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Abstract

In the spectral backtesting framework of Gordy and McNeil (2020) a probability
measure on the unit interval is used to weight the quantiles of greatest interest in
the validation of forecast models using probability-integral transform (PIT) data. We
extend this framework to allow general Lebesgue-Stieltjes kernel measures with un-
bounded distribution functions, which brings powerful new tests based on truncated
location-scale families into the spectral class. Moreover, by considering uniform distri-
bution preserving transformations of PIT values the test framework is generalized to
allow tests that are focused on both tails of the forecast distribution.
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1 Introduction

Gordy and McNeil (2020) study a class of backtests for forecast distributions in which the test

statistic depends on a spectral transformation of a quantile exceedance indicator function.

The spectral transformation weights quantile exceedance events using a kernel measure which

is chosen by the validator to reflect the validator’s priorities for model performance. The

present paper extends the original treatment in two directions. First, whereas Gordy and

McNeil (2020) restrict the kernel measure to the class of probability measures, in this paper

we allow the kernel measure to be unbounded, subject to an integrability condition. We

show that unbounded kernels deliver tests materially more powerful than tests based on the

bounded kernels studied by Gordy and McNeil (2020). Second, we introduce a pre-processing

of the data by a folding transformation that leaves the size of the backtest unaltered but

increases its power against misspecifications of forecast volatility that are extremely common

in practice.

Our extensions to the spectral backtesting framework are germane to any validation

exercise in which performance throughout one or both tails of the forecast distribution is

of special interest. Our investigation is motivated by recent developments in the capital

regulation of the trading operations of large banks. Under the current Basel III rules (Basel

Committee on Bank Supervision, 2019), minimum capital requirements for a bank’s trading

book are determined by the bank’s self-reported daily Expected Shortfall (ES) at the α1 =

97.5% confidence level. The adoption of ES departs from earlier Basel regimes tied to

Value-at-Risk (VaR) at the α∗ = 99% confidence level. Left unchanged in Basel III is

the role of the regulator in validation of the bank’s model through backtesting. For this

purpose, banks in the United States report to regulators for each trading day the probability

associated with the realized profit-and-loss (P&L) in the prior day’s forecast distribution,

i.e., the probability integral transform (PIT) associated with realized P&L. Observing the

PIT values is equivalent to observing VaR exceedances at every level α ∈ [0, 1]. Besides

Gordy and McNeil (2020), bank-reported PIT data have been studied by Lynch et al. (2023)
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and Iercosan et al. (2023).

Under a VaR-based regime, the regulator would have particular interest in testing model

performance over some range of confidence levels in the neighborhood of α∗. Accordingly,

Gordy and McNeil (2020) illustrate their methods with kernels placing mass in a window

[α1, α2] with 0 < α1 < α∗ < α2 < 1, e.g., [0.985, 0.995]. In such a setting, only bounded

measures produce finite test statistics, and since our test statistic is invariant to the measure

of the window, without loss of generality we can restrict attention to probability measures.

Because ES is an integral of VaR above a threshold level, it is natural under the new regime

to consider continuous kernels that weight on every α above some threshold, e.g., α1 = 0.975

in the Basel context. In this setting, even some unbounded measures can be guaranteed to

yield valid test statistics. Further, because bank models tend to break down under extreme

market events and unbounded measures weight most heavily on such tail events, we expect

unbounded measures to deliver more powerful tests. We confirm this intuition in simulation

exercises and show as well that this power does not come at the expense of size distortions.

The topic of backtesting expected shortfall has led to a lively debate about whether

or not ES is amenable to backtesting (Gneiting, 2011; Acerbi and Székely, 2014; Fissler et

al., 2016; Acerbi and Székely, 2023). A growing literature, including Patton et al. (2019)

and Barendse et al. (2023), employs elicitability theory to develop joint backtests of VaR

and ES. For regulatory use, this methodology would generally require that banks submit

time series of both VaR and ES estimates, although a recent paper of Bayer and Dimitriadis

(2022) suggests a workaround to obtain a test of ES estimates only, at the possible expense

of some model misspecification.

Issues related to backtesting estimates of risk measures such as ES are sidestepped in our

framework because we test the forecast distributions from which risk measures are estimated,

rather than the estimates themselves. It may be noted that a number of recent papers

propose PIT-based approaches to backtesting expected shortfall and, in particular, exploit

the cumulative violation process of Du and Escanciano (2017), which can be viewed as a
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particular choice of spectral transformation. These include Du et al. (2023), who propose an

improved conditional ES backtest, Hoga and Demetrescu (2023), who propose a real-time

monitoring procedure for ES forecasts and Hué et al. (2024) who use orthogonal polynomials

to jointly test moment conditions for the cumulative violation process and the process of

durations between VaR exceedances.

Even if the regulator is interested exclusively in the upper tail of the PIT distribution,

it is often the case that models that are misspecified in the upper tail may be similarly

misspecified in the lower tail. For example, in a risk management setting, a failure to

capture stochastic volatility in the distribution of financial returns leads to underestimation

of extreme gains as well as extreme losses. Berkowitz et al. (2011) and O’Brien and Szerszen

(2017) provide evidence of neglected stochastic volatility in the banking context by showing

that simple GARCH models fitted to bank P&L often outperform bank internal models.

Expressed in terms of the observed PIT values, such a misspecification would produce too

few middling PIT and too many low and high PIT. Thus, even if the regulator is concerned

only with large losses, a kernel that assigns no weight to the lower tail of the PIT distribution

fails to capture data that may be relevant to detecting misspecification in the upper tail.

We show how the regulator can pre-process the PIT values, by an operation we describe as

folding, so that tail values from left and right in the original PIT distribution are mapped to

the upper tail of the pre-processed distribution without altering the distribution of the test

statistic under the null hypothesis.

A simple example of a suitable pre-processor would apply the v-shaped mapping T (u) =

|1− 2u| to the PIT values. Under this mapping, the event that a pre-processed PIT value is

in the upper tail, T (PIT) ∈ [v, 1], is equivalent to the event that the PIT lies in a union of

intervals in both tails, {PIT ∈ [0, (1− v)/2]∪ [(1+ v)/2, 1]}. It is straightforward to see that

if the PIT are in fact uniformly distributed (as under the null hypothesis of the backtest)

then the transformed PIT are uniformly distributed as well. The linear symmetric mapping

T (u) = |1−2u| is only a single example of a very large class of uniform distribution preserving

4



(u.d.p.) transformations. A common finding in the empirical literature is that the distribu-

tion of market returns is asymmetric such that the tail of large losses is heavier than the

tail of large gains, a phenomenon that led to the development of asymmetric GARCH-type

models incorporating both leverage effects and skewed innovation distributions, including

AGARCH (Engle, 1990), EGARCH (Nelson, 1991) and GJR-GARCH (Glosten et al., 1993).

We show that asymmetric members of the u.d.p. class can be chosen to highlight model

skewness as well as kurtosis.

In Section 2, we extend the backtesting framework of Gordy and McNeil (2020) to al-

low for unbounded kernels and u.d.p. folding transformations. A key result demonstrates

that folding is not redundant, i.e., pre-processing delivers backtests that cannot otherwise

be obtained. In Section 3 we introduce two novel families of unbounded kernels. Monte

Carlo simulations demonstrate that these kernels deliver backtests that are well-sized and

highly sensitive to unmodelled kurtosis. A parsimonious but flexible family of v-shaped

pre-processors is introduced in Section 4. Monte Carlo simulations show how pre-processing

further highlights unmodelled kurtosis. Pre-processors can be effective as well in the pres-

ence of unmodelled skewness. However, in the absence of material excess kurtosis, a poorly

chosen pre-processor can mask rather than enhance the signature of model misspecificaton.

Section 5 offers guidance on implementation in practical settings.

2 Extended spectral backtesting

2.1 Backtesting set-up

We assume that a forecaster models portfolio losses (Lt) on a filtered probability space

(Ω,F , (Ft)t∈N0 ,P) where Ft represents the information available to the forecaster at time t,

N0 = N ∪ {0} and N denotes the non-zero natural numbers.1 For any time t ∈ N, the loss

Lt is an Ft-measurable random variable with conditional distribution function (df) given by
1Lt is the negative value of P&L, so large losses are associated with the right tail of the distribution.
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Ft(x) = P (Lt ⩽ x | Ft−1). In most applications this distribution is not time-invariant, due

to serial dependencies in (Lt) and changes in the composition of the portfolio over time.

At time t the forecaster builds a model F̂t of Ft based on the information Ft−1. PIT-

values are the random variables (Pt) obtained by setting Pt = F̂t(Lt). If the models F̂t form a

sequence of ideal probabilistic forecasts in the sense of Gneiting et al. (2007), i.e., coinciding

with the conditional laws Ft of Lt for every t, then the result of Rosenblatt (1952) implies

that the process (Pt) is a sequence of iid standard uniform variables. PIT-values contain

information about exceedances of quantile estimates at any level u: if V̂aRu,t = F̂←t (u)

denotes the estimate of the u-quantile of Ft calculated using the generalized inverse of F̂t at

probability level u, then Pt ⩾ u ⇐⇒ Lt ⩾ V̂aRu,t.

We adopt the position of an external model validator, such as a regulator, who uses the

PIT-values (Pt) to take a decision on the quality of the forecasting methodology. For the

purposes of this paper, we assume that the validator has access only to these PIT values

although this restriction could be relaxed considerably. What is essential is that the validator

does not observe the entire distribution F̂t which reflects the reality of most regulatory

regimes. Further, for brevity, we consider only tests of unconditional coverage. Application

of unbounded measures and folding pre-processors would apply without complication to the

tests of conditional coverage described in Gordy and McNeil (2020).

2.2 Spectral backtests

The model validator employs a spectral transformation of the PIT values of the form

Wt =

∫
I

1{T (Pt)⩾u}dν(u) (1)

where (i) ν is a Lebesgue-Stieltjes measure referred to as the kernel measure and (ii) T : I → I

is a uniform distribution preserving (u.d.p.) transformation; if U ∼ U(0, 1) is a standard

uniform random variable and T a u.d.p. transformation, then T (U) ∼ U(0, 1). Throughout
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the paper, I denotes the unit interval [0, 1].

In Gordy and McNeil (2020) the measure ν was restricted to be a probability measure

and the transformation T was simply the identity transformation T (v) = v. This set-up

was appropriate for a focus on the right tail of the forecast distribution. By looking at PIT

exceedances of levels u and using the probability measure ν to select and weight levels of

interest u at the upper end of the unit interval, test statistics were derived that that were

sensitive to forecast model specification at a range of quantiles in the right tail.

With any Lebesgue-Stieltjes measure ν on domain I, there is an associated increasing

right-continuous function Gν , referred to as a distribution function (df), such that ν([0, u]) =

Gν(u). It is easily seen that (1) is equivalent to the closed-form expression

Wt = ν([0, T (Pt)]) = Gν(T (Pt)) (2)

which shows that Wt is increasing in T (Pt). Note that we employ df in a generalized sense,

since Gν is a probability df only if limu→1Gν(u) = 1. To streamline the presentation, we will

henceforth impose the following mild regularity condition on ν.

Assumption 1. Gν has at most a finite set of discontinuities and is otherwise absolutely

continuous.

The univariate transformation extends naturally to the multivariate case in which a set

of distinct kernel measures ν1, . . . , νm is applied to PIT-values to obtain the vector-valued

variables W1 . . . ,Wn where

Wt = (Wt,1, . . . ,Wt,m)
′, Wt,j = νj([0, T (Pt)]) = Gj(T (Pt)), j = 1, . . . ,m. (3)

We refer to any backtest based on W1 . . . ,Wn as a spectral backtest. The null hypothesis

addressed by an unconditional spectral backtest is

H0 : Wt ∼ F 0
W (4)
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where F 0
W denotes the df of Wt when Pt is uniform. In Gordy and McNeil (2020) two types

of tests were considered: spectral Z-tests based on central limit theorem arguments and

spectral likelihood-ratio tests (LR-tests). The results showed a number of advantages of the

former over the latter, including better control of size for similar or superior power, ease of

implementation and speed of execution. In this paper we focus on Z-tests and provide the

necessary extension of the theory to the Lebesgue-Stieltjes case.2

When dimWt = m a spectral Z-test is based on the fact that under the multivariate

CLT
√
n
(
W n − µW

) d−−−→
n→∞

Nm(0,ΣW ) where W n = n−1
∑n

t=1Wt and µW and ΣW are the

mean vector and covariance matrix of the null distribution F 0
W . Hence a test can be based

on assuming for large enough n that

Tn = n
(
W n − µW

)′
Σ−1W

(
W n − µW

)
∼ χ2

m, (5)

where we refer to Tn as an m-spectral Z-test statistic. When m = 1 the chi-squared test is

equivalent to a two-sided test based on

Zn =

√
n(W n − µW )

σW

d−−−→
n→∞

N(0, 1) (6)

where µW = E(Wt) and σ2
W = var(Wt) are the moments in the null model F 0

W for Wt.

By definition, the u.d.p. transformation T (P ) does not alter the moments of P under

the null hypothesis. Thus, as in Gordy and McNeil (2020), the first moment µW of the

transformed PIT-values Wt is easily obtained as

µW =

∫
I

(1− u)dν(u) (7)

The variance σ2
W of Wt and the cross-moments in the covariance matrix ΣW of Wt are

obtained using a simple product rule for spectrally transformed PIT values.
2The theory of spectral LR-tests presented in Gordy and McNeil (2020) carries through in the more

general case without the need for any significant modification.
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Theorem 2.1. The set of spectrally transformed PIT values defined by Wt,j = Gj(T (Pt)) is

closed under multiplication. The product W ∗
t = Wt,1Wt,2 is given by W ∗

t = G∗(T (Pt)) where

ν∗ is a Lebesgue-Stieltjes measure and the associated function G∗ satisfies

G∗(u) =

∫
[0,u]

(
G2(s)−

1

2
ν2({s})

)
dν1(s) +

∫
[0,u]

(
G1(s)−

1

2
ν1({s})

)
dν2(s).

It follows that σ2
W = µW ∗ − µ2

W , where µW ∗ is found by applying (7) under the measure ν∗

obtained when ν1 = ν2 = ν. This yields

µW ∗ =

∫
I

(1− u) (2Gν(u)− ν({u})) dν(u) . (8)

The central limit theorem underpinning the Z-test requires finite second moments. For the

univariate case, the following proposition provides a sufficient condition on the tail behavior

of Gν .

Proposition 2.2. If Gν(u) = O((1− u)−0.5+ϵ) as u→ 1 for some ϵ > 0, then σ2
W is finite.

In the multivariate setting, the asymptotic distribution in (5) holds if the condition in Propo-

sition 2.2 is satisfied for each νj, j = 1, . . . ,m.

2.3 Uniform distribution preserving transformations

We are interested in u.d.p. transformations T that can extend our testing framework to

uncover deficiencies in forecast models that are not revealed by the identity transformation

(general theory for u.d.p. transformations can be found in Porubský et al., 1988, among

others). Since the choice of kernel measure in our framework is quite flexible, one might ask

whether the insertion of any given u.d.p. transformation T in (1) delivers a new Z-test that

could not be obtained by changing the kernel measure.

To this end we introduce the concept of redundancy in the test framework. Let µ and σ

be the moments associated with kernel ν. We say that a u.d.p, transformation T is redundant
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for kernel ν if there exists another kernel ν̃ with moments µ̃ and σ̃ that always delivers the

same magnitude |Zn| for the test-statistic in (6). That is, let {P1, . . . , Pn} be an arbitrary

sample of PIT values, and let W n = (1/n)
∑n

i=1Gν(T (Pi)) and W̃n = (1/n)
∑n

i=1Gν̃(Pi).

Then T is redundant if
|W̃n − µ̃|

σ̃
=

|W n − µ|
σ

almost surely.

As a simple example, consider the u.d.p. transformation T (v) = 1− v.

Lemma 2.3. The u.d.p. transformation T (v) = 1− v is redundant for any bounded measure

ν and not redundant for any unbounded measure ν.

Further examples of non-redundant transformations are obtained by considering u.d.p.

transformations that are folding. By this we mean transformations T for which almost all

values u ∈ I are associated with multiple values in the preimage of {u} under T . To make this

precise we introduce some additional notation and give a definition. For a generic function

f : D → Y and for a set D1 ⊆ D we write f [D1] to mean the image of D1 under f ; similarly,

for a set Y1 ⊆ Y , f−1[Y1] is the preimage of Y1 under f .

Definition 2.4. For a u.d.p. transformation T : I → I let IT ⊆ I be the set defined by

IT = {u| card (T−1[{u}]) ⩾ 2}. T is folding if IT has Lebesgue measure one.

For example, the u.d.p. transformation T (v) = |1− 2v| has IT = I \ {0.5} and is clearly

folding. The folding class includes v-shaped, m-shaped, w-shaped and more general saw-

shaped functions. Our general result for the folding class is

Proposition 2.5. Let ν be a measure for which Gν is strictly increasing on a sub-interval

of I. If T is a folding u.d.p. transformation then it is not redundant for ν.

The intuition is that Gν̃(P ) must be weakly increasing in P , which implies that lower

and upper tail observations contribute in opposite signs (thereby offsetting one another) in

the sample test statistic. By contrast, when we pre-process the PIT values with a folding
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u.d.p. transformation, Gν(T (P )) cannot be monotonic in P . PIT values from non-contiguous

regions of the unit interval will map to the same value of Gν(T (P )). Which PIT observations

contribute in the same sign and which offset each other depends on the shape of the pre-

processor.

3 Two families of Lebesgue-Stieltjes kernels

We consider some possibilities for novel kernels which are not necessarily probability mea-

sures. For notational simplicity we present the theory for the case where T is the identity

transformation.

For the remainder of the paper, the tests we consider are based on dfs Gν with densities

gν satisfying gν(u) > 0 for α1 < u < α2 and gν(u) = 0 for u < α1 and u > α2. In certain

cases we allow for mass at the boundaries, i.e., ν({αi}) ⩾ 0. We refer to the interval [α1, α2]

as the kernel window.

Remark 3.1. For unbounded measures, we have Gν(u) → ∞ as u → α2. In such cases,

only α2 = 1 is admissible. Were we to choose α2 < 1, we would have Pr(α2 < Pt ⩽ 1) =

(1− α2) > 0 under the null hypothesis, so the first moment µW would be infinite.

3.1 Simple kernels of power form

Gordy and McNeil (2020) observe that the beta-type density (u−α1)
a−1(α2−u)b−1 provides

a flexible yet parsimonious and tractable form for the density of Gν . Since that paper

restricted ν to the set of probability measures, it was necessary to restrict a > 0, b > 0 and

to regularize the kernel by the beta function B(a, b). Here we relax the restriction on b and

discard the regularization.

For u in the unit interval, let B(u; a, b) denote the (unregularized) incomplete beta func-

tion

B(u; a, b) =

∫ u

0

xa−1(1− x)b−1 dx. (9)
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We define the beta kernel ν via the df

Gν(u) = B

(
(α1 ∨ u ∧ α2)− α1

α2 − α1

; a, b

)
.

This kernel is purely continuous, i.e., ν({α1}) = ν({α2}) = 0. When b > 0, B(u; a, b) is

bounded from above by B(a, b) so Wt = Gν(Pt) certainly has finite moments. However,

when b ⩽ 0, B(u; a, b) is unbounded as u → 1 and, by Remark 3.1, we have to set α2 = 1.

Moreover, the existence of moments has to be checked with the help of Proposition 2.2 and

the following result.

Proposition 3.2. As u→ 1,

B(u; a, b) =


O((1− u)b) b < 0,

O(− ln(1− u)) b = 0.

In combination with Proposition 2.2, it follows that Wt = Gν(Pt) has finite first and second

moments if and only if b > −1/2. In the case b = 0 we note that

− ln(1− u) = O((1− u)k), u→ 1, (10)

for any k < 0, a fact that is used a number of times in the following sections. The b = 0 case

is particularly important for practical application. For small |b|, standard algorithms for

B(u; a, b) may be numerically unstable for u near 1. However, for b = 0, González-Santander

(2021, Theorem 1) provides a finite series expansion in elementary functions.

We perform Monte Carlo analyses to explore how the size and power of spectral backtests

with beta-type kernels depend on the beta parameters (a, b). We consider four different

choices for the df F of the true model of Lt: the standard normal, and the scaled t10, scaled

t5 and scaled t3. The Student t distributions are scaled to have variance one so differences

stem from different tail shapes rather than different variances. We take the forecaster’s
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model F̂ to be the standard normal, i.e., we transform the sampled Lt to PIT-values as

Pt = Φ(Lt). Therefore, when the samples of Lt are drawn from the standard normal, the

PIT-values are uniformly distributed and are used to evaluate the size of the tests. The PIT

samples arising from the Student t distributions show the kind of departures from uniformity

that are observed when the forecaster’s model is too thin-tailed.

We fix a kernel window of [α1, 1] for α1 = 0.975. Our sample size is fixed to n = 500

corresponding to two-year samples of trading day returns. Our tables report the percentage of

rejections of the null hypothesis at the 5% confidence level based on 216 = 65,536 replications.

All reported p-values are based on two-sided tests.

Parameters (1,1) (2,1) (1,1/4) (1,1/8) (1,0) (2,0) (5,0)

Normal 4.7% 4.6% 4.6% 4.5% 4.4% 4.3% 4.9%
Scaled t10 13.7% 19.4% 24.1% 28.6% 34.2% 40.8% 45.1%
Scaled t5 21.2% 34.0% 45.7% 55.0% 64.6% 72.2% 76.4%
Scaled t3 13.1% 28.7% 46.5% 61.3% 75.0% 82.2% 86.5%

Table 1: Size and power of tests based on beta monokernels.
Kernel window is [0.975, 1]. 2^16 trials with 500 observations per trial.

Results for univariate beta kernels are reported in Table 1. For all sets of beta parameters,

tests are well-sized. For each alternative true model F , we find that power increases as b

declines and a increases. The magnitude of the effect is extremely large. For example,

against the scaled t3 alternative, the rejection rate increases from 13.1% for the uniform

(beta(1, 1)) kernel to 75.0% for the beta(1, 0) to 86.5% for the beta(5, 0). This pattern is

confirmed across a finer grid of beta parameters for the case of the Student t5 in Figure 1.

To understand this pattern, observe that for any two PIT values α1 < p1 < p2 < 1, the

ratio of the beta kernels gν(p2)/gν(p1) decreases in b and increases in a. The higher this

ratio, the greater the weight in the test on PIT in the neighborhood of p2 relative to PIT

in the neighborhood of p1. As shown in Figure 2, within the kernel window of [0.975,1], the

distributions of PIT under the scaled Student t alternatives differ most from the distribution

under the null (green solid line) as we move deeper into the tail. Thus, we generally expect
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Figure 1: Power of tests based on beta monokernels against scaled t5 alternative.
Kernel window is [0.975, 1]. 2^16 trials with 500 observations per trial.

tests that weight more heavily on the right-hand tail to deliver higher power.

Results for bivariate beta kernels are reported in Table 2. Gordy and McNeil (2020)

demonstrated that bikernel tests are generally more powerful than monokernel tests when

the component kernels of the bivariate test emphasize opposite ends of the kernel support.

Put another way, the lower the correlation between Wt,1 and Wt,2, the greater the additional

information gain in introducing the second kernel. Gordy and McNeil (2020) illustrate the

point by way of a bikernel, given mnenomic ZPP, with component parameter pairs (25,1)

and (1,25), which they showed outperformed bivariate kernels of lesser curvature. Consistent

with their results, we find that ZPP offers higher power than the bivariate kernel with two

linear densities (parameter pairs (2,1) and (1,2)) against all three Student t alternatives.

However, by allowing for unbounded beta kernels (i.e., b = 0), we can obtain even better

performance without resorting to extreme values of parameter a. For example, the bivariate

kernel with component parameters (2,0) and (1,3) outperforms ZPP on all three Student t

alternatives.
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Figure 2: Distribution functions for reported PIT-values.
Dfs for the reported PIT-values when the forecaster assumes standard normal losses (F̂ = Φ) but the true
loss model F is standard normal, scaled t10, scaled t5, or scaled t3.

Parameters: (2,1) (25,1) (2,0) (5/2,0) (9/2,0)
(1,2) (1,25) (1,3) (1/2,3) (1/2,6)

Normal 4.8% 5.5% 5.4% 5.4% 5.5%
Scaled t10 22.5% 38.0% 41.2% 41.3% 42.5%
Scaled t5 47.3% 69.7% 74.3% 74.5% 75.3%
Scaled t3 64.1% 84.7% 88.2% 88.5% 89.0%

Table 2: Size and power of tests based on beta bikernels.
Kernel window is [0.975, 1]. 2^16 trials with 500 observations per trial. Gordy and McNeil (2020) assign
mnemonic ZPP to the parameter pair (25,1), (1,25).
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3.2 Kernels derived from truncated location-scale families

In this section we look at bispectral tests that arise as score tests in truncated location-scale

families (TLSFs). A test of this kind based on the normal distribution was proposed in a

PhD thesis by Lok (2017) and can be viewed as a Z-test analog of the test of Berkowitz

(2001), which is a likelihood-ratio test of the uniformity of PIT values in an interval against

a family of non-uniform alternatives. We show below that a wide class of TLSFs yield viable

bispectral tests.

Let R(µ, σ) denote a family of continuous probability distributions with location param-

eter µ and scale parameter σ (which need not be equal to the mean and standard deviation)

and let R denote the df of the R(0, 1) distribution and ρ its density. Examples include the

cases where R is standard normal (Lok, 2017), standard logistic or Gumbel distribution.

If we assume that R−1(Pt) ∼ R(µ, σ) and write θ = (µ, σ)′, the df and density of Pt are

respectively3

FP (p | θ) = R

(
R−1(p)− µ

σ

)
, fP (p | θ) =

ρ
(

R−1(p)−µ
σ

)
ρ(R−1(p))σ

, p ∈ [0, 1], (11)

and the uniform distribution corresponds to θ = θ0 = (0, 1)′.

The truncated location-scale family corresponding to the window [α1, α2] ⊆ [0, 1] is the

mixed probability distribution of the truncated random variable P ∗t = α1 ∨ Pt ∧ α2. This

is described by the density fP (p | θ) on [α1, α2), an atom of size FP (α1,θ) at α1 if α1 > 0,

and an atom of size F P (α2,θ) at α2 if α2 < 1; if α2 = 1 then P ∗t = α1 ∨ Pt and the density

fP (p | θ) applies to the closed interval [α1, 1].

If LP ∗(θ | Pt) denotes the likelihood contribution of the PIT observation Pt in this
3The assumption R−1(Pt) ∼ R(µ, σ) imposes no restriction on the underlying distribution Ft for the loss

Xt or for the modeler’s belief F̂t. An auxiliary variable X̃t = R−1(Pt) can be conceived as a quasi-loss in
the sense that Xt and X̃t will be comonotonic but otherwise unconnected in their marginal distributions.
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truncated model, then the score vector is given by

St(θ) =

(
∂

∂µ
lnLP ∗(θ | Pt),

∂

∂σ
lnLP ∗(θ | Pt)

)′
. (12)

Let Sn(θ0) = 1
n

∑n
t=1 St(θ0) be the mean of the observed score vectors under the null.

Standard likelihood theory implies that
√
nSn(θ0)

d−−−→
n→∞

N2

(
0,Υ(θ0)

)
under the null, where

Υ(θ) denotes the covariance matrix of St(θ), i.e., the Fisher information matrix. For large

n the score test statistic satisfies

nSn(θ0)
′Υ(θ0)

−1Sn(θ0) ∼ χ2
2 . (13)

Computation of the score vector and the information matrix is detailed in Appendix D.

We now give conditions under which the score test (13) can be viewed as a bispectral

Z-test with kernel measures ν1 and ν2 given by sums of discrete and continuous parts. The

following assumption will be imposed in our key result.

Assumption 2. The df R underlying the TLSF score test is absolutely continuous with

log-concave density ρ and support R.

Theorem 3.3. Let 0 < α1 < α2 ⩽ 1 and assume that Assumption 2 holds. Let λρ denote

the function λρ(x) = −ρ′(x)/ρ(x). Then the equation

x

(
ρ(x)

R(x)
+ λρ(x)

)
− 1 = 0, (14)

has a unique root x > 0 and, provided that α1 ⩾ α ≡ R(x), the score vector St(θ0) satisfies

St(θ0) =Wt − µW where Wt,i = Gi(Pt),

Gi(u) = γi,11{u⩾α1} + γi,21{u⩾α2, α2<1} +

∫ u

0

gi(x)dx, (15)
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the densities gi are given by the derivatives

g1(u) =
d

du

(
λρ(R

−1(u))
)
1{α1⩽u⩽α2}, g2(u) =

d

du

(
R−1(u)λρ(R

−1(u))
)
1{α1⩽u⩽α2}, (16)

the constants γi,j are given by the non-negative values

γ1,1 =
ρ (R−1(α1))

α1

+ λρ
(
R−1(α1)

)
, γ2,1 = R−1(α1)γ1,1 − 1

γ1,2 =
ρ (R−1(α2))

1− α2

− λρ
(
R−1(α2)

)
, γ2,2 = R−1(α2)γ1,2 + 1

and µW = α−11 ρ(R−1(α1)) (1, R−1(α1))
′.

Remark 3.4. If the density ρ is not log-concave, we would typically have upper as well as

lower bounds on the window over which the score test gives a well-defined bispectral test.

For elaboration and illustration, see Appendix B.

We now consider the two cases α2 < 0 and α2 = 1 separately. The former case is

straightforward since the Wt,i variables are bounded, guaranteeing that the elements of Υ(θ0)

are finite. In this case it would be possible to normalize the measures νi to be probability

measures by dividing by Gi(α2) although there is no practical advantage in doing so.

If α2 = 1, it follows from Theorem 3.3 and formula 15 that for u ∈ [α1, 1] the dfs Gi

have the forms

G1(u) = ρ(R−1(α1))/α1 + λρ(R
−1(u))

G2(u) = R−1(α1)ρ(R
−1(α1))/α1 +R−1(u)λρ(R

−1(u)).

(17)

Since λρ is an increasing function and R−1(u) → ∞ as u → 1, we can infer that G1(u) ⩽

G2(u) and that G2(u) → ∞ as u → 1. In this case G2 is unbounded and we cannot

normalize the measure ν2 to be a probability measure. We need to verify that the condition

of Proposition 2.2 is satisfied for G2 to be sure that the elements of Υ(θ0) are finite.
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Remark 3.5. While G2 is always unbounded, G1 can be bounded if limx→∞ λρ(x) is finite.

For example, this occurs when ρ is the logistic density or the Gumbel density. These cases

are analysed in Examples 3.8 and Examples 3.9 below; in both cases limx→∞ λρ(x) = 1.

Remark 3.6. If a TLSF distribution R is skewed, then there exists a complementary TLSF

distribution of opposite skew with df Rc(x) = 1−R(−x). If ρ is log-concave, then so is ρc. To

simplify implementation, we can exploit the relationships ρc(x) = ρ(−x), λc(x) = −λρ(−x),

and R−1c (p) = −R−1(1− p).

The main limitation on the application of bispectral tests based on TLSF score test

is the requirement that α1 ⩾ α where α = R(x) and x > 0 solves (14). The fact that

α1 > R(0) shows that a portion of the interval [0, 1] must be eliminated from consideration.

We illustrate the TLSF score test and the constraint on α1 with several examples of log-

concave densities. Expressions for Υ(θ0) and other computational details are found in the

Online Supplement (Appendix 3).

Example 3.7 (Test based on normal distribution). When R(µ, σ) = N(µ, σ2) and R = Φ,

Pt is said to follow a probitnormal distribution on the unit interval. This distribution also

appears as the nesting model in the well-known LR-test of Berkowitz (2001). The normal

distribution has a log-concave density with λρ(x) = x and (14) has unique root x ≈ 0.84.

The conditions for a bispectral test are satisfied if α1 ⩾ α = Φ(x) ≈ 0.80, which is unlikely

to bind in application to the range of tail probability levels of practical interest. From (17)

we have that, when α2 = 1,

G1(u) ∼ Φ−1(u) and G2(u) ∼ Φ−1(u)2, as u→ 1.

Because G2(u) ∼ −2 ln (1− u) as u → 1 (Abramowitz and Stegun, eds, 1965, eq. 26.2.22),

it follows from (10) and Proposition 2.2 that second moments are finite.

Example 3.8 (Test based on logistic distribution). The standard logistic distribution has

R(x) given by the logistic function S(x) = 1/(1 + exp(−x)). The density is log-concave
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with λρ(x) = S(x) − S(−x) and (14) has unique root x ≈ 1.28. A bispectral test may

be constructed for α1 ⩾ α ≈ 0.78. Interestingly, the first kernel density function satisfies

g1(u) = 2, implying constant weighting in the kernel window, while, for α2 = 1, (17) implies

that G2(u) ∼ − ln (1− u) as u→ 1 and we argue as in the normal case that second moments

are finite.

Example 3.9 (Two tests based on Gumbel distribution). Unlike the normal and logistic dis-

tributions, the Gumbel distribution is skewed, so weights left and right tails asymmetrically.

Both the standard Gumbel (positive skew) and complementary Gumbel (negative skew) have

log-concave density. For the standard Gumbel we have λρ(x) = 1 − exp(−x) and (14) has

unique root x = 1. A bispectral test may be constructed for α1 ⩾ α = R(1) = e−1/e ≈ 0.69.

The first kernel density function is the decreasing function g1(u) = u−11{α1⩽u⩽α2} while it

may be easily deduced from (17) that the df of the second kernel satisfiesG2(u) ∼ − ln(− lnu)

as u → 1 when α2 = 1. Since − lnu ∼ 1 − u as u → 1 we once again have that

G2(u) ∼ − ln (1− u) as u→ 1, guaranteeing finiteness of second moments.

For the complementary Gumbel a bispectral test can be constructed for α1 ⩾ αc ≈ 0.87.

The first kernel density function is the increasing function g1(u) = (1−u)−11{α1⩽u⩽α2} while

it may be deduced from (17) that G2(u) ∼ ln
(

1
1−u

)
ln
(
ln
(

1
1−u

))
.

Example 3.10 (Family of tests based on the logistic-beta distribution). The test based on

the logistic distribution of Example 3.8 is a special case in a larger family of tests based on

the logistic-beta distribution for which the df is a composition of the beta df I(z; a, b) and

the logistic function, i.e.,

R(x) = I(S(x); a, b)

where a > 0 and b > 0. The standard logistic is the case where a = b = 1.

The density is log-concave. Cumulants are known in closed-form, from which is it easily

verified that the skew of the distribution has the same sign as a − b. By the reflection

symmetry property of the beta df, the complementary distribution of the logistic-beta (a, b)
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Figure 3: Tail behavior of the G2 kernel.
The Gumbel and logistic lines are visually indistinguishable. The asymptote lines are y = −1 + x and
y = −6 + 2x.

is itself a logistic-beta distribution with parameters (b, a). By varying parameters (a, b)

one obtains a rich family of distributions which vary materially in their shapes and higher

moments. Nonetheless, all members of the family share the same tail behavior for the second

kernel:

Proposition 3.11. For all parameters a > 0, b > 0 of the logistic-beta family, G2(u) ∼

− ln (1− u) as u→ 1.

Figure 3 summarizes the tail behaviors of the examples described above. We do not

include the logistic-beta because it is virtually indistinguishable from the logistic and Gumbel

cases.

We assess size and power of TLSF tests following the methodology of Section 3.1. We in-

clude two logistic-beta distributions, one left-skewed and one right-skewed, in addition to the

logistic. As a benchmark, we also include the Berkowitz (2001) LR-test. Results are reported

in Table 3. Comparing the first column to the last, we see that the probitnormal TLSF test is
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notably more powerful than its LR analog, the Berkowitz test. The complimentary Gumbel

is the most powerful of the TLSF tests. It is comparable in size and power to the bivariate

beta kernel tests with parameters ((2, 0), (1, 3)) as reported in Table 2. The most striking

feature of the table is that the Gumbel, logistic, and both logistic-beta TLSF tests deliver

virtually identical size and power against all three alternatives. This is a consequence of the

identical tail behavior of their respective G2(p) kernels as p → 1. The probitnormal, which

outperforms the Gumbel and logistic somewhat, has a steeper asymptote in Figure 3, while

the complimentary Gumbel is steepest of all and convex.

Compli Logistic-Beta
F Probitnormal Gumbel Gumbel Logistic (3/2,1/2) (1/3,2/3) Berkowitz

Normal 5.1% 5.5% 5.1% 5.1% 5.0% 5.1% 5.1%
Scaled t10 38.9% 41.1% 36.8% 36.8% 36.8% 36.8% 28.9%
Scaled t5 72.9% 74.5% 71.1% 71.2% 71.2% 71.1% 65.5%
Scaled t3 88.0% 88.8% 87.0% 87.0% 87.0% 87.0% 86.5%

Table 3: Size and power of tests based on TLSF bikernels.
Kernel window is [0.975, 1]. 2^16 trials with 500 observations per trial. “Berkowitz” denotes the Berkowitz
(2001) LR-test.

4 A family of v-shaped u.d.p. transformations

While the spectral tests we have developed will work with any u.d.p. transformation, we will

confine our practical examples to transformations T (v) that are v-transforms. V-transforms

constitute a flexible parametric class of u.d.p. transformations that are well-suited to mod-

eling volatile financial time series. Such transforms map values near a central fulcrum point

to near zero and values near the boundaries to near one, so are useful in situations where we

wish to emphasize PIT values in either tail. The symmetric linear v-transform T (v) = |1−2v|

is the simplest case and an obvious choice when we have no reason to suspect asymmetry in

the true model.

Following McNeil (2021), we define

22



Definition 4.1. A v-transform is a mapping T : I → I with the following properties:

1. T (0) = T (1) = 1 and there exists a fulcrum point 0 < δ < 1 such that T (δ) = 0;

2. T is continuous on I, strictly decreasing on [0, δ] and strictly increasing on [δ, 1];

3. For every point u ∈ I there is a point l(u) ∈ [0, δ] satisfying T (l(u)) = u and T (l(u) +

u) = u.

It is straightforward to verify that such a transformation preserves uniformity: if u ∈ I and

Pt ∼ U(0, 1) then P(T (Pt) ⩽ u) = P(l(u) ⩽ Pt ⩽ l(u) + u) = u so that T (Pt) ∼ U(0, 1).

V-transforms may be characterized as mappings T : I → I taking the form

T (v) =


(1− v)− (1− δ)Ψ

(
v
δ

)
v ⩽ δ,

v − δΨ−1
(
1−v
1−δ

)
v > δ,

(18)

where 0 < δ < 1 and Ψ is a continuous and strictly increasing distribution function on

I (McNeil, 2021, Theorem 1). Figure 4 shows a number of examples of linear and nonlinear

v-transforms constructed using (18) and the function Ψ(v) = vκ, which we refer to as a

generator of a v-transform. The symmetric linear v-transform corresponds to δ = 1/2 and

κ = 1. For small ϵ (ϵ < min{δ, 1 − δ}) in the linear case, it is straightforward to show that

T (ϵ) − T (1 − ϵ) is increasing in δ. When κ > 1, the right arm of the v-transform is convex

and the left arm concave. For small ϵ, we can show that T (ϵ) − T (1 − ϵ) is increasing in

κ. That is, moving the fulcrum to the right or increasing convexity in Ψ(v) increases the

emphasis on PIT observations in the left tail relative to those in the right tail.

We will sometimes refer to v-transforms satisfying Definition 4.1 as proper v-transforms

and describe the identity transformation T (v) = v and the u.d.p. transformation T (v) = 1−v

as degenerate v-transforms; the latter are degenerate because they satisfy limδ→0 T (v; δ) = v

for v ∈ (0, 1] and limδ→1 T (v; δ) = 1− v for v ∈ [0, 1), for any family of proper v-transforms

T (·; δ) indexed by δ. It is straightforward to see that all proper v-transforms are folding in

the sense of Definition 2.4 since, in all cases, IT = I \ {δ}.
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Figure 4: Examples of v-transforms with generator Ψ(v) = vκ.
Linear v-transforms are shown in the left panel, for which we fix κ = 1 and vary the fulcrum δ. Nonlinear
v-transforms are shown in the right panel, for which we fix δ = 1/2 and vary the exponent κ.

Fix a kernel ν1 on the unit interval, and let νη be the same kernel scaled to the window

of width η at the upper end of the unit interval, i.e., the window [1 − η, 1]. Similar to the

scaling of the beta kernel in Section 3.1, we can write

Gη(u) = G1

(
(1− η ∨ u)− (1− η)

η

)
.

If the PIT data {Pt} are pre-processed by the v-transform T (v) = |1−2v|, then transformed

values {Wt} satisfy Wt > 0 if and only if Pt ∈ [0, η/2] ∪ [1 − η/2, 1]. In particular, PIT

observations in [1− η, 1− η/2] no longer receive weight. Thus, a possibly unintended conse-

quence of the pre-transformation is that it concentrates weight on more extreme portions of

the tails. To remedy this situation, we can double the kernel width, i.e., we replace Gη(u)

by G2η(u) so that Wt > 0 if and only if Pt ∈ [0, η] ∪ [1− η, 1].

We illustrate with a simple exercise. We fix the kernel to the beta bikernel with parame-

ters pairs (1, 0) and (1, 2). As in Section 3, we consider four different choices for the df F of
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the true model of Lt: the standard normal, and the scaled t10, scaled t5 and scaled t3, and

we assume that the forecaster’s model is F̂ = Φ. In Table 4, the column labeled “identity”

reports rejection rates in the absence of pre-processing (equivalently, by application of the

degenerate v-transform T (v) = v) whereas the final column reports rejection rates when

pre-processing by the proper v-transform T (v) = |1 − 2v|. The narrow window has kernel

width η = 0.025 whereas the wide window has kernel width 2η = 0.05.

F identity |1-2u|

Kernel window: Narrow

Normal 5.3% 5.5%
Scaled t10 40.8% 60.9%
Scaled t5 74.1% 92.1%
Scaled t3 88.1% 97.9%

Kernel window: Wide

Normal 5.0% 5.1%
Scaled t10 38.6% 58.8%
Scaled t5 75.4% 92.2%
Scaled t3 93.9% 98.7%

Table 4: Size and power of v-transformed tests under excess kurtosis.
Beta bikernel with parameters ((1,0),(1,2)). 2^16 trials with 500 observations per trial.

Comparing the upper left quadrant to the lower left and the upper right quadrant to

the lower right, we see that power can increase or decrease when the kernel width is dou-

bled. As discussed in Section 3.1, tests are most powerful when the kernel window coincides

with the range over which the true distribution differs most strongly from the forecaster’s

model. Doubling the kernel width can strengthen or dilute that coincidence. Comparing the

upper left quadrant to the lower right, we see that the combination of pre-processing with

adjustment of the kernel window substantially increases the power of the backtest. Because

in the comparison both sets of tests weight identically on the upper 0.025 percent of the

distribution of PIT values (under the null), the improved performance is coming from the

addition of the lower 0.025 of the distribution of PIT values in the tests of the lower right

quadrant.
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When the true model exhibits skewness as well as excess kurtosis, in some situations

one can obtain a more powerful backtest by pre-processing with an asymmetric v-transform.

However, when the model is close to mesokurtic, the pre-processor must be well-chosen.

To illustrate, consider the family of Fernández and Steel (1998) (hereafter “FS”) skew-t

distributions. We use a standardized version of this family with density

fFS(x; γ, ζ) =
2γ

σ(1 + γ2)


ft

(
γ(x−µ)

σ
; ζ
)

x ⩽ µ

ft

(
x−µ
γσ

; ζ
)

x > µ

(19)

where ft(·; ζ) denotes the density of the standard t-distribution with ζ > 2 degrees of freedom,

γ is a skewness parameter, and location µ = µ(ζ, γ) and scale σ = σ(ζ, γ) are chosen so that

the FS distribution has mean 0 and variance 1; see the Online Supplement (Appendix 1) on

this standardization. In the case of ζ = ∞, we have the FS-Normal(γ) distribution. In the

case of γ = 1, we have the scaled tζ distribution as used earlier in Table 4 and in Section 3.

Figure 5 illustrates the PIT signature for unmodelled skewness. In the case of the FS-

Normal distribution (left panel), for γ = 3/2 (blue line) the PIT density features a local

maximum in (0, 0.5) and a local minimum in (0.5, 1). A symmetric pattern arises when we

invert γ (γ = 2/3, red line). Numerically, we can show that skewness of the PIT distribution

takes the same sign as γ − 1 (so right skew for γ = 3/2, left skew for γ = 2/3) and increases

in magnitude with |γ−1|. Kurtosis of the PIT distribution is invariant to γ (kurtosis of 9/5,

equal to that of the uniform distribution).

When we increase kurtosis in the true model (ζ = 5, right panel), the departure from

uniformity in the PIT density is magnified but the visual pattern is qualitatively similar.

Numerically, we find that skewness is decreasing in magnitude as ζ → ∞ and as γ → 1.

Kurtosis is decreasing in ζ and increasing in |γ − 1|.

The exercise of Table 5 is similar to that of Table 4, except that we vary the skewness of

the true model rather than its kurtosis. The rejection rates in the top row, labeled “Normal”
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Figure 5: Density for PIT under model misspecification.
The true model is FS-t with ζ degrees of freedom and skewness parameter γ. The dotted line is the
uniform density.

(equivalent to FS-Normal(1)), capture the size of the test. Parameter γ increases as we move

down the rows of the table, which increases right skew. Comparing the first two columns

shows that pre-processing with T (v) = |1 − 2v| decreases power, regardless of whether we

double the width of the kernel window. Under the FS-Normal(γ) model, left-tail PIT values

are underrepresented and right-tail PIT values overrepresented. Folding the PIT distribution

averages over these effects, thereby obscuring the departure from uniformity.

The remaining columns of Table 5 vary parameters (δ, κ) of the pre-processor. For the

right-skewed true models, we observe that an asymmetric pre-processor can materially in-

crease the power of the backtest relative to a symmetric pre-processor but all pre-processors

reduce power relative to the case of no pre-processor for the reasons just discussed. Rejection

rates are higher for δ = 1/3 than for δ = 2/3 and higher for κ = 1/2 than for κ = 2. The

intuition is most straightforward for the linear case: as we reduce δ, the pre-processor T (v; δ)

converges towards the identity pre-processor (equivalent to δ = 0).

Finally, in Table 6, we report rejection rates for a true model with considerable excess

kurtosis as well as skewness. The results inherit some features from each of the previous
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F identity |1-2u| (1/3, 1) (2/3, 1) (1/2, 1/2) (1/2, 2)

Kernel window: Narrow

Normal 5.3% 5.5% 5.4% 5.4% 5.3% 5.2%
FS-Normal(51/50) 7.0% 5.6% 5.9% 5.1% 6.9% 4.2%
FS-Normal(26/25) 8.8% 5.7% 6.5% 4.8% 8.7% 3.4%
FS-Normal(6/5) 31.9% 10.2% 15.3% 6.4% 30.5% 3.7%
FS-Normal(4/3) 52.2% 17.9% 27.1% 11.5% 50.3% 11.9%

Kernel window: Wide

Normal 5.0% 5.1% 5.1% 5.2% 4.9% 5.1%
FS-Normal(51/50) 6.4% 5.3% 5.6% 4.9% 6.4% 4.3%
FS-Normal(26/25) 8.2% 5.4% 6.0% 4.8% 7.8% 3.6%
FS-Normal(6/5) 30.9% 9.0% 13.7% 5.8% 28.7% 5.4%
FS-Normal(4/3) 51.1% 16.4% 25.1% 11.2% 48.5% 16.3%

Table 5: Size and power of v-transformed tests under skewness with minimal excess kurtosis.
Column headers of form (δ, κ) refer to the v-transform with fulcrum δ and generator Ψ(u) = uκ. The
identity pre-processor is equivalent to (δ = 0, κ = 1) and |1− 2u| equivalent to (δ = 1/2, κ = 1). All tests
utilize the beta bikernel with parameters ((1,0), (1,2)). 2^16 trials with 500 observations per trial.

two tables. As in Table 4, the symmetric linear pre-processor materially increases the power

of the backtest when γ is close to 1. As skewness increases, the considerations at work in

Table 5 begin to dominate. As in Table 5, we can further increase the power in some cases

by nudging the fulcrum of the pre-processor to the left. For larger values of γ, a nonlinear

pre-processor (κ = 1/2) is even more effective.

In Section 3.1 and in Gordy and McNeil (2020), we highlight the intuition that a kernel

is most powerful against a given alternative when it places greater mass on regions of the

unit interval over which the forecaster’s PIT distribution departs most from uniformity. The

intuition extends to the choice of pre-processor. In Figure 6, we plot the df of the linear

T (P ; δ) for P ∼ FS-t(5, 26/25) and various values of δ. Consistent with the findings in

Table 6, we see that the df of the PITs crosses the uniform df within the wide kernel window

of [0.95, 1]. The dfs of the pre-processed PIT values are pointwise more distant from the

uniform df except at the left edge of the window. Departure from uniformity is slightly

decreasing across the three values of δ, which accords with the slight differences in power of
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F identity |1-2u| (1/3, 1) (2/3, 1) (1/2, 1/2) (1/2, 2)

Kernel window: Narrow

Normal 5.3% 5.5% 5.4% 5.4% 5.3% 5.2%
Scaled t5 74.1% 92.1% 91.7% 91.7% 81.8% 81.8%
FS-t(5,51/50) 77.2% 92.2% 92.0% 91.7% 83.7% 80.0%
FS-t(5,26/25) 79.7% 92.2% 92.2% 91.6% 85.3% 78.1%
FS-t(5,6/5) 92.1% 93.1% 94.1% 91.4% 93.5% 63.9%
FS-t(5,4/3) 96.1% 94.3% 95.5% 92.4% 96.5% 58.0%

Kernel window: Wide

Normal 5.0% 5.1% 5.1% 5.2% 4.9% 5.1%
Scaled t5 75.4% 92.2% 91.8% 91.9% 81.4% 81.3%
FS-t(5,51/50) 78.2% 92.3% 92.0% 91.8% 83.2% 79.7%
FS-t(5,26/25) 80.6% 92.3% 92.3% 91.7% 84.9% 77.8%
FS-t(5,6/5) 92.1% 93.4% 94.3% 91.9% 93.5% 64.7%
FS-t(5,4/3) 96.1% 94.9% 95.9% 93.4% 96.5% 61.6%

Table 6: Size and power of v-transformed tests under skewness and excess kurtosis.
Column headers of form (δ, κ) refer to the v-transform with fulcrum δ and generator Ψ(u) = uκ. The
identity pre-processor is equivalent to (δ = 0, κ = 1) and |1− 2u| equivalent to (δ = 1/2, κ = 1). The Scaled
t5 alternative is equivalent to FS-t(5, 1). All tests utilize the beta bikernel with parameters ((1,0), (1,2)).
2^16 trials with 500 observations per trial.

the corresponding tests.4

4The line for δ = 1/2, not shown in the plot, lies between those of δ = 1/3 and δ = 2/3, and is difficult to
distinguishable from the former.
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Figure 6: Tails of distribution functions for v-transformed PIT-values.
Dfs for v-transformed PIT-values when the forecaster assumes standard normal losses (F̂ = Φ) but the true
loss model F is FS-t(5,26/25) and the validator applies a linear pre-processor.
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5 Conclusion

We conclude with some practical guidance on the choice of kernel and pre-processor. As in

Gordy and McNeil (2020), we emphasize that such choices express implicitly the preferences

of the validator (i.e., the locus of departure from PIT uniformity that the validator would

deem most worrisome), so it is not our place to be prescriptive. To the extent that the

validator may be uncertain or agnostic over her preferences, other considerations could come

into play. In particular, if the validator has some prior familiarity with the forecaster’s

methodology, the validator might wish to craft the test to highlight suspected flaws. Power

and size are natural considerations as well, and the validator might also prefer that the test

statistic have good numerical properties, e.g., simple to program, quick to calculate, and

robust to small changes in parameters and data values.

The unbounded beta and TLSF families are similar in the power that can be achieved

against alternatives featuring excess kurtosis, and substantially more powerful than tests

based on bounded kernels. Our evidence indicates that all cases of these families yield well-

sized tests. Where they differ is in their computational and aesthetic properties. Tests based

on the beta kernel are easy to program and fast but depend in general on the availability of

routines for the hypergeometric functions. Under special cases, in particular when parame-

ters take integer and half-integer values, the hypergeometric functions can be sidestepped,

resulting in simple expressions. With regard to the unbounded beta kernel, the case of

b = 0 is easily programmed and numerically stable, but for non-zero values of b near zero,

numerical instability can arise.

The TLSF kernels arise naturally as score tests, so can be seen as moment-based analogues

to well-known LR tests such as that of Berkowitz (2001). Relative to the beta family, tests

based on the TLSF families are more intricate to program and somewhat slower to execute,

though still much faster than their LR-test analogs and generally more powerful on samples

of typical length. These tests appear to be numerically stable. The TLSF family of tests are

valid on the upper tail of the PIT distribution but not over the entire unit interval. In some
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applications, the restriction on the choice of kernel window could be a limitation.

When the validator suspects unmodeled kurtosis in the forecast model, as might arise

when a model adapts inadequately to changes in market volatility, pre-processing the PIT

data with a folding transformation is highly effective in highlighting an excess of tail ob-

servations. The simple symmetric linear v-transform T (v) = |1 − 2v| performs well. When

the validator additionally suspects unmodeled skewness, an asymmetric v-transform may

offer somewhat greater power than the symmetric linear v-transform but at some cost to

robustness. All of the pre-processors considered in our analysis can be implemented in a few

lines of trivial code. Furthermore, because the test statistic is a sample mean of a simple

composition of the pre-processor and the kernel df, the algorithm can be implemented in

modular fashion. That is, starting with a sample of PIT values {Pi}, we first apply the

pre-processor as P̃i = T (Pi), and then feed the sample {P̃i} through the spectral backtest.

There is no alteration to the code for the spectral backtest.

A Proofs

A.1 Proof of Theorem 2.1

For notation simplicity assume T is the identity transformation. Since G1 and G2 are increas-

ing, right-continuous functions, it follows that the function G∗(u) = G1(u)G2(u) must also be

increasing and right-continuous and thus it can be used to define a Lebesgue-Stieltjes mea-

sure ν∗ by setting ν∗({0}) = G∗(0) = 0 and ν∗((a, b]) = G∗(b)−G∗(a) for any 0 ⩽ a < b ⩽ 1.

It follows that W ∗
t = G∗(Pt) = ν∗([0, Pt]).

The formula for G∗ is obtained by applying the integration-by-parts formula for the

Lebesgue-Stieltjes integral (Hewitt, 1960, Theorem A); see also Refuz and Yor (2004, Ch. 0).
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A.2 Proof of Proposition 2.2

Since Gν(u) = O((1 − u)−1/2+ϵ) as u → 1 for some small ϵ, there exists a value u0 and a

positive constant C such that Gν(u) ⩽ C(1− u)−1/2+ϵ for u ⩾ u0. Let ū be the larger of u0

and the last point at which Gν is not differentiable (there are only finitely so many points

by Assumption 1). We can decompose (8) as

E(W 2
t ) =

∫
[0,ū]

(1−u) (2Gν(u)− ν({u})) dν(u)+
∫
(ū,1]

(1−u) (2Gν(u)− ν({u})) dν(u) (A.1)

The integrand in the first term is bounded above by 2Gν(ū) and so the integral is finite. We

only need to prove the finiteness of the second term which can be written as

∫ 1

ū

(1− u)2Gν(u)gν(u)du =

∫ 1

ū

(1− u)
d

du

(
Gν(u)

2
)
du =

[
Gν(u)

2(1− u)
]1
ū
+

∫ 1

ū

Gν(u)
2du

using integration by parts.

Since 0 ⩽ Gν(u)
2(1− u) ⩽ C2(1− u)2ϵ for u ⩾ ū and (1− u)2ϵ → 0 as u → 1, it follows

that [Gν(u)
2(1− u)]

1
ū = −Gν(ū)

2(1− ū). Moreover, the second term is finite because

∫ 1

ū

Gν(u)
2du ⩽ C2

∫ 1

ū

(1− u)−1+2ϵdu =
C2

2ϵ
(1− ū)2ϵ .

A.3 Proof of Lemma 2.3

Assume that ν is a bounded measure with moments µ and σ. Without loss of generality ν

may be taken to be a probability measure with df Gν satisfying Gν(1) = 1. In that case let

ν̃ to be the probability measure defined by the df Gν̃(u) = 1−Gν(1− u). Observe that if U

has df Gν then 1− U has df Gν̃ and hence moment formulas for linear functions of random

variables give µ̃ = 1− µ and σ̃ = σ. We obtain the identity

|W̃n − µ̃|
σ̃

=
|(1−W n)− (1− µ)|

σ
=

|W n − µ|
σ

,
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showing redundancy of T .

Now assume the measure ν is unbounded with finite moments µ and σ and consider PIT

samples consisting of the single point {v}. If the transform T (v) = 1 − v is redundant we

must have
|Gν̃(v)− µ̃|

σ̃
=

|Gν(1− v)− µ|
σ

for all v ∈ [0, 1], a measure ν̃ and finite values µ̃ and σ̃. But the rhs tends to infinity as

v → 0 while the lhs tends to the finite limit µ̃/σ̃ which yields a contradiction.

A.4 Proof of Proposition 2.5

Suppose that the folding u.d.p. transformation T is redundant. For any value u ∈ IT , let v
¯u

and v̄u be the smallest and largest elements of T−1[{u}]. Consideration of the PIT samples

{v
¯u} and {v̄u} implies that the following identities must hold.

|Gν̃(v¯u)− µ̃|
σ̃

=
|Gν(u)− µ|

σ
=

|Gν̃(v̄u)− µ̃|
σ̃

(A.2)

Monotonicity of Gν̃ implies that Gν̃(v¯u) ⩽ Gν̃(v̄u). Now consider two cases.

Case (a): For some u with Gν(u) ̸= µ, Gν̃(v
¯u) < Gν̃(v̄u). Equation (A.2) can hold only

if µ̃−Gν̃(v¯u) = Gν̃(v̄u)− µ̃, implying µ̃ = (Gν̃(v¯u)+Gν̃(v̄u))/2. Now consider the PIT sample

of length two, {v
¯u, v̄u}. We can easily verify that W̃2 = µ̃ while W 2 = Gν(u) ̸= µ. Thus,

the Zn statistic must be zero for ν̃ but non-zero in magnitude for the u.d.p.-transformed ν,

which contradicts the supposition that T is redundant for ν.

Case (b): For all u with Gν(u) ̸= µ, Gν̃(v
¯u) = Gν̃(v̄u). Observe first that (A.2) implies

that Gν̃(v¯u) = Gν̃(v̄u) = µ̃ whenever Gν(u) = µ, so in case (b) we must have that Gν̃(v¯u) =

Gν̃(v̄u) for all u ∈ IT . Because Gν̃(v) is nondecreasing for all v, this implies that each value

of u ∈ IT maps to a interval [v
¯u, v̄u] ⊆ I over which Gν̃(v) is constant. These intervals do not
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overlap, so there can be only countably many. However, because Gν(u) is strictly increasing

over some interval within I, we need uncountably many values in Gν̃ [I] to satisfy (A.2) at

each u ∈ IT , thus leading to a contradiction.

A.5 Proof of Proposition 3.2

We maintain the assumption that a > 0. Wolfram Research (2023, 06.19.06.0049.01) provides

these expansions as u→ 1:

B(u, a, b) ∝


− ln(1− u)− ψ(a)− γ b = 0,

(−1)b−1Γ(a) ln(1−u)
(−b)!Γ(a+b)

− (1−u)b
b

−b ∈ N,

B(a, b)− (1−u)b
b

otherwise.

(A.3)

where ψ is the digamma function and γ is the Euler-Mascheroni constant. In the middle

case, note that (1 − u)b dominates ln(1 − u) as u → 1 and further that in the edge case of

−(a + b) ∈ N, Γ(a + b) is infinite so the first term simply drops out. In the final case, note

that B(a, b) is finite even when b < 0. The proposition follows directly.

A.6 Proof of Theorem 3.3

The likelihood function is given by

LP ∗(θ | P ) =
∏

t :Pt<α1

FP (α1 | θ)
∏

t :α1⩽Pt<α2

fP (Pt | θ)
∏

t :Pt⩾α2

F̄P (α2 | θ) (A.4)

where F̄P (u) denotes the tail probability 1−FP (u). The likelihood contributions LP ∗(θ | Pt)

are given by the individual terms in (A.4) according to whether Pt < α1, α1 ⩽ Pt < α2

or Pt ⩾ α2. With the help of the calculations in Appendix D, and using the functions

C1(x) = ρ(x)/R(x) and C̄1(x) = −ρ(x)/R̄(x) defined there, we can compute the score vector
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and evaluate it at θ0 = (0, 1)′ to obtain

St(θ0) =


ψ1(R

−1(α1)) Pt < α1,

ψ∗(R
−1(Pt)) α1 ⩽ Pt < α2,

ψ2(R
−1(α2)) Pt ⩾ α2.

(A.5)

where

ψ1(x) =

 −C1(x)

−xC1(x)

 , ψ∗(x) =

 λρ(x)

xλρ(x)− 1

 and ψ2(x) =

 −C̄1(x)

−xC̄1(x)

 .

The third case in (A.5), described by the function ψ2, only comes into play when α2 < 1.

If ρ is log-concave this is equivalent to saying that λρ(x) = −ρ′(x)/ρ(x) is an increasing

function. We first prove that the equation (14) has a unique root x and that x > 0. Let

Λ(x) = x(C1(x)+λρ(x)) and note that Λ is a continuous function satisfying limx→0 Λ(x) = 0

and limx→∞ Λ(x) = ∞. Hence there exists at least one x satisfying Λ(x) = 1 and x > 0.

The derivative Λ′(x) can be split into two parts yielding

Λ′(x) =
d

dx
(xC1(x)) +

d

dx
(xλρ(x))

= C1(x)− xλρ(x)C1(x)− xC1(x)
2 +

d

dx
(xλρ(x))

= C1(x) (1− Λ(x)) +
d

dx
(xλρ(x)) .

At any x satisfying Λ(x) = 1 the first term must be zero and the second term must be strictly

positive, since it is the derivative of a strictly increasing function. Since the gradient of Λ

is positive at any root of the equation (14) we conclude that the latter has a unique root x

and that x > 0.

We now turn to the representation of the score test as a bispectral test. Since λρ is an

increasing function it follows that both components of ψ∗(x) are also increasing functions
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and thus non-negative weighting functions gi can be obtained by differentiating ψ∗(R−1(u))

with respect to u on [α1, α2].

The discontinuities at α1 and α2 are given by

(γ1,1, γ2,1)
′ = ψ∗(R

−1(α1))−ψ1(R
−1(α1)), (γ1,2, γ2,2)

′ = ψ2(R
−1(α2))−ψ∗(R−1(α2))

where the γi,2 constants need only be considered when α2 < 1. Non-negativity of the γi,j

requires that the inequalities

λρ(x) + C1(x) ⩾ 0 (A.6)

x (λρ(x) + C1(x))− 1 ⩾ 0 (A.7)

hold for x = R−1(α1) and the inequalities

−
(
λρ(x) + C̄1(x)

)
⩾ 0 (A.8)

−x
(
λρ(x) + C̄1(x)

)
+ 1 ⩾ 0 (A.9)

hold for x = R−1(α2) if α2 < 1.

Since ρ′(x)/ρ(x) is a decreasing function we can infer that

ρ′(x)

ρ(x)
R(x) =

ρ′(x)

ρ(x)

∫ x

−∞
ρ(t)dt ⩽

∫ x

−∞

ρ′(t)

ρ(t)
ρ(t)dt = ρ(x),

implying that (A.6) holds for all x ∈ R, and

ρ′(x)

ρ(x)
R̄(x) =

ρ′(x)

ρ(x)

∫ ∞
x

ρ(t)dt ⩾
∫ ∞
x

ρ′(t)

ρ(t)
ρ(t)dt = −ρ(x),

implying that (A.8) holds for all x ∈ R. Since we have assumed that R−1(α1) ⩾ R−1(α) = x,

it follows that Λ(R−1(α1)) ⩾ 1 and hence that (A.7) holds for x = R−1(α1). Moreover,

since (A.8) holds at x = R−1(α2) and R−1(α2) > R−1(α1) ⩾ R−1(α) > 0, then (A.9) clearly
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also holds for x = R−1(α2).

Finally, to determine µW =Wt−St(θ0), we note that, if Pt < α1, then (15) implies that

Wt,i = 0 for i = 1, 2 while (A.5) implies that St(θ0) = ψ1(R
−1(α1)). It follows that we must

have µW = −ψ1(R
−1(α1)).

A.7 Proof of Proposition 3.11

Recall that asymptotic behavior ofG2(p) as p→ 1 depends on that ofR−1(p)λρ(R−1(p)). The

df is a composition of the beta df I(z; a, b) and the logistic function, i.e., R(x) = I(S(x); a, b).

The inverse df is therefore R−1(p) = logit(I−1(p; a, b)) where logit(u) = ln(u/(1 − u)). The

well-known symmetry for the beta distribution implies a symmetry of the same form for the

inverse df:

1− I−1(p; a, b) = I−1(1− p; b, a)

Consequently, we can write

R−1(p) = ln
(
I−1(p; a, b)

)
− ln

(
I−1(1− p; b, a)

)
. (A.10)

From λρ(x) = bS(x)− aS(−x), it follows immediately that limp→1 λρ(R
−1(p)) = b. Combin-

ing with (A.10), we can infer R−1(p)λρ(R−1(p)) ∼ −b ln (I−1(1− p; b, a)) as p→ 1.

From (C.3), we have

lim
u→0

aB(a, b)u−aI(u; a, b) = 1

from which we may infer that

ln
(
I−1(1− p; b, a)

)
∼ 1

b
(ln(1− p) + ln(bB(a, b))) as p→ 1.

The constant additive term is negligible asymptotically so

R−1(p)λρ(R
−1(p)) ∼ − ln(1− p), p→ 1,
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regardless of (a, b).

B TLSF tests when the density is non-log-concave

The issues that arise for a non-log-concave density can be illustrated by considering the

Student t distribution with ν degree of freedom and working through the steps of the proof

in Section A.6. In this case λρ(x) = (ν+1)x/(ν+x2) is only an increasing function between

two turning points at x = ±
√
ν and so there are immediate constraints on the interval in

which the densities (16) are positive; in particular, we cannot construct a bispectral test with

α2 = 1. Moreover, we have to check all of the conditions (A.6) to (A.9) individually to find

an interval [α1, α2] on which the test may be applied. For example, when ν = 4, we need

to set α1 ⩾ α ≈ 0.773 and α2 ⩽ α ≈ 0.887 to obtain a proper bispectral test. The width

of the interval increases for larger degrees of freedom but the extra constraints relative to

log-concave densities render the t distribution less suitable for constructing bispectral tests.

C Moments for the beta kernel

We seek solutions to the moments and cross-moments of the transformed PIT values when

the kernel densities take the form

gν(u) = (α2 − α1)
1−a−b(u− α1)

a−1(α2 − u)b−11{α1⩽u⩽α2}

for parameters (a > 0, b > −1/2) and 0 ⩽ α1 < α2 ⩽ 1.

Coding is facilitated by computing moments in terms of the moments of standardized

beta kernels with α1 = 0, α2 = 1. Let ν̃ denote a beta(a, b) kernel with kernel density

gν(u) = ua−1(1− u)b−1 on [0, 1] and let W = Gν(U) and W̃ = Gν̃(U) for U ∼ Uniform(0, 1).
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The uncentered moments of W can be obtained as:

E(W k) =


(α2 − α1)E(W̃ k) + (1− α2)Gν̃(1)

k if α2 < 1

(1− α1)E(W̃ k) if α2 = 1.

(C.1)

Proposition 3.2 guarantees that limy→1(1 − y)Gν̃(y)
k = 0 for k = 1, 2, so the expression in

the α2 = 1 case is simply the limit of the expression in the α2 < 1 case.

The first moment of W̃ is

E(W̃ ) =

∫ 1

0

(1− u)gν̃(u) du = B(a, 1 + b) (C.2)

Since b > −1/2, this expression presents no difficulties for our application.

By Wolfram Research (2023, 06.19.26.0005.01, 06.19.26.0006.01), the kernel function

Gν̃(u) = B(u; a, b) can be expressed in terms of the Gauss hypergeometric function, 2F1,

in two equivalent forms:

B(u; a, b) =
ua

a
2F1(a, 1− b; a+ 1;u) (C.3)

=
ua(1− u)b

a
2F1(1, a+ b; a+ 1;u). (C.4)

Say we have two beta variables with (possibly) different parameters (ai, bi) for i = 1, 2.

Let G̃i denote the transform function for kernel i. To get cross-moments and second moments,

we need the integral

M(a1, b1, a2, b2) =

∫ 1

0

(1− u)g̃1(u)G̃2(u)du (C.5)

=
B(a1 + a2, 1 + b1)

a2
3F2(a2, a1 + a2, 1− b2; 1 + a2, 1 + a1 + a2 + b1; 1) (C.6)

=
B(a1 + a2, 1 + b1 + b2)

a2
3F2(1, a1 + a2, a2 + b2; 1 + a2, 1 + a1 + a2 + b1 + b2; 1) (C.7)

The two forms come from application of Gradshteyn and Ryzhik (2007, 7.512.5) to (C.3)
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and (C.4), respectively. When calculated from its series expansion, equation (C.6) will be

numerically stable whenever b2 ⩽ 0 whereas (C.7) will be numerically stable whenever b2 > 0.

In our Online Supplement (Appendix 2), we list numerous special cases for which 3F2(1)

has known closed-form solution.

D The score function and information matrix

We impose Assumption 2 in this section and recall that the likelihood function is given by

LP ∗(θ | P ) =
∏

t :Pt<α1

FP (α1 | θ)
∏

t :α1⩽Pt<α2

fP (Pt | θ)
∏

t :Pt⩾α2

F̄P (α2 | θ) (D.1)

where F̄P (u) denotes the tail probability 1− FP (u).

We begin with the case of lower truncation, i.e., Pt < α1. For notational convenience,

define C0(x) = lnR(x). First and second derivatives follow as

C1(x) =
ρ(x)

R(x)
, C2(x) = −λρ(x)C1(x)− C1(x)

2.

Let ζθ(p) = (R−1(p) − µ)/σ. The first derivatives of the log-likelihood of the TLSF distri-

bution are

∂

∂µ
lnLP ∗(θ | Pt < α1) = −C1(ζθ(α1))/σ (D.2)

∂

∂σ
lnLP ∗(θ | Pt < α1) = −ζθ(α1)C1(ζθ(α1))/σ (D.3)
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and for the second derivatives we have

∂2

∂µ2
lnLP ∗(θ | Pt < α1) = (1/σ2)C2(ζθ(α1)) (D.4)

∂2

∂µ∂σ
lnLP ∗(θ | Pt < α1) = (1/σ2) (C1(ζθ(α1)) + ζθ(α1)C2(ζθ(α1))) (D.5)

∂2

∂σ2
lnLP ∗(θ | Pt < α1) = (1/σ2)

(
2ζθ(α1)C1(ζθ(α1)) + ζθ(α1)

2C2(ζθ(α1))
)
. (D.6)

The case of upper truncation is similar. Define C̄0(x) = ln R̄(x). First and second

derivatives follow as

C̄1(x) = − ρ(x)

R̄(x)
, C̄2(x) = −λρ(x)C̄1(x)− C̄1(x)

2.

The first and second derivatives of the log-likelihood of the TLSF distribution for this case

take the same form as in (D.2)–(D.6) except with C1 and C2 replaced by C̄1 and C̄2 and

with α1 replaced by α2.

For the intermediate continuous case of Pt = p ∈ [α1, α2), we have

∂

∂µ
lnLP ∗(θ | Pt = p) = (1/σ)λρ(ζθ(p)) (D.7)

∂

∂σ
lnLP ∗(θ | Pt = p) = (1/σ) (ζθ(p)λρ(ζθ(p))− 1) (D.8)

and for the second derivatives we have

∂2

∂µ2
lnLP ∗(θ | Pt = p) = (−1/σ2)λ′ρ(ζθ(p)) (D.9)

∂2

∂µ∂σ
lnLP ∗(θ | Pt = p) = (−1/σ2)

(
λρ(ζθ(p)) + ζθ(p)λ

′
ρ(ζθ(p))

)
(D.10)

∂2

∂σ2
lnLP ∗(θ | Pt = p) = (−1/σ2)

(
2ζθ(p)λρ(ζθ(p)) + ζθ(p)

2λ′ρ(ζθ(p))− 1
)
. (D.11)
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Recall that the expected Fisher information matrix is defined as

Υ(θ)ij = −E
(

∂2

∂θi∂θj
lnLP ∗(θ | Pt)

)
,

implying that we need to integrate across the three cases. For the lower and upper truncation

cases, we simply weight the respective expressions by α1 and 1−α2 and evaluate at θ = θ0.

For the intermediate case, we require integrals of the following forms:

Aρ,k(α) =

∫ α

0

R−1(p)kλρ
(
R−1(p)

)
dp =

∫ R−1(α)

−∞
xkλρ(x)ρ(x)dx, k = 0, 1 (D.12)

Bρ,k(α) =

∫ α

0

R−1(p)kλ′ρ
(
R−1(p)

)
dp =

∫ R−1(α)

−∞
xkλ′ρ(x)ρ(x)dx k = 0, 1, 2. (D.13)

Integrals of form Aρ,k have general solution for any density ρ:

Aρ,0(α) = −ρ
(
R−1(α)

)
(D.14)

Aρ,1(α) = α−R−1(α)ρ
(
R−1(α)

)
(D.15)

Integrals of form Bρ,k(α) depend on the chosen family of TLSF. When working with com-

plementary pairs of skewed distributions, we can show that

Ac
ρ,k(α) = (−1)k+1 (Aρ,k(1)−Aρ,k(1− α)) (D.16)

Bc
ρ,k(α) = (−1)k (Bρ,k(1)− Bρ,k(1− α)) . (D.17)
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We can now express the elements of the information matrix as:

Υ(θ0)1,1 = Bρ,0(α2)− Bρ,0(α1)− α1C2

(
R−1(α1)

)
− (1− α2)C̄2

(
R−1(α2)

)
, (D.18)

Υ(θ0)1,2 = Aρ,0(α2)−Aρ,0(α1) + Bρ,1(α2)− Bρ,1(α1)

− α1

(
C1

(
R−1(α1)

)
+R−1(α1)C2

(
R−1(α1)

))
− (1− α2)

(
C̄1

(
R−1(α2)

)
+R−1(α2)C̄2

(
R−1(α2)

))
, (D.19)

Υ(θ0)2,2 = 2(Aρ,1(α2)−Aρ,1(α1)) + Bρ,2(α2)− Bρ,2(α1)− (α2 − α1)

− α1

(
2R−1(α1)C1

(
R−1(α1)

)
+R−1(α1)

2C2

(
R−1(α1)

))
− (1− α2)

(
2R−1(α2)C̄1

(
R−1(α2)

)
+R−1(α2)

2C̄2

(
R−1(α2)

))
. (D.20)
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