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1 Introduction

Motivated by limitations in the cognitive ability of people to understand and process information,

macroeconomists have increasingly incorporated behavioral elements into their models as an al-

ternative to rational expectations. A novel approach in this regard is the finite horizon planning

(FHP) framework developed in Woodford (2018), in which agents are boundedly rational, as their

ability to evaluate the full set of state-contingent paths along which the economy might evolve is

limited to a finite horizon. To highlight the appeal of this approach, Woodford (2018) embeds

FHP into a New Keynesian (NK) model and shows that monetary policy does not suffer from a

“forward guidance” puzzle in which a credible promise to keep the policy rate unchanged in the

distant future produces counterfactually large effects on current inflation and output.1

Our previous research, Gust et al. (2022), provides new evidence that a NK model with FHP

offers a compelling framework for understanding aggregate output, inflation, and interest-rate dy-

namics. Our estimates show that the model is able to generate substantial inflation persistence

and realistic costs to an anticipated disinflation announced by a central bank. In addition, the

model fits the macroeconomic time series substantially better than other behavioral models and

mirrors the “hybrid” NK model featuring rational expectations, habit persistence in consumption,

and exogenous price indexation.2

While the FHP model has demonstrated success in explaining macroeconomic time series, its

empirical properties regarding expectations formation are almost fully unexplored. In particular,

it remains an open question how well it accounts for some key stylized facts revealed by empir-

ical studies using surveys of inflation expectations. This literature finds that inflation forecast

errors are systematically predictable in a way that is difficult to rationalize with macroeconomic

models that feature full information and rational expectations (FIRE). This research emphasizes

that survey data on expectations help to discriminate across alternative models of expectation

formation. Several influential papers point to a set of stylized facts that may be difficult to rec-

oncile with some simple versions of the behavioral models including those emphasizing diagnostic

expectations or cognitive discounting.3 Important contributions to this literature include Coibion

and Gorodnichenko (2015) (hereafter CG (2015)), Angeletos et al. (2020) (hereafter AHS (2020)),

and Kohlhas and Walther (2021) hereafter KW (2021).4 CG (2015) study the correlation between

consensus forecast errors and forecast revisions of inflation and find evidence consistent with an

underreaction of forecasts to revisions. The evidence in KW (2021) also supports the finding of

1For other applications of the finite horizon planning framework to policy analysis, see, for example, Woodford
and Xie (2022) and Dupraz et al. (2023).

2The specific behavioral models that we compare to the FHP model are the models of Angeletos and Lian (2018)
and Gabaix (2020). Herbst (2023) provides evidence on the out-of-sample forecasting performance of the FHP model.

3See, for example, Kohlhas and Walther (2021), who point to some evidence that they suggest is challenging to
explain with simple formulations of diagnostic expectations. Similarly, Angeletos et al. (2020) present evidence that
seems at odd with simple formulations of cognitive discounting.

4We focus on the evidence from these papers because they are directly relevant to the macroeconomic models
that we investigate. Another important branch of this literature, including Bordalo et al. (2018), Fuhrer (2018), and
Broer and Kohlhas (2018), examines the predictability of forecasts errors of individual forecasters instead of average
or consensus forecasts.
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an underreaction of forecasts to revisions, but KW (2021) also provide evidence of an overreaction

of average forecasts to recent data. AHS (2020) study the impulse responses of inflation forecasts

from the survey of professional forecasters (SPF) and find that the average forecast underreacts to

shocks initially but overreacts later on.

To understand the model’s implications for inflation expectations and forecast predictability,

we begin by examining the price-setting behavior of FHP firms in a partial equilibrium setting,

which allows us to analytically characterize the dynamics of aggregate inflation and firms’ inflation

forecasts. We provide formal conditions under which inflation forecasts under FHP are consistent

with findings of AHS (2020), CG (2015), and KW (2021). In particular, we show that this evidence

from the predictability literature requires two key features. First, firms’ forecasts are based on a

finite planning horizon. Second, FHP firms update their beliefs about events outside their planning

horizons based on past data. We show that these two features imply that inflation expectations

respond sluggishly at first but later on overreacts to shocks, consistent with the evidence in CG

(2015), AHS (2020), and KW (2021).5

We formalize these results in three propositions and show that there is a wide range of parameter

values for which inflation expectations under FHP are qualitatively consistent with the aforemen-

tioned patterns of inflation forecast errors. These propositions also highlight an attractive property

of the FHP model — its parsimony. The model adds only two new parameters to an otherwise

standard NK model of firm price setting. These two parameters are easily understandable. The

first parameter is the length of agents’ planning horizon or how far into the future they evaluate

the full set of state-contingent paths along which the economy might evolve. The second parameter

governs how responsive firms’ longer-run beliefs (i.e., those outside their planning horizons) are

to past observations of inflation. These two parameters, and the persistence of aggregate shocks,

are enough to formalize the predictions of the model for generating: (i) positive serial correlation

of forecast errors, (ii) the sluggishness in expectations following an aggregate shock with forecasts

underreacting in the short run but overreacting later on.

In the second part of the paper, we build on this analysis and study FHP in the context

of dynamic, general equilibrium model developed by Woodford (2018) and estimated by Gust

et al. (2022). We show that the modelling of expectations formation using FHP is a fruitful and

empirically-relevant approach, as the model is capable of generating inflation forecast errors in line

with the patterns observed in the empirical literature while remaining parsimonious and easy to

solve and use for macroeconomic analysis. Moreover, the general equilibrium version of the FHP

model introduces richer dynamics into inflation and inflation expectations. For instance, inflation

and inflation expectations are influenced by an array of aggregate shocks as well as by other aspects

of the economy such as the central bank’s reaction function. These features, as well as the degree

of price stickiness and the intertemporal elements of aggregate demand, influence the model’s

5While Woodford (2018) incorporates learning about events outside agents planning so that the FHP model
has desirable theoretical properties regarding the response of output and inflation to long-lasting economic shocks,
our results suggest that this learning is also important from an empirical perspective in order to account for the
predictability observed in the data regarding inflation forecast errors.
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implications for the predictability regressions of CG (2015) and KW (2021) and predictability

impulse responses of AHS (2020), which, in turn, highlights the importance of examining this

evidence using a dynamic, general equilibrium model. Thus, an important lesson drawn from the

general equilibrium analysis is that other structural parameters, auxiliary to expectations formation,

influence the predictability of inflation forecast errors. For this reason, it is difficult to take a limited

information approach that uses only the empirical estimates from the predictability regressions and

impulse responses of inflation forecast errors to shocks to identify the two key parameters governing

expectations formation in the FHP model.

Instead, we leverage the approach in our previous research, Gust et al. (2022), and estimate

the model with a Bayesian, full-information likelihood-based approach using U.S. data on output

growth, inflation, and nominal interest rates from 1966:Q1 through 2007:Q4, a time period for

which there were notable changes in trends in both inflation and output growth.6 Armed with these

estimates, we investigate the FHP model’s implications for the behavior of inflation expectations.

Specifically, we formalize the statistics of CG (2015), KW (2021), and AHS (2020) as posterior

predictive checks of our estimated DSGE model. These predictive checks are a coherent way

to assess the model’s performance along these dimensions using parameterizations that can also

rationalize the behavior of key macroeconomic aggregates. We use these predictive checks in two

ways. First, the predictive checks help refine the estimate of a key parameter, the length of the

planning horizon. While macroeconomic data points strongly towards short planning horizons, it is

less helpful at distinguishing between planning horizons of one quarter or one year. Second, we use

the suite of predictive checks to evaluate the FHP model more generally. Because the information

coming from these empirical moments is not directly used to estimate the model, these predictive

checks can be viewed as external model validation.

With regard to estimating the length of agents’ planning horizons, a key insight of our analysis

is that combining information on inflation forecast predictability at two different forecast horizons is

useful in identifying the length of a firm’s planning horizon. In particular, we use the predictability

regression of CG (2015)—which emphasizes the relationship between inflation forecast errors and

forecast revisions— at forecast horizons of one quarter and one year to help identify agents’ planning

horizons. We show that a planning horizon on the order of one year fits this evidence and the

macroeconomic data quite well. In contrast, a short planning horizon on the order of a quarter,

while yielding a slightly better fit of the macroeconomic data, implies near-term forecast errors that

are overly predictable. This result reflects that, as the planning horizon increases in the FHP model,

forecasts become increasingly rational and thus forecasts errors become increasingly unpredictable.

Accordingly, too short of a planning horizon can lead to overly predictable forecast errors, while a

more moderate planning horizon yields a degree of predictability in line with the evidence.

6A perceptive reader will notice that our estimation period excludes the last fifteen years of data. Including
these years will require a treatment of the zero lower bound as well as the volatility in aggregate data induced by
the pandemic. While an interesting and important extension, we concentrate on the shorter sample period to reduce
the complexity that the treatment of these years would introduce in the model and in the adjustment of agents’
expectations.
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The FHP model with a one-year planning horizon also performs effectively with regard to other

nontargeted moments in our predictive checks: one year ahead predictability of inflation forecast

errors documented in KW (2021) and the impulse responses of inflation and expected inflation

presented in AHS (2020). Notably, the FHP model with a planning horizon of a year generates

the reversal of the sign of inflation forecast errors following an aggregate shock—that is, inflation

forecasts underreact initially and then overreact later on.

As a point of contrast to the FHP model, we also investigate a canonical NK model featur-

ing sticky information (SI), another form of imperfect expectations popular for characterizing the

behavior of aggregate expectations. Like the FHP model, the SI model can generate predictable

forecast errors in line with the evidence in CG (2015). However, the SI model cannot achieve the

sign reversal highlighted in the impulse responses of AHS (2020). Overall, our results support the

view that modelling expectations formation using finite horizon planning merits further attention

as part of an agenda incorporating behavioral features into macroeconomic models.

Our paper is related to earlier work, including Del Negro and Eusepi (2011), that uses survey

data on inflation expectations in the context of the estimation of DSGE models. While we also

estimate a DSGE model, our emphasis is on evaluating the model’s ability to account for the

predictability regressions of CG (2015) and KW (2021) and the predictability impulse responses of

AHS (2020). We pointedly exclude inflation expectations data from our model estimation, ensuring

that the parameterizations used in our exercise are generated solely to fit non-expectational data,

though are results are materially unchanged when we include expectations data. Our paper is also

related to papers such as Milani (2007), Slobodyan and Wouters (2012), and Ormeno and Molnar

(2015) that estimate behavioral models with learning as well as Eusepi and Preston (2018), and

Carvalho et al. (2023), which emphasize learning about long-run trends. A key difference between

all of these papers and the finite-horizon approach used here is that expectation formation in these

papers is backward looking while expectation formation under FHP has both a backward-looking

and forward-looking component. We find that both components are important for explaining the

predictability results of CG (2015), KW (2021), and AHS (2020).

The rest of the paper proceeds as follows. The next section presents the properties of aggregate

inflation when firms’ set prices with finite horizon plans and the analytical results regarding the

predictability of inflation forecasts under FHP. Section 3 describes the general equilibrium version

of the model that we estimate. Section 4 discusses the estimation results of that model, including

its fit of the predictability regressions of CG (2015) and KW (2021) and the predictability impulse

responses of AHS (2020). It also compares the FHP’s empirical performance with alternative models

including a NK model emphasizing sticky information. Section 5 concludes.

2 Finite Horizon Planning and Inflation Forecast Predictability

A key finding in the empirical literature using survey data is that inflation forecast errors are

systematically predictable. CG (2015) emphasize this predictability by running regressions and
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showing that average inflation forecast errors in the SPF are correlated with forecast revisions. AHS

(2020) show that the impulse response of the average inflation forecast in the SPF underreacts to

aggregate shocks in the short run before overreacting later on. Building on CG (2015), KW (2021)

find evidence of both an underreaction of the average forecast to new information but a simultaneous

overreaction to recent data. In this section, we follow Woodford (2018) and assume firms, setting

prices according to Calvo (1983) contracts, have finite planning horizons. We study the inflation

forecasts of these firms and derive conditions under which they are consistent with the empirical

results of CG (2015), AHS (2020), and KW (2021).

Finite horizon planning. Before discussing the economy’s price-setting firms, we first define

the expectations operator of an agent who is a finite-horizon planner. As discussed in Woodford

(2018), such an agent making decisions at date t can only look forward and formulate plans that

take into account the model’s relationships and all possible realizations of shocks occurring between

periods t and t+ k, where k denotes the length of an agent’s planning horizon. Let Ekt denote the

subjective expectations of a finite-horizon planner. Then, for any endogenous variable in periods

t+ k − j, Zt+k−j , with j = 0, 1, 2, ..., k (i.e., j indexes the number of periods remaining within the

planning horizon), the following relationship holds:

EktZt+k−j = EtZ
j
t+k−j , (1)

where Et denotes the model-consistent expectations operator conditional on time t information

and the variable Zjt+k−j reflects the subjective expectations of a finite-horizon planner. Because an

agent has a limited understanding of events outside of its planning horizons, its expectations are

not fully model consistent. However, within its planning horizon a firm makes fully state-contigent

plans using all of the model’s relatonships and thus expression (1) provides a mapping between an

agent’s subjective expectations operator and the model-consistent expectations operator.

Price setting. The price-setting firms are monopolistic competitors whose prices are staggered

á la Calvo (1983). When resetting their price, each firm is assumed to have a finite planning period

of length k. As shown in Woodford (2018), under these assumptions, firms’ price-setting behavior

implies a log-linearized relationship for inflation given by:

πjτ = βEτπ
j−1
τ+1 + κyτ , (2)

where τ = t+ k − j denotes the planning period and 1 < j ≤ k. The variable πjτ denotes the (log-

linearized) inflation rate implied by firms’ plans in period τ . The parameter β is the discount rate,

and the parameter κ is a function of the Calvo price-setting parameter, θp, and parameters that

affect the link between firms’ real marginal costs and aggregate output. The variable yτ represents

the (log-linearized) output gap, which is assumed to follow an AR(1) process:

yt = ρyt−1 + et (3)
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with ρ ≥ 0. For now, we assume that the output gap evolves exogenously. This simplification

allows us to derive analytical results, providing a better understanding of the implications that

FHP has for the predictability impulse responses of AHS (2020) and the predictability regressions

of CG (2015) and KW (2021). Later, we modify this assumption, and allow the output gap to be

endogenously determined in the context of the general equilibrium model that we estimate.

Equation (2) reflects the behavior of firms who have the opportunity to change their prices

at date t and it holds in each period of those firms’ planning horizons except the last period.

Iterating forward on the expressions implied by equation (2) results in an expression that determines

aggregate inflation:

πkt = κEt

k−1∑
i=0

βiyt+i + βkEtπ
0
t+k (4)

where πkt = πt denotes aggregate inflation (in log deviation from steady state). According to

equation (4), aggregate inflation depends on the expected path of the output gap and on the

expected inflation rate at the end of firms’ planning horizons (Etπ
0
t+k). The NK Phillips curve

under RE arises as a special case: as k → ∞, the planning horizon extends over a firm’s infinite

lifetime and inflation depends on the entire future path of the output gap.

Firms with the opportunity to reset their price at date t make a fully state-contingent plan

through t+k. They use their knowledge of the model’s structural equations to do so. However, these

firms use continuation value functions to assign value to events outside of their planning horizons

(i.e., the longer-run from their viewpoint). These value functions affect the expected inflation rate

at the end of firms’ planning horizons (π0
t+k). Formally, the (log-linearized) equilibrium condition

associated with firms’ pricing plans at the end of their horizon is:

π0
t+k = κyt+k + β(1− θp)vpt, (5)

where vpt is the (log-linearized) continuation value to the plans of firms with the opportunity to

reset their prices at date t and 1−θp is the fraction of firms that have the opportunity to re-optimize

their price at date t.

Learning. While firms are sophisticated in thinking about events within their planning horizon,

they are less so when thinking about events further in the future. In this regard, we consider two

different situations. In the no learning case, firms’ beliefs about longer-run events (i.e., outside

their planning horizon) are fixed at their steady state values so that vpt = 0 ∀t. Alternatively,

we allow firms to learn and update their beliefs based on past experience. In this case, the value

function vpt evolves according to:

vpt+1 = (1− γp)vpt + γpv
e
pt, (6)

where vept is a firm’s new estimate of its value function. The parameter γp determines how much

weight they place on that new estimate and satisfies 0 < γp < 1. The new estimate of the

value function is determined by firms who can re-optimize their prices at time t, as vept is chosen
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optimally taking its current value function as given. Optimization by a price-setting firm, as shown

in Woodford (2018) implies that in equilibrium vept satisfies:

vept = (1− θp)−1πkt . (7)

According to equation (7), vept depends on aggregate inflation scaled by the fraction of firms who can

re-optimize their prices at date t.7 Combining equations (6) and (7), it follows that firms’ beliefs

about events outside their planning horizon (i.e., vpt) depend on past realizations of inflation.

With vept chosen optimally by firms, the adaptive learning scheme introduces only one extra

parameter, γp, relative to the version of the model with no learning. As discussed in Woodford

(2018), the model with learning is particularly advantageous relative to the no-learning model

in response to long-lasting changes in policy or other fundamental economic changes. Without

learning, for instance, a firm will continue to use an outdated value function if, for example, there

is a permanent change in a central bank’s inflation target. In contrast, with learning, a firm’s value

function will change and eventually fully reflect the change in a central bank’s inflation target.

While the model with learning is more appealing from a theoretical perspective in response to

long-lasting economic changes, in this paper we emphasize how firms’ learning about their value

functions affects the dynamics of inflation and inflation expectations in the model. In particular,

firms’ learning based on past experience introduces stickiness in inflation and inflation expectations.

Inflation Dynamics. The equilibrium dynamics of inflation can be characterized analytically.

Equations (4), (5), and (6) imply that aggregate inflation is the sum of a component that reflects

a firm’s future beliefs about the output gap over its finite horizon and a component that reflects

firm’s beliefs about longer-run events outside of its planning horizon:

πkt = A(k)κyt + βk+1(1− θp)vpt, (8)

where the parameter A(k) = 1−(βρ)k+1

1−βρ .8 Both the parameters affecting the response of inflation

to changes in the output gap and changes in their longer-run beliefs depend on k, the length of a

firm’s planning horizon.

The dynamics of inflation under RE correspond to the case in which k → ∞. In that case, a

firm’s longer-run beliefs, vpt, become irrelevant and A(∞) = 1
1−βρ so that inflation evolves according

to

πREt =
κ

1− βρ
yt.

Inflation dynamics under FHP expectations involves two deviations from the dynamics of inflation

under RE. First, since 0 < 1 − (βρ)k+1 ≤ 1, inflation in the FHP model is less responsive to

fluctuations in the output gap. This muted responsiveness of inflation is a function of ρ and the

7More specifically, to a first order approximation, Woodford (2018) shows vept = p∗kt , where p∗kt denotes the
optimal contract price chosen by firms with an opportunity to reset their price at date t. Equation (7) then reflects
the equilibrium relationship between aggregate inflation and the contract price: πkt = (1− θp)p∗kt .

8The term on the output gap reflects that firms know the process for yt so that Ekt yt+i = Etyt+i = ρiyt.
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length of the planning horizon. A shorter planning horizon or a more persistent shock imply a more

muted response of inflation to movements in the output gap relative to the RE solution. The second

deviation from inflation dynamics under RE is that a firm’s longer-run beliefs about inflation, as

discussed above, depend on past inflation and thus inflation under FHP expectations displays an

excess sensitivity to past inflation.

Forecasting. To understand the implications of FHP expectations for forecast predictability,

we characterize a firm’s one-step ahead forecast for inflation and the associated forecast error. A

firm with a planning horizon of length k > 0 has a one-step ahead forecast given by:

Ekt πt+1 = ρA(k − 1)κyt + βk(1− θp)vpt = [1− (βρ)k]
κρ

1− βρ
yt + βk(1− θp)vpt. (9)

Like inflation, a firm’s one-step ahead forecast is sticky, since a firm’s longer-run beliefs about

inflation affect Ekt πt+1 and these beliefs depend on lagged inflation.9 This stickiness diminishes

as k → ∞. In that case, expression (9) converges to the forecast under rational expectations:

E∞t = Etπt+1 = κρ
1−βρyt.

Under FHP expectations, a firm will make systematic forecast errors. To see this, define the

one-step ahead forecast error under FHP as Fkt+1 ≡ πkt+1 − Ekt πt+1. Using expressions (8) and (9),

the one-step ahead forecast error evolves according to:

Fkt+1 =
[
βk+1γpA(k) + ρ(βρ)k

]
κyt − βk [1− β(1− γ̃p)] (1− θp)vpt +Ot+1. (10)

where γ̃p = γp(1− βk+1) and Ot+1 represents omitted terms that depend on the innovation in the

output gap at date t+ 1, et+1.10

Equation (10) is a key equation for determining the forecasting properties of inflation in the FHP

model. Firms’ forecast errors for inflation are the sum of an unpredictable component (Ot+1) and

two predictable components. One of those predictable components relates to errors associated with

firms underpredicting the responsiveness of inflation to movements in the output gap: In response

to an increase in the output gap, the inflation forecast error rises because realized inflation responds

more than expected inflation. Accordingly, firms’ forecasts underreact to changes in the output

gap. The other predictable component relates to changes in the value function governing firms’

longer-run beliefs. Because 0 < β < 1 and 0 < γ̃p < 1, the forecast error falls in response to an

increase in the value function, indicating that firms’ forecasts overreact to changes in their longer-

run beliefs. This overreaction reflects that a firm is closer to the end of its planning horizon when

forming expectations of future inflation, making the sensitivity of the one-step ahead forecast to a

firm’s (continuation) value function greater than that of realized inflation.

9As equation (9) highlights, the learning framework in Woodford (2018) uses the “anticipated utility” approach
of Kreps (1998) and a firm’s forecast of future inflation ignores the fact that vpt will change over time.

10To obtain expression (10), note that A(k) = A(k − 1) + (βρ)k.
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2.1 Impulse Response Predictability

Equations (9) and (10) can be used to characterize the impulse responses of inflation forecasts and

forecast errors to an innovation in et, allowing us to relate the model’s implications to the empirical

work of AHS (2020). Using data from the SPF, AHS (2020) compute the impulse response of

the median respondent’s inflation forecast and forecast error from the shock that maximizes the

business cycle variation in inflation. Their results are striking, as they show there is a sign switch in

the impulse response of the inflation forecast error: it underreacts before overreacting later on. We

show that the FHP model is capable of generating this sign switch, and the following proposition

established conditions under which it does so.

Proposition 1. (IRFs of Inflation Forecasts and Forecast Errors). Let
∂Ekt+iπt+1+i

∂et
and

∂Fkt+1+i

∂et
for

i ≥ 0 be the impulse response functions for a firm’s one-step ahead inflation forecast and forecast

error, respectively.

1. Without learning:
∂Ekt+iπt+1+i

∂et
≥ 0 and ∂Ft+1+i

∂et
≥ 0, ∀i ≥ 0 and k > 0.

2. With learning: If γp ≤ 1−ρ
1−βk+1 , there is a threshold forecast horizon, i?, such that:

(a)
∂Ekt+iπt+1+i

∂et
≥ 0 for i ≥ 0,

(b) ∂Ft+1

∂et
> 0 and ∂Ft+1+i

∂et
< 0 for i ≥ i?,

Proof: See the appendix.

Proposition 1 indicates that, in the model in which firms do not update their longer-run beliefs

about inflation (i.e., no learning), both the inflation forecast and inflation forecast error respond

positively to an innovation to the output gap. Accordingly, the impulse responses are characterized

by a systematic underreaction — there is no flip in the sign of the impulse response function

at any horizon. This underreaction reflects that without learning vpt = 0 ∀t. As a result, only

changes in the output gap affect a firm’s inflation forecast. Moreover, a firm with finite-planning

horizon neglects changes in the output gap that occur outside its planning horizon, implying that

its forecast underreacts to such changes. Thus, the FHP model without learning, similar to other

behavioral models emphasizing cognitive discounting, can not account for the empirical evidence

in AHS (2020).

While incorporating learning into the model may be a necessary condition to account for the

evidence in AHS (2020), it is not a sufficient condition. For the forecast error to change signs from

an underreaction to an overreaction, Proposition 1 also provides a sufficient condition of an upper

bound on γp, the speed at which firms update their longer-run beliefs using past data. Focusing

on β ≈ 1, this condition only imposes a restriction on γp for shocks that are highly persistent

(i.e., values of ρ close to 1.) For more moderate values of ρ and relatively short planning horizons,

this condition is easily satisfied so that all values of γp between zero and one are consistent with

the result in AHS (2020). Intuitively, if the output-gap shock is not very persistent, the impulse

responses of the forecast error in later periods will be mostly determined by changes in a firm’s
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longer-run inflation beliefs. With the effect of the value function growing more important for the

impulse responses in later periods, a firm’s forecast will eventually display an overreaction, since

firms’ forecasts are excessively sensitive to changes in vpt.

Proposition 1 establishes the existence of a threshold horizon at which the impulse response of

the inflation forecast error in the FHP model switches signs. Figure 1 illustrates how this threshold

horizon depends on the model’s structural parameters. The upper panel plots the threshold horizon

(i?) as a function of a firm’s planning horizon (k) for two different values of γp. The threshold

horizon is higher for shorter planning horizons. For instance, when (γp = 0.25, ρ = 0.9) and k = 12,

the impulse response switches from an underreaction to an overreaction after 14 quarters, while

when k = 1, it takes 28 quarters. A shorter planning horizon has this effect because, all else

equal, it makes the magnitude of the underreaction of the forecast to the change in the output

gap larger, delaying the eventual overshoot. Figure 1 also highlights that a higher value of γp or

lower value of ρ results in an earlier overreaction of a firm’s inflation forecast. These results reflect

that a higher value of γp speeds up the learning process so that the model’s eventual overreaction

occurs earlier. A lower value of ρ has a similar effect, since it implies a smaller and less persistent

underreaction of a firm’s inflation forecast. Overall, proposition 1 indicates that the sign switch

in the impulse response function of the forecast error is a robust, qualitative feature of the FHP

model with learning. Later, we conduct a more rigorous empirical evaluation of the FHP model,

pinning its parameters down using macroeconomic time series while using the impulse response of

AHS (2020) and the predictability regressions of CG (2015) and KW (2021) as additional tests

regarding the nature of expectation formation embedded in finite horizon planning.

2.2 Inflation Predictability Regressions

To discriminate across alternative models of expectation formation, CG (2015) and KW (2021)

emphasize the predictability of forecast errors from regressions using survey data on expectations.

CG (2015) regress the median forecast error of inflation on the median forecast revision and show

that there is a positive correlation between the forecast error and forecast revision, implying an

underreaction of forecasts to new information. Although, KW (2021) emphasize the underreaction

of forecasts to new information, they also provide additional evidence that forecasts in survey data

also involve an overreaction to recent data. In particular, they regress average forecast errors from

survey data on the forecasted variable and show a negative correlation between the forecast error

and the forecasted variable, implying an overreaction to recent data. They argue that a wide

class of models of expectation formation are unable to account for this simultaneous underreaction

to new information implied by the CG (2015) regression and overreaction to recent data implied

by their regression. In this section we investigate the implications of FHP expectations for the

predictability regressions of CG (2015) and KW (2021).

To examine the implication of the FHP model for the predictability result of CG (2015), a firm’s
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Figure 1: Delayed Overreaction of Inflation Forecasts in the FHP Model
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Note: The figure shows the threshold date at which the impulse response of the inflation forecast in the FHP
model switches from an underreaction to an overreaction.

inflation forecast revision is defined as Rkt =
[
Ekt − Ekt−1

]
πt+1. A firm’s forecast at t− 1 satisfies:

Ekt−1πt+1 = ρ2A(k − 2)κyt−1 + βk−1(1− θp)vpt−1 (11)

for k > 1. At time t− 1 a firm’s expectation for πt+1 differs from its expectations at time t because

it has less information than at time t. In addition, a firm is looking an extra period ahead and is

closer to the end of its planning horizon. Because, it is close to the end of its planning horizon,

its forecast of πt+1 at time t − 1 puts more weight on a firm’s value function and less weight on

the output gap than a firm’s one-step ahead forecast. Proposition 2 characterizes the relationship

between inflation forecast errors and revisions for a firm with FHP expectations.

Proposition 2. (Forecast Error and Revision Correlation). Let βCG =
cov(Rkt , Fkt+1)

var(Rkt )
denote the

univariate regression coefficient from regressing the one-step ahead forecast error on the forecast

revision in the FHP model.
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1. Without learning: If ρ > 0, then βCG > 0, for any finite planning horizon k > 0.

2. With learning: If ρ = 0 and γp <
1−β

1−βk+1 , then βCG > 0.

Proof: See the appendix.

Proposition 2 shows that for positively correlated shocks, the FHP model without learning

always results in a positive value of βCG, in line with the empirical estimates of CG. Without

learning, a persistent increase in the output gap (ρ > 0) leads firms with FHP expectations to

revise up their forecasts of inflation. From equation (10), it follows that their inflation forecast

errors rise persistently, and there is a persistent underreaction of the inflation forecast to new

information.

With learning, the dynamics of inflation are richer (and more complex) and the correlation

between the forecast error and forecast revision can be either positive or negative depending on

the length of a firm’s planning horizon (k), how quickly firms update their longer-run beliefs (γp),

and the persistence of the shock (ρ). When the shocks are uncorrelated and if firms do not update

their longer-run beliefs too quickly, Proposition 2 indicates that the FHP model implies βCG > 0.

Specifically, there is an upper bound on γp that grows increasingly tight as the length of the planning

horizon increases. For instance, with short-horizon planning (k = 1) and with learning occurring

at relatively sluggish rate, (i.e., γp < 0.5 < 1
1+β ), the model generates βCG > 0.

Table 1: βCG in the FHP Model

h = 1 h = 4
ρ = 0.25 ρ = 0.90 ρ = 0.25 ρ = 0.90

k = 1
γp = 0.25 0.74 1.99 0.32 3.90
γp = 0.9 0.44 1.38 0.28 3.42

k = 4
γp = 0.25 0.60 0.71 0.28 4.91
γp = 0.9 0.45 0.91 0.18 3.24

Note: The entries report population coefficients from a regression of one-step (h = 1, left
columns) and four-step (h = 4, right columns) ahead inflation forecast errors on forecast
revisions. The values of β and κ were set to 0.99 and 0.05, respectively.

Table 1 provides some numerical results for βCG, varying the persistence of the shock, the

length of firms’ planning horizons, the learning speed, as well as the forecast horizon (h). The

table highlights that βCG > 0 for firms’ planning horizons of 1 to 4 quarters and that βCG is

positive for a wide range of values of ρ and γp. In particular, when ρ = 0.9, βCG is positive even

for high values of γp. The table also highlights that for persistent shocks (ρ = 0.9) the coefficient

βCG is larger for longer forecast horizons. This result reflects that a high value of ρ strengthens

the underreaction of a firm’s forecast, and this underreaction for persistent shocks can grow as h

increases to approach and even exceed a firm’s planning horizon.11 Overall, we conclude that the

11In making their decisions, firms do not need to forecast inflation outside of their planning horizons. Accordingly,
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FHP model can be qualitatively consistent with the empirical evidence of CG (2015). Below we

investigate this question further in the context of an estimated, general equilibrium model.

Our final proposition considers the regression statistic of KW (2021). While KW (2021) mainly

focus on forecasts of output growth, they show that several survey measures of inflation expec-

tations, including average forecasts of consumer price inflation from the SPF, display a negative

correlation between the forecasted variable and survey respondents’ forecast errors. Propositon 3

characterizes the relationship between inflation and forecast errors under FHP expectations.

Proposition 3. (Forecast Error and Inflation Correlation). Let βKW =
cov(πkt , Fkt+h)

var(πkt )
denote the

univariate regression coefficient from regressing the h-step ahead forecast error on inflation in the

FHP model.

1. Without learning: If ρ > 0, then βKW > 0, for any finite planning horizon k ≥ h ≥ 1.

2. With learning: If ρ = 0 and k ≥ h > 1, then βKW < 0 if and only if:

βk+1(1− γ̃p)
(1− βk+1)(2− γ̃p)

[
β−h(1− γ̃p)−h − 1

]
> 1.

Proof: See the appendix.

Proposition 3 indicates that the correlation between inflation and the forecast error is positive in

the FHP model without learning. However, when the FHP model includes learning, the correlation

can be negative for forecasts beyond a quarter (i.e., h > 1). For uncorrelated shocks, the condition

in proposition 3 indicates that for a fixed value of k, a longer forecast horizon or a larger value of γ

are more likely to imply that βKW < 0. This negative correlation is possible because firms learn and

update their longer-run beliefs about events outside their planning horizons by extrapolating from

past data on inflation. Such behavior implies that a firm’s forecasts can overreact to movements in

inflation, and faster learning in which firms’ beliefs depend more on recent inflation data exacerbates

this overreaction.

Table 2 shows some numerical results for βKW varying the persistence of the shock, the length

of firms’ planning horizons, the learning speed, as well as the forecast horizon. For forecasts of

horizon h = 1, the table highlights that βKW > 0 for firms’ planning horizons of 1 to 4 quarters

and that βKW is positive for a wide range of values of ρ and γp. In particular, when ρ = 0.9, βKW

is positive even for high values of γp. For a forecast horizon of four quarters, the table highlights

that βKW can be positive or negative depending on how firms update their beliefs about their value

functions. When γp = 0.9, the sign of βKW is negative, as firm’s beliefs about their value functions

responds relatively quickly to past changes in inflation. However, when γp = 0.25, firms’ beliefs

depend relatively more on inflation in the distant past, and the sign of βKW is positive or near zero

in those cases.

we need to make an additional assumption when a firm’s forecast horizon exceeds its planning horizon, which is the
case since we are forecasting inflation four quarters ahead with k = 1. In that case, we assume a firm uses its beliefs
at the end of its planning horizon to make its forecast, taking into account its knowledge regarding the persistence
of shocks. The appendix provides more details regarding this assumption.
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Table 2: βKW in the FHP Model

h = 1 h = 4
ρ = 0.25 ρ = 0.90 ρ = 0.25 ρ = 0.90

k = 1
γp = 0.25 0.01 0.0 0.00 0.00
γp = 0.9 0.00 0.0 -0.04 -0.01

k = 4
γp = 0.25 0.03 0.0 -0.00 0.00
γp = 0.9 0.02 0.0 -0.10 -0.03

Note: The entries report population coefficients from a regression of one-quarter (h = 1, left
columns) and four-quarter (h = 4, right columns) ahead inflation forecast errors on inflation.
The values of β and κ were set to 0.99 and 0.05, respectively.

3 Dynamic General Equilibrium Model

The previous section establishes that inflation expectations implied by the FHP model are broadly

consistent with key stylized facts that have emerged from the empirical literature using survey data

on expectations. With this result established, we next turn to investigating whether the FHP model

in Woodford (2018) is jointly consistent with the survey data on inflation expectations as well as

the fluctuations in output, inflation, and interest rates in U.S. data. To address this question,

this section extends the analysis in the previous section to include households with finite planning

horizons and monetary policy that is specified to follow an interest rate rule.

As in the previous section, it is assumed that all agents have the same planning horizon of

length k. The model’s inflation dynamics are determined from similar expressions to those shown

in equations (4) and (5) except that now the output gap no longer follows an exogenous process

but is endogenously determined. With an endogenously determined output gap, the NK Phillips

curve becomes:

πkt = κEt

k∑
i=0

βi(yk−it+i − y
?
t+i) + βk+1(1− θp)vpt (12)

where y?t+i is an exogenous shock to aggregate supply and yk−it+i is a firm’s beliefs about the output

gap in period t+ i which as discussed below is determined by the level of household expenditures.

Households. There is a large number of identical, infinitely-lived households. Each household

makes a consumption/savings decision but like the economy’s firms only has the ability to plan

k periods ahead. Households also supply their labor services to firms in a perfectly competitive

labor market. As shown in the appendix, optimization by households gives rise to a (log-linearized)

relationship that relates household expenditures at time t to future interest rates that occur over

their planning horizon:

ykt = −σEt
k−1∑
i=0

(
ik−it+i − π

k−i−1
t+i+1 − r

?
t+i

)
+ Ety

0
t+k (13)
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where ykt are a household’s demand for expenditures at time t and ijt+i denotes a household’s beliefs

about the setting of the policy rate in period t+ i. The parameter σ is the inverse of a household’s

relative risk aversion, and the variable r?t is an exogenous shock to preferences.12 This shock as well

as the supply shock, y?t , are assumed to follow AR(1) processes with persistence parameters, ρy,

for the supply shock, and ρr for the demand shock. A household’s expenditures at time t, ykt , also

depend on its plans for expenditures at the end of their planning horizion, y0
t+k, which are given

by:

y0
t+k = −σ

(
i0t+k − r?t+k

)
+ vht (14)

where the variable vht is the value that household assigns to events that occur outside of their

planning horizons and reflects that households, like firms, have a limited ability to understand and

evaluate situations that occur in the distant future.

Similar to firms, households update vht based on past events and do so in a way that is consistent

with their optimal finite-horizon plan. In particular, when they decide on their expenditures, ykt+k,

they form a new estimate of their value function, veht, and use it to update their beliefs according

to:

vht+1 = (1− γ)vht + γveht, (15)

where 0 < γ < 1 determines how much weight they place on their new estimate. This new

estimate is chosen optimally by households and as shown in the appendix reflects outcomes for

both expenditures and inflation:

veht = ykt + σπkt (16)

Substituting equation (16) into equation (15), it follows that vht depends on past realizations of

household expenditures and inflation. Accordingly, a household’s longer-run beliefs are determined

in a backward-looking manner and because they depend in particular on lagged expenditures,

these longer-run beliefs can give rise to persistence in household expenditures. Relative to the

model without learning (i.e., vht = 0 ∀t), household learning about their value functions introduces

one extra parameter, γ, and allows households’ value functions to reflect the effect of long-lasting

economic changes. As shown in Woodford (2018), this property ensures that the Fisher equation

is satisfied in the long run despite the finite planning horizon that households have.

Trend-Cycle Decomposition. As discussed in Woodford (2018), an interesting feature of the

FHP model is that its variables can be decomposed output into a “cyclical” component—reflecting

the effect of the model’s shocks—and a “trend” component—reflecting changes in household and

firm beliefs’ about their longer-run continuation values. Specifically, the “trend” components (de-

noted by π̄jt , ȳ
j
t , and ījt , respectively, for j = 0, 1, ..., k) reflect the learning that households and

firms do about their value functions and can be defined by abstracting from the effect of shocks in

equations (12) and (13). Accordingly, the evolution of these trends can be written as functions of

12As shown in the appendix, this shock affects a household’s discount factor and differs from the preference shock
used in Woodford (2018).

15



the continuation values of households and firms decisions, vht and vpt:

π̄kt = κ
k∑
i=0

βiȳk−it + βk+1(1− θp)vpt

ȳkt = −σ

[
k∑
i=0

īk−it −
k−1∑
i=0

π̄k−i−1
t

]
+ vht

where
{
π̄kt , ȳ

k
t

}k
j=0

denote the effect of the continuation value functions on the plans of households

and firms. (For these variables, we denote the effects of the vht and vpt on household and firm

plans with only a t subscript since vht and vpt are fixed at time t.) We use the trend variables to

help characterize the model’s dynamics and understand the role of household and firms’ longer-run

beliefs in generating endogenous persistence and influencing inflation expectations.

Monetary Policy. Monetary policy at each date t is specified as an interest-rate rule of the

form:

ikt = īkt + φπ(πkt − π̄kt ) + φy(y
k
t − ȳkt ) + i?t (17)

where i?t is an exogenous shock to the rule assumed to follow a first-order autoregressive process

with persistence parameter, ρi. We assume that the intercept of the policy rule depends on the

evolution of the model’s trends. In particular, īkt is given by:

īkt = φ̄ππ̄
k
t + φ̄yȳ

k
t (18)

The time-varying intercept in the interest rate rule is intended to capture two aspects of monetary

policy. First, it acknowledges that policymakers do not necessarily view the “equilibrium” or longer-

run real interest rate as a constant.13 Second, it also allows for the possibility that policymakers

may respond more aggressively to persistent deviations of inflation from their inflation target, as

captured by π̄kt , than they do to temporary deviations. In that case, φ̄π > φ̄, and as shown in our

empirical analysis in Gust et al. (2022), we find that such a monetary policy response fits the data

substantially better than a rule in which monetary policy responds equi-proportionately to cyclical

and trend inflation.

4 Empirical Analysis

In this section, we assess the dynamic, general equilibrium model’s ability to match the impulse

response predictability results of AHS (2020) and predictability regressions of CG (2015) and KW

(2021). The model and methodology closely follow Gust et al. (2022), where we estimated the

FHP model employing a Bayesian, full-information likelihood-based approach using U.S. data on

13This formulation is consistent with policymakers’ efforts to inform their decisions distinguishing trend factors—
such as demographic or productivity changes—from cyclical variations in output and inflation. It implicitly assumes
that policymakers are no better at separating trend from cycle as the private sector.
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output growth, inflation, and interest rates.14 In addition, we use the predictability regression of

CG (2015) to inform estimate of a key model parameter, the length of the planning horizon k.

Finally, as detailed below, we implement predictive checks to examine the model’s performance on

the predictability statistics discussed in AHS (2020), CG (2015), and KW (2021).

For this assessment, we use plausible parameter configurations from the posterior distribution of

the FHP model. The use of a full-information estimation as the basis for assessing these moments

is a bit of a departure from the previous literature, which typically has relied on regression analysis

or partially identified VAR models. The full information strategy employed here offers several

advantages. First, as the propositions in Section 2 indicate, the consistency of the FHP model

with particular stylized facts of inflation expectations depends not only on parameters directly

governing finite horizon planning, but additional structural parameters auxiliary to the planning

horizon. The presence of these auxiliary parameters can substantially complicate the evaluation

of these moments. By using the full posterior distribution from the model, we incorporate likely

values of these auxiliary parameters into our evaluation. The methodology here also ensures that the

assessment of particular moments related to inflation and inflation expectations is done conditional

on parameterizations that also can rationalize the realized time series of output growth, inflation,

and interest rates. Finally, our use of a fully specified model allows us to examine the behavior of

these moments conditional on specific structural shocks. This is in important because—as Section

2 highlights—the persistence of the shock is often critical for determining the values of βhCG and

βKW and the impulse responses of inflation forecasts to shocks.

The FHP model described in Section 3 is estimated using data on output growth, GDP deflator

inflation, and the federal funds rate in the United States from 1967-2007 for different planning

horizon lengths, k. The priors and computational strategy for eliciting the posterior distribution

of the parameters, p(θ|Y ), closely resemble Gust et al. (2022). Thus, we relegate the estimation

details to the appendix.

4.1 Predictive checks for assessing inflation expectation predictability

While the models have been estimated to jointly account for fluctuations in output growth, inflation,

and interest rates, the estimation strategy of Gust et al. (2022) does not use information on inflation

expectations or the predictability statistics emphasized by AHS (2020), CG (2015), and KW (2021).

To incorporate evidence on inflation predictability to inform the model’s parameter estimates, we

use the framework of predictive checks. These checks involves comparing a given statistic or moment

from the data to the predictive distribution of that statistic under a given model. Here we use the

posterior distribution of the estimated FHP model. Let Y DSGE denote the set of observables

used to estimate the DSGE model—output growth, inflation, and interest rates—and let Y be

an expanded set of observables which includes inflation expectations data. Formally, let S(Y ) be

some statistic of this data, where S(Y ) can be a scalar—like the regression coefficient as in CG

14A minor difference in the model described in Section 3 from the one in Gust et al. (2022) is that the demand
shock is specified slightly differently. This change affects the estimation results minimally.
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(2015)—or a vector—like the impulse responses of AHS (2020). For a specific model, M, we can

draw from the posterior distribution of parameter estimates to a obtain a simulated counterpart to

Y—called Ỹ—and compute the predictive distribution for Ỹ as

p(Ỹ |M) =

∫
p(Ỹ |θ,M)p(θ|Y DSGE ,M)dθ. (19)

Using (19), one can compare where the observed statistic S(Y ) lies in the predictive distribution

for S(Ỹ |M). If S(Y ) falls in the tail of a particular model’s predictive distribution, it suggests

a deficiency of the model in representing that aspect of the data. To compute S(Y ) for the

predictability IRF of AHS (2020), we estimate a VAR(4) on the observed data and construct

impulse responses identifying a shock, as they do, that maximizes the forecast error variance of

inflation over the medium term. We follow the same approach to compute the model analogues

of these impulse responses from simulated data. For the predictability regression of CG (2015),

we run regressions of inflation forecast errors on forecast revisions using survey data and model

simulated data. For the predictability regression of KW (2021), we run regressions of inflation

forecast errors on lagged inflation. Algorithm 1 provides more details for these posterior predictive

checks. Following CG (2015) and others, we use the mean forecast for four-quarter-ahead (GDP

deflator) inflation expectations (“Expected Inflation”) from the Survey of Professional Forecasters

(SPF) as the actual inflation expectations data.

Algorithm 1 Predictive Checks

For i = 1, . . . , N :

1. Construct Ỹ . Draw θi ∼ p(θ|Y DSGE), and simulate a single trajectory of Ỹ =

{∆yt, πt, it,Ekt [πAt+4],Ekt−1[πAt+4]}Tt=1, where T = 168, length of the actual observables The

variable πAt = πt + πt−1 + πt−2 + πt−3 is the four-quarter inflation rate.

2. Compute S(Y ). Compute the statistic of interest, S(Y ), from the actual data, Y , and from

the simulated data, Ỹ .

Notes: We use N = 200 draws from the posterior.

4.2 Identifying the Planning Horizon Using Evidence on Inflation Predictability

The planning horizon k is a key parameter for determining the behavior of expectations in the FHP

model. Gust et al. (2022) argue that a smaller value of k is necessary to fit the time series behavior

of output growth, inflation, and interest rates. They find that k = 1 maximizes the overall fit of

these macroeconomic time series, measured using log marginal data densities (MDDs).15 Figure 2

displays both the point estimates and 95 percent uncertainty bands for the log of the estimated

15The MDD of a Bayesian model with data Y and parameters θ is given by p(Y ) =
∫
p(Y |θ)p(θ)dθ, i.e., the

integral of the likelihood over the prior distribution. This quantity, central to Bayesian model comparison, is a
summary measure of model fit.
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MDD (MDDs) for the model in Section 3 for different values of k, with larger numbers indicating

a better fitting model. Consistent with Gust et al. (2022), the model’s fit is maximized at k = 1.

The log MDD is substantially lower for large values of k relative to k = 1, but the difference in the

log MDDs for 0 ≤ k ≤ 4 is only a few log points. While a strict application of the Bayesian calculus

would favor k = 1 to other small k models, changes to, say, the prior distribution or the inclusion

an additional reference model could affect these odds. Therefore, we do not interpret them literally.

Instead, we conclude that the FHP models with low values of k do not differ dramatically in terms

of their fit of macro data and we use the predictive check framework to help guide our choice of k.

Figure 2: Log MDD Across k
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Notes: Figure displays point estimates (blue line) of the log MDD for the FHP for different
values of k with the shaded blue region giving approximate 95 percent uncertainty bands.
Appendix D gives computational details.

To do so, we use the predictability regression of CG (2015) which emphasizes the relationship

between inflation forecast errors and forecast revisions. We focus on two variants of the FHP-NK

model with planning horizons k = 1 and k = 4 . For each model variant, run the predictability

regression of CG (2015) at two different forecast horizons, h:

πAt − Ekt−h[πAt ] = α+ βhCG

(
Ekt−h[πAt ]− Ekt−h−1[πAt ]

)
+ ut,h, (20)
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where the statistic of interest is the OLS point estimate of βhCG, S(Ỹ ) = β̂hCG. for h = 1 and h = 4.

In equation (20), πAt corresponds to four-quarter average inflation when h = 4, and it corresponds

to quarterly inflation, πt, when h = 1. Running these two regressions, we obtain a sample of

regression coefficients, {(β̂1
CG, β̂

4
CG)}.

Figure 3 displays scatter plots of these two statistics implied by the FHP model with k = 1 (blue

dots) and k = 4 (orange dots). The values obtained by running these regression using the SPF

data correspond to the large black circle in the figure. The point estimate for β4
CG using the SPF

survey data is close to 1.5, while the point estimate for β1
CG is only about one-half. The data sits

squarely inside the orange cloud, indicating that the FHP model with a planning horizon of k = 4

fits the observed forecast error predictability for h = 1 and h = 4 well. In contrast, the FHP model

with k = 1 badly overestimates the predictability for one-quarter ahead forecast errors (the x-axis).

While the FHP model with k = 4 results in a slight deterioration in fit of the macro time series

relative to the model with k = 1, Figure 3 highlights its superior performance in accounting for the

evidence regarding the predictability of inflation forecasts.16 Taking into account this evidence, we

judge that the FHP model with k = 4 yields the best overall fit of the macroeconomic time series

and the predictability regression of CG (2015). Thus, for the remainder of our analysis, we focus

on the FHP model with a planning horizon of k = 4.

16Figure 3 focuses on distinguishing between planning horizons of one and four quarters. We could, in principle,
consider larger values for k but are hesitant to do so for two reasons. First, these predictability regressions use data
on (at most) one-year ahead inflation expectations and, as k becomes sufficiently large, these regression statistics
would tend toward zero as the FHP model approaches the rational expectations benchmark. Thus, larger values of k
would imply a deterioration in fit relative to what we show in the figure. Second, the evidence from the log marginal
data densities shown in Figure 2 indicates that the macroeconomic fit deteriorates substantially for k > 4.
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Figure 3: Joint Distribution of Predictability Regression Coefficients
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Note: The figure shows scatter plots of {(β̂1
CG, β̂

4
CG)} for the FHP k = 1 (blue dots) and

k = 4 (orange dots) models. The x-axis (h = 1) shows the values of β̂1
CG, the regression

coefficient from regressing one-step ahead inflation forecast errors on forecast revisions. The

The y-axis (h = 4) shows the values of β̂4
CG, the regression coefficient from regressing four-

quarter ahead inflation forecasts on forecast revisions. The values observed in the data are

given by a large black circle.

Table 3 describes key features of the posterior distribution for the FHP(k = 4) model. The

posterior mean estimates of the learning rates for the households and firms are 0.54 and 0.21,

respectively, indicating that firms weight recent data less in forming their beliefs about events

outside their planning horizons than households. This relatively slower speed of belief updating

by firms tends to lengthen out the period over which inflation forecasts underreact to shocks, as

discussed in Section 2. The monetary policy rule has the same features as in Gust et al. (2022):

it displays a strong response to trend inflation and cyclical output but essentially no response to

trend output. Both the demand shock and monetary policy shocks are estimated to exhibit a high

level of persistence, while the posterior mean for the autoregressive coefficient for the supply shock

is only 0.36. As discussed further below, the estimated persistence of these shocks has important

implications for the model’s ability to account for the predictability of inflation forecasts.
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Table 3: FHP(k = 4) Model: Selected Posterior Statistics

Description Mean [0, 95]

γ Household learning rate 0.54 [ 0.33, 0.78]
γf Firm learning rate 0.21 [ 0.13, 0.30]
κ Slope of the Phillips curve 0.01 [ 0.01, 0.01]
σ Coef. of relative risk aversion 2.27 [ 1.52, 3.15]
φπ Int. rule response to π̃t 1.08 [ 0.80, 1.39]
φy Int. rule response to ỹt 1.29 [ 0.91, 1.77]
φ̄π Int. rule response to πt 1.57 [ 1.30, 1.89]
φ̄y Int. rule response to yt 0.07 [ 0.03, 0.14]
ρξ AR coeff. for demand shock 0.90 [ 0.84, 0.96]
ρi AR coeff. for monetary policy shock 0.95 [ 0.90, 0.99]
ρy AR coeff. for supply shock 0.36 [ 0.23, 0.50]

Note: The table shows estimates of the posterior means, 5th, and 95th per-
centiles of the model parameters computed from output of the SMC sampler.
See appendix for details.

4.3 Impulse Response Predictability

With the choice of k = 4 in hand, we now turn to providing external model validation using the the

methodology of AHS (2020) as a predictive check. To apply their methodology, we construct S(Ỹ )

as the point estimates of the impulse response coefficents of πAt , defined as four-quarter average

inflation, and Ekt−4[πAt ] to an AHS “inflation shock” in a VAR(4) model for
[
∆yt, πt, it,Ekt [πAt+4]

]
.

The VAR’s inflation shock is identified as the shock that maximizes the variance in inflation over

frequencies associated with periods of length 6 to 32 quarters.17 Figure 4 displays the impulse

responses of inflation, the inflation forecast, and the inflation forecast error from the AHS-style

VAR in the FHP model. The solid black lines in Figure 4 display the impulse responses of inflation,

the inflation forecast, and the inflation forecast error for the inflation shock using the identification

scheme of AHS on the actual data18. The blue lines show the (pointwise) mean estimates using

simulated data from the FHP model to compute these impulse responses, and the shaded blue

regions correspond to the 90 percent pointwise credible ranges. The mean impulse responses from

the FHP model for inflation and the forecast of inflation track those in the data, especially in the

first five years. In both the model and the data, the response of the inflation forecast is more muted

than actual inflation so that the forecast error rises on impact. The mean date at which the inflation

forecast error flips from an underreaction to an overreaction, i∗, is nearly 8 quarters in the model

and at 11 quarters is a little longer in the data. The overreaction that follows this underreaction

in the data is somewhat larger in the data than implied by the model though in both cases the

overreaction is persistent. Overall, the FHP model is successful in capturing the predictability of

the impulse responses of inflation forecast errors described in AHS (2020) and in particular their

17Appendix Section H describes this procedure in detail.
18For the years before 1974, there are missing observations in the inflation expectations series constructed using

the SPF data. To avoid this, we start the sample in 1974Q4 for the estimation of the VAR.
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empirical finding that the inflation forecast underreacts initially and then overreacts later on.

To understand this result, it is important to realize that the AHS inflation shock is an amal-

gamation of the model’s three structural shocks. However, the AHS shock is heavily influenced by

the supply shock with the monetary policy shock playing a secondary role. This reflects that these

two shocks explain most of the variation in inflation at business cycle frequencies (i.e., those with

periods between 6 and 32 quarters), and those frequencies are used to identify the AHS inflation

shock. Figure 5 shows the fraction of variance explained by each shock over the frequency domain,

where the frequency has been mapped into quarters. For shorter frequencies, the fluctuations in

inflation are almost exclusively explained by supply shocks, while the importance of the monetary

policy shock rises so that it accounts for about a quarter of the variability in inflation at a horizon

of 32 quarters. With the impulse responses of the AHS inflation shock driven by these two shocks,

Table 4 displays the mean date at which the impulse responses for each of the model’s shocks imply

that an initial underreaction of the inflation forecast flips to an overreaction, i∗. Consistent with

the discussion in Section 2, the period of underreaction of inflation forecasts in response to a supply

shock is relatively short, because the estimated persistence of supply shocks is fairly low, as shown

in Table 3. In particular, the mean date for i∗ conditional on a supply shock is about 6 quarters,

while the mean dates for i∗ conditional on a monetary policy shock and an aggregate demand are

23 and 30 quarters, respectively. Accordingly, the mean date for i∗ conditional on either monetary

policy or aggregate demand shocks would be considerably larger than the 11 quarters observed in

the data, but with the supply shocks playing a large role in accounting for the AHS inflation shock

the model accounts for the date of the flip from an inflation forecast underreaction to overreaction

reasonably well.

Figure 4: Impulse Response to an AHS Inflation Shock
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Notes: The figure shows the impulse response of inflation, the inflation forecast, and the inflation forecast error from
the AHS-style VAR in the FHP model. The solid blue line denotes the (pointwise) mean across the predictive checks,
while the shaded regions denote the ninety (light blue) and sixty-eight (dark blue) percent bands (across the means
of the predictive checks). The black lines correspond to the impulse responses constructed using the actual data.
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Figure 5: Frequency-based Variance
Decomposition for Inflation
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Table 4: Average Threshold Date for Impulse Response Sign
Switch in the FHP Model

Shock E[i∗|i∗ < 40]

AHS 7.50

Supply 6.02

Monetary Policy 23.61

Demand 15.83

Notes: The figure displays the fraction of variance of inflation attributable to demand (blue), supply (orange), and

monetary policy (green) for different frequencies, using the posterior mean parameter estimates. The table displays

the average threshold date in which a sign switch occurs in the impulse response of the inflation forecast error for

the model’s implied AHS inflation shock and its three structural shocks.

4.4 Inflation Predictability Regressions Revisited

Figure 3 established that the FHP model with a planning horizon of four quarters is capable of

matching the predictability regression of CG (2015) reasonably well. In this section, we decompose

the model’s predictive distribution of β̂4
CG into its contributions from each of the model’s shocks

and perform an additional predictive check using the KW (2021) regression statistic.

The upper left panel of Figure 6 shows the predictive distribution of β̂4
CG implied by the

FHP(k = 4) model. This distribution reflects the effects of all three of the model’s shocks. To

help decompose the effects of each shock on β̂4
CG, the remaining panels show the predictive dis-

tributions of β̂4
CG conditional on an individual shock. Conditional on only demand and monetary

policy shocks, the distribution of model estimates lies above the point estimate in the data. As

shown in Table 3, these two shocks are highly persistent so that the initial underreaction that

occurs in response to these two shocks lasts a long time, generating a stronger positive relationship

between FHP agents’ forecast errors and forecast revisions. As noted earlier, the supply shock is

considerably less persistent than these two shocks so that the initial underreaction is less persistent

and the overreaction that occurs later on in response to supply shocks is relatively more important

for this shock. Accordingly, the distribution conditional on this shock lies to the left of the model’s

other two shocks and helps the model generate a distribution for β̂4
CG conditional on all of the

model’s shocks in line with the data.
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Figure 6: Distribution of CG (2015) coefficients
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Note: The figure shows the predictive densities for β̂CG simulated using all the shocks (upper left panel and grey

lines in the other panels), and conditional only on demand (blue line in upper right panel), supply (blue line in

bottom left panel), and monetary policy (blue line in bottom right panel) shocks. The black vertical line indicates

the point estimate using the SPF data.

Finally, we provide additional external validation using the KW (2021) regression. In this case,

the statistic of interest is the point estimate of βKW , the coefficient on lagged inflation in the

regression of inflation forecast errors on lagged inflation:

πAt − Ekt−4[πAt ] = α+ βKWπ
A
t−4 + ut, (21)

with S(Ỹ ) = β̂KW . Figure 7 shows the predictive distributions of β̂KW . As shown in the upper

left panel, using all of the shocks, the mean of β̂KW is about −0.06, with about 80 percent of the

simulations featuring a β̂KW < 0.19 The posterior mean conditional on supply shocks is about

19While KW (2021) present convincing evidence on extrapolation present in inflation forecasts (leading to βKW <
0 ), this finding is not present in the average GDP deflator-based inflation forecast in the SPF—see Table C.7 of the

Online Appendix of KW (2021). Therefore, we omit the estimate of β̂KW from the plots. We note that though the
FHP model generally predicts a negative KW coefficient, there is meaningful mass on βKW > 0, which we view as
consistent with the mixed evidence in the SPF data.
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−0.10, while it is closer to zero for the demand and monetary policy shocks. The mean conditional

on supply shock is lower than for the other two shocks, because this lower persistence of this shock

implies that the overreaction of inflation forecasts occurs earlier and relatively sooner than for the

other shocks, as highlighted in Table 4.

Figure 7: Distribution of KW coefficients
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Note: The figure shows the posterior predictive densities for β̂KW simulated using all the shocks (upper left panel

and grey lines in the other panels), and conditional only on demand (blue line in upper right panel), supply (blue

line in bottom left panel), and monetary policy (blue line in bottom right panel) shocks.

Overall, the FHP(k = 4) model is consistent with the predictability statistics of CG(2015),

AHS (2020) and KW (2021). Section I in the Appendix re-estimates the FHP model incorporating

SPF inflation expectations data as an additional observable along with the data on output growth,

inflation, and interest rates. The parameter estimates are very similar to those shown in Table 3,

and so there are little implications for the predictability statistics. Using inflation expectations as

an observable also leads to some additional time series evidence in favor of planning horizons of

k = 4.
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4.5 Comparison with a Sticky Information Model

In this section, we examine the implications of an estimated sticky information (SI) model for

the predictability statistics of CG (2015), AHS (2020), and KW (2021). In the SI model, the

formation of inflation expectations is imperfect due to the presence of sticky information, as firms’

pricing decisions are not always based on current information. SI models are an attractive point of

comparison, as a number of researchers have found these models to fit macro time series at least as

well as models emphasizing sticky prices.20 Moreover, as emphasized in CG (2015), SI models can

successfully account for the correlation between consensus forecast errors and revisions observed in

the SPF. The SI model that we use is described in detail in the appendix and to estimate it we

follow the same strategy as we used for the FHP model in which we use data on output growth,

inflation, and interest rates as observables.

Figure 8: Impulse Response to an AHS Inflation Shock
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Notes: The figure shows the impulse response of inflation, the inflation forecast, and the inflation forecast error from
the AHS-style VAR in the SI model. The solid blue line denotes the (pointwise) mean across the predictive checks,
while the shaded regions denote the ninety (light blue) and sixty-eight (dark blue) percent bands (across the means
of the predictive checks). The black lines correspond to the impulse responses constructed using the actual data.

With estimates of the SI model’s parameters in hand, we perform predictive checks of the model

using the predictability of impulse responses of AHS (2020) and the predictability regressions of CG

(2015) and KW (2021). Figure 8 displays the impulse response of inflation, inflation expectations,

and the inflation forecast error in response to an AHS “inflation” shock from a VAR constructed

as in Section 4.3. While the inflation forecast error initially rises in response in response to the

shock–that is, we see an initial underreaction of inflation expectations–the mean impulse response

of the forecast error under the SI model does not subsequently show an overreaction. Instead,

the mean inflation forecast error monotonically converges back to zero. It is true that the some

of trajectories exhibit overreaction–the shaded region in the forecast error panel contains negative

values, but this owes only to finite sample considerations. If the length of the simulated trajectories

used in the predictive checks was increased substantially more than the sample length of T = 168,

20For estimated models with sticky information, see Andrés et al. (2005) and Chung et al. (2014).
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the probability of overreaction reflected in the impulse responses would approach zero. In fact,

in the appendix, we study a partial equilibrium version of the sticky information model. In the

partial equilibrium model, it is possible to show that there is always an underreaction–never an

overreaction–of the impulse response of the one-step ahead forecast in the SI model. Overall, the

SI model, unlike the FHP model has difficulty generating the sign flip in the impulse response of

the inflation forecast error that AHS (2020) document.

Figure 9: Distribution of CG and KW coefficients
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Notes: The figure shows the posterior predictive densities for β̂4
CG and β̂4

KW simulated for the SI model. On the left

panel, the black vertical line indicates the point estimate using the SPF data.

The densities for the coefficients of the predictability regressions of CG (2015) and KW (2021)

are shown in Figure 9. Consistent with the initial underreaction of expectations present in Figure 8,

the posterior predictive distribution for β̂4
CG is positive, with a mean of about 1.2, close to the point

estimate in the actual data. Thus, as in CG (2015), the SI model is consistent with the evidence on

the relationship between forecast errors and forecast revisions.21 The right panel of Figure 9 shows

the distribution of the β̂KW . For the KW regression, the sticky information model produces both

positive and negative estimates with a mean estimate near zero, implying that, on average, there

is little correlation between inflation and its forecast error across the model’s parameter estimates.

21The SI parameter, λ, in the SI model has a posterior mean of about 0.6, implying a coefficient of β4
CG =

λ/(1− λ) ≈ 1.3, in line with the central tendency of the posterior predictive checks.
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5 Conclusion

In this paper, we used survey data on inflation expectations as well as aggregate data on output,

inflation, and short-term interest rates to estimate and evaluate a NK model featuring FHP. We

found that the FHP model can account for the predictability of inflation forecast errors as well as

the empirical evidence that the average inflation forecast in the SPF typically underreacts relative

to realized inflation but overreacts later on. We also showed that the FHP model can account for

survey measures of inflation expectations while also providing a reasonable fit of output, inflation,

and interest-rate dynamics over the business cycle. In doing so, we found that planning horizons

of about a year fit the survey data on inflation expectations best. In addition, we found that the

learning that households and firms do to form beliefs about events outside of their planning horizons

was crucial to the successful performance of the FHP model in terms of its ability to account for

aggregate time series as well as the evidence on forecast error predictability. Overall, our results

support the view that modelling expectations formation using finite horizon planning merits further

attention as part of an agenda incorporating behavioral features into macroeconomic models.

The short-planning horizons and the inertia in private sector beliefs about events outside of their

planning horizons have important implications for monetary policy. Notably, forward guidance

policies are much less effective than when households and firms have lengthy planning horizons

and disinflations are much more costly than in the canonical NK model in which households and

firms have full information, rational expectations. Given these notable differences, an important

avenue of future research is studying optimal monetary policy when households and firms have

finite planning horizons to investigate how optimal policy depends on agents’ planning horizons as

well as the evolution of their beliefs regarding events outside of their planning horizons.
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Appendix for
Inflation Expectations with Finite Horizon Planning

Christopher Gust, Edward Herbst, and David Lopez-Salido

A Finite-Horizon Household Planning

In this section, we describe the optimal finite-horizon plan set by households and derive equa-
tions (13) and (16). We focus on the optimal plan chosen by a finite-planning houesehold and
abstract from the static labor supply decision that a household makes. A household chooses a
state-contingent plan for consumption and bond holdings, {Cτ , Bτ+1}t+Kτ=t to maximize:

EK
t

{
t+K∑
τ=t

βτ−tQτU(Cτ ) + βK+1Qt+K+1Vt(Bt+K+1)

}
(A-1)

where 0 < β < 1 and Vt(Bt+K+1) is the value function a household uses to assign continuation
values to its plans over the remainder of its infinite lifetime. As discussed further below, this value
function varies over time but is fixed at time t when a household chooses its finite-horizon plans.
The value function depends on a household’s financial position at the end of its planning period,
Bt+K+1. However, households are assumed to have limited ability to understand events that occur
in the distant future and thus, the value function is not the model consistent one that reflects all
possible contingencies that a household may face in the future. The variable Qτ reflects that the
discount factor is stochastic. For t ≤ τ ≤ t+K + 1, it evolves according to:

Qτ =
τ−t−1∏
i=0

ξt+i, (A-2)

where the variable ξt is an exogenous shock that affects a household’s rate of time preference
between periods t and t+ 1. According to equation (A-2), Qt = 1, Qt+1 = ξt, and Qt+K+1 reflects
that a household contemplates all possible contingencies of the shocks, ξt, ξt+1,...ξt+K , that take
place over its finite-planning horizon.

A household takes its initial bond holdings, Bt, as given and faces a per-period budget constraint
given by:

Bτ+1 = (1 + iτ )

[
Bτ
Πτ

+ Yτ − Cτ
]
, (A-3)

where iτ is the policy rate, Πτ is the (gross) inflation rate, and Yτ denotes a household’s disposable
income which includes labor income as well as the profits a household receives from ownership of
the economy’s firms.

The first order conditions from a household’s finite horizon plan are given by:

UCτ
1 + iτ

= βξτE
K
τ

UCτ+1

Πτ+1
for t ≤ τ ≤ t+K − 1, (A-4)

UCt+K
1 + it+K

= βξt+KVBt(Bt+K+1) (A-5)

where VBt(Bt+K+1) denotes a household’s marginal value function with respect to its financial

position at the end of its planning horizon (i.e., VBt(Bt+K+1) =
∂Vt(Bt+K+1)
∂Bt+K+1

). A household’s
marginal utility of consumption, Ucτ , satisfies:

UCτ = C
−1
σ
τ .

A-1



We log-linearize a household’s first order condtions around a non-stochastic steady state in
which aggregate output and consumption satisfy Y = C = 1. Also, ξ = 1 and the nominal interest
rate in steady state satisfies 1 + i = Π

β where Π denotes the (gross) inflation rate. Log-linearizing
equation (A-4) implies:

Ekτ {cτ − cτ+1 + σ [iτ − πτ+1 − r?τ ]} = 0 (A-6)

for t ≤ τ ≤ t + K − 1. We use lower case variables to denote the log-linearized variables so that
iτ = log(1 + iτ ) − log(1 + i) and πτ = log(Πτ ) − log(Π). Also, r?τ is defined as = r?τ = − log(ξτ ).
Using (1), the subjective expectations operator in this expression can be replaced by the rational
expectations operator with redefined variables that reflect an agent’s subjective expectations:

cjt+K−j = Etc
j−1
t+K−j+1 − σ

[
ijt+K−j − Etπ

j−1
t+K−j+1 − r

?
t+K−j

]
(A-7)

for 0 ≤ j ≤ K. We also log-linearize a household’s terminal condition. This condition requires
that we approximate VBt(Bt). To do so, we log-linearize it around its non-stochastic steady state
value of 1

Π and parameterize it as a linear function whose slope and intercept coefficients can
potentially change over time as household’s learn and update their longer-run beliefs based on their
past experience:

VBt(Bt) ≈ −σ−1 [vht + χtbt] (A-8)

When making their optimal plan at time t, a household treats vt and χt as fixed and hence their
optimal consumption and savings decisions at time t depends on these parameters as well as their
initial net asset position, Bt. In expression (A-8), bt = Bt

Πt
and we linearize around bt, since in

steady state B = 0. Using equation (A-8), the log-linearized version of equation (A-5) is:

c0
t+K = −σ

[
i0t+K − r?t+K

]
+
[
vt + χtb

0
t+K+1

]
(A-9)

We also linearize a household’s budget constraint:

bjt+K−j+1 = β−1
[
bj+1
t+K−j + yjt+K−j − c

j
t+K−j

]
(A-10)

where with this notation bK+1
t denotes a household’s initial net asset position and bjt+K−j+1 for

0 ≤ j ≤ K denotes a household’s plans for the evolution of its net assets.
Households do not know the model-consistent value functions, but they learn adaptively and

update their value functions based on observed data. Specifically, a household computes a new
estimate of their value function at the same time as choosing its optimal state-contingent plan.
This new estimate is consistent with their optimal plan, as it satisfies the envelope condition
associated with maximizing equation (A-1):

V E
Bt(Bt) = EKt

Uct (Ct(Bt))

Πt
, (A-11)

where V E
Bt(Bt) denotes a household’s new estimate of its value function. In expression (A-11),

Ct(Bt) is a household’s optimal consumption decision taking vt, χt, and Bt as given. A household
uses V E

Bt(Bt) to form their continuation value function at date t + 1 by combining it with their
current continuation value function according to:

VBt+1(Bt) = (1− γ)VBt(Bt) + γV E
Bt(Bt), (A-12)

We linearize the functions in expressions (A-11) and (A-12). The latter linearization implies:

vht+1 = (1− γ)vht + γveht (A-13)

χt+1 = (1− γ)χt + γχet (A-14)
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where veht and χet are the intercept and slope coefficients to the linear approximation to V E
Bt(Bt):

V E
Bt(Bt) ≈ −

1

σ

(
vEht + χEt bt

)
= − 1

σ

(
cKt (bt; vht, χt) + σπKt

)
(A-15)

The linearized consumption function, cKt (bt; vht, χt), depends on the parameters of the value func-
tion as well as their initial net asset position. The linearized solution to the optimal consumption
function can be determined through recursive substitution using equations (A-7), (A-10), and (A-9).
Since it is a linear function, it is convenient to write it in terms of an intercept term and a slope
term:

cKt (bt; vht, χt) = cKt (0; vht) + gK(χt)bt (A-16)

where cKt (0; vht) is the intercept term associated with setting bt = 0 and gK(χt) is given by:

gK(χt) =
χtβ

−(K+1)

1 + χt
∑K+1

i=1 β−i
=

χt

βK+1 + χt
1−βK+1

1−β

(A-17)

With optimal consumption defined in this way, equation (A-15) implies that vet = cKt (0; vht) +σπKt
and χet = gK(χt).

In equilibrium, bt = 0, and yKt = cKt so we can simplify veht further:

veht = yKt + σπKt (A-18)

which is equation (16) in the main text. In addition, setting bt = 0 in equation (A-9) allows us to
determine yKt = cKt = cKt (0; vht) through recursive substitution using equation (A-7):

yKt = −σEt
K∑
i=0

(
iK−it+i − r

?
t+i

)
+ σEt

K−1∑
i=0

πK−it+i+1 + vht (A-19)

which is equation (13) in the main text. With a representative household and bonds in fixed
supply, the evolution of χt is irrelevant for the economy’s aggregate dynamics. In particular, only
vht affects aggregate expenditures and thus it is sufficient to use only equations (A-13) and (A-18)
to characterize the evolution of longer-run beliefs of households.

B Analytical Results for the FHP Model

In this section, we provide proofs of the paper’s three propositions. Proposition 1 characterizes
the impulse response functions of inflation forecasts and forecast errors in the FHP model, and
the proposition 2 characterizes the FHP model’s properties for the predictability regression of CG
(2015). Proposition 3 characterizes the impulse response of the average inflation forecast in the SI
model.

Proof of Proposition 1. Consider the first part of Proposition 1 that characterizes the impulse
response functions of the the model with no learning. In that case, vpt = 0 and we need only focus
on the effect of changes in the output gap on the impulse responses. The impulse response of the
output gap at date t+ i is given by:

∂yt+i
∂et

= ρi (A-20)

which reflects that firms know the process for yt. Using this expression in equation (9) and dif-
ferentiating it at t + i with respect to et implies that the impulse resposse function of agents’
one:

∂Ekt+iπt+1+i

∂et
= ρi+1A(k − 1)κ (A-21)
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Because ρ ≥ 0, 0 < β < 1, and κ > 0, this expression is non-negative for any finite value of k > 0.
We can also use expression (10) to determine the impulse response of the one-step ahead forecast
error. Differentiating this expression at t+ i with respect to et and using (A-20) yields:

∂Ft+1

∂et
= ρi+1(βρ)kκ ≥ 0 (A-22)

which completes the proof for the FHP model without learning.
The second part of the proposition characterizes the impulse response function of the model

with learning. To characterize the impulse responses of expected inflation and the inflation forecast
error, it is convenient to first characterize the impulse response of the value function. The impulse
response of the value function at t+ i is:

∂vpt+i
∂et

=
γp

1− θ

i−1∑
j=0

(1− γ)i−1−j ∂π
k
t+j

∂et
(A-23)

for i > 0. We also know that
∂vpt
∂et

= 0 since the value function is predetermined at time t. We can
use the impulse response of inflation to rewrite the impulse response of the value function in terms
of the model’s parameters. The impulse response of inflation is given by:

∂πkt+i
∂et

= A(k)κρi + βk+1(1− θ)∂vpt+i
∂et

(A-24)

Using equation (A-24), expression (A-23) can be rewritten as:

∂vpt+i
∂et

= (1− γ̃p)
∂vpt+i−1

∂et
+

γp
1− θp

A(k)κρi−1 (A-25)

where γ̃p = γp(1− βk+1). This expression can be rewritten as:

∂vpt+i
∂et

=
γp

1− θp
A(k)κ

i−1∑
j=0

(1− γ̃p)i−1−jρj (A-26)

which holds for i > 0. From this expression, we can see that
∂vpt+i
∂et

≥ 0 ∀i, which implies that the
impulse response of expected inflation is always non-negative:

∂Ekt+iπt+1+i

∂et
= ρi+1A(k − 1)κ+ βk(1− θ)∂vpt+i

∂et
≥ 0. (A-27)

For the change in the sign of the impulse response of the one-step ahead inflation forecast error,
note that at i = 0,

∂vpt
∂et

= 0 and

∂Ft+1

∂et
=
[
ρ(βρ)k + βk+1γpA(k)

]
κ > 0 (A-28)

Accordingly, on impact the forecast error rises. For i > 0, the impulse response of the forecast error
is given by:

∂Ft+1+i

∂et
=
[
ρ(βρ)k + βk+1γpA(k)

]
κρi − βk [1− β(1− γ̃p)] (1− θ)∂vpt+i

∂et
(A-29)
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For the impulse response of the forecast error to be negative at i > 0 and ρ > 0 requires that:

[1− β(1− γ̃p)]
i−1∑
j=0

(
1− γ̃p
ρ

)i−1−j
>

[
β +

ρk+1

γpA(k)

]
ρ (A-30)

If expression (A-30) holds at response i?, then it will also hold at i > i? given that the sum on left
hand side grows over time. If 1− γ̃p > ρ, then the forecast error is unbounded as i→∞ and there
must exist an i? for which expression (A-30) is satisfied. Substituting the expression for γ̃p into
the condtion, 1 − γ̃p > ρ, yields the expression used in the proposition. Note that if ρ = 0, this
condition does not apply and expression (A-29) implies i? = 1.

Proof of Proposition 2. To show that βCG > 0, it is sufficient to show that the covariance
between the inflation forecast error and forecast revision is positive. To show this in the no learning
case, note that in the case of no learning equation (10) can be simplified to:

Fkt+1 = ρ(βρ)kκ(ρyt−1 + et) (A-31)

Also, without learning, the forecast revision at date t is given by:

Rkt = ρ2κ(βρ)k−1yt−1 + ρA(k − 1)κet (A-32)

Using these two expressions, the covariance between forecast errors and revisions is:

cov(Rkt ,Fkt+1) = ρ4(βρ)2k−1κ2var(yt) + ρ2(βρ)kA(k − 1)κ2var(et) (A-33)

Expression (A-33) implies that if ρ > 0, then cov(Rkt ,Fkt+1) > 0, which completes the proof for the
no learning case.

With learning, we focus on the case in which ρ = 0. In that case, equation (10) can be written
as:

Fkt+1 = βk+1γpA(k)κet − βk (1− β(1− γ̃p)) (1− θ)vpt (A-34)

With ρ = 0, the forecast revision at time t is given by:

Rkt = (1− θ)βk−1(βvpt − vpt−1) (A-35)

Both vpt and vpt−1 are uncorrelated with et since they are determined before et is realized. This
implies that:

cov(Rkt ,Fkt+1) = −β2k−1 (1− β(1− γ̃p)) (1− θ)2 [βvar(vpt)− cov(vpt, vpt−1)] (A-36)

With ρ = 0, we can write the covariance between the value function at time t and t− 1 as:

cov(vpt, vpt−1) = (1− γ̃p)var(yt)

Substituting this expression into equation (A-36), the covariance between forecast error and revision
is:

cov(Rkt ,Fkt+1) = −β2k−1 (1− β(1− γ̃p)) (1− θ)2
[
γp(1− βk+1)− (1− β)

]
var(vpt) (A-37)

This expression implies that if 1−β > γp(1−βk+1), then cov(Rkt ,Fkt+1) > 0, which is the condition
given in Proposition 2.
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Proof of Proposition 3. We need to consider a firm’s forecast h quarters ahead along with
the associated forecast error. For k ≥ h, a firm’s forecast is given by:

Ekt πt+h = ρhA(k − h)κyt + βk−h+1(1− θp)vpt. (A-38)

A firm’s forecast error is given by:

Fkt+h =
{[
ρh + βk+1γpBh(k)

]
A(k) + ρhA(k − h)

}
κyt+[

βk+1(1− γ̃p)− βk−h+1
]

(1− θp)vpt +Ot+h. (A-39)

where Ot+h is an unpredictable component consisting of innovations in the shock from periods t+1
to t+ h. The term Bh(k) satisfies

Bh(k) =

h−1∑
i=0

ρh−1−i(1− γ̃p)i

The first part of the proposition considers the case of no learning. In that case, a firm’s forecast
error satisfies:

Fkt+h =
(βρ)k−h+1

[
1− (βρ)h

]
1− βρ

κyt (A-40)

Under no learning, equation (8) implies that inflation evolves according to:

πkt = A(k)κyt (A-41)

where A(k)κ > 0. With ρ > 0, the forecast error’s coefficient on the output gap is positive for
any h > 1. Because the coefficient on the output gap for inflation is also positive, the covariance
between the forecast error at horizon h > 1 and inflation will be positive when ρ > 0. Accordingly,
under no learning, βKW > 0 with ρ > 0.

The second part of the proposition considers the case of learning when the output-gap shock is
iid. With ρ = 0, the h-step ahead forecast error with learning simplifies to:

Fkt+h =
[
βk+1γp(1− γ̃p)h−1

]
A(k)κet +

[
βk+1(1− γ̃p)h − βk−h+1

]
(1− θp)vpt +Ot+h. (A-42)

Using equation (8), the covariance between the forecast error and inflation is given by:

cov(πkt , Fkt+h) =
[
βk+1γp(1− γ̃p)h−1

]
(A(k)κ)2var(et)+

+βk+1
[
βk+1(1− γ̃p)h − βk−h+1

]
var(ṽpt) (A-43)

where ṽpt = (1− θp)vpt. Using equation (6), the variance of the value function satisfies:

var(ṽpt) =
γpκ

2var(et)

(1− βk+1)(2− γ̃p)
(A-44)

Using this expression in equation (A-43), the covariance between the forecast error and inflation
can be rewritten as:

cov(πkt , Fkt+h) = βk+1γp(1− γ̃p)h−1κ2

{
1− βk+1(1− γ̃p)

(1− βk+1)(2− γ̃p)

[
β−h(1− γ̃p)−h − 1

]}
var(et)

This expression implies that the covariance will be negative if and only if:

βk+1(1− γ̃p)
(1− βk+1)(2− γ̃p)

[
β−h(1− γ̃p)−h − 1

]
> 1.

which is the expression shown in proposition 3.
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C Computing Inflation Expectations for h > k

We need to make an additional assumption about agents’ beliefs to compute their forecasts of infla-
tion for forecast horizons h that exceed agents’ k-period ahead planning horizons. The assumption
that we make in this case is that agents use their beliefs at the end of their planning horizons and
do so taking into account their knowledge of the persistence of the shocks.

To understand this assumption, we first consider its implications in the partial equilibrium
model. An agent’s expectations for inflation at the end of its planning horizon are:

Ekt πt+k = κEkt yt+k + β(1− θp)vpt. (A-45)

In the partial equilibrium model, we can use equation (1) and the fact that the output gap follows
an exogenous, AR(1) process to write:

Ekt πt+k = κEtyt+k + β(1− θp)vpt = κρkyt + β(1− θp)vpt (A-46)

Unlike Ekt πt+k, an agent’s expectations for h > k do not affect their decisions and thus are
not needed to solve the FHP model. However, in our empirical exercise to compare the model’s
implications to the empirical moments in the data, we need to compute Ekt πt+h for h > k. We do
so assuming agents forecast applying equation (A-45) to periods beyond their planning horizon:

Ekt πt+h = κEkt yt+h + β(1− θp)vpt (A-47)

where h > k. In this expression, we still need to compute Ekt yt+h and do so applying equation (1)
and the fact that in partial equilibrium the output gap follows an AR(1) process. This implies

Ekt πt+h = κEtyt+h + β(1− θp)vpt = κρhyt + β(1− θp)vpt (A-48)

for h > k. Accordingly, when h > k, agents use their beliefs about events outside of their planning
horizons to compute Ekt πt+h as well as their knowledge about the persistence of the output gap.

We use the same approach in general equilibrium and compute Ekt πt+h in an analagous manner.
The difference, however, is that Ekt πt+h and Ekt yt+h are simultaneously determined, respond to more
shocks, and depend on vht as well as vpt. Using equation (1), an agent’s expectations k-periods
ahead in this case are given by:

EtX
0
t+k = A−1

0 B0P
kSt +A−1

0 BvVt (A-49)

where Xt+k = (yt, πt)
′ and St = (r?t , y

?
t , i

?
t )
′. The vector Vt = (vht, vpt)

′ and the matrices A0, B0, Bv
are functions of the model’s parameters. The matrix P is a diagonal matrix whose elements along
the diagonal consist of the AR(1) coefficients of the three shocks. Equation (A-49) can be used to
determine Ekt πt+k and is the analagous expression to equation A-46. We assume that agents apply
the same knowledge in making forecasts in which h > k and assume that:

EktXt+h = A−1
0 B0P

hSt +A−1
0 BvVt (A-50)

for h > k, which is the analagous expression to equation (A-48).

D Estimation of the FHP Model

The solution to the system of equations describing the equilibrium jointly with the observations
equations define the measurement and state transition equations of a linear Gaussian state-space
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system. The state-space representation of a DSGE model yields a likelihood function, p(Y |θ),
where Y is the observed data and θ is a vector comprised of the model’s structural parameters. We
estimate θ using a Bayesian approach in which the object of interest is the posterior distribution
of the parameters θ. The posterior distribution is calculated by combining the likelihood and prior
distribution, p(θ), using Bayes theorem:

p(θ|Y ) =
p(Y |θ)p(θ)
p(Y )

.

Because we can only characterize the solution to our model numerically, following Herbst and
Schorfheide (2014), we use sequential Monte Carlo (SMC) techniques to generate draws from the

posterior distribution. In addition to draws from the posterior {θi}Nparti=1 , the SMC algorithm

computes as a by-product an estimate of the marginal data density (MDD), p̂(Y ). The log of
this estimate is used in Figure 2. To approximate each posterior, we run the SMC algorithm 10
times. Each SMC sampler uses the following settings: Npart = 16000, Nφ = 500, Nblocks = 3,
λ = 2.1. Herbst and Schorfheide (2015) provide further details on these hyperparameters and
Bayesian estimation of DSGE models more generally.

We estimate the FHP model as well as several alternative DSGE models using U.S. data on
output growth, inflation, and nominal interest rates from 1966:Q1 through 2007:Q4, a time period
for which there were notable changes in trends in inflation and output. The observation equations
for the other variables are:22

Output Growtht = µQ + yt − yt−1 (A-51)

Inflationt = πA + 4 · πt (A-52)

Interest Ratet = πA + rA + 4 · it, (A-53)

where πA and rA are parameters governing a model’s steady state inflation rate and real rate,
respectively. Also, µQ is the growth rate of output, as we view the DSGE models as having been
detrended from an economy growing at a constant rate, µQ. Thus, we are using the DSGE models
to explain low frequency trends in the data but not the average growth rate or inflation rate which
are exogenous.

E Sticky Information Model

In this section of the appendix, we describe the sticky information model that we estimate and
compare to the FHP model. Under sticky information, price-setting firms do not face costs to
adjusting their prices but instead firms infrequently update the information set upon which their
price decisions are based. In particular, following Mankiw and Reis (2002), we assume that price-
setters update their information sets in a staggered fashion in which there is a constant probability,
1 − λ, that a firm setting a new price will revise its information set. Accordingly, a fraction,
λ, of firms adjust their prices on the basis of previous information.23 This setup gives rise to a
log-linearized Phillips curve of the form:

πt = (1− λ)λ−1mct + Eλt−1 [πt + ∆mct] , (A-54)

22We reparameterize β to be written in terms in the of the annualized steady-state real interest rate: β =
1/(1 + rA/400).

23Reis (2009) shows how this time-dependent updating of information can arise when firms face a fixed cost to
updating their information.
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where mct denotes a firm’s real marginal cost and Eλt−1 representing the average time t− 1 forecast
across agents. This forecast is a weighted average of past RE forecasts (Et−j−1):

Eλt−1 = (1− λ)
∞∑
j=0

λjEt−j−1. (A-55)

Because the average inflation forecast depends on past expectations of inflation, sticky informa-
tion induces inertia in inflation with the degree of inertia depending on the information rigidity
parameter, λ. Higher values of λ correspond to firms updating their information sets more slowly,
which reduces the responsiveness of inflation to marginal cost and increases the importance of past
expectations of inflation.

Given the focus of our paper on inflation, we only model price-setting firms as having sticky
information. Households are assumed to use current information in their consumption-savings
decisions though we allow for habit persistence in consumption. Accordingly, the (log-linearized)
aggregate demand relationship in the model is:

[1 + ζ] yt = ζyt−1 + Etyt+1 − σ(1− ζ) [it − Etπt+1 − r?t ] . (A-56)

The presence of habits formation in consumption (ζ > 0) affects the determination of real marginal
cost, which satisfies:

mct =
1

1− ζ
[yt − ζyt−1 − y?t ] .

As in the NK model with FHP, r?t and y?t are AR(1) shocks to the equilibrium real rate and
aggregate supply, respectively. Finally, in the SI model, monetary policy is specified to follow a
Taylor rule:

it = φππt + φyyt + i?t . (A-57)

where, as in the NK model with FHP, i?t is an AR(1) shock to the monetary policy rule.

F Results for the Sticky Information Model

This section section contains analytical and empirical results for the SI model.
Analytical Results. To understand the implications of SI for the predictability IRFs and predictabil-
ity regressions, we consider a partial equilibrium version of the model in which a firm’s marginal
cost is exogenous and governed by an AR(1) process:

mct = ρmmct−1 + emt

In that case, we can show analytically that the IRF of the average forecast error across agents
to such a shock underreacts relative to realized inflation at each point of the IRF. Moreover, as
shown in CG (2015), under SI, there is a positive relationship between the average forecast error
and forecast revision:

Fλt+1 ≡ πt+1 − Eλt πt+1 =
λ

1− λ

(
Eλt πt+1 − Eλt−1πt+1

)
+ εt+1 (A-58)

where εt+1 is a function of the white noise process, emt+1. Because emt+1 is unforecastable at date t,
βCG, the univariate regression of the SI forecast error on revision satisfies βCG = λ

1−λ . Accordingly,
in the SI model, this regression coefficient is positive and depends only on the information rigidity
parameter, λ. The sticky information model implies a positive relationship between forecast errors
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and revisions, because only a fraction 1 − λ update their information set to a shock at date t.
Accordingly, for a shock that increases marginal cost at date t, the average forecast is not revised up
that much, inducing positive co-movement between the average forecast revision and forecast error.
The extent of this underreaction of the forecast to the shock depends entirely on the information
rigidity parameter, λ, with larger values of λ implying a more sizeable underreaction of the forecast.

While CG (2015) prove this result for the SI model for the predictability regressions that they
run, they do not study the implications of sticky information for the preditability impulse responses
of AHS (2020). Proposition 4 establishes that the impulse response of the SI inflation forecast to
changes in marginal cost underreacts relative to realized inflation at each date of the response.
Accordingly, there is no eventual overreaction, as documented by AHS (2020).

Proposition 4. (Underreaction of IRFs of SI Inflation Forecasts). Let ∂Et+iπt+1+i

∂emt
and

∂Eλt+iπt+1+i

∂emt
for i ≥ 0 be the impulse response to an innovation in marginal cost at date t for realized inflation
and the average inflation forecast across agents in the sticky information model, respectively. Then,
∂Eλt+iπt+1+i

∂emt
= (1− λi+1)∂Et+iπt+1+i

∂emt
, ∀i ≥ 0.

Proposition 4 establishes that the impulse response of the average forecast across firms is pro-
portional to the response of realized inflation at each date. Moreover, the response of the average
forecast is proportionately smaller than the response of realized inflation at date t+ i by a factor,
0 ≤ 1 − λi+1 < 1 so that there is never an overreaction of the average forecast. The extent of the
underreaction depends on λ with higher values implying a slower updating of firms’ information
sets and a greater underreaction of the response of the average inflation forecast.

Proof of Proposition 4. To prove proposition 4, note that with exogenous marginal cost, the
solution to the SI model can be determined analytically. In particular, inflation evolves according
to:

πt =

∞∑
j=0

bjmct−j (A-59)

With mct = ρmmct−1 + emt, these coefficients satisfy:

b0 =
1− λ
λ

(A-60)

and for j > 0:

bj =
1− λ
λ

[
j−1∑
i=0

ρj−im bi + ρj−1
m (ρm − 1)

]
(A-61)

Using equation (A-60) in equation (A-61) for j = 1 and repeating this substitution pattern, we can
show that for j > 0:

bj =
1− λ
λ

(ρm
λ

)j−1 (ρm
λ
− 1
)

(A-62)

Note that for a non-explosive solution to exist, the persistence of the marginal cost shock can not
be too large. In particular, the persistence of the shock is bounded by the parameter λ so that
ρm < λ.

With this solution in hand, the impulse response of realized inflation one-period ahead as well
as the average forecast across firms can also be characterized analytically. The impulse response of
realized inflation next period is given by:

∂Et+iπt+i+1

∂emt
= Ai+1 (A-63)
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where Ai+1 = Aiρm+ bi+1 and A1 = (b0ρm+ b1). The impulse response of average inflation is given
by:

∂Eλt+iπt+i+1

∂emt
= (1− λ)

i∑
j=0

λj
∂Et+i−jπt+i+1

∂emt
(A-64)

Note that because we are taking the impulse response at date t with respect to emt, it is true that:

∂Et+iπt+i+1

∂emt
=
∂Etπt+i+1

∂emt
(A-65)

We can rewrite this expression in expression (A-65) and rewrite the response of the average forecast
as:

∂Eλt+iπt+i+1

∂emt
= (1− λ)

∂Etπt+i+1

∂emt

i∑
j=0

λj = (1− λi+1)Ai+1 (A-66)

Accordingly, the response of the average inflation forecast at each date is proportional to the
response of realized inflation, as described in Proposition 4.
Empirical Results. Like the FHP model, the SI model is estimated using a Bayesian approach with
the same set of observables. The model is solved using the synthetic method described in Meyer-
Gohde (2010) and the likelihood function is constructed using the covariance matrix implied by
the MA solution. An approximate sample from the posterior is obtained using the SMC sampler.
For parameters common to both the SI and FHP models, the priors are identical. The prior for
the sticky information parameter λ is a Beta distribution with mean 0.5 and standard deviation
0.1. The prior for the habit parameter ζ is a Uniform distribution on [0, 1]. Table A-1 displays
select posterior statistics for SI model. The posterior mean for λ is about one half, indicating about
50 percent of firms update their information set each quarter. The posterior distribution for the
habits parameter, ζ, indicates a minimal role for habits. Finally, the supply shock is estimated to
be extremely persistent, in contrast with its estimated behavior in the FHP model. The estimate of
the log MDD, at around -753, indicates that the SI model fits the macroeconomic data substantially
worse than FHP models with low k.

Table A-1: SI Model: Selected Posterior Statistics

Description Mean [0, 95]

λ Sticky Information Parameter 0.56 [ 0.48, 0.64]
σ Coef. of relative risk aversion 0.37 [ 0.28, 0.49]
ζ Habit Formation 0.27 [ 0.14, 0.42]
φπ Int. rule response to π̃t 2.26 [ 1.85, 2.69]
φy Int. rule response to ỹt 0.08 [ 0.01, 0.18]
ρξ AR coeff. for demand shock 0.85 [ 0.81, 0.91]
ρi AR coeff. for monetary policy shock 0.80 [ 0.71, 0.90]
ρy AR coeff. for supply shock 1.00 [ 0.99, 1.00]

Log MDD -753.73

Note: The table shows estimates of the posterior means, 5th, and 95th percentiles of the
model parameters as well the estimate of the log MDD as computed from output of the
SMC sampler.
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G CG Regressions

In this section, we reproduce the main regression from Coibion and Gorodnichenko (2015). We use
data from the Survey of Professional Forecasters (SPF). The SPF is a quarterly panel collecting
various economic forecasts from professional forecasters. Our focus will be on forecasts for four-
quarter GDP deflator inflation. Specifically, we report OLS estimates of the coefficient β in the
regression:

πt+h − EtπAt+h = chCG + βhCG(Etπ
A
t+h − Et−1π

A
t+h) + errort+h. (A-67)

Where Etπ
A
t+h is the time t consensus (mean) forecast of annual inflation at time t+h. The actual

inflation πt+h is constructed using the vintage available one year after t+ h from the Philadelphia
Fed’s realtime data set. Table A-2 shows the regression results using data from 1969Q4-2007Q4.
(Results are similar for other sample periods and design choices.)

Table A-2: CG Regression Results

ĉCG 0.056
(0.148)

β̂CG 1.30
(0.50)

n 148
R-squared 0.21

Note: The table shows point estimates and HAC standard errors (parentheses) from the
OLS regression of A-67 along with the sample size and adjusted R-squared. The HAC
standard errors are Newey-West standard errors with a Bartlett kernel with trunction
equal to 4.

A-12

https://www.philadelphiafed.org/surveys-and-data/real-time-data-research/real-time-data-set-for-macroeconomists
https://www.philadelphiafed.org/surveys-and-data/real-time-data-research/real-time-data-set-for-macroeconomists


H AHS VAR

This section describes the algorithm for computing the “shock” as in AHS. Our starting point is
the p-lag vector autoregression for the n dimensional vector yt:

yt = Φ0 + Φ1yt−1 + . . .+ Φpyt−p + ut, ut
iid∼ N(0,Σ).

Write the VAR in companion form:

ξt = F0 + F1ξt−1 + νt,

with

ξt = [y′t, . . . , y
′
t−p−1]′, νt = [u′t, 0, . . . , 0]′, E[νtν

′
t] = Ω, and F1 =


Φ1 Φ2 . . . Φp

I 0 . . . 0
0 I . . . 0
...

...
. . .

...
0 0 . . . 0

 .

Define the n × np selection matrix M such that yt = Mξt. Consider the variance of yt over the
frequency range [ω0, ω1]:

V (ω0, ω1) =

∫ w1

w0

M
(
I − F1e

−iω)−1
Ω
(
I − F1e

−iω)−1′
M ′dω.

Consider now identifing a single structural shock ε1t, given (estimates for) Φ0, . . . ,Φp and Σ.
Decompose the covariance matrix Σ as

Σ = Σtr [α1 · · · αn] ,

where Σtr is the lower cholesky factorization of Σ and {α1, . . . , αn} is a collection of n × 1 or-
thonormal vectors (i.e., αiα

′
j = 1 if i = j and 0 otherwise.) Identifying the structural shock ε1t is

equivalent to finding α1. The variance of innovations attributable to the first structural shock is

Σ1(α1) = Σtrα1α
′
1Σ′tr.

Following AHS, we identify α1 by maximizing contribution of the shock ε1t over a particular fre-
quency band. variance of yt attributable to the first structural shock is given by:

S(ω0, ω1, α1) =

∫ w1

w0

M
(
I − F1e

−iω)−1
Ω1(α1)

(
I − F1e

iω
)−1′

M ′dω.

where Ω1(α1) is defined analogously to Σ1(α1). Let i be the index which corresponds to the inflation
observable. Then α1 is such that

α∗1 = argmax|α1|=1[S(ω0, ω1, α1)ii/V (ω0, ω1)ii].

Following AHS, we set the frequencies ω0 and ω1 to corresponds to periods of length 32 and 6,
respectively. In our computations, the integrals are replaced by sum over 100 grid points.
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I Fitting Observed Inflation Expectations

The model featured in the paper did not use inflation expectations as an observable. In some sense,
this makes the fact that the model can match the inflation expectation predictability statistics more
impressive, as these moments are not implicity contained in the likelihood function. That said, it
is not obvious that the model can track the time series of inflation expectations and continue
to match these moments (and continue to fit output growth, inflation, and interest rates well.)
In this subsection, we evaluate the FHP model’s ability to fit an additional observable, inflation
expectations. We use, as in the previous subsection, the SPF to construct our inflation expectations
series.

Recall that Ekt [πt+h] denotes the expectations of a h-period ahead inflation for an agent with
a k-period planning horizon. We link this model variable to observed inflation expectations series
using the following measurement equation:

Expected Inflationt = πA + Ekt [πt+1 + πt+2 + πt+3 + πt+4] + ηt (A-68)

The parameter πA is the steady state annual inflation rate and Ekt denotes the forecast of economic
agents with planning horizon of length k. We follow Del Negro and Eusepi (2011) and allow for
measurement error, ηt, when including inflation expectations as an observable. The measurement
error follows an AR(1) process:

ηt = ρηηt−1 + εη,t, with εη,t
iid∼ N

(
0, σ2

η

)
.

As discussed in Del Negro and Eusepi (2011) there are number of reasons why it may be important
to include measurement error when adding the SPF measure of inflation expectations to our esti-
mation. One reason is that the information sets of the SPF forecasters and those of the economic
agents in the model may not correspond exactly. Indeed, the SPF is produced in the middle of the
quarter, while the model-based forecasts are made at the start of every quarter as leading to an
information mismatch.24

To evaluate how the inflation data affects the FHP model estimates, Table A-3 shows the log
marginal data density (MDD), a summary measure of fit, for different values of agents’ planning
horizon, k. The first column shows the MDD using only the macroeconomic data and thus in logs
is defined as:

log p(Y ) = log

(∫
p(Y |θ)p(θ)dθ

)
.

where Y is the observed data consisting of the “standard” macroeconomic observables of output
growth, inflation, and interest rates. As shown in this column, a planning horizon in which agents
only make state-contingent plans one-quarter ahead (k = 1) fits the macroeconomic data better
than the models with longer planning horizons.

The second and third columns of the table emphasize the role of the inflation forecast data,
which we denote as Eπ, as an observable. In particular, these columns show the log predictive data
density as well as the MDD inclusive of the inflation forecast data. The log predictive data density
provides a measure of the model’s fit on the inflation forecast data and is defined as conditional on
the standard macreconomic data:

log p(Eπ|Y ) = log

(∫
p(Eπ|Y, θ)p(θ|Y )dθ

)
.

24We follow Del Negro and Eusepi (2011) as well as others by using the current vintage of data for the other
observables while the series on SPF inflation forecasts is a real-time measure. This difference leads to an information
mismatch between the econometrician and forecaster and hence is another reason for the inclusion of measurement
error.
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Table A-3: Log MDD Estimates

Model log p(Y ) log p(Eπ|Y ) log p(Y,Eπ)

k = 0 −720.42 −56.02 −776.44
k = 1 −716.54 −49.37 −765.91
k = 2 −718.91 −49.53 −768.44
k = 3 −721.46 −48.95 −770.41
k = 4 −723.52 −48.46 −771.99
k = 5 −724.11 −51.47 −775.57

Note: The table shows point estimates of the log MDDs
and the log predictive data density computed using the
output of the SMC samplers. See appendix for details.

The log predictive data density allows us to uncouple the model’s fit of the survey data of inflation
expectations from its fit of the standard macroeconomic data.25 As shown in the second column,
the estimate of the planning horizon changes significantly if we focus on fitting only the survey data
on inflation expectations. In that case, the estimate of the planning horizon would include the next
four quarters as well as the current quarter (k = 4). Such a change has important implications for
monetary policy, as it would considerably strengthen the economic effects of forward guidance that
policymakers gave about the policy rate.

While focusing exclusively on fitting inflation forecast data implies that the estimates of agents’
planning horizons are considerably longer, the third column shows the MDD using both sets of
observables, which satisfies:

log p(Y,Eπ) = log p(Y ) + log p(Eπ|Y ).

This relationship is highlighted in Table A-3, as the values in the third column of the table
are the sum of the first two columns. Table A-3 indicates that the improved fit of the inflation
forecast from the FHP model with k = 4 is more than offset by the deterioration in fit, shown in
column 1, of the standard macroeconomic data. Because of this deterioration in fit in the standard
macroeconomic time series, the estimated planning horizon using this data jointly with the survey
data on inflation expectations involves planning only one quarter ahead (k = 1).

The inflation expectations data when used jointly as an observable with the other macroeco-
nomic data does not change the estimated planning horizon in the FHP model and we find similar
results for the model’s other parameters. Table A-4 compares the posterior estimates of other struc-
tural parameters of the FHP model with k = 4 using both sets of observables to their estimates
when the observables do not include the inflation expectations data. The posterior distribution of
the firm learning rate, γp, shifts slightly, with the posterior mean decreasing to 0.16 from 0.20. The
estimates of the parameters, κ and σ, which determine the sensitivity of inflation to the output
gap and the sensitivity of aggregate demand to changes in the policy rate, respectively, are little
changed by the inclusion of the survey data on inflation expectations. The same is true for the
persistence of the exogenous shocks.

25In addition, this object is less sensitive to a researcher’s prior distribution, as p(θ) is replaced by p(θ|Y ).
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Table A-4: FHP(k = 4) Model: Comparison of Selected Posterior Statistics

With Expectations Data Without Expectations Data

rA 1.93 [ 0.88, 3.08] 2.00 [ 0.93, 3.15]
πA 3.62 [ 2.38, 4.87] 3.67 [ 2.41, 4.97]
γQ 0.44 [ 0.42, 0.46] 0.44 [ 0.41, 0.46]
κ 0.01 [ 0.01, 0.01] 0.01 [ 0.01, 0.01]
σ 2.39 [ 1.63, 3.30] 2.28 [ 1.52, 3.15]
φπ 1.08 [ 0.80, 1.39] 1.08 [ 0.80, 1.40]
φy 1.31 [ 0.94, 1.78] 1.29 [ 0.91, 1.78]
σξ 0.30 [ 0.27, 0.33] 0.30 [ 0.27, 0.33]
σy 16.56 [12.29, 22.36] 18.44 [11.09, 29.01]
σi 0.97 [ 0.70, 1.33] 0.96 [ 0.68, 1.33]
ρξ 0.91 [ 0.85, 0.96] 0.90 [ 0.84, 0.96]
ρi 0.95 [ 0.91, 0.99] 0.95 [ 0.90, 0.98]
ρy 0.35 [ 0.29, 0.41] 0.36 [ 0.23, 0.50]
γ 0.59 [ 0.37, 0.84] 0.54 [ 0.33, 0.78]
γf 0.16 [ 0.13, 0.20] 0.21 [ 0.13, 0.30]
φ̄π 1.67 [ 1.40, 1.97] 1.57 [ 1.30, 1.90]
φ̄y 0.07 [ 0.03, 0.13] 0.07 [ 0.02, 0.14]
ση 0.07 [ 0.07, 0.08]
ρη 0.92 [ 0.87, 0.97]

Note: The table shows estimates of the posterior means, 5th, and 95th
percentiles of the model parameters computed from output of the SMC
sampler. See appendix for details.
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