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Abstract 

 

Markets, likened to an invisible hand, often appear to contradict econometric assumptions 

that rule out spillovers of one person’s treatment on another’s outcomes.  This paper provides a 

simple statistical framework highlighting that controls are indirectly affected by the treatment 

through the market.  Further, the effect of the treatment on the treated reveals only part of the 

consequence for the treated of treating the entire market.  When combined with economic theory, 

our framework leads to a new application of Marshall’s Laws of Derived Demand that relates 

econometric estimates of treatment effects in the marketplace to the substitution and scale effects 

of demand theory.  We show how treatment-effect estimators can diverge – both in magnitude and 

direction – from the causal effects of treatment on the treated or counterfactual policies treating all 

market participants.  The framework shows how the consequences of targeted treatments reveal 

the effects of marketwide treatments, and the role of market frictions in that inference.  Examples 

from labor, public finance, economic geography, development, and the macro literature on the 

“missing intercept” are provided. 

  

 
* This paper stems from the earlier “Difference-in-Differences in the Marketplace” piece (NBER wp 32111, FEDS 

2024.008) that was written for a price theory audience and centered around an industry-equilibrium model.  We 

thank seminar participants at the Federal Reserve Board, the University of Chicago and the participants of the 2024 

Price Theory Summer Camp. We also appreciate comments from Jim Heckman, Jack MountJoy, Evan Munro, Allen 

Sanderson, Alex Torgovitsky, Giuseppe Forte, Josh Gross, João Pugliese, Alex Tordjman, Harald Uhlig. 
† Affiliations and contact: Federal Reserve Board, Robert.j.minton@frb.gov and University of Chicago, 

c-mulligan@uchicago.edu, respectively. The views in this paper are those of the authors and do not represent those 

of the Board of Governors of the Federal Reserve System or the Federal Reserve System. 
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I. Introduction 
 

Markets, likened to an invisible hand, often appear to contradict econometric assumptions 

that rule out spillovers of one person’s treatment on another’s outcomes.  Beyond coordinating 

activities across the supply and demand sides of the market, the invisible hand also coordinates 

activities within the supply and demand sides of the market—even when participants do not 

directly interact.  Spillovers are thus a hallmark of markets.  

 

Our paper provides a model of market spillovers to investigate the relationship between 

treatment-effect estimators and counterfactual outcomes resulting from more broadly applied 

treatments.  We show that traditional estimators do not measure the effect of scaling up treatments, 

even when adjusted for the spillover of the treatment on controls.  Although not relying on 

maximization, the framework has the Hicks-Marshall Laws of derived demand as a special case in 

which price treatments have scale and substitution effects on quantity outcomes. We then formalize 

how effects of scaling up the treatment can be extrapolated from treatment-control comparisons in 

the presence of market frictions.  

 

We begin by illustrating why the market spillovers resulting from a marketwide treatment 

are likely significant even when the spillovers from a targeted treatment are negligible by some 

metrics.  In this example, market demand is price inelastic.  Some suppliers experience a 

productivity treatment, while others are untreated.  The additional output from the treated drives 

down the market price that all suppliers receive. The revenue growth of treated relative to untreated 

suppliers is positive, but the revenue effect of treating all suppliers is negative.  In this sense, the 

treatment effect has the opposite sign, besides having the wrong magnitude. 

  

We then develop a simple statistical framework that allows for market spillovers and 

distinguishes targeted treatments from marketwide treatments. Treatment-control comparisons, 

which we term “difference-in-differences” (hereafter, DiD), differ from meaningful effects such 

as the treatment effect on the treated (hereafter, ToT) and the effect of a marketwide treatment 

(hereafter, the “scale effect”).  Indeed, the difference between scale and DiD can serve as a 

definition of market spillovers.  We establish that knowledge of ToT and DiD is insufficient to 

compute the scale effect. 

 

ToT and DiD differ by the spillover effect of the targeted treatment on the control group. 

The scale effect and the ToT differ by the counterfactual spillover effect on the treated of 

additionally treating all the controls. The former spillover effect can differ substantially from the 

latter, particularly when the treated group is “small” relative to the control group.  Formally, ToT 

is a weighted average of the scale effect and DiD.  The weight is unknown, although in many 

applications it is expected to be related to the fraction of the market that is treated.   

 

ToT and DiD become less informative about the scale effect as the share of treated units 

falls to zero. In the limit of a zero treated share, ToT and DiD coincide, differing from the scale 

effect by an arbitrary degree. Research designs with a small treated share are underpowered for 

the purposes of estimating market spillovers.  
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We then use demand theory to derive additional restrictions on the relationship between 

DiD, ToT, and scale.  Prices are the treatments and quantities are outcomes.  Market spillovers 

become cross-price effects on demand.  A first result is that, although the treated goods are 

potentially heterogeneous, Hick’s Composite Commodity theorem says that their aggregate can be 

treated as a single good due to the commonality of their treatment. This holds regardless of whether 

treated and controls are the same in the baseline, as is the goal of a randomized experiment, or 

have systematic baseline differences as in natural experiments.  Second, DiD measures the degree 

of substitution in preferences between treatments and controls, regardless of the fraction of the 

market that is treated or the magnitude of market spillovers. Put differently, DiD contains no 

information about the scale effect, which is the degree of substitution with goods outside the 

market where treated and controls participate. Third, the Hicks-Marshall Laws of derived demand 

show ToT to be an expenditure-share weighted average of the scale effect and DiD.  

 

Although we focus on market spillovers within the demand or supply-side of the market, 

another role of prices in equilibrium models is to equalize quantities supplied and demanded.  This 

function is left implicit in our analysis because it is already familiar in econometrics, particularly 

regarding the simultaneous feedback between supply and demand schedules.  However, we show 

that our results generalize to a simultaneous equilibrium analysis: the scale and DiD effects we 

identify are both eigenvalues of a matrix of direct and indirect treatment effects on the same side 

of the market.  Therefore, any arithmetic operations on treatment-effects matrices – such as 

combining demand and supply effects in a simultaneous system – translate into the same scalar 

operations on their respective scale effects and DiDs.   

 

Neither the statistical nor demand-theoretic frameworks by themselves indicate how the 

treatment effect of a targeted treatment provides any information about the consequences of a 

marketwide treatment.  We show how they are related in models of market frictions.  The first case 

completely segregates treatment and controls in unrelated markets.  DiD and ToT are equivalent 

because control outcomes are unaffected by spillovers.  However, if there are any untreated in the 

market with the treated, DiD and ToT are different from the scale effect, understood as the effect 

of treating the entire market where the targeted treatment was administered. However, the scale 

effect can be inferred from the outcomes of a targeted treatment if, additionally, outcomes are 

measured for some of the untreated participants in the market.  We analyze a second case that lacks 

any rigid barrier between markets, but spillovers diminish with economic distance from the treated. 

By considering comparison groups at varying distances from the treated, DiD, ToT, and scale can 

each be inferred from the outcomes of a targeted treatment.  In both cases, the scale effect is outside 

the range spanned by DiD and ToT. 

 

Finally, we provide several additional examples in which acknowledging equilibrium 

effects profoundly changes the interpretation of DiD estimates. These include a variety of models 

with time and region fixed effects, a model of the effects of targeted wage subsidies, and a 

discussion of why the “missing intercept” literature in macroeconomics relates to the difference 

between ToT and DiD rather than their differences from the scale effect.  

 

Section II covers our illustration of market spillovers. Section III covers our statistical 

framework and its economic interpretation in terms of Marshall’s laws of derived demand. Section 
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IV covers our guidance on how to recover scale effects. Section V covers additional examples. 

Section VI concludes.  

 

 

I.A Related Literature 
 

Econometric results on causal research designs, along with recent extensions in the 

literature, often rely on the assumption of “no spillovers.”1 “Spillovers” and “peer effects” are 

treated in microeconometrics as advanced, albeit interesting, topics that primarily arise when there 

are “externalities” (Angrist & Pischke, 2008; Athey & Imbens, 2017).  Attempts to relax this 

assumption entail structure on how treatment spills over to the controls (Manski, 1993)—a 

structure which could be economic or statistical.  The statistical approach reviewed in Huber 

(2023) might allow spillovers from observations within predetermined clusters but not from 

observations outside those clusters (Sobel, 2006; Hong & Raudenbush, 2006; Hudgens & 

Halloran, 2008).  It might also allow spillovers that are decreasing with network distance (Viviano 

et al. 2024) or geographical distance (Butts 2023). Our contribution aligns with the economic 

approach, which we view as lacking in the general frameworks more recently available in statistics.  

We provide closed-form results for interpreting quantity or price comparisons, showing how these 

estimates relate to broader treatment effects on the entire market. Our approach focuses on 

spillovers mediated by market forces as opposed to spillovers through externalities (such as the 

urban knowledge spillovers in Jacobs (1969) or spillovers of medical treatment in Miguel and 

Kremer (2004)).  

 

The analysis of specific market-based spillovers is extensive and spans many fields. In 

urban economics, for example, Glaeser and Gottlieb (2009) assess the benefits of easy labor 

mobility across firms within cities. See also Banzhaf (2021).  In labor economics, Monte, Redding, 

and Rossi-Hansberg (2018) find evidence that commuting is an important adjustment mechanism 

for localized labor demand shocks. Crépon et al. (2013) find that gains to unemployed job seekers 

of job placement assistance can be offset by displacement effects for those who did not receive the 

program. Cautioning against “inattention to the market consequences of the [programs evaluated],” 

Heckman, Lochner, and Taber (1999) provide an equilibrium model for evaluating both behavior 

and welfare effects of tuition subsidies and other public policies.  Heckman, LaLonde, and Smith 

(1999) conclude that “the costs of ignoring indirect [equilibrium] effects may be substantial.”2  In 

development economics, Egger et al. (2022) find that transfer payments in one village can affect 

outcomes in nearby villages.  Cunha, De Giorgi, and Jayachandran (2015) and Muralidharan, 

Niehaus, and Sukhtankar (2017) also find that market spillovers are important. As discussed in our 

Section V, public economics acknowledges that the introduction of state-specific cigarette taxes 

may affect the wholesale price of cigarettes faced by all states, a broader market response not 

captured by analyses comparing retail price changes in different states.  

 

 
1 See, for example, de Chaisemartin and d’Haultfoeuille (2020); Goldsmith-Pinkham, Sorkin and Swift (2020); and 

Borusyak, Hull and Jaravel (2022).  Sometimes “no spillovers” is called “no interference” or is wrapped into the 

broader notion of the “stable unit treatment value assumption.” 
2 See also Heckman and Pinto (2024), who cite the “simultaneous causality” inherent in market clearing as a reason 

why the “treatment-control paradigm” is too narrow.  



 4 

Munro et al.’s (2021) observation that “the interference pattern produced by marketplace 

price effects is dense and simultaneously affects all units, so cluster- or sparsity-based methods are 

not applicable” is consistent with the view of market equilibrium taken in this paper.  They refer 

to a “Global Treatment Effect (GTE)” which we link to the “scale effect” from price theory.  Both 

our paper and theirs treat this as “a meaningful policy-relevant counterfactual of treating all 

individuals in the [market] compared to treating no individuals in the [market].”   Their “average 

direct effect” is analogous to what we call the “difference-in-differences” estimator. 

 

Our paper differs from Munro et al. by emphasizing the economic interpretation of 

treatment effects and enabling statistical analyses in observational settings of market spillovers 

when randomized experiments are unavailable.  Tools from economic theory point to several 

results such as our eigenvalue characterization of various treatment-control comparisons as built 

on just two “fundamentals:” scale and substitution effects.  They also point to the role of market 

frictions in using information from a targeted treatment to estimate a counterfactual scale effect.  

The economic-theory approach emphasizes that market spillovers are not a nuisance, but rather of 

intrinsic interest. 

 

Muralidharan and Niehaus (2017) highlight the dual nature of spillovers, saying that 

“comparing outcomes for (randomly) treated and untreated neighbors will yield a doubly biased 

estimate of the average impacts of treating both, since it ‘nets out’ spillovers from the treated to 

the untreated and also fails to capture the effects of spillovers that would have occurred from the 

untreated to the treated had the former been treated as well” (p. 109).  Spillovers are a reason that 

experimenters should consider conducting their experiments on a large scale, they say.  Our 

findings call that advice into question if the spillovers operate through a frictionless market.  Our 

approach agrees that the effect on the treated of a widespread treatment is closer to the scale effect 

than the effect of a targeted treatment.  The problem is that the effects on controls also grow with 

the size of the treatment group.   Without market frictions, treatment effects estimators can be 

worse than “biased” – they may contain no information about the scale effect, regardless of the 

size of the experiment.3   

 

Sraer and Thesmar  (2023) revisit the literature on the misallocation of production factors.  

In that context, they acknowledge that firm-specific treatments affect untreated firms through 

market prices.  They define three potentially distinct effects that, in our terminology, correspond 

to DiD, ToT, and the effect of treating all firms.  At the same time, they note that some meaningful 

outcomes are themselves differences among firms.  With the commonly assumed log-linear policy 

functions, their firm differences are free of any indirect effects operating through the market.  DiD, 

ToT, and scale coincide for such outcome measures.  An estimate of one is a valid estimate of the 

other two. 

 

A macroeconomics literature recognizes that cross-sectional outcome comparisons do not 

reveal the full effect of fiscal policies.  For example, households not receiving a transfer are 

affected by the transfers going to other households.  Wolf (2023) refers to the absence of market 

spillover from cross-sectional comparisons as a “missing intercept” problem.  He uses a general 

 
3 Muralidharan and Niehaus also point out that experimental results may reveal features of the effectiveness of the 

experimental organization.  Our focus is on connections between treatment effects and the tastes and technology in 

the market being studied. 
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equilibrium model (that is, an equilibrium consists of multiple prices and quantities) to explore 

solutions.  The point of our Section III is that equilibrium spillovers are relevant in microeconomics 

too, even in partial equilibrium (only one price equilibrating).  We also note that the missing 

intercept relates to the difference between DiD and ToT as defined in microecometrics.  Our setup 

further highlights the distinction between these two effects and the scale effect.   

 

Drawing from market equilibrium analysis, we emphasize that the treated and untreated 

experience scale and substitution effects in different combinations.4  This analytical approach has 

parallels with Heckman and Vitlaycil’s (2005) expression of estimators as combinations of 

“marginal treatment effects,” each of which refers to a specific type of individual.  To focus on the 

price theoretic components, this paper considers only limited heterogeneity, namely treated versus 

untreated and in-market versus out-of-market.  It emphasizes market connections, with 

counterfactual treatment regimes understood as additional distinct combinations of scale and 

substitution effects. 

 

II. An illustration of equilibrium spillovers 
 

The industry in our illustration has many suppliers of a homogeneous product.  The demand 

curve is Q = D(P), where P is the output price and Q is industry-aggregate quantity.  With suppliers 

producing a homogeneous product, consumers choose the lowest price, which is matched by any 

supplier that intends to sell any output.  All production inputs are held fixed firm-by-firm, while a 

“treated” subset of the firms experiences an increase in productivity by a factor of et > 1.  The 

remaining firms in the industry are referred to as “controls” because they are not “exposed” to the 

productivity treatment, except indirectly through the market. Although our setting is simplified for 

clarity, the illustration is not far from important examples such as farming, where capital and 

fertilizer improvements (i.e., productivity in this example) enable some farmers to produce more 

crops from a given amount of land than others.  

 

Industry-level effects are illustrated in Figure 1a while firm-level effects are shown in 

Figure 1b.  For the purposes of illustration, we assume that the treated and untreated have the same 

baseline output and revenue, which is why the first vertical line in Figure 1b simultaneously shows 

the supply of any firm in the baseline and untreated firms (if any) with has treated competitors.  

The second vertical line is the supply of any treated firm. 

 

 
4 Much quantitative work in both micro- and macro-economics treats scale and substitution parameters as constants. 
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Treating suppliers alters the market equilibrium.  The point E in Figure 1a shows the 

baseline equilibrium.  E is the equilibrium when a subset of suppliers is treated.  Because market 

supply has shifted outward, the market price is lower.  Imagine using a DiD analysis at the firm 

level to study the effects of the productivity increase on revenues. The gap between the revenues 

of treated and untreated is represented by the areas R4 + R6 in Figure 1b.  This treatment effect is 

also DiD (the difference between the average revenue change for treated suppliers and the average 

change for those untreated) because the two types of suppliers have the same revenue in the 

baseline.  DiD is different from ToT, understood as the amount of revenue that the treated gain 
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relative to the baseline, because ToT includes the revenue loss (R3 in magnitude) from the reduced 

price.  Although the DiD for revenue must be positive, the ToT for revenue would be negative if 

price falls enough. 

 

E is the equilibrium when the entire market is treated.  Of course, E has a lower price 

than E does because the productivity treatment is more widespread.  The scale effect  for revenue 

is defined as the difference between revenue under the marketwide treatment and revenue in the 

baseline.  In Figure 1b, that is represented as the area difference R6 − R1 − R3.   is less than ToT 

and therefore even more likely to have the opposite sign as DiD.  More precisely,  and DiD have 

opposite signs if and only if market demand is price inelastic.   

 

Through market competition, the price charged by any one supplier is largely determined 

by the productivity of competing suppliers.  To put it another way, DiD “correctly” shows that 

supplier-specific productivity growth has little supplier-specific effect on price, but without clearly 

indicating the much larger price effects, and more negative revenue effects, of industry-wide 

productivity growth. 

 

A statistician might say that the “control group is contaminated” because the productivity 

growth of the treated suppliers is “spilling over” to the untreated through competition for 

consumers.  However, the divergence between DiD and  is not mitigated by reducing the share 

treated.  The empirical challenge is that equilibrium spillovers, such as the price effects illustrated 

in Figure 1a, are of intrinsic interest – they are part of the scale effect  – but are differenced out 

by DiD and treatment-effect estimators.  Equilibrium effects can exceed the direct effects, as they 

must in Figure 1a if demand is price inelastic and revenue is the outcome metric.  Our purpose 

here is not to discourage treatment-control comparisons, even those with contaminated control 

groups, but rather to use price theory to help understand what they measure and how the findings 

can be applied to other settings. 

 

III. Treatments and controls according to Marshall’s laws 
 

III.A.  A vector representation of market spillovers 
To begin the formal analysis, we consider a population of agents that are designated either 

as treatments or controls.  Their population shares are denoted  and 1−, respectively.  Their 

outcomes are denoted T and K, respectively.  The treatment, which directly affects the treated but 

not the controls, is denoted t.  We let k denote a comparable shock that directly affects the controls 

but not the treated.  The mappings from the two treatments to outcomes are denoted T(t,k;T) and 

K(t,k;K), where T and K denote other factors that influence outcomes for treated and controls. 

 

Figure 2 illustrates, in the time dimension, the effects of a treatment dt = 1.  The familiar 

parts of the diagram are that (i) other factors influence both the T and K outcomes over time and 

(ii) the effect of the treatment on the treated (ToT) is the difference between the final outcome for 

the treated and what that outcome would be without treatment.  Given our emphasis on market 

connections between T and K, our Figure 2 also allows for an effect of dt = 1 on the outcome for 

the controls. 
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To focus on equilibrium interpretations of DiD estimates, we maintain the parallel trends 

assumption that dT = dK and have the same marginal effects on each K and T.  We refer to this 

assumption as “parallel trends with respect to omitted variables” (PTOV).5  In other words, under 

PTOV and without any treatments (dt = dk = 0), the treated and control groups experience the same 

outcome changes dT = dK.  PTOV requires that the heavy dashed lines in Figure 2 be parallel. 

 

With PTOV, the relevant four first partial derivatives of the outcome mapping are 

represented as a two-by-two matrix S: 

 

𝑆 = (
𝑠𝑇𝑡 𝑠𝑇𝑘
𝑠𝐾𝑡 𝑠𝐾𝑘

) = (
𝜕𝑇/𝜕𝑡 𝜕𝑇/𝜕𝑘
𝜕𝐾/𝜕𝑡 𝜕𝐾/𝜕𝑘

) (1) 

 

The first entry in S is the effect sTt of a unit treatment t on the treated, which is commonly known 

as ToT as labeled as such in Figures 1 and 2.  The final entry sKk is the analog of ToT for the 

controls.  The off-diagonal elements reflect spillovers, sometimes known as indirect effects of 

treatments.  The spillover effect shown in Figure 2 is sKt. 

 

S’s first column difference and first row sum are central to our interpretation of difference-

in-differences.  We therefore establish the following definitions: 

 

𝐷𝑖𝐷 ≡ 𝑠𝑇𝑡 − 𝑠𝐾𝑡 (2) 

 

𝜀 ≡ 𝑠𝑇𝑡 + 𝑠𝑇𝑘 (3) 

 
5 Up to sampling error, PTOV is guaranteed if treatments are randomly assigned.   



 9 

 

Definition (2) is our representation of difference-in-differences (more literally, a difference in 

treatment derivatives) under the aforementioned parallel-trends assumption.  DiD subtracts the 

effect, measured per unit t, of the treatment t on controls from its effect on the treated.  The 

definition (3) refers to the “scale effect,” which is the effect on the treated group of applying the 

treatment uniformly across the entire population, or what we call “the entire market.”  The scale 

effect  is often the parameter of interest. 

 

The case of no spillovers has S as a diagonal matrix (sTk = 0 = sKt), with no difference 

between DiD and  or DiD and ToT.  While not ruling out the zero-spillover case, the purpose of 

this paper is to link the off-diagonal elements to the diagonal elements and to results from price 

theory.  More generally, the difference between the scale effect and DiD is the sum of the spillover 

elements of S:  − DiD = sTk + sKt.
6   

 

Another restriction on the S matrix also resembles parallel trends and drives many of our 

results.  Specifically, administering the treatment uniformly to both the treated group and control 

group should not affect the difference between their outcomes: 

 

𝑠𝑇𝑡 + 𝑠𝑇𝑘 = 𝑠𝐾𝑡 + 𝑠𝐾𝑘 (4) 

 

We refer to assumption (4) as “Parallel Trends for Parallel Treatments” (PTPT).  At this point, 

PTOV is distinct from PTPT.  Proposition 1 establishes that the familiar procedure of dividing 

differential outcome changes by a treatment differential yields DiD if and only if the PTPT 

assumption (4) holds. 

 

PROPOSITION 1 (Differential and parallel treatments).  Assume parallel trends for 

omitted variables (PTOV) and that dk is neither 0 nor equal to dt.  Then the PTPT assumption (4) 

is equivalent to (5): 

 

𝐷𝑖𝐷 =
𝑑𝑇 − 𝑑𝐾

𝑑𝑡 − 𝑑𝑘
 (5) 

 

Proof.  To obtain an expression for the numerator in (5), totally differentiate T(t,k;T) − 

K(t,k;K).  With PTOV eliminating the  terms, the numerator is DiD (dt−dk) plus the product of 

dk and the difference between the LHS and RHS of (4).  With dk  0, the RHS of (5) differs from 

DiD if and only if equation (4) is satisfied.  QED 

 

A corollary to Proposition 1 is that, with PTPT, equation (5) corresponds to the DiD defined in (2) 

regardless of whether treatments are solely for the treatment group (dt  0 = dk) or solely for the 

control group (dt = 0  dk).  If treatment and control groups are identical in the baseline, as is the 

design of randomized controlled trials, then equation (5) becomes the ratio of the outcome gap 

T−K to the treatment gap t−k. 

 

 
6 See also Munro et al.’s (2021) expression of a “global treatment effect” as the sum of “direct” and “indirect” 

treatment effects. 
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Figure 3 illustrates the model (1)-(4) for the case that  > DiD, showing all four elements 

of S.7  The axes measure outcomes for controls and treatments.  The square point represents the 

baseline, showing outcomes absent any treatment.  The green vector is the first column of S, 

showing the effects on both groups of treating only the treated.  As shown, that vector is not vertical 

but has a slope greater than 45 degrees, which indicates that t has a spillover effect, although one 

that is less than the direct effect on the treated group.  Unsurprisingly, the DiD (red segment) 

measures the distance between the treatment effect and the 45-degree line. 

 

  
 

The black vector, which is the second column of S, shows the effect of subsequently 

treating the rest of the market.  The sum of the two arrows follows the 45-degree line if and only 

if the PTPT assumption (4) holds.  The vertical and horizontal dimension of their sum is . 
 

Figure 4 illustrates a case with the same scale effect as Figure 3, but with DiD closer to 

zero.  In contrast, Figure 5’s case has the same DiD as Figure 3 but no scale effect (treating the 

controls “undoes” the effects of t).8  As such, it also shows an instance of  < DiD. 

 

 
7 It also shows DiD > 0, although for what follows the sign of each  and DiD is less important than the sign of their 

difference. 
8 The area of the triangle shown in Figures 2-4 is half of the magnitude of DiD*. 
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Let  denote the share of the between-group spillover effects of a full market treatment dt 

= dk that would be experienced by the control group. 
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𝜆 ≡
𝑠𝐾𝑡

𝑠𝐾𝑡 + 𝑠𝑇𝑘
=

𝑠𝐾𝑡
𝜀 − 𝐷𝑖𝐷

 (6) 

 

The symmetry of our discussion of treated and controls suggests that  would be closely related to 

, if not identical to it, because a larger treatment group is expected to have a greater effect on the 

controls than treating a comparatively group would.  However, until we say more about the units 

of K, T, k, and t (see subsection III.B and following), a precise relationship between  and  cannot 

be specified.  Regardless, the common intuition that small-scale treatments (  0) have near-zero 

spillover effects on the controls can be represented by assuming (  0). 

 

 PROPOSITION 2 (Treatment effects decomposition).  If the PTPT assumption (4) holds, 

then the treatment effects matrix S can be written in terms of DiD, , and , as defined in (2), (3), 

and (6):  

 

𝑆 = (
𝜆𝜀 + (1 − 𝜆)𝐷𝑖𝐷 (1 − 𝜆)(𝜀 − 𝐷𝑖𝐷)

𝜆(𝜀 − 𝐷𝑖𝐷) (1 − 𝜆)𝜀 + 𝜆𝐷𝑖𝐷
) (7) 

 

 Proof.  The share defined by (6) distributes the sum of the spillover terms, already 

established to be  − DiD, between its two components as shown in (7).  From (2), the sTt term is 

the sum DiD + sKt and therefore what is shown in (7).  PTPT requires that sKk = DiD + sTk, which 

is the result shown in (7).  QED 

  

The definitions and axiom (2)-(6) allow the diagonal of S to be expressed entirely in terms 

of weighted averages of DiD and , using  and 1− as weights.  The off-diagonal “spillover” 

elements are the difference between the scale effect and DiD, scaled by either  or 1−.  The 

direction of the spillover effects can therefore be understood as a comparison between the scale 

effect and DiD.  The expression (7) and the intuition about signing market spillovers are familiar 

from price theory, where they are known as Marshall’s Laws of Derived Demand.  This connection 

is made explicit in section III.B. 

 

Expression (7) also formalizes that, when  is interpreted as the treated share of the market 

 and is small, the ToT is approximately equivalent to DiD and is uninformative about the scale 

effect 𝜀.  
 

The eigenvalues of S are simple, of intrinsic interest, and useful for establishing additional 

results. 

 

COROLLARY.  Under the PTPT assumption (4), the eigenvalues of S are DiD and .  The 

matrix sum (product) of two matrices each of the form (7) itself has the form (7), with one 

eigenvalue that is the sum (product) of the two component DiDs and another eigenvalue that is the 

sum (product) of the two s, respectively. 

 

Proof.  Use (7), which requires (4), to calculate the eigenvalues.  QED 
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Even though (so far) the matrix S has three degrees of freedom, its eigenvalues are independent of 

the spillover share .  Each eigenvalue is of intrinsic interest because DiD is commonly measured 

while  represents a meaningful counterfactual.  As a result, any arithmetic operations on 

treatment-effects matrices – such as combining two different 𝑆 matrices, one for each of the 

demand and supply effects in a simultaneous system – translate into the same operations on their 

respective scale effects and DiDs.   

 

 The inverse operation on S is particularly informative because the spillover-share 

parameter is retained:   

 

(
𝜆𝜀 + (1 − 𝜆)𝐷𝑖𝐷 (1 − 𝜆)(𝜀 − 𝐷𝑖𝐷)

𝜆(𝜀 − 𝐷𝑖𝐷) (1 − 𝜆)𝜀 + 𝜆𝐷𝑖𝐷
)
−1

= (

𝜆

𝜀
+
1 − 𝜆

𝐷𝑖𝐷
(1 − 𝜆) (

1

𝜀
−

1

𝐷𝑖𝐷
)

𝜆 (
1

𝜀
−

1

𝐷𝑖𝐷
)

1 − 𝜆

𝜀
+

𝜆

𝐷𝑖𝐷

) (8) 

 

Suppose we have results for quantity outcomes of price treatments.  Equation (8) translates those 

into results for price outcomes of quantity treatments. 

 

 

III.B.  Derived-demand interpretations of treatment effects 
 

When the treatments are prices and outcomes are quantities, or vice versa, demand theory 

is another lens through which to compare DiD and scale effects as defined above.  In contrast to 

the illustration featured in Figure 1, the demand analysis that follows allows for (but does not 

require) heterogeneous treatment effects at the individual level and imperfect substitution in 

demand among the various quantities.  Our first result is that treated outcomes and control 

outcomes can be interpreted as composite commodities.  This interpretation allows the DiD and 

compensated scale effects to be precisely linked to Allen elasticities of substitution in preferences.  

The magnitude of DiD proves to be a shadow elasticity of substitution.  A final result is that 

compensated scale effect summarizes everything about substitution that cannot be discovered with 

DiD, and vice versa. 

 

Consider an empirical procedure that identifies a group of G suppliers, selecting a fraction 

of them to be “treated” and using the remainder as a comparison group.  The outcome of interest 

is equilibrium group-average quantity, expressed in logs.  The components of each average are 

denoted as vectors 𝑇̂ and 𝐾̂.  T and K represent the per-capita log average quantities, respectively, 

supplied by the two groups and ultimately consumed by downstream consumers.  The selection 

procedure could be random, although our main results do not require that T be representative of G 

overall.  The quantities T and K could be labor employed in two different states, as in the minimum 

wage literature. They could be capital in two different industries.  In other applications, T and K 

might represent sales of distinct retail products, sales or employment firms in the same industry 

that differ by size or location, or different sectors of the economy.  The model is flexible in 

accommodating these cases. 

 

The purpose of the comparison is to infer something about the characteristics of market 

demand.  We refer to the “treatments” t and k is as log prices on the demand side of the market and 
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refer to this interpretation as demand-price treatments with quantity outcomes.  The dt and dk 

notation can be understood as a shorthand for a simultaneous-equation analysis of exactly how the 

T and K suppliers must be treated to result in demand price changes dt and dk.  We expand those 

details later after we establish results connecting  and DiD to consumer preferences.  

 

Final consumers have convex preferences 𝑢(𝑇̂, 𝐾̂, 𝑋̂) over G+N consumption choices, 

where N is the dimension of the vector 𝑋̂ of the “outside” goods supplied by neither the treated nor 

the controls.  The t treatment increases prices of the components of 𝑇̂ by the common factor et.  

The k treatment applies to the components of 𝐾̂, with a price factor of ek.  At this point, we do not 

necessarily assume that treated and controls are weakly separable from each other or the outside 

goods, which is why u has G+N distinct arguments.   

 

Composite Commodity Theorem.  The only thing that the components of 𝑇̂ necessarily have 

in common with each other is the treatment t, and similarly for the components of 𝐾̂.  Nevertheless, 

that is enough to represent the treated with a composite commodity and the controls with a second 

composite commodity.  As Sir John Hicks (1939/1975, p. p. 50) put it “when the relative prices of 

a group of commodities can be assumed to remain unchanged, they can be treated as a single 

commodity.”  Formally, market responses to the treatment can be understood in terms of a three-

dimensional utility function: 

 

𝑢(𝑧𝑇 , 𝑧𝐾, 𝑧𝑋; 𝑃̂𝑇 , 𝑃̂𝐾, 𝑃̂𝑋) ≡ max
{𝑇̂,𝐾̂,𝑋̂}

𝑢̂(𝑇̂, 𝐾̂, 𝑋̂)   𝑠. 𝑡.  

𝑃̂𝑇 ⋅ 𝑇̂ ≤ 𝑧𝑇 ∧ 𝑃̂𝐾 ⋅ 𝐾̂ ≤ 𝑧𝐾 ∧ 𝑃̂𝑋 ⋅ 𝑋̂ ≤ 𝑧𝑋 
(9) 

 

where the scalars zT, zK and zX in (9) are weighted sums of T, K, and X quantities, respectively, that 

would be demanded without any treatment.9  Note that the marginal rate of substitution between 

components of 𝑇̂, between components of 𝐾̂, or across those groups can depend on the value of 𝑋̂.  

We include the price vectors {𝑃̂𝑇 , 𝑃̂𝐾, 𝑃̂𝑋} in the definition of u to be clear that those must be held 

constant in what follows, otherwise u becomes a different function of the three aggregates. 

 

The scalars zT and zK represented weighted sums, whereas eT and eK are unweighted 

averages.  According to demand theory, summing various quantities is of little economic meaning 

unless they have the same prices.  Equivalently, the quantities of various goods are more 

meaningfully summed after each has units set so that they have the same price per unit.  This is 

the principle of quantity indexes.  Henceforth, we show results for the weighted sums and leave it 

as an exercise to the reader to determine how treatments affect (ln 𝑧𝑇 − 𝑇) and (ln 𝑧𝐾 − 𝐾) in 

specific applications. 

  

Assuming that the treatments have no effect on relative prices among the treated and no 

effect on relative prices among the controls, the definition (9) can characterize market equilibrium 

responses to the treatments as shown in (10): 

 

 
9 If there were more than the two treatment values t and k, then application of the composite commodity theorem 

results in more than two aggregates.  Namely, a supplier would be aggregated with all others receiving the same 

treatment. 
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max
{𝑧𝑇,𝑧𝐾,𝑧𝑋}

𝑢(𝑧𝑇 , 𝑧𝐾, 𝑧𝑋; 𝑃̂𝑇 , 𝑃̂𝐾, 𝑃̂𝑋)   𝑠. 𝑡.  

𝑒𝑡𝑧𝑇 + 𝑒
𝑘𝑧𝐾 + 𝑧𝑋 ≤ 𝑀 

(10) 

 

The model (10) describes a prototype three-dimensional demand system.  Its solution is three 

Marshallian demand functions for the three quantity indexes zT, zK and zX, each as a function of 

income M and three prices, with the usual properties.10  It also defines three Hicksian demand 

functions that are related to the Marshallian system by the usual Slutsky correspondence. 

 

In this setting, PTPT requires that (a) both z aggregates respond in the same proportion to 

any common treatment dk = dt, and (b) each aggregate’s response is equally composed between 

substitution and income effects. These conditions are satisfied if, for example, utility over 
(𝑧𝑇 , 𝑧𝐾, 𝑧𝑋) can equivalently be written as utility over 𝑧𝑋 and a homothetic aggregator of 𝑧𝑇 and 

𝑧𝐾, a common weak-separability assumption. These require that both aggregates have the same 

income elasticity.  By definition, for any nonzero dt, PTPT requires Hicksian and Marshallian 

demand functions to satisfy: 

 
𝑑 ln 𝑧𝑇
𝑑𝑡

|
𝑑𝑘=𝑑𝑡,𝑑𝑃̂=0

=
𝑑 ln 𝑧𝐾
𝑑𝑡

|
𝑑𝑘=𝑑𝑡,𝑑𝑃̂=0

 (11) 

 

where 𝑑𝑃̂ = 0 is our shorthand for holding constant all three 𝑃̂ vectors.11  In summary, this 

framework restricts preferences with PTPT (equation (11)) while restricting price treatments to be 

common among the treated and common among the controls. 

 

 Let 𝜂𝑇𝐾
𝐻  denote compensated elasticity of zT with respect to the price of zK and likewise for 

any other pair of {T,K,X}.  PTPT (equation (11)) requires the substitution matrix to satisfy 𝜂𝑇𝑇
𝐻 +

𝜂𝑇𝐾
𝐻 = 𝜂𝐾𝑇

𝐻 + 𝜂𝐾𝐾
𝐻  in addition to the usual homogeneity and, in levels or substitution elasticities, 

symmetry conditions.  Let T, K, and X denote the expenditure shares corresponding to each of 

the three expenditure terms in the model (10)’s budget constraint, respectively.  The shares sum to 

one across T, K, and X.   

 

The off-diagonal terms in equation (1) are the spillovers.  For the demand model (10) and 

(11), those terms have the economic interpretation of cross-price elasticities 𝜂𝑇𝐾
𝐻  and 𝜂𝐾𝑇

𝐻 , 

respectively.  As already noted, the weight of scale in ToT is the share  of the spillovers that is 

contamination of the controls.  In the demand model that share is 𝜆 = 𝜂𝐾𝑇
𝐻 /(𝜂𝑇𝐾

𝐻 + 𝜂𝐾𝑇
𝐻 ).  By 

Hicksian symmetry, that share can also be written as 𝜔𝑇/(𝜔𝑇 + 𝜔𝐾).  In words, a Hicksian ToT is 

the expenditure-share weighted average of scale  and DiD, whose determinants are further 

revealed in the propositions that follow: 

 

 
10 The same solution could be obtained by maximizing 𝑢̂(𝑇̂, 𝐾, 𝑋̂) with respect to the G+N quantities subject to the 

budget constraint 𝑒𝑡𝑃̂𝑇 ⋅ 𝑇̂ + 𝑒
𝑘𝑃̂𝐾 ⋅ 𝐾 + 𝑃̂𝑋 ⋅ 𝑋̂ ≤ 𝑀, and then using the price vectors {𝑃̂𝑇 , 𝑃̂𝐾 , 𝑃̂𝑋} to form the 

quantity indexes.  See also Deaton and Muellbauer (1980, p. 121), although our paper presents much work in the 

treatment-control paradigm as counterexamples to their assumption that “the usefulness of this theorem in 

constructing commodity groupings for empirical analysis is likely to be somewhat limited.”  
11 Recall that the price vector for the T (K) goods is 𝑒𝑡𝑃̂𝑇 (𝑒𝑘𝑃̂𝐾), respectively.  
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𝑇𝑜𝑇 =
𝜔𝑇

𝜔𝑇 + 𝜔𝐾
𝜀 +

𝜔𝐾
𝜔𝑇 +𝜔𝐾

𝐷𝑖𝐷 (12) 

 

  

 The components of 𝑇̂ can have different income elasticities, although Engel aggregation of 

(9) requires that the share-weighted average of their income elasticities coincides with the common 

income elasticity of zT and zK.  The treatment effect for treated good i is therefore the product of 

lnzT/t and the allocation of zT among its components based their relative income elasticities and 

substitution patterns with the outside good.  In other words, the model (9) - (10) allows for rich 

heterogeneity in treatment effects, although such heterogeneity is not required.  The treated goods 

can also differ in terms of the rate at which they substitute for various control-group goods or with 

outside goods because these differences are, beyond the income elasticity ratio already noted, 

irrelevant for predicting responses to t or k. 

 

Let 𝐴𝐸𝑆𝑇𝐾 denote the Allen elasticity of substitution between zT and zK, which is 𝜂𝑇𝐾
𝐻 /𝑠𝐾.  

Defining likewise for all other pairs of {T,K,X}, we have notation for the symmetric 33 matrix of 

Allen elasticities of substitution (AES).  The shadow elasticity of substitution between zT and zK, 

as defined by McFadden (1963), is defined in terms of the AES and expenditure shares and denoted 

TK: 

 

 

𝜎𝑇𝐾 ≡ −
𝜔𝑇𝜔𝐾
𝜔𝑇 + 𝜔𝐾

[(𝐴𝐸𝑆𝑇𝑇 − 𝐴𝐸𝑆𝑇𝐾) + (𝐴𝐸𝑆𝐾𝐾 − 𝐴𝐸𝑆𝑇𝐾)] > 0 (13) 

 

 

Proposition 3 links the treatment and scale effects to these two concepts of substitution 

from demand theory: 

 

PROPOSITION 3 (Treatment and scale effects linked to Allen substitution).  With PTPT, 

the comparative statics for the Hicksian demand functions can be expressed in terms of expenditure 

shares and Allen elasticities of substitution (AES):12 

 
𝑑 ln 𝑧𝑇/𝑧𝐾
𝑑𝑡 − 𝑑𝑘

|
𝑑𝑃̂=0≠𝑑𝑡−𝑑𝑘

= (𝐴𝐸𝑆𝑇𝑇 − 𝐴𝐸𝑆𝑇𝐾)𝜔𝑇 = −𝜎𝑇𝐾 < 0 (14) 

 

 

𝜀𝐻 ≡
𝑑 ln 𝑧𝑇
𝑑𝑡

|
𝑑𝑃̂=0=𝑑𝑡−𝑑𝑘=𝑑𝑢

=
𝜔𝑋
2

𝜔𝑇 + 𝜔𝐾
𝐴𝐸𝑆𝑋𝑋 < 0 (15) 

 

Proof.  In elasticity form, the differentials of the Hicksian demand functions are: 

 

𝑑 ln 𝑧𝑇 = 𝜔𝑇𝐴𝐸𝑆𝑇𝑇𝑑𝑡 + 𝜔𝐾𝐴𝐸𝑆𝑇𝐾𝑑𝑘 ∧ 𝑑 ln 𝑧𝐾 = 𝜔𝑇𝐴𝐸𝑆𝑇𝐾𝑑𝑡 + 𝜔𝐾𝐴𝐸𝑆𝐾𝐾𝑑𝑘 (16) 

 
12 With 𝑃̂𝑋 held constant, 𝑃̂𝑋 ⋅ 𝑋̂ is itself a composite commodity with well-defined own- and cross-price Allen 

elasticities of substitution.  Recall that Allen elasticities of substitution can defined from price derivatives of the cost 

function corresponding to u. 
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where we hold constant the utility level and all three 𝑃̂ vectors and use the symmetry of the Allen 

elasticity of substitution.  PTPT requires that the difference between the two dt coefficients in (16) 

has the same magnitude, and opposite sign, as the difference between the two dk coefficients.  The 

former difference is therefore the DiD featured in the proposition.  The aforementioned PTPT 

restriction on the coefficients also implies that the former difference is −TK. 

 

 The scale effect shown in (15) is the sum of the first two coefficients in (16).  Homogeneity 

and symmetry of the compensated demand for zT allows that sum to be rewritten as sX AESXT.  

Homogeneity and symmetry for the other goods, together with PTPT, equate sX AESXT to the 

expression shown in (16).  QED 

 

COROLLARY (Treatment effect linked to shadow substitution).  The difference-in-differences 

estimator is negative, with magnitude equal to the shadow elasticity of substitution TK between 

the T and K goods in u().  

 

Equation (14) is an expression for the DiD of the logs of the quantity indexes zT and zK.  

The H defined in Proposition 3 is a compensated scale effect in the sense that it describes the 

compensated responses of both ln zT and ln zK to a common treatment.  If the scale effect in equation 

(12) is interpreted as a compensated scale effect, then the equation describes a compensated ToT.  

By the Slutsky equation, the uncompensated scale effect is M = H − (sT+sK), where  is the 

income elasticity of demand common to zT and zK.13  If the scale effect in equation (12) is 

interpreted as an uncompensated scale effect, then the equation describes a uncompensated ToT.14 

 

 A comparison of (14) and (15) is the starkest demonstration that the treatment-control 

comparison −TK reveals something entirely different about the structure of demand than a 

common treatment dt = dk does.  They refer to different entries in the AES matrix.  Although the 

matrix is restricted by symmetry and homogeneity, those restrictions impose no relationship 

between AESXX and the Allen elasticities that define TK.  Especially, the AESXX term highlights 

that the compensated scale effect H is all about substitution to the outside goods 𝑋̂ whereas 

treatment-control comparisons reveal only substitution between treatment and controls. 

 

 Proposition 4 establishes that the compensated scale effect H summarizes everything about 

substitution that cannot be discovered with the treatment-control comparison −TK.  Moreover, 

none of the nine Allen substitution terms can be inferred from shares and TK alone.  Each of them 

also requires H. 

 

 PROPOSITION 4 (Recovering the substitution matrix from DiD and scale).  With PTPT, 

homogeneity, symmetry, and values for TK, H, and two expenditure shares, the entire AES matrix 

can be constructed as:  

 
13 Note that the gap between M and H is small to the extent that a large majority of consumer spending is on the 

outside goods.  The DiD is not characterized as either Hicksian or Marshallian because T and K have a common 

income effect that differences out. 
14 The difference between the compensated ToT and the uncompensated ToT is T. 
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(
𝐴𝐸𝑆𝑇𝑇 𝐴𝐸𝑆𝑇𝐾 𝐴𝐸𝑆𝑇𝑋
𝐴𝐸𝑆𝐾𝑇 𝐴𝐸𝑆𝐾𝐾 𝐴𝐸𝑆𝐾𝑋
𝐴𝐸𝑆𝑋𝑇 𝐴𝐸𝑆𝑋𝐾 𝐴𝐸𝑆𝑋𝑋

) =

(

 
 
 
 
 

𝜀𝐻 −
𝜔𝐾
𝜔𝑇
𝜎𝑇𝐾

𝜔𝑇 + 𝜔𝐾

𝜀𝐻 + 𝜎𝑇𝐾
𝜔𝑇 + 𝜔𝐾

−
𝜀𝐻

𝜔𝑋

𝜀𝐻 + 𝜎𝑇𝐾
𝜔𝑇 + 𝜔𝐾

𝜀𝐻 −
𝜔𝑇
𝜔𝐾
𝜎𝑇𝐾

 𝜔𝑇 + 𝜔𝐾
−
𝜀𝐻

𝜔𝑋

−
𝜀𝐻

𝜔𝑋
−
𝜀𝐻

𝜔𝑋

𝜔𝑇 + 𝜔𝐾
𝜔𝑋

𝜀𝐻

𝜔𝑋)

 
 
 
 
 

 (17) 

 

Holding constant TK and the shares, each of the nine entries varies with H. 

 

Proof.  The AESXX entry derives directly from (15).  X = 1− T − K.  Homogeneity, 

symmetry, and PTPT require that AESXT = AESXK = AESKX = AESTX.  Homogeneity of X demand 

together with the expression for AESXX requires those four Allen elasticities to be each be −H/X.  

The remaining four Allen elasticities then follow from symmetry, homogeneity, and the definition 

(14) of the shadow elasticity TK.  QED 

 

Equation (17) shows than none of the nine substitution terms can be inferred from shares and 

treatment-control comparisons alone.  Each of them also requires the scale effect H. By 

proposition 3, DiD only told us about 𝜎𝑇𝐾. 

 

 Marshall’s Laws of Derived demand were formulated by Marshall (1895) and Hicks (1936) 

under the more restrictive assumption that zT and zK are weakly separable from the X goods.15  In 

this case, the shadow elasticity TK in u is itself the elasticity of substitution between T and K in 

the function that aggregates them in preferences.16  With this interpretation of DiD and TK, 

equation (12) becomes Marshall’s Laws expressed in elasticity form.  Equations (12) and (14) 

show the more general case where −DiD is a shadow elasticity of substitution in u. 

 

 

 

IV. Bias correction 
 

 The straightforward case for interpreting a DiD estimate is when we are interested in ToT 

– the effect on T of dt > 0 = dk – rather than the effect of a hypothetical aggregate treatment.  

Proposition 2 shows that ToT =  + (1−)DiD, which we expect to be similar to the DiD estimate 

when the share treated is close to zero.  For example, one could use a DiD estimate of Canada’s 

policy experience as an estimate of what would happen to another small (compared to the world 

economy) and otherwise similar country that adopts the same policy because both effects would 

be DiD dt. 

 
15 With randomly assigned treatments, zT and zK would, up to sampling error, have the same income elasticity and 

cross-price elasticities with each element of 𝑋̂.  These are the conditions for weak separability with a homothetic 

aggregator. 
16 The concept of shadow elasticity of substitution was not yet invented when Marshall, Hicks, and Allen were 

writing about these issues.  Allen and shadow elasticities of substitution coincide when there are only two goods. 
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Even when the parameter of interest involves the effect  of treating the entire market, price 

theory shows how DiDs can be used to obtain a reliable estimate of .  Two instances follow, both 

where a scale effect can be inferred entirely from the results of a targeted treatment.  The result is 

possible due to the presence of market frictions that create known heterogeneity in the spillover 

among the untreated. In IV.A., we describe how out-of-market controls in the cross section, 

combined with DiD estimates, can be used to recover the scale effect. Subsection IV.B. provides a 

setting, familiar from industrial organization and spatial economics, where no control is fully 

beyond the reach of the invisible hand.  Nevertheless, with potential controls differing in terms of 

distance from the treatment, targeted treatments provide enough information to estimate a scale 

effect from two DiDs.  Both examples have the scale effect outside the range spanned by the two 

DiDs. 

 

IV.A.  Outside- and within-market control groups 
Suppose that a fraction n of the controls were beyond the reach of the invisible hand.  That is, the 

spillover of a targeted treatment dt onto the in-market controls is sKt dt, as compared to zero for 

the out-of-market controls.  The average spillover among the controls is therefore (1−n)sKt dt. 

   

The scale effect is defined as before,   sTt + sTk.  For a targeted treatment of dt = 1, we 

denote the difference between the treated outcome and the average control outcome as DiD(n): 

 

𝐷𝑖𝐷(𝜆𝑛) ≡ 𝑠𝑇𝑡 − (1 − 𝑛)𝑠𝐾𝑡 = 𝜆𝑛𝜀 + (1 − 𝜆𝑛)𝐷𝑖𝐷(0) (18) 

 

where the second equality follows from the element-by-element equations (7).  DiD(0) refers to 

the difference between ToT and the spillover effect sKt on the in-market controls.  Unlike DiD(0), 

DiD(n) puts some weight on the scale effect.  The scale effect coefficient is less than one both 

because only part of the market is treated ( < 1) and because only some of the controls are outside 

the market (n < 1).  Still, DiD(n) over- or under-estimates the magnitude of the scale effect 

according to whether T and K are substitutes or complements, respectively.  If none of the controls 

were in the market (n = 1), DiD(n) would be the ToT but still differ from the scale effect because 

it does not include the effect on the treated of applying treatments to the untreated in their market. 

 

Having at least some of the controls out of the market raises the possibility of recovering 

the scale effect from a meta-analysis.  Specifically, assume that two DiDs are available from 

distinct markets with the same  and DiD(0) but different shares for the out-of-market controls (n) 

or different treatment shares as reflected in .  Letting subscripts denote markets, the common 

scale effect can be written in the two-market case as a weighted average of DiD from each market: 

 

𝜀 = 𝛿𝐷𝑖𝐷(𝜆1𝑛1) + (1 − 𝛿)𝐷𝑖𝐷(𝜆2𝑛2) (19) 

 

𝛿 ≡
1 − 𝜆2𝑛2
𝜆1𝑛1 − 𝜆2𝑛2

 (20) 

 

One, but not both, of the markets could have n = 0.  Note that the market-1 weight  must be 

outside the unit interval and therefore put negative weight on one of the DiDs and a coefficient 



 20 

greater than one on the other.  According to (19), the scale effect is outside the range spanned by 

the two DiDs.  The scale effect falls below (above) that range when treatments and controls are 

complements (substitutes), respectively. 

 

 Alternatively, a single targeted treatment permits recovery of the scale effect when the in-

market controls can be distinguished from the out-of-market controls.  Their outcomes each serve 

as a distinct comparison for the treated outcome.  The DiD using in-market controls is DiD(0), 

while the DiD using out-of-market controls is DiD() = ToT.  This is the special case of equation 

(19) that reduces to the ToT expression in equation (7).  All of this is possible by having at least 

some controls that do not experience the full effect of the invisible hand. 

 

 

IV.B. Market spillovers that diminish with distance 
  

So far, we have considered controls as either in the same market as the treated, or out of 

the market entirely.  Here we allow for a gray area, namely a model in which the magnitude of 

market spillovers diminishes with “distance” from the treatment.  The model is sometimes known 

as the circle-city or Salop model (1979).  A key result is a simple formula for inferring a scale 

effect on prices entirely from the results of a targeted treatment. 

 

An integer number N of producers are evenly spaced around the circle, whose 

circumference is equal to one.  Distance along the circle can be interpreted literally, as for an urban 

economics application.  Alternatively, gaps between producers on the circle can represent other 

product-attribute differences. 

 

We assume that each producer 𝑖 ∈ {1, 2, … ,𝑁} sets its price pi as a weighted sum of its own 

cost ci and the prices of its immediate neighbors: 

 

𝑝𝑖 = 𝜌0 + 𝜌1𝑐𝑖 + 𝜌2
𝑝𝑖−1 + 𝑝𝑖+1

2
 (21) 

 

 

with the constants 1 > 0 and 2  (−1,1).  Note that 𝑝0 = 𝑝𝑁 and 𝑝𝑁+1 = 𝑝1, which appear in 

equation (21) when evaluated for producers 𝑖 ∈ {1, 𝑁}, because of the model’s circular setup.  Our 

Appendix I shows how the special case of equation (21) with 1 = 2 = ½ can be derived from 

profit-maximizing and utility-maximizing behavior.  Our purpose here is to show how it restricts 

the pattern of market spillovers. 

 

Let {dp1,…,dpN} denote the price effects of a targeted treatment that increases the costs 

only of producer 1, i.e. dc1 > 0 = dc2 = … = dcN, and let {dP1,…,dPN} denote the price effects of 

treating all producers (the entire market) with the same-magnitude cost shock as producer 1 

experiences in the targeted treatment.  Differencing the total derivative of equation (21) between 

the marketwide and targeted outcomes,  
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𝑑𝑃1 − 𝑑𝑝1 = 𝜌2
𝑑𝑃𝑁 + 𝑑𝑃2

2
− 𝜌2

𝑑𝑝𝑁 + 𝑑𝑝2
2

 (22) 

 

The symmetry of the model and the two treatments requires that dp2 = dpN and dP1 = dP2 = dPN. 

 

𝑑𝑃1 − 𝑑𝑝1 = 𝜌2(𝑑𝑃2 − 𝑑𝑝2) (23) 

 

By definition, the scale effect on prices is dP1 = dP2 = , the DiD for the targeted treatment 

is dp1 − dp2, and the ToT for the targeted treatment is dp1.  Equation (23) can be rewritten as 

 

𝜀 = 𝑇𝑜𝑇 +
𝜌2

1 − 𝜌2
𝐷𝑖𝐷 (24) 

 

Note that the DiD in equation (24) refers to the treated-adjacent producers as the controls.  To a 

close approximation, the ToT is the difference dp1−dpN/2+1 between the treated firm’s price and the 

price charged on the opposite side of the circle.17  Therefore, equation (24) allows the scale effect 

on prices to be inferred entirely from the results of a targeted treatment.  With 2 = ½, the scale 

effect is simply the sum of ToT and DiD.  Appendix II further illustrates a broader principle that 

market frictions allow scale effects to be recovered from a targeted treatment’s ToT and DiD. 

 

 An analysis related to (24) is possible for quantities.  As with prices, the effect on quantities 

of a market wide cost change is outside the interval bracketed by the ToT and adjacent-producer 

DiD observed from a targeted cost change.  However, unlike the scale effect on prices, the scale 

effect on quantities is closer to zero than either ToT or DiD. 

 

 

 

V. Further examples of difference-in-differences in the 
marketplace 

 

V.A. Models with time and region fixed effects 
Without price theory as a guide, difference-in-differences estimates can easily be 

misinterpreted in geographical contexts.  One case is an early set of studies attempting to detect 

imperfect competition in cigarette manufacturing in the form of “over-shifting” cigarette excise 

taxes (Sumner, 1981).  Over-shifting means a $1 per pack tax would increase the retail price of 

cigarettes by more than $1 per pack, whereas “one-for-one passthrough” refers to a dollar-for-

dollar correspondence between excise taxes and retail prices.  These studies were executed with 

essentially a difference-in-differences framework by comparing states with large tax increases to 

states with little or no increase. 

 

DiD pass-through studies found nearly one-for-one passthrough, but overlooked the 

possibility that retail prices in the control states were increased by the tax rates in the treatment 

 
17 In this way, both (19) and (24) show the scale effect as a weighted sum of two different DiDs, except that the sum 

of (24)’s weights exceeds one. 
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states, which can occur through wholesale prices.18  If the control states were affected in this way, 

nationwide increases in excise taxes would be over-shifted even though the state DiD shows one-

for-one pass through.  If we interpret T as retail prices in the states with tax increases and K 

represents retail prices in the other states, that is the situation illustrated in Figures 2 and Figures 

3.  The blue arrow represents the retail-price effects of a nationwide tax increase.  A national tax 

would increase prices more than a geographically-concentrated tax increase (green arrow), even 

in the states targeted by those taxes. 

 

Another example is related to Jaffe, Minton, Mulligan, & Murphy (2019, p. Chapter 17), 

which concludes that business taxes reduce wages in the long run because the taxes reduce 

productivity.  Nevertheless, an increase in business taxes in a particular locality may not reduce 

wages in that locality relative to the rest of the nation because workers have a choice of where to 

live and work.  In effect, the wage in any locality is influenced by business taxes throughout the 

country, or even throughout the world.  By failing to account for this, a DiD approach might not 

show any wage effect of business taxes. 

 

If geographic differences in business taxes result in little or no geographic differences in 

wages, they might result in especially large geographic differences in employment.  This is another 

case in which the geographic-specific effect is different from the aggregate effect, but this time 

with the former effect being greater. 

 

Another policy question is the employment effect of public projects such as building a 

sports stadium or hosting a major event such as the Olympics.  Early studies used something like 

a DiD approach and found a “multiplier”: that total employment in the vicinity of the stadium 

increased more than the number directly employed by the sports enterprise (Wanhill, 1983; 

Johnson, Obermiller, & Radtke, 1989).  For example, complementary businesses such as 

restaurants, lodging, and parking were opened nearby.  But later studies found that most, if not all, 

of the additional employment was pulled in from other localities (Dwyer & Forsyth, 2009). 

 

Development economics includes experiments that encourage healthcare providers in 

treatment villages to supply more healthcare.  Others incentivize more instructional effort by 

teachers in the treatment villages.  Such experiments can be analogous to the sports-stadium 

studies.  Namely, through factor markets the experiment reallocates resources from control villages 

to treatment villages.  The per-capita effect of treating all villages would be different unless 

resources are moved with equal ease (or difficulty) between villages as from outside the village 

economy as a whole.  In our notation, that condition is  = DiD. 

 
18 See also Miravete, Seim and Thurk (2018).  Suppose that, for example, cigarette manufacturers set one nationwide 

wholesale price because of concerns that regional wholesale price inequality would result in unauthorized wholesale 

orders and shipments in the low-price regions on behalf of the high-price regions.  Such manufacturers would 

respond to an increase in one state’s excise rate by adjusting their nationwide wholesale price, and through that 

mechanism indirectly adjust retail prices throughout the nation.  Later studies acknowledged this market 

mechanism's effect on state differences (Keeler, et al. 1996, Evans, Ringel and Stech 1999, Adhikari 2004); see also 

Tennant (1950).  Harris (1987) emphasizes the results of a federal tax change.  Our Appendix II provides a model of 

such price setting, expressing its results in the format (1).  The eigenvalues of S prove to be the national pass-

through coefficient (NPTC) and a weighted harmonic mean of one and that same NPTC.  The weights depend on the 

trans-shipping costs, with very little weight on NPTC.  That is, due to trans-shipping, difference-in-differences tend 

to show a one-for-one “effect” of tax on retail price, regardless of the NPTC. 
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Regional DiD studies often include many regions that are treated at different times and 

different amounts.  The average region has a small share;  is close to zero in our notation.  Neither 

the ToT nor the DiD reflects much of the scale effect.  For instance, with cigarette excise taxes, the 

DiD indicates what would happen to retail prices in a state that increases its tax rate, while the 

national effect of a national increase would be different.  More generally, the DiD in a many-region 

study closely approximates the effect on the treated of treating yet another region of similar size, 

even though it does not indicate the aggregate effect of treating all regions.  

 

Newer studies have proposed to estimate the ToT by selecting control observations that are 

located at a given radius from treated observations.  Butts’ (2023) reexamination of the Tennessee 

Valley Authority analysis in Kline and Moretti (2014) is an example.  The economic interpretation 

of such procedures depends on the outcome of interest and the structure of market spillovers.  For 

example, for quantity-price relationships satisfying Hicksian symmetry, as in our Section III.B, a 

targeted treatment by itself does not provide enough information to infer scale effects.  In contrast, 

the scale effect on prices of a cost treatment in the Salop model can be estimated as the sum of the 

ToT and adjacent-neighbor DiD observed from a geographically targeted treatment, as shown in 

our Section IV.B.  

 

 

V.B. Welfare effects of random treatments 
 

Let’s examine treatment effects in a setting where the substitution effect exceeds the scale 

effect.  A large pool of ex ante identical workers supplies hours on the intensive margin.  Their 

population is normalized to one.  From employers’ perspective, any worker’s hours are perfect 

substitutes for another’s.  In the baseline, each worker is paid the same hourly wage w and supplies 

the same hours.  The aggregate demand for their hours is D(w), with D(w) < 0.  The per capita 

supply of labor is L(w), with L(w) > 0. 

 

An experiment selects a fraction  of the workers for a wage subsidy t  0.19  Their hours 

are denoted T per treated and T in total.  The untreated “controls” supply K per control and (1−)K 

in aggregate.  To highlight the analogy with the model (1), our notation also includes k as a subsidy 

for the controls, although it is not emphasized here.  Given values for , t and k, an equilibrium is 

a list {w,T,K} of wage and hours satisfying: 

 

𝐾 = 𝐿(𝑤 + 𝑘)  
 

𝑇 = 𝐿(𝑤 + 𝑡) 
 

(1 − 𝜏)𝐾 + 𝜏𝑇 = 𝐷(𝑤) 
 

 
19 This is a simplified version of Heckman, LaLonde, and Smith (1999) that focuses on incidence rather than 

employment effects.  [also connect to the example at the beginning of the paper] 
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Unsurprisingly, dK/dt < 0 < dT/dt and dw/dt < 0.20  The subsidy benefits the treated and employers 

(even those who do not employ any treated) and harms the controls.21  Regardless of the share 

treated, the first magnitude can easily be less than the combined magnitudes of other two. 

 

Take the case when labor demand is wage inelastic,   (0,1), and the subsidy is small.22  

The treated benefit from the subsidy, but employers benefit even more because they pay less for 

both treated workers and untreated workers.  Shrinking the treated share does not change this 

result.  If the treated are to be the primary beneficiary of the subsidy, demand needs to be wage 

elastic enough or supply inelastic enough.23  Clearly, quantifying the scale effect is essential for 

understanding the relationship between the welfare effect on the treated and welfare effects more 

broadly. 

 

This example also distinguishes the DiD estimator dT/dt − dK/dt from the effect of treating 

all workers.  The DiD estimate is L(w) because the subsidy moves treated and controls in opposite 

directions along the supply curve.  The equilibrium quantity effect of subsidizing all workers, is a 

parameter of interest and results from shifting the supply curve downward by dt.  As expected from 

the general substitutes case, this scale effect is closer to zero than the DiD estimate. 

 

 

V.C. The missing intercept 
 

Equilibrium spillovers have been acknowledged in a macroeconomics literature that uses 

cross-sectional comparisons to infer effects of national policies, such as cash-transfer programs 

intended to affect consumption.  It recognizes that the consumption of households not receiving a 

transfer will be affected by the transfers going to other households.  Wolf (2023) characterizes the 

effect as the “missing intercept” problem. 

 

Our paper features a treatment that is uniform among a single treatment group.  In that case, 

the intercept perspective can be seen by writing the treatment outcome dT from the first column of 

the effects matrix (7): 

 

𝑑𝑇 = 𝑑𝐾 + 𝐷𝑖𝐷 ∗ 𝑑𝑡 (25) 

 

the first term on the RHS of equation (25) is the spillover onto the controls.  This “intercept” term 

would be differenced out if the version of (25) for controls were subtracted.  Alternatively, the 

 
20 For this example, the matrix elements corresponding to (1) are 𝑠𝑇𝑡 = 𝐿

′(𝑤)
(1−𝜏)𝐿′(𝑤)−𝐷′(𝑤)

𝐿′(𝑤)−𝐷′(𝑤)
, 𝑠𝑇𝑘 =

−(1 − 𝜏)𝐿′(𝑤)
𝐿′(𝑤)

𝐿′(𝑤)−𝐷′(𝑤)
, 𝑠𝑘𝑇 = −𝜏𝐿

′(𝑤)
𝐿′(𝑤)

𝐿′(𝑤)−𝐷′(𝑤)
, and  𝑠𝐾𝑘 = 𝐿

′(𝑤)
𝜏𝐿′(𝑤)−𝐷′(𝑤)

𝐿′(𝑤)−𝐷′(𝑤)
.  These satisfy  =  and the 

parallel trends assumption (4). 
21 The expressions for aggregate effects on surplus for treated, controls, and employers are (dw+dt)T, (1−)Kdw, 

and −D(w)dw, respectively. 
22 A “small subsidy” refers to the comparative static dt > 0 in the neighborhood of t = 0, holding k constant at zero. 
23 For non-zero supply and demand elasticities, the aggregate benefit for the treated as a ratio to the aggregate 

employer benefit is 1 −  − D(w)/L(w). 
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intercept might be captured by other variables such as time effects added to the analysis for the 

purpose of holding constant determinants of the outcome that are distinct from the treatment. 

 

 Now consider the relation between outcomes and treatments when there are multiple 

treatment groups g = 1, …, N each receiving a different treatment.  Outcomes for controls and each 

treated group could be calculated sequentially by applying one treatment at a time.  If DiD were a 

constant – not varying with the baseline – then the resulting relation would be linear as in (26): 

 

𝑑𝑇𝑔 = 𝑑𝐾 + 𝐷𝑖𝐷 ∗ 𝑑𝑡𝑔 (26) 

 

dK is the outcome change for the untreated, which reflects the market spillovers of all N of the 

treatments given.  In Wolf (2023), the outcome is household consumption, with households 

differing in terms of the size of the treatment (stimulus check) they received.  What we call DiD is 

estimated in his work (and others) with a panel regression at the household-by-quarter level 

including time fixed effects and estimated in first differences.  

 

The market featured in our Figure 1 provides another example.  DiD is the constant one for 

a log revenue outcome regardless of the functional form of market demand.  Comparisons of log 

revenue to the productivity treatment in a cross-section of suppliers would show a linear 

relationship with treatment slope one.  

 

If the missing intercept were identified, the econometrician would possess an estimate of 

the ToT, which, as we have discussed before, still differs from the scale effect of a uniform 

treatment on the entire market. At that point, however, estimates of both ToT and DiD can be 

entered into a variant of equation (12) to determine the scale effect 𝜖.  Therefore, Wolf (2023) can 

be interpreted as using a version of the solution described in our section IV.A. within a setting 

covered by our section III.  

 

 

VI. Summary and conclusions 
 

Markets are ubiquitous.  Consumers and businesses do not live or work in isolation, even 

approximately so.  Perhaps one reaction among those engaged in measurement is to actively 

attempt to isolate members of the treatment group.  Clinical drug trials, for example, do try to 

prevent trial participants from trading with each other, that is, sharing or exchanging the treatments 

with others.  Some clinical trials even discourage participants from communicating specifics about 

their trial experiences to prevent (what the investigators view as) potential bias or cross-

contamination of results. 

 

We take a different approach in this paper, which is to acknowledge trade and keep it at the 

center of the analysis.  In our framework, parallel trends require the treatment and control outcomes 

to be weakly separable in utility, production, or cost from all other outcomes.  Marshall’s Laws of 

Derived Demand are thereby vehicles for several analytical results.  One is that a DiD estimator 

measures the degree of substitution between treatments and controls, regardless of the fraction of 

the market that is treated and the magnitude of market spillovers (Proposition 3). In contrast, the 
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effect of treating the entire market is a “scale effect,” which is the degree of substitution with goods 

outside the market where treated and controls participate.  The effect of the treatment on the treated 

(ToT) is a weighted average of the scale effect and the DiD, whereas the market spillovers are 

proportional to their difference (Proposition 2). 

 

Proposition 2 also establishes that, assuming “parallel trends for parallel treatments” 

(PTPT), the eigenvalues of the treatment-effects matrix are the scale effect and the DiD.  As a 

result, any arithmetic operations on treatment-effects matrices translate into the same operations 

on their respective scale effects and DiDs.  This correspondence appeared in a few of our examples 

where treatment effects on demand were inverted, combined with an identity matrix, or combined 

with treatment effects on supply. 

 

The presumption that market-equilibrium responses are typically dampened relative to 

experimental evidence (an example of which is provided in Banerjee and Duflo (2009)) may refer 

to the market-level feedback between supply and demand, which we have left only implicit in this 

paper.  For the usual incidence reasons, for example, the market-level reduced form for the quantity 

elasticity of tax changes is −sd/(s−d).  This incidence coefficient reflects equilibrium dampening 

in the sense that it is less than both the demand elasticity magnitude −d and the supply elasticity 

s.24   

 

However, there is more to market equilibrium than supply-demand feedback. In particular, 

the actions of market participants—even those on just one side of the market—are coordinated by 

prices.  Either the controls are affected by the treatment, the treated would be further affected by 

treating the rest of the market, or some combination thereof.  Market spillovers drive a wedge 

between DiD and the scale effect.   The market-level demand elasticity d, the market-level supply 

elasticity s and the market-level incidence coefficient sd/(s−d) are each examples of a scale 

effect.  The DiD from an experiment with control and treatment in the same market recovers 

substitution effects instead of scale effects.  Treatment-control comparisons by themselves do not 

even partially identify d, s, or sd/(s−d). 

 

Complementarity is the case when the treated are affected more by a full-market treatment 

than by receiving the same treatment while others in the market are untreated.  Note that 

complementarity requires neither increasing returns nor externalities.  It does not require that the 

treated and controls ever meet each other to trade.  It does not require Leontief preferences or 

technology.  Complementarity in this sense only means that the scale effect exceeds the 

substitution effect.  Our section IV provides guidance for estimating the degree of complementarity 

– or recovering the scale effect – from multiple DiD estimates. 

 

What econometricians sometimes call “spillover” effects are not well described as 

externalities – missing markets – because markets also transmit treatment effects to the untreated 

through prices.  Analogizing spillover effects with externalities may give the wrong impression 

that such effects are rare or beyond basic economic training. 

 

 
24 The incidence coefficient can be derived in the usual way as the equilibrium quantity effect of a one price-unit 

wedge between market supply and market demand. 
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Per capita market spillover effects tend to decrease as the size of the treatment group goes 

to zero, but so does the aggregate treatment effect.   Small-scale treatments thereby come with two 

disadvantages.  One is that scale effects are especially obscured by substitution effects.  Second, 

and surprisingly, the spillover effect is comparatively large in the aggregate. 
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Appendix I: Derivation of the circle-city pricing equation 

A continuum of consumers is uniformly distributed around the same circle as the N 

producers cited in the main text.  Consumers have a choice to consume only the outside good, or 

to travel to a producer and purchase one unit.  If the purchase is from a producer charging pi, the 

purchase results in a consumer surplus of v − pi minus a travel cost that is h times the distance 

traveled.   

 

If the number of producers N or value v are too low, or the cost parameters h and {ci} too 

high, then the consumers furthest from producers will not make a purchase.  Each producer would 

thereby operate in its own market, with no reaction to the pricing of other producers.  We rule out 

this case. 

 

We also assume that prices and costs are sufficiently similar across producers that no 

consumer would benefit by leapfrogging a producer to make a purchase.  That is, the choice for 

the consumer is either to travel left or right, and then stop at the first producer encountered.  

Therefore, there are N distinct locations around the circle where the consumers are indifferent 

between purchasing from the two nearest producers.  For the consumers indifferent between 

producer i and i+1, their location is at distance x from the former and 1/N − x from the latter: 

 

𝑥 =
1

2𝑁
+
𝑝𝑖+1 − 𝑝𝑖
2ℎ

 (27) 

 

The demand facing producer i is the sum of the consumers traveling from the producer’s left and 

those traveling from the producer’s right: 

 

𝐷 (𝑝𝑖;
𝑝𝑖−1 + 𝑝𝑖+1

2
) =

1

𝑁
+

𝑝𝑖−1 + 𝑝𝑖+1
2 − 𝑝𝑖

ℎ
 (28) 

 

This demand function is linear in the producer’s own price and the average of the prices of adjacent 

competitors.  A producer pricing exactly at that average receives 1/N of the city-wide demand. 

 

The profit maximizing price for a producer i taking as given the prices of competitors is: 

 

𝑝𝑖 =
𝑐𝑖 +

𝑝𝑖−1 + 𝑝𝑖+1
2 +

ℎ
𝑁

2
 

(29) 

 

The condition (29) must hold for all integers i from 1 to N.  It is a special case of equation (21) 

from the main text, with 0 = h/(2N) and 1 = 2 = ½. 
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Appendix II: National and local pass-through of excise taxes 

 

The outcomes are retail prices T and K, expressed in levels (as in the literature).  The treatments 

are excise tax rates t and k, respectively.  Consumers are not mobile between the treatment and 

control areas, which have populations  and 1−, respectively.  Per-capita consumer demand in 

each area is a function D() of the area’s retail price.  Supply prices are T−t and K−k, respectively. 

 

A national manufacturer sets retail prices in each area to maximize profits: 

 

[𝑇 − 𝑡 − 𝑐((𝑇 − 𝑡) − (𝐾 − 𝑘))]𝜏𝐷(𝑇)

+ [𝐾 − 𝑘 − 𝑐((𝑇 − 𝑡) − (𝐾 − 𝑘))](1 − 𝜏)𝐷(𝐾) 
(30) 

 

where the average and marginal cost c() depends on the gap in supply prices between areas.  It is 

a convex function and minimized when the two areas have the same supply price.  These 

assumptions reflect incentives for trans-shipping by area wholesalers, who reimburse the supply 

price to the manufacturer and handle excise tax payments.  Especially, supply-price gaps 

incentivize wholesalers in the low-price areas to acquire more quantity than needed for their area 

and (before excise tax is determined) sell the excess to wholesalers in other areas. 

 

The first order conditions for maximizing profit are: 

 

𝜏{𝐷(𝑇) + [𝑇 − 𝑡 − 𝑐((𝑇 − 𝑡) − (𝐾 − 𝑘))]𝐷′(𝑇)}

= [𝜏𝐷(𝑇) + (1 − 𝜏)𝐷(𝐾)]𝑐′((𝑇 − 𝑡) − (𝐾 − 𝑘))

= (1 − 𝜏){𝐷(𝐾) + [𝐾 − 𝑘 − 𝑐((𝑇 − 𝑡) − (𝐾 − 𝑘))]𝐷′(𝐾)} 

(31) 

 

By totally differentiating the two equations (31) in the neighborhood of t = k while holding  
constant, yields expressions for dT and dK as functions of dt and dk.  We write them in the matrix 

form (1) (not shown), and simplify them with two definitions: 

 

𝜌𝑑(𝑇) ≡ [2 −
𝐷′′(𝑇)/𝐷′(𝑇)

𝐷′(𝑇)/𝐷(𝑇)
]

−1

> 0 ∧ 𝜂(𝑇) ≡
𝑇

𝐷(𝑇)
𝐷′(𝑇) < 0 (32) 

The first is the pass-through coefficient d defined in the usual way as a transformation of the 

demand function.  The second is the price elasticity of demand.  Both depend on the retail price 

because they are not necessarily constant along the demand curve. 

 

With the S matrix so derived, its eigenvalues are: 

 

𝜀 = 𝜌𝑑 ∧ 𝐷𝑖𝐷 = [𝜔 + (1 − 𝜔)
1

𝜌𝑑
]
−1

 (33) 

 

DiD is a weighted harmonic mean of 1 and d, where the weight is 𝜔 ≡
𝑇𝑐′′(0)

𝑇𝑐′′(0)−(1−𝜏)𝜏𝜂
∈ (0,1).  

None of the weight is on d as the trans-shipping cost function becomes more convex or as the 

treatment share  approaches zero.  The weight  for calculating ToT from the two eigenvalues is, 

in this application, the population share .  
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