idiosyncratic shocks; (ii)
if we set the probability of the low menu cost equal to zero, we get pure menu cost
adjustment; and (iii) if ga → 1 and gb →∞ – so γ → 1 – we shut down search. Under
assumptions (i) and (ii), the model converges to a version of Benabou (1992) without
entry and with a general search cost distribution and marginal search cost structure;
under (ii) and (iii), it converges to Golosov and Lucas (2007); and under (iii) and
different values of the high menu cost κH , it gives a model with Calvo (κH → ∞) or
CalvoPlus (κH <∞) adjustment.

Sticky-price models with idiosyncratic shocks but without search (e.g., Golosov
and Lucas 2007; Nakamura and Steinsson 2010) match the additional pricing facts but
miss the Υ-shaped relationship between inflation and price dispersion. Moreover, as
Figure 10 shows, these models predict both price dispersion and the absolute size of
the price changes are flat around zero inflation. In the model with search – as in the
evidence in this paper – both moments are Υ-shaped around zero inflation.43

To understand the intuition behind these results, decomposing price dispersion as
the sum of two components is helpful:

Vark (p; πk) = Ek [Vark (p |v ; πk)] + Vark [Ek (p |v ; πk)] .

43The frequency of price changes displays a similar pattern, while the fraction of price increases is
smooth around zero inflation, as Figure A.20 shows.
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Figure 10: Pricing moments in different models

The figure plots pricing moments and inflation in the data, model, pure menu-cost model with
idiosyncratic shocks but without search (Golosov and Lucas, 2007), CalvoPlus price-setting
model with idiosyncratic shocks but without search, and pure menu-cost model with search
but without idiosyncratic shocks (Benabou, 1992; right y-axis). The top panel shows product-
level price dispersion measured by the standard deviation of log prices, and the bottom panel
plots the absolute size of price changes. Pricing moments are computed for regular prices of
products sold by at least 50 stores.
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The first term on the right-hand side corresponds to average price dispersion conditional
on productivity; the second, to variation of the average price across retailers with
different levels of productivity. In menu-cost models with idiosyncratic shocks and no
consumer search, the first term increases with inflation: retailers need to adjust more
often as relative prices erode faster, but because adjustments are costly, they optimally
choose wider inaction regions [pL,k (v) , pU,k (v)]. Around zero inflation, optimal pricing
behavior is mainly determined by the relatively large idiosyncratic shocks, so this
term remains roughly unchanged. The second term is essentially exogenous because it
approaches the cross-sectional dispersion of productivity (Alvarez et al., 2019). Thus,
price dispersion is smooth at zero inflation.44

In the model with idiosyncratic shocks and search, both sources of price dispersion
increase around zero inflation. On the one hand, as inflation goes from zero to a
positive rate, the optimal price conditional on adjustment, p̂k (v) decreases more for
higher productivity draws, as shown in Figure 7. Thus, the variance of the conditional
expected price increases. On the other hand, most productive retailers set a fixed
relative price under πk = 0. When inflation deviates from zero, their relative prices
drift downward, so they optimally widen their adjustment bands: price dispersion
conditional on productivity increases.

At the same time, because random low-cost adjustment opportunities let retailers
incorporate small changes in relative prices due to inflation, the average absolute size
of price changes increases discretely.45 In this way, the current theory matches price
dispersion and the absolute size of price changes Υ-shaped around πk = 0.

Menu-cost models without idiosyncratic shocks, with search (Benabou, 1988, 1992)
or without (Sheshinski and Weiss, 1977), match price dispersion Υ-shaped in inflation
but miss other features of realistic price-setting behavior. In particular, for positive
inflation, all price changes are price increases. Additionally, the only motive for ad-
justment is inflation, implying the absolute size of price changes is close to zero around
zero inflation and increases steeply with inflation.

44Everything else equal, random low-cost adjustment opportunities (CalvoPlus) keep price disper-
sion smooth at πk = 0 but make it increase faster with inflation since large idiosyncratic shocks are
not required for retailers to adjust their prices.

45At πk = 0, without random low-cost adjustment opportunities, only retailers with an optimum
far from rk adjust (i.e., low-productivity retailers). Since the adjustment bands are narrower at lower
prices, price changes when πk = 0 are relatively large. For low positive inflation, price changes from
high-productivity retailers also occur, so the average absolute size of price changes tends to decrease.
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7 Welfare implications of inflation

The theory in this paper matches the Υ-shaped relationship between inflation and price
dispersion, exhibits realistic pricing behavior, and is supported by empirical evidence
on shopping behavior and inflation. What are the implications of this model for the
costs and benefits of inflation?

Welfare per instant of time is given by equation (4). Using θ = σ = 1, the consumer
surplus is

logQ− 1 =

∫ 1

0

logQkdk − 1,

where the product-level consumption aggregate Qk is a transaction-weighted average
of the relative prices:

Qk =

(∫ pk

p
k

(τp)1−ηNk (p) dFk (p)

)− 1
1−η

.

Taking into account that the first price draw is free, the total cost of searching for
better prices is

C̄ =

∫ 1

0

C̄kdk =

∫ 1

0

∫ γ

γ

C̆k (γ)dG (γ) dk,

where C̆k (γ) is the expected search cost of shopper type γ buying product k.46 More-
over, real dividends are aggregate real profits net of aggregate adjustment costs:

D
W

=

∫ 1

0

(
Π̄k −Ak

)
dk;

Π̄k =

∫ pk

p
k

∫ v

v

Πk (p, v)φk (p, v) dv dp;

Ak =

∫ 1

0

κΛkdk,

where Λk is the fraction of retailers that reprice product k each dt. Then, social welfare
is the average contribution of each product, which is identified by its inflation πk:

U =

∫ 1

0

Ukdk − 1;

Uk = logQk + τ Π̄k − τAk − αC̄k;

⇒ Ũ (πk) = log Q̃ (πk) + τ ˜̄Π (πk)− τÃ (πk)− α ˜̄C (πk) . (13)

46See appendix D for the expression and its derivation.
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The first two terms on the right correspond to the product-level aggregate gains from
trade, and the last two terms to the resources spent on market frictions (i.e., search
and price adjustment). In the calibrated model, inflation increases price dispersion,
and thus the returns to search for low prices. As search activity increases, the resource
cost of search tends to increase. Price-adjustment costs are also increasing in inflation:
the higher inflation is, the faster relative prices drift away from their optimal levels,
requiring more frequent price adjustments.

The gains from trade reflect the allocative role of prices through search. If, with
positive inflation, consumers search for better prices, markups of more productive re-
tailers decrease, increasing efficiency. Thus, whether inflation improves welfare depends
on the size of the efficiency gains – if any – from lower markups.

(a) Welfare components
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(b) Average markup
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Figure 11: Product-level welfare and inflation

The figure in the left panel shows the relationship between product-level inflation and welfare,
Ũ (πk), and the contribution of each of its components in equation (13) (plotted as changes
from zero inflation, times their welfare share at zero inflation). The figure in the right panel
also plots the average transaction-weighted markup.

Figure 11 shows the relationship between product-level welfare and inflation, deter-
mined by equation (13), in the calibrated model. We see that, as inflation departs from
zero, aggregate consumer surplus jumps. Higher consumer surplus offsets lower profits
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and the positive search and adjustment costs that come with inflation, generating a
net welfare gain.

On the flip side, the average transaction-weighted markup,

µk =

∫
v

∫ pk

p
k

pvNk (p)φk (p, v) dp dv,

decreases, reflecting the source of the efficiency gains. Furthermore, the efficiency gains
from positive inflation are limited: welfare is maximized at a finite inflation rate. What
determines such a rate?

When inflation is zero, production is shared relatively evenly among retailers. For
a small positive inflation rate, a large part of the production shifts from less to more
productive retailers: with increased search activity (Figure 12a), retailers with high
productivity draws charge lower prices to attract more shoppers, and their market
share increases (Figure 13a). As a result, market concentration increases – both in the
model and in the data (Figure 13b) – but the average markup decreases since more
productive retailers decrease their markups (Figure 12b).

Nevertheless, as inflation increases and more shoppers flee from higher prices, most
of the customers of the least productive retailers become non-searchers, or captive shop-
pers. As Figure 12a shows, their search behavior does not change with inflation. Thus,
for retailers with low productivity draws, charging higher prices to captive shoppers,
raising their markups, is optimal. When the latter effect exceeds the former, efficiency
gains from positive inflation dissipate, reducing welfare.

Role of decreasing marginal search cost Everything else equal, a decreasing
versus a linear marginal search cost reduces the inflation rate that maximizes benefits.
Going from a linear to a decreasing marginal search cost structure, the extensive margin
of search remains almost constant (i.e., the cutoff of types who search, γ̃k, is basically
unchanged), but the intensive margin of search increases. Since types with γ → 0

were already at or close to the maximum number of searches, S, higher types will
search proportionally more. Nevertheless, their extra search activity is relatively small
in absolute terms, so their reservation prices (thus, the prices they pay) do not drop
significantly. In sum, the surplus gains from lower prices paid by higher types are small
relative to the higher search costs they incur.
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(a) Visits by search-cost type
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(b) Markups by productivity
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Figure 12: Heterogeneous effects of inflation

The left panel plots the number of visits as a function of inflation for shoppers in different
percentiles of the search-cost distribution; the right panel plots average transaction-weighted
markups as a function of inflation for retailers in different percentiles of the productivity
distribution.

Aggregate inflation and welfare The product k price level is defined as the de-
flator of nominal product sales:

Pk,t =
Wt

∫ pk
p
k

p (τp)−ηNk (p) dFk (p)

Ak,t
∫ pk
p
k

(τp)−ηNk (p) dFk (p)
.

Therefore, we can verify that the product-level inflation rate is πk = λW − λA,k. As-
suming an economy-wide price index such as

Pt = exp

{∫ 1

0

logPk,tdk

}
yields the following expression for aggregate inflation as a function of product-level
inflation rates:

π =

∫ 1

0

πkdk = λW −
∫ 1

0

λA,kdk = λW − λ̄A.
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(a) Number of transactions by productivity
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(b) Herfindahl–Hirschman Index
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Figure 13: Product-market concentration and inflation

The left panel plots average number of transactions as a function of inflation for retailers
in different percentiles of the productivity distribution; the right panel plots the Herfind-
ahl–Hirschman Index (HHI) as a function of inflation in the model and in the data (right
y-axis). The dots correspond to the average HHI for each of 100 equally sized disaggregate
inflation bins as predicted by equation (1), when the dependent variable is the HHI.

Let H denote the sales-weighted distribution of cross-sectional inflation rates in the
data (Figure A.2). Using that nominal sales grow 4% annually in the Retail Scanner
Data, we can recover the real component of product-level inflation as λA,k = λW −
πk. By setting the distribution of λA,k equal to H, we can study how social welfare
changes with aggregate steady-state inflation according to the calibrated model and
the associated function Ũ (·):

U (π) =

∫ λ

λ

Ũ
(
π + λ̄A − λ

)
dH (λ)− 1. (14)

I assess the quantitative effects of a positive inflation rate in terms of consumption-
equivalent welfare changes. That is, I compute the percentage change in consumption,
∆, needed to make households in economy dot (π = 0) equally well off as households
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in economy hat (π > 0):

log
(
Q̇ (1 + ∆)

)
− τL̇− α ˙̄C = log

(
Q̂
)
− τL̂− α ˆ̄C.

For each level of aggregate inflation, we can also compute an aggregate price dispersion
measure using the equivalent of equation (14) to average product-level price dispersion.

(a) Social welfare
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Figure 14: Aggregate inflation, price dispersion, and welfare

The figure plots average price dispersion, social welfare, and aggregate inflation in the model,
pure menu-cost model with idiosyncratic shocks but without search (Golosov and Lucas,
2007), CalvoPlus price-setting model with idiosyncratic shocks but without search, and pure
menu-cost model with search but without idiosyncratic shocks (Benabou, 1992). The left panel
shows social welfare as average product-level welfare (equation (14)) in terms of consumption-
equivalent welfare changes from π = 0. The right panel shows price dispersion as average
product-level standard deviation of log prices. Both aggregates consider the sales-weighted
distribution of πk. The data for average price dispersion corresponds to 179 monthly obser-
vations divided into 30 aggregate inflation bins.

Figure 14a shows that, in the calibrated model with search, aggregate inflation of
2.53% generates the largest consumption-equivalent welfare gains (0.02%). Although
the magnitude is seemingly low, the key takeaway is that this is the only one among
the four models considered – that is, within this relatively simple framework – allowing
a beneficial role for inflation. We would miss this feature by exclusively looking at
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the relationship between aggregate – instead of product-level – inflation and price
dispersion, as Figure 14b suggests.

8 Conclusion

In this paper, I show the empirical relationship between product-level inflation and
price dispersion is Υ-shaped. Current sticky-price models cannot simultaneously ac-
count for this fact and other features of pricing behavior. I develop a menu-cost model
with idiosyncratic shocks and endogenous consumer search that can. Furthermore,
evidence on shopping behavior and inflation supports the theory.

In the model, the costs of inflation arise from two market frictions: price adjust-
ment and search. If inflation carries benefits, as the calibrated model suggests, they
stem from higher price dispersion and returns to search. As search activity increases,
competition intensifies, decreasing markups. The positive welfare-maximizing inflation
rate optimally trades off the efficiency gains from lower markups and the resources
spent on search.
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A Additional figures and tables
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Figure A.1: Aggregate inflation, validation

The solid blue line corresponds to the Consumer Price Index for food at home reported by
the Bureau of Labor Statistics. The red dashed line is the NielsenIQ Price Index for food
categories, which results from aggregating product × county level inflation πkm,t using annual
sales as weights. I first aggregate product-level measures at the county level before doing so
at the national level.
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Figure A.2: Distribution of product-level annual inflation

Each bar shows the fraction of product × county × year observations within each of 100
equally spaced disaggregate inflation bins. The underlying microdata correspond, for a given
store, product (UPC), and month, to total revenues over quantity sold – or monthly price. I
compute inflation for each UPC and month, which I define as the annualized average size of
price changes including stores that did not change their prices. The final sample for estimation
corresponds to annual averages of the monthly variables for products sold by at least 10 stores.
The total number of product × county × year observations is 40.1 million.
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(a) Product-year
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(b) County-year
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Figure A.3: Controlling for different fixed effects, product level

The dots correspond to average standard deviation of log prices for each of 100 equally sized disaggregate inflation bins as predicted
by equation (1), for different combinations of the fixed effects. The underlying microdata correspond, for a given store, product
(UPC), and month, to total revenues over quantity sold – or monthly price. For each UPC and month, I compute inflation (defined
as the annualized average size of price changes including stores that did not change their prices) and price dispersion statistics
among stores. The final sample for estimation corresponds to annual averages of the monthly variables for products sold by at least
10 stores. The unit of observation is a product × county × year, with a total of 40.1 million.
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(a) Raw data
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(b) Including fixed effects
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Figure A.4: Category-level price dispersion and inflation

The dots correspond to average standard deviation of log prices for each of 100 equally sized category-level inflation bins. The
right figure conditions on controls as in equation (1) but using category-level, instead of product-level, statistics. The underlying
microdata correspond to monthly prices for a given store and product (UPC). Monthly prices are defined as total revenues over
quantity sold in a given month. For each UPC and month, I compute inflation (defined as the annualized average size of price
changes including stores that did not change their prices) and the standard deviation of log prices among stores. I average products
in the same category using annual sales as weights to produce category-level statistics. The final sample for estimation corresponds
to annual averages of the monthly variables. The unit of observation is a category × county × year, with a total of 5,234,083.
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(a) Product level

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

(b) Category level
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Figure A.5: Dividing sample by number of stores

The dots correspond to average standard deviation of log prices for each of 100 equally sized disaggregate inflation bins conditional
on controls. The labels on the left (right) figure show results when we estimate equation (1) keeping products (categories) sold by
at least 10 (5), 25 (10), and 50 (25) stores, which are roughly the minimum, median, and 90th percentile of the distribution. The
underlying microdata correspond, for a given store, product (UPC), and month, to total revenues over quantity sold – or monthly
price. For each UPC and month, I compute inflation (defined as the annualized average size of price changes including stores that
did not change their prices) and price dispersion statistics among stores. The final sample for estimation corresponds to annual
averages of the monthly variables. The right figure also averages among products in the same category (using annual sales as
weights). For the right figure, the unit of observation is a product × county × year, with a total of 40.1 million when at least 10
stores sell the product. For the left figure, the unit of observation is a category × county × year, with a total of 5,234,083 when at
least an average of 5 stores sell the products in the category.
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(a) Product level
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(b) Category level
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Figure A.6: Price dispersion and absolute inflation

The dots correspond to average standard deviation of log prices for each of 100 equally sized disaggregate inflation bins conditional
on controls. The label “Symmetric” shows results when we estimate equation (1) for absolute inflation. The labels “Positive” and
“Negative” indicate estimates in Figure 2 (left figure) and Figure A.4b (right figure) with absolute inflation on the x-axis. The
underlying microdata correspond, for a given store, product (UPC), and month, to total revenues over quantity sold – or monthly
price. For each UPC and month, I compute inflation (defined as the annualized average size of price changes including stores that
did not change their prices) and price dispersion statistics among stores. The final sample for estimation corresponds to annual
averages of the monthly variables. The left figure restricts the sample to products sold by at least 10 stores, while the right one
averages among products in the same category (using annual sales as weights). For the left figure, the unit of observation is a
product × county × year, with a total of 40.1 million. For the right figure, the unit of observation is a category × county × year,
with a total of 5,234,083.
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(a) Product level
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(b) Category level
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Figure A.7: Statistical significance

The dots correspond to average standard deviation of log prices for each of 100 equally sized disaggregate inflation bins as predicted
by equation (1). The band covers the entire function with probability 0.95. Standard errors are clustered by product × county
pair for the figure on the left, and by category × county pair for the figure on the right. The underlying microdata correspond,
for a given store, product (UPC), and month, to total revenues over quantity sold – or monthly price. For each UPC and month,
I compute inflation (defined as the annualized average size of price changes including stores that did not change their prices) and
price dispersion statistics among stores. The final sample for estimation corresponds to annual averages of the monthly variables.
The left figure restricts the sample to products sold by at least 10 stores, while the right one averages among products in the same
category (using annual sales as weights). For the left figure, the unit of observation is a product × county × year, with a total of
40.1 million. For the right figure, the unit of observation is a category × county × year, with a total of 5,234,083.
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(a) Product level
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(b) Category level
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Figure A.8: Current and future inflation

The dots correspond to average standard deviation of log prices for each of 100 equally sized disaggregate inflation bins conditional
on controls. The label “Future” shows results when we estimate equation (1) for next year’s observed inflation, when available. The
underlying microdata correspond, for a given store, product (UPC), and month, to total revenues over quantity sold – or monthly
price. For each UPC and month, I compute inflation (defined as the annualized average size of price changes including stores that
did not change their prices) and price dispersion statistics among stores. The final sample for estimation corresponds to annual
averages of the monthly variables. The left figure restricts the sample to products sold by at least 10 stores, while the right one
averages among products in the same category (using annual sales as weights). For the left figure, the unit of observation is a
product × county × year, with a total of 40.1 million for “Current” and 29.9 million for “Future”. For the right figure, the unit of
observation is a category × county × year, with a total of 5,234,083 for “Current” and 4,480,422 for “Future”.
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(a) Product level
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(b) Category level
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Figure A.9: Dispersion of regular prices and inflation, various filters

The dots correspond to average standard deviation of log prices for each of 100 equally sized disaggregate inflation bins conditional
on controls as predicted by equation (1). The underlying microdata are weekly prices for a given store and product (UPC), defined
as total revenues over quantity sold each week. I use three different filters to remove temporary price changes from weekly posted
prices. The first two identify and remove V-shaped patterns, as in Nakamura and Steinsson (2008): “Regular price A” requires
that the price returns to a regular price within 8 weeks after falling, while “Regular price B” is analogous but considers 4 weeks.
The third filter follows Kehoe and Midrigan’s algorithm to construct a regular price (“Reference price” in the plots). I define the
reference price as the modal price within a window of 4 weeks around a given price. When the posted price equals the reference
price, I set the regular price equal to the reference price; otherwise, I set it equal the previous’ period regular price. To construct
the monthly-level statistics, I keep the regular price in the third week of the month. For each UPC and month, I compute inflation
(defined as the unconditional annualized average size of posted price changes) and the standard deviation of log prices among stores.
The final sample corresponds to annual averages of the monthly variables. The left figure restricts the sample to products sold by
at least 10 stores, while the right one averages among products in the same category (using annual sales as weights). For the left
figure, the unit of observation is a product × county × year, for 11.7 million in total. For the right figure, the unit of observation
is a category × county × year, for 2,584,702 in total.
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(a) Product level
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(b) Category level
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Figure A.10: Price dispersion and inflation, posted and regular prices

The dots correspond to average standard deviation of log prices for each of 100 equally sized disaggregate inflation bins conditional
on controls as predicted by equation (1). The underlying microdata are weekly prices for a given store and product (UPC), defined
as total revenues over quantity sold each week. “Posted prices” is the raw price series, while “regular prices” is the series after
removing temporary sales using a filter as in Nakamura and Steinsson (2008). To construct the monthly-level statistics, I keep the
price in the third week of the month. For each UPC and month, I compute inflation (defined as the annualized average size of posted
price changes including stores that did not change their prices) and the standard deviation of both posted and log regular prices
among stores. The final sample for estimation corresponds to annual averages of the monthly variables. The left figure restricts
the sample to products sold by at least 10 stores, while the right one averages among products in the same category (using annual
sales as weights). For the left figure, the unit of observation is a product × county × year, for 11.7 million in total. For the right
figure, the unit of observation is a category × county × year, for 2,584,702 in total.
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(b) Category level
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Figure A.11: Variance of log prices and inflation

The dots correspond to average variance of log prices for each of 100 equally sized disaggregate inflation bins as predicted by
equation (1). The underlying microdata correspond, for a given store, product (UPC), and month, to total revenues over quantity
sold – or monthly price. For each UPC and month, I compute inflation (defined as the annualized average size of price changes
including stores that did not change their prices) and price dispersion statistics among stores. The final sample for estimation
corresponds to annual averages of the monthly variables. The left figure restricts the sample to products sold by at least 10 stores,
while the right one averages among products in the same category (using annual sales as weights). For the left figure, the unit of
observation is a product × county × year, with a total of 40.1 million. For the right figure, the unit of observation is a category ×
county × year, with a total of 5,234,083.
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(b) Category level
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Figure A.12: 90-10 ratio of the price distribution and inflation

The dots correspond to the average 90-10 ratio of the price distribution for each of 100 equally sized disaggregate inflation bins as
predicted by equation (1). The underlying microdata correspond, for a given store, product (UPC), and month, to total revenues
over quantity sold – or monthly price. For each UPC and month, I compute inflation (defined as the annualized average size of
price changes including stores that did not change their prices) and price dispersion statistics among stores. The final sample for
estimation corresponds to annual averages of the monthly variables. The left figure restricts the sample to products sold by at least
10 stores, while the right one averages among products in the same category (using annual sales as weights). For the left figure,
the unit of observation is a product × county × year, with a total of 40.1 million. For the right figure, the unit of observation is a
category × county × year, with a total of 5,234,083.
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(a) Product level
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(b) Category level
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Figure A.13: Interquartile range of the price distribution and inflation

The dots correspond to the average interquartile range of the price distribution for each of 100 equally sized disaggregate inflation
bins as predicted by equation (1). The underlying microdata correspond, for a given store, product (UPC), and month, to total
revenues over quantity sold – or monthly price. For each UPC and month, I compute inflation (defined as the annualized average
size of price changes including stores that did not change their prices) and price dispersion statistics among stores. The final sample
for estimation corresponds to annual averages of the monthly variables. The left figure restricts the sample to products sold by
at least 10 stores, while the right one averages among products in the same category (using annual sales as weights). For the left
figure, the unit of observation is a product × county × year, with a total of 40.1 million. For the right figure, the unit of observation
is a category × county × year, with a total of 5,234,083.
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(b) Category level
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Figure A.14: Ratios of the price distribution and inflation

The dots correspond to average price dispersion for each of 100 equally sized disaggregate inflation bins as predicted by equation (1).
Price dispersion is measured using the 90-10, 90-50 or 50-10 ratio of the price distribution. The y-axis shows deviations from predicted
price dispersion values when π = 0. The underlying microdata correspond, for a given store, product (UPC), and month, to total
revenues over quantity sold – or monthly price. For each UPC and month, I compute inflation (defined as the annualized average
size of price changes including stores that did not change their prices) and price dispersion statistics among stores. The final sample
for estimation corresponds to annual averages of the monthly variables. The left figure restricts the sample to products sold by
at least 10 stores, while the right one averages among products in the same category (using annual sales as weights). For the left
figure, the unit of observation is a product × county × year, with a total of 40.1 million. For the right figure, the unit of observation
is a category × county × year, with a total of 5,234,083.
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(a) No fixed effects
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(b) Product-year and county-year
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Figure A.15: Price dispersion at the chain level

The dots correspond to average standard deviation of log prices for each of 100 equally sized disaggregate inflation bins as predicted
by equation (1), when the price is defined at the retail chain/parent company level. The figure on the left excludes fixed effects
and the log-number of stores. The labels show results when keeping products sold by at least 2, 3, and 4 chains/parent companies,
which are roughly the 25th, median, and 75th percentile of the distribution. The underlying microdata correspond, for a given
retail chain/parent company, product (UPC), and month, to total revenues over quantity sold – or monthly price. For each UPC
and month, I compute inflation and price dispersion statistics among chains/parent companies. The final sample for estimation
corresponds to annual averages of the monthly variables for products sold by at least 10 stores. The unit of observation is a product
× county × year, with a total of 33.3 million when there are at least 2 chains, 24.7 million when there are at least 3 chains, and
15.6 million when there are at least 4 chains.
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(a) Levels
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(b) Deviation from π = 0
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Figure A.16: Dispersion of regular prices and inflation by number of stores

The dots correspond to average standard deviation of log regular prices for each of 100 equally sized disaggregate inflation bins
conditional on controls as predicted by equation (1). The plots show estimates keeping products sold by at least 10, 25, and 50
stores, which are roughly the minimum, median, and 90th percentile of the distribution. The left figure is in levels; the right one
in deviations from π = 0 values. The underlying microdata are weekly prices for a given store and product (UPC), defined as total
revenues over quantity sold each week. Regular prices are raw weekly prices after removing temporary sales using a filter as in
Nakamura and Steinsson (2008) (“Regular price A” in the main text). To construct the monthly-level statistics, I keep the price in
the third week of the month. For each UPC and month, I compute inflation (defined as the annualized average size of posted price
changes including stores that did not change their prices) and the standard deviation of log regular prices among stores. The final
sample for estimation corresponds to annual averages of the monthly variables. The unit of observation is a product × county ×
year, with a total of 11.7 million, 3,007,475, and 829,541 when at least 10, 25, and 50 stores, respectively, sell the product.
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(b) Deviation from π = 0
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Figure A.17: Frequency of regular price changes and inflation by number of stores

The dots correspond to average frequency of regular price changes for each of 100 equally sized disaggregate inflation bins conditional
on controls. The estimation is analogous to equation (1) when the dependent variable is the average frequency of regular price
changes. The plots show estimates keeping products sold by at least 10, 25, and 50 stores, which are roughly the minimum, median,
and 90th percentile of the distribution. The left figure is in levels; the right one in deviations from π = 0 values. The underlying
microdata are weekly prices for a given store and product (UPC), defined as total revenues over quantity sold each week. Regular
prices are raw weekly prices after removing temporary sales using a filter as in Nakamura and Steinsson (2008) (“Regular price A”
in the main text). To construct the monthly-level statistics, I keep the price in the third week of the month. For each UPC and
month, I compute inflation (defined as the annualized average size of posted price changes including stores that did not change their
prices) and the frequency of regular price changes (or fraction of stores that adjusted regular prices in a given month). The final
sample for estimation corresponds to annual averages of the monthly variables. The unit of observation is a product × county ×
year, with a total of 11.7 million, 3,007,475, and 829,541 when at least 10, 25, and 50 stores, respectively, sell the product.
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(b) Deviation from π = 0
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Figure A.18: Absolute size of regular price changes and inflation by number of stores

The dots correspond to average absolute size of regular price changes for each of 100 equally sized disaggregate inflation bins
conditional on controls. The estimation is analogous to equation (1) when the dependent variable is the average absolute size of
regular price changes. The plots show estimates keeping products sold by at least 10, 25, and 50 stores, which are roughly the
minimum, median, and 90th percentile of the distribution. The left figure is in levels; the right one in deviations from π = 0 values.
The underlying microdata are weekly prices for a given store and product (UPC), defined as total revenues over quantity sold each
week. Regular prices are raw weekly prices after removing temporary sales using a filter as in Nakamura and Steinsson (2008)
(“Regular price A” in the main text). To construct the monthly-level statistics, I keep the price in the third week of the month. For
each UPC and month, I compute inflation (defined as the annualized average size of posted price changes including stores that did
not change their prices) and the absolute size of regular price changes (conditional on adjustment). The final sample for estimation
corresponds to annual averages of the monthly variables. The unit of observation is a product × county × year, with a total of 11.7
million, 3,007,475, and 829,541 when at least 10, 25, and 50 stores, respectively, sell the product.
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(a) Absolute size of regular price changes
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(b) Frequency of regular price changes
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Figure A.19: Additional pricing moments and inflation, model fit

The figures show the relationship between product-level inflation and additional pricing moments in the calibrated model (line) and
in the data (dots). The dots in the left (right) figure correspond to average absolute size (frequency) of regular price changes for
each of 100 equally sized disaggregate inflation bins conditional on controls. The estimation is analogous to equation (1) when the
dependent variable is the average absolute size or frequency of regular price changes, keeping products sold by at least 50 stores.
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Figure A.20: Pricing moments in different models

The figure plots pricing moments and inflation in the data, model, pure menu-cost model with idiosyncratic shocks but without
search (Golosov and Lucas, 2007), CalvoPlus price-setting model with idiosyncratic shocks but without search, and pure menu-cost
model with search but without idiosyncratic shocks (Benabou, 1992; right y-axis). The left panel shows product-level frequency of
price changes, and the right panel plots the fraction of price increases. Pricing moments are computed for regular prices of products
sold by at least 50 stores.
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Table A.1: Descriptive statistics, pricing behavior

Percentile

Mean Std.Dev. 1st 10th 25th 50th 75th 90th 99th

Aggregate inflation 0.015 0.017 -0.012 -0.005 0.001 0.013 0.024 0.039 0.067
A. Product level

Inflation 0.013 0.106 -0.292 -0.096 -0.030 0.005 0.058 0.128 0.322
Absolute inflation 0.070 0.081 0.000 0.004 0.015 0.045 0.097 0.168 0.376
Price dispersion
Std. dev. of log prices 0.102 0.063 0.000 0.025 0.056 0.096 0.139 0.183 0.283
Max-min price ratio 1.415 0.369 1.000 1.070 1.182 1.351 1.566 1.816 2.509
90-10 percentile ratio 1.243 0.207 1.000 1.027 1.093 1.204 1.343 1.499 1.912
90-50 percentile ratio 1.109 0.119 1.000 1.005 1.026 1.075 1.152 1.249 1.543
50-10 percentile ratio 1.121 0.128 1.000 1.008 1.033 1.088 1.169 1.269 1.564

Number of stores 26.2 29.8 10.0 10.0 12.0 18.0 28.0 47.0 148.0
Number of chains 3.3 1.8 1 1 2 3 4 6 9

B. Category level
Inflation 0.016 0.078 -0.196 -0.060 -0.018 0.009 0.047 0.100 0.255
Absolute inflation 0.052 0.060 0.000 0.004 0.013 0.033 0.069 0.123 0.283
Price dispersion
Std. dev. of log prices 0.107 0.056 0.003 0.038 0.070 0.104 0.138 0.175 0.274
Max-min price ratio 1.335 0.248 1.002 1.077 1.175 1.302 1.448 1.612 2.082
90-10 percentile ratio 1.218 0.167 1.001 1.043 1.107 1.196 1.295 1.404 1.731
90-50 percentile ratio 1.095 0.089 1.000 1.010 1.034 1.078 1.131 1.193 1.407
50-10 percentile ratio 1.111 0.108 1.000 1.015 1.044 1.093 1.151 1.220 1.451

Number of stores 14.6 18.9 5.0 5.4 6.6 9.0 15.6 27.4 91.4
Number of UPCs 18.6 36.2 1.0 1.0 3.0 7.0 18.0 45.0 185.0

Notes. The table shows unweighted descriptive statistics for the sample used to estimate equation (1). The underlying microdata correspond,
for a given store, product (UPC), and month, to total revenues over quantity sold – or monthly price. For each UPC and month, I compute
inflation (defined as the annualized average size of price changes including stores that did not change their prices) and price dispersion statistics
among stores. The final sample for estimation corresponds to annual averages of the monthly variables. Panel A shows product-level statistics
for UPCs sold by at least 10 stores, while panel B also averages among products in the same module/category (using annual sales as weights).
For panel A, the total number of observations is 40.1 million for 9,235,551 UPC × county pairs between 2007 and 2020, with 268,149 unique
UPCs and 904 counties. For panel B, the total number of observations is 5,234,083 for 556,452 category × county pairs between 2007 and 2020,
with 1,078 unique categories and 1,460 counties. The fraction of observations with deflation is 0.427 at the UPC and 0.397 at the category
level. Aggregate inflation corresponds to an average over all product × county pairs using annual sales as weights.
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Table A.2: Detailed descriptive statistics, product-level pricing behavior (weekly)

Percentile

Mean Std.Dev. 1st 10th 25th 50th 75th 90th 99th

Inflation 0.014 0.130 -0.367 -0.125 -0.037 0.007 0.071 0.156 0.387
Absolute inflation 0.087 0.098 0.000 0.004 0.018 0.055 0.121 0.211 0.451
Aggregate inflation 0.015 0.017 -0.012 -0.005 0.001 0.013 0.024 0.039 0.067
Number of stores 23.6 25.1 10 10 12 16 25 41 128

A. Posted prices
Price dispersion
Std. dev. of log prices 0.108 0.066 0.000 0.026 0.059 0.103 0.150 0.196 0.285
Max-min price ratio 1.419 0.413 1.000 1.060 1.178 1.349 1.574 1.835 2.531
90-10 percentile ratio 1.245 0.215 1.000 1.014 1.080 1.202 1.357 1.525 1.911
90-50 percentile ratio 1.107 0.120 1.000 1.000 1.017 1.071 1.157 1.257 1.531
50-10 percentile ratio 1.125 0.134 1.000 1.002 1.026 1.089 1.185 1.295 1.562

Price flexibility
Frequency of price changes 0.476 0.230 0.000 0.149 0.307 0.493 0.654 0.772 0.917
Abs. size of price changes 0.163 0.095 0.020 0.055 0.092 0.148 0.216 0.287 0.451

B. Regular prices
Price dispersion
Std. dev. of log prices 0.088 0.061 0.000 0.013 0.042 0.080 0.124 0.168 0.264
Max-min price ratio 1.328 0.295 1.000 1.024 1.119 1.269 1.467 1.688 2.240
90-10 percentile ratio 1.195 0.195 1.000 1.001 1.047 1.147 1.288 1.447 1.833
90-50 percentile ratio 1.086 0.118 1.000 1.000 1.004 1.044 1.121 1.229 1.534
50-10 percentile ratio 1.101 0.135 1.000 1.000 1.006 1.054 1.148 1.270 1.579

Price flexibility
Frequency of price changes 0.196 0.142 0.000 0.023 0.084 0.175 0.282 0.392 0.605
Abs. size of price changes 0.106 0.067 0.016 0.040 0.060 0.092 0.135 0.187 0.334

Notes. The table shows unweighted descriptive statistics for the sample used to estimate equation (1). The underlying microdata correspond
to monthly prices for a given store and product (UPC), defined as total revenues over quantity sold in the third week of the month. For each
UPC and month, I compute inflation (defined as the annualized average size of price changes including stores that did not change their prices),
price dispersion statistics among stores, the percent of stores adjusting their prices (frequency), and the average absolute size of these changes
conditional on adjusting. The final sample corresponds to annual averages of monthly statistics for UPCs sold by at least 10 stores. Panel B
shows the dispersion and flexibility statistics after removing temporary sales from the underlying price series using a filter (“Regular price A”),
as in Nakamura and Steinsson (2008). The total number of observations is 11.7 million for 2,813,263 UPC × county pairs between 2007 and
2020, with 129,490 unique UPCs and 897 counties. The fraction of observations with deflation is 0.415. Aggregate inflation corresponds to an
average over all product × county pairs using annual sales as weights. Frequency corresponds to percent per month.
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Table A.3: Detailed descriptive statistics, category-level pricing behavior (weekly)

Percentile

Mean Std.Dev. 1st 10th 25th 50th 75th 90th 99th

Inflation 0.017 0.104 -0.276 -0.086 -0.026 0.011 0.061 0.129 0.328
Absolute inflation 0.069 0.079 0.000 0.005 0.017 0.044 0.093 0.164 0.373
Aggregate inflation 0.015 0.017 -0.012 -0.005 0.001 0.013 0.024 0.039 0.067

A. Posted prices
Price dispersion
Std. dev. of log prices 0.106 0.059 0.000 0.032 0.065 0.103 0.142 0.179 0.269
Max-min price ratio 1.308 0.292 1.000 1.050 1.140 1.268 1.425 1.597 2.048
90-10 percentile ratio 1.200 0.198 1.000 1.025 1.081 1.172 1.284 1.402 1.708
90-50 percentile ratio 1.085 0.090 1.000 1.004 1.021 1.064 1.123 1.188 1.387
50-10 percentile ratio 1.106 0.140 1.000 1.008 1.033 1.083 1.151 1.228 1.451

Price flexibility
Frequency of price changes 0.424 0.194 0.000 0.157 0.286 0.431 0.564 0.672 0.835
Abs. size of price changes 0.155 0.072 0.029 0.069 0.103 0.147 0.196 0.249 0.366

B. Regular prices
Price dispersion
Std. dev. of log prices 0.089 0.057 0.000 0.020 0.050 0.084 0.121 0.160 0.258
Max-min price ratio 1.254 0.270 1.000 1.026 1.102 1.214 1.356 1.515 1.941
90-10 percentile ratio 1.167 0.191 1.000 1.013 1.058 1.136 1.237 1.351 1.674
90-50 percentile ratio 1.072 0.089 1.000 1.000 1.012 1.047 1.101 1.170 1.390
50-10 percentile ratio 1.089 0.145 1.000 1.001 1.017 1.060 1.126 1.210 1.465

Price flexibility
Frequency of price changes 0.173 0.112 0.000 0.038 0.090 0.160 0.239 0.322 0.500
Abs. size of price changes 0.099 0.042 0.026 0.051 0.069 0.093 0.121 0.152 0.227

Notes. The table shows unweighted descriptive statistics for the sample used to estimate equation (1). The underlying microdata correspond
to monthly prices for a given store and product (UPC), defined as total revenues over quantity sold in the third week of the month. For each
UPC and month, I compute inflation (defined as the annualized average size of price changes including stores that did not change their prices),
price dispersion statistics among stores, the percent of stores adjusting their prices (frequency), and the average absolute size of these changes
conditional on adjusting. The final sample corresponds to annual averages of monthly statistics for products in the same category, using annual
sales as weights. Panel B shows the dispersion and flexibility statistics after removing temporary sales from the underlying price series using a
filter (“Regular price A”), as in Nakamura and Steinsson (2008). The total number of observations is 2,584,702 for 298,987 category × county
pairs between 2007 and 2020, with 1,018 unique categories and 1,456 counties. The fraction of observations with deflation is 0.399. Aggregate
inflation corresponds to an average over all category × county pairs using annual sales as weights.
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Table A.4: Numerical tests, year-by-year product-level estimates

Full |π| range |π| < 2%

County-year estimates, fm,y
% reject null: Increasing 25.19 6.23
% reject null: Concave 35.31 8.66
Average # products per county-year 4,270.52 1,524.21
Total # county-year observations 9,372 7,838

Product-year estimates, fk,y
% reject null: Increasing 40.92 10.57
% reject null: Concave 29.86 11.23
Average # counties per product-year 142.41 90.34
Total # product-year observations 216,227 59,107

Notes. The functions fm,y and fk,y denote the relationship between price dispersion and absolute
inflation for each county-year and product-year combination, respectively. The top panel shows a
summary of the results for fm,y: the percent of county-year estimates that reject the null hypothesis
of monotonicity and concavity; the average number of products used to estimate each function fm,y
(where I imposed a minimum of 50); and the total number of estimated functions fm,y. The first
column shows estimates of fm,y for the full absolute inflation range; the second, for absolute inflation
lower than 2%. The bottom panel shows a summary of the results for fk,y, and the description is
analogous.

Table A.5: Numerical tests, year-by-year category-level estimates

Full |π| range |π| < 2%

County-year estimates, fm,y
% reject null: Increasing 18.65 3.62
% reject null: Concave 16.63 6.06
Average # categories per county-year 428.51 60.23
Total # county-year observations 12,017 1,106

Category-year estimates, fk,y
% reject null: Increasing 37.27 5.60
% reject null: Concave 31.86 6.89
Average # counties per category-year 404.21 77.16
Total # category-year observations 12,717 929

Notes. The functions fm,y and fk,y denote the relationship between price dispersion and absolute
inflation for each county-year and category-year combination, respectively. The top panel shows a
summary of the results for fm,y: the percent of county-year estimates that reject the null hypothesis
of monotonicity and concavity; the average number of categories used to estimate each function fm,y
(where I imposed a minimum of 50); and the total number of estimated functions fm,y. The first
column shows estimates of fm,y for the full absolute inflation range; the second, for absolute inflation
lower than 2%. The bottom panel shows a summary of the results for fk,y, and the description is
analogous.
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Table A.6: Descriptive statistics, shopping behavior

Percentile

Mean Std.Dev. 1st 10th 25th 50th 75th 90th 99th

Household × department × quarter
Log relative price paid -0.004 0.105 -0.332 -0.088 -0.029 0 0.032 0.079 0.247
Number of retailers visited 3.033 2.116 1 1 2 2 4 6 10
Number of shopping trips 9.042 8.684 1 2 3 7 12 19 43
Number of transactions 25.494 42.254 1 2 5 11 26 60 217
Fraction of trans. with coupons 0.078 0.169 0 0 0 0 0.074 0.278 0.833

Department × market × quarter
Inflation (annualized) 0.014 0.034 -0.079 -0.017 -0.012 0.011 0.027 0.051 0.115
Absolute inflation (annualized) 0.025 0.027 0.000 0.003 0.008 0.017 0.032 0.057 0.125

Notes. The table shows descriptive statistics for the sample used to estimate equation (12). Household-
related measures are computed using the Consumer Panel Data; inflation, using the Retail Scanner
Data. The total number of observations for estimation are 24,468,527 household × department ×
quarter triples, with 149,324 households, 10 departments, 56 quarters, and 53 Scantrack markets. At
the department × market × quarter level, 29,572 distinct observations for inflation are available.

Table A.7: Parameters used in Section 4

Retailers

Size of the menu cost κ = 0.02
Mean-reversion rate of idiosyncratic shocks ρv = 0.85
Volatility of idiosyncratic shocks σv = 0.07

Shoppers

Shape of search cost distribution, Beta (ga, gb) ga = 1.05
Shape of search cost distribution, Beta (ga, gb) gb = 4.00
Price elasticity of demand of shoppers η = 3.00
Disutility cost of labor τ = 2.50

Notes. The table shows the parameters used to describe the intuition of the model in Section 4. We
assume γ ∼ Beta (ga, gb), where ga > 1, gb > 1, and γ ∈ [0, 1]. In addition, we set θ = σ−1 = 1 and
ρ = 0.961/12.
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B Temporary price reductions

To identify temporary price reductions, I define prices as total revenues over quantity
sold each week. Provided intra-week price changes are less frequent than intra-month
changes, defining prices at the weekly level would allow for a more precise measurement
of the exact price the store charges and, thus, a better identification of price changes
and sales using filters.

I use three different filters to remove temporary price changes from the series of
posted prices and obtain a series of regular prices. The first two filters remove V-shaped
patterns in the posted price series, as in Nakamura and Steinsson (2008). Both filters
are designed to remove patterns in which a price returns to the same or to a different
regular price within J weeks, after an initial drop. The parameters K and L in their
algorithm – also in number of weeks – determine the transition to a new regular price.
Stevens (2020) finds that the parameter J is the most important in determining the
frequency of regular price changes. Therefore, I fix K = L = 6, and set J = 8 for what
I call “Regular price A” and J = 4 for “Regular price B”.

The third filter follows Kehoe and Midrigan’s algorithm to construct a regular price.
Consider the modal price within a window of 4 weeks before and after the current
price. I call this price a reference price if there are at least 5 out of the 9 weeks of data
available, and if at least a third of the observations equal the modal price. In rough
terms, the regular price equals the reference price if the posted equals the reference
price. If not, the regular price corresponds to the regular price of the previous period.
Deviations from the regular price series are considered temporary.

To have enough data points for the filters to work, I only keep product-store pairs
with at least two consecutive observations each month of the year. I do not impute
missing price values. Also before applying the filters, I round prices to two decimal
places and remove spurious price changes by identifying price changes in middle of the
week.
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C Additional pricing-behavior measures

Two relevant statistics of price stickiness are the frequency and size of regular price
changes (i.e., excluding price changes due to temporary sales). To construct these
measures, I start by defining a price spell as an uninterrupted sequence of weekly
prices for a given product × store pair.47 Following Coibion et al. (2015), I classify
the difference between two consecutive prices within a spell as price change when it is
larger than one cent or 1% in absolute value (or more than 0.5% for prices larger than
$5). The purpose of this restriction is to remove small price changes that could arise
from rounding errors, given that the weekly price is constructed as revenues over units
sold.

For each product × county × month, I obtain the number of regular price changes
across stores in the third week of the month. The monthly frequency of adjustment is
given by this number over the total price observations in the third week of the month.
The size of a regular price change is the log difference between the price in the period
identified as having a regular price change and the price in the preceding period. At
the product × county × month level, it is the unweighted average across stores in the
third week of the month.

47That is, I do not impute missing values using the preceding or subsequent price.
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D Generalized search problem

Stiglitz (1987) argued that search costs might decrease with the number of searches if,
for example, stores are clustered around a shopping area so getting there entails most
of the cost. Conversely, search costs might increase with the number of searches if
stores are geographically dispersed. In addition, the scarcity of time imposes a natural
cap on the number of stores that shoppers can visit. In this section, I let the marginal
search cost change with the number of searches and limit the number of draws. These
generalizations serve two purposes: first, to match the empirical findings on shopping
behavior, and second, to shed further light on the interaction between inflation, search,
and welfare.

For clarity, we drop the subscript k. Assume there is a maximum of S draws and
the first one is free so all shoppers draw at least one offer. Recall of previous offers
is allowed.48 The value that offer p has for γ after S ∈

{
2, . . . , S

}
draws is given by

BS (p, γ), where

B1 = max {0,E [B2 (p, γ)]} = E [B2 (p, γ)] > 0;

BS (p, γ) = max

{
V (p) ,

∫ p

p

BS+1 (p′, γ) dF (p′) +BS+1 (p, γ) [1− F (p)]− γ × c (S)

}
;

BS+1 (p, γ) = V (p) .

The solution to this problem is a sequence of reservation prices for each type γ,

rS = RS (γ) ≡ Γ−1
S (γ) ≥ p ∀S ∈

{
2, . . . , S

}
,

where the search cost thresholds ΓS (p) indicate the types that accept each p.
To obtain the retailer-level demand function, we only need to solve for the sequence

{ΓS (p)}SS=2. The solution will depend on the slope of the monotonic marginal cost
function c (S). If the marginal cost of search is constant, that is c (S) = α, reservation
prices are also constant and the search cost thresholds satisfy equation (6). If the
marginal search cost increases (decreases) with S, given that V (p) is strictly decreasing,

48If the number of draws is limited and recall of previous offers is not allowed, a constant marginal
search cost leads to reservation prices increasing with S – opposite to what the empirical evidence
suggests. Everything else equal, allowing recall produces reservation prices constant in S (see Lippman
and McCall, 1976 for proof). Moreover, as discussed below, decreasing marginal search costs always
generate decreasing reservation prices, facilitating the calibration of the model.
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it is straightforward to prove that reservation prices increase (decrease) with S. Then,
we can solve for the search cost thresholds recursively using that BS (p,ΓS (p)) =

V (p) ∀S ∈
{

2, . . . , S
}
, and noting that ΓS−1 (p) ≥ ΓS (p) ∀S if reservation prices

increase and ΓS−1 (p) ≤ ΓS (p) ∀S if they decrease with S. For c (S) increasing, the
solution satisfies

ΓS (p) = c (S)−1

∫ p

p

[V (u)− V (p)] dF (u) ∀S ∈
{

2, . . . , S
}
,

and it is easy to see that, as S increases, ΓS (p) becomes flatter, meaning that a shopper
of any type γ picks higher reservation prices. For c (S) decreasing, the solution satisfies

ΓS (p) = ΓS+1 (uS) ∀S ∈
{

2, . . . , S − 1
}

;

ΓS (p) = c
(
S
)−1
∫ p

p

[V (u)− V (p)] dF (u) ,

where the sequence {uS}S−1
S=2 solves

JS (p) = KS (uS) ;

JS (p) ≡
S−S∑
s=1

∫ p

p

[ΓS (p)− ΓS (u)] d (1− F (u))s +
(
S − S + 1

)
× ΓS (p) ;

KS (uS) ≡ JS (uS) + ΓS+1 (uS)
c (S)

c
(
S
) − ΓS (uS) .

Retailer-level demand function Consider a retailer charging relative price p for
the good. Since the first draw is free, g (γ) shoppers type γ search at least once and
draw p. Their probability of success is F (R2 (γ)); those with type γ ≥ Γ2 (p) accept p
and those with γ < Γ2 (p) continue searching. Therefore, [1− F (R2 (γ))] g (γ) shoppers
obtain p on their second draw, and their probability of success is F (R3 (γ)); those with
γ ≥ Γ3 (p) accept it while those with γ < Γ3 (p) continue searching. On their third
draw, [1− F (R3 (γ))] [1− F (R2 (γ))] g (γ) shoppers get p; etc. On their final draw, S̄,∏S̄

j=2 [1− F (Rj (γ))] g (γ) shoppers get the offer p and accept it if it is the minimum
among all draws

{
1, . . . , S̄

}
. Summing up over those who accept the offer, the extensive
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margin of demand for a retailer charging p is given by:

N (p) =

∫ γ̄

Γ2(p)

g (γ) dγ +
S−1∑
S=2

∫ γ̄

ΓS+1(p)

S∏
j=2

[1− F (Rj (γ))] g (γ) dγ

+

∫ γ̄

γ

S∏
j=2

[1− F (Rj (γ))] g (γ) dγ.

For computational purposes, it is convenient to express N (p) in terms of Γ2 (p):

N (p) =

∫ γ̄

Γ2(∞)

g (γ) dγ +

∫ ∞
p

g (Γ2 (r)) dΓ2 (r)

+
S̄−1∑
i=2

∫ p̄

Γ−1
2 [Γi+1(p)]

i∏
j=3

[1− F (Rj (Γ2 (r)))] [1− F (r)] g (Γ2 (r)) dΓ2 (r)

+

∫ p̄

Γ−1
2 (γ)

S̄∏
j=3

[1− F (Rj (Γ2 (r)))] [1− F (r)] g (Γ2 (r)) dΓ2 (r) .

Expected search outcomes The probability of γ drawing S offers is F (R2 (γ)) for
S = 1,

F (RS+1 (γ))
S∏
j=2

[1− F (Rj (γ))]

for 1 < S < S, and
∏S

j=2 [1− F (Rj (γ))] for S = S. For any maximum number
of draws S = {1, 2, 3, . . .}, monotonic marginal search cost function c (S), relative
posted-price distribution F , search-cost type γ, and associated search rules RS (γ)

∀ S =
{

2, 3, . . . , S
}
, we can compute

• the expected search costs

C̆ (γ) ≡ γE [C (S) |γ] = γ ×
S−1∑
S=2

{
C (S)× F (RS+1 (γ))

S∏
j=2

[1− F (Rj (γ))]

}

+γ × C
(
S
)
×

S∏
j=2

[1− F (Rj (γ))] ,

where C (S) = α−1
∑S

j=2 c (j);
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• the expected number of draws:

S̆ (γ) ≡ E [S|γ] = 1× F (R2 (γ)) +
S−1∑
S=2

{
S × F (RS+1 (γ))

S∏
j=2

[1− F (Rj (γ))]

}

+S ×
S∏
j=2

[1− F (Rj (γ))] ;

• the expected surplus:

V̆ (γ) ≡ E [V (p) |γ] =

∫ R2(γ)

p

V (p) dF (p)

+
S−1∑
S=2

{∫ RS+1(γ)

p

V (p) dF (p)
S∏
j=2

[1− F (Rj (γ))]

}

+

∫ p

p

V (p) d
{

1− [1− F (p)]S
}
×

S∏
j=2

[1− F (Rj (γ))] ;

• and the expected price paid:

p̆ (γ) ≡ E [p|γ] =

∫ R2(γ)

p

pdF (p)

+
S−1∑
S=2

{∫ RS+1(γ)

p

pdF (p)
S∏
j=2

[1− F (Rj (γ))]

}

+

∫ p

p

pd
{

1− [1− F (p)]S
}
×

S∏
j=2

[1− F (Rj (γ))] .
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