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Abstract
Survey measurements of households’ expectations about U.S. equity returns show

substantial heterogeneity and large departures from the historical distribution of actual

returns. The average household perceives a lower probability of positive returns and

a greater probability of extreme returns than history has exhibited. I build a life-cycle

model of saving and portfolio choices that incorporates beliefs estimated to match

these survey measurements of expectations. This modification enables the model to

greatly reduce a tension in the literature in which models that have aimed to match

risky portfolio investment choices by age have required much higher estimates of the

coefficient of relative risk aversion than models that have aimed to match age profiles

of wealth. The tension is reduced because beliefs that are more pessimistic than the

historical experience reduce people’s willingness to invest in stocks.
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1. Introduction

When a canonical model of portfolio choice over the life cycle is calibrated to reproduce

the fact that most households do not invest most of their wealth in equities, coefficients

of relative risk aversion exceeding 10 are usually required.
1

In contrast, the literature

on consumption and saving over the life cycle has found that coefficients of relative risk

aversion of 2 or less are able to fit the data comfortably when labor income uncertainty is

calibrated to match facts from widely available sources of micro data.
2

This discrepancy

generates difficulties for studies that attempt to simultaneously reproduce both groups

of facts using life cycle models. Virtually all of such studies calibrate household beliefs

about equity returns to match the statistical properties of actual realized returns over

long periods of history.
3

The thesis of this paper is that the ability of these models to

simultaneously replicate portfolio allocations and savings dramatically improves, and the

tension in their parameter estimates is greatly reduced, if they are calibrated using survey

measurements of consumers’ actual expectations instead of historical data.

To evaluate this proposition, I use a model with two main blocks. The first is a mea-

surement system based on Ameriks, Kézdi, et al. (2020) that I use to infer the distribution

of beliefs about equity returns across U.S. households from survey measurements in the

Health and Retirement Study (HRS). The second is a life cycle model of saving and port-

folio choices that builds on the workhorse model by Cocco, Gomes, and Maenhout (2005).

This model adds a monetary cost of entering the stock market, which is common in the

literature, and a proportional tax on stock sales that represents early-withdrawal penalties

from retirement plans. It also incorporates a bequest motive and age-varying medical

1
The canonical life-cycle model of portfolio choice is due to Cocco, Gomes, and Maenhout (2005). While

the purpose of that paper is not to reproduce empirical portfolio shares, it shows that, even with a coefficient

of relative risk aversion of 10 and a conservative equity premium, the model-implied portfolio shares are

higher than those empirically observed. The high estimated coefficients of relative risk aversion can be seen,

for instance, in Fagereng, Gottlieb, and Guiso (2017), Catherine (2021) and this paper, all of which compare

their full models with baseline specifications that build on Cocco, Gomes, and Maenhout (2005).

2
See, for instance, Carroll (1997), Attanasio et al. (1999), and Gourinchas and Parker (2002).

3
As measured, for example, by Mehra and Prescott (1985) and Shiller (1990) since the late XIX century.
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expense risks to replicate savings late in life.
4

I estimate the life cycle model targeting

the age profiles of savings and portfolios in the U.S. and compare the results using beliefs

from survey measurements with those obtained using the standard beliefs based on his-

torical data. The fit of the model calibrated with survey measurements of expectations

is dramatically better and its parameter estimates are much more plausible. For college

graduates, using the beliefs from survey measurements reduces the distance between

model-implied and empirical moments from the Survey of Consumer Finances (SCF) by

46 percent
5

and reduces the estimated coefficient of relative risk aversion from 11.4 to

5.1. The high risk aversion required in the baseline calibration produces extremely high

precautionary savings which, to match observed wealth, must be offset with an implau-

sibly low time-discount factor of 0.6—suggesting that consumers discount future utility

by 40 percent per year. With the beliefs from survey measurements, the discount factor

increases to 0.9. Finally, the estimated monetary cost of entering the stock market falls

from 1.0 percent of annual income to $ 0.
6

Several features of the beliefs estimated from survey measurements contribute to the

improved performance of the life cycle model. The estimates imply that only 60 percent

of high-school graduates and 72 percent of college graduates think there is any equity

premium at all. This helps to rationalize the limited rates of stock ownership and their

education gaps, and lowers the estimated monetary costs of entry. Among stock owners,

the expected risk-adjusted returns are on average 13% and 18% lower than those implied

by historical calibrations for high-school and college graduates respectively, allowing the

model to match moderate portfolio shares with lower risk aversion.
7

The consequent

weakening of the precautionary motive lets the model replicate savings with more patient

4
See. e.g., De Nardi, French, and Jones (2010) and Ameriks, Briggs, et al. (2020).

5
Measured by the objective function of the method of simulated moments minimized in estimation. See

Section 4 for details.

6
For high school graduates, the distance to empirical moments falls by 75 percent, the coefficient of

relative risk aversion falls from 8.6 to 4.2, the annual preference time-discount factor raises from 0.3 to 0.8,

and the monetary cost of entering the stock market falls from 3.1 to 2.5 percent of annual income.

7
These figures refer to the average Sharpe ratio implied by the estimated beliefs of those who think there

is an equity premium, compared to the historical Sharpe ratio of the S&P 500 index.

3



discounting of future utility. Finally, heterogeneity in the beliefs of stock owners generates

considerable dispersion in their portfolio shares, which is an empirical fact particularly

difficult to reproduce using historical calibrations of beliefs.

Among the possible ways to reduce the difficulties in modeling savings and port-

folios, beliefs about returns have the virtue of being susceptible of estimation from the

individual-level measurements of expectations that a growing number of household sur-

veys now include. Manski (2018), Caplin (2021), and Almås, Attanasio, and Jervis (2023)

recommend using this type of measurements to resolve the challenge of separately iden-

tifying preferences and beliefs from observed choices, which traditional portfolio-choice

models circumvent by assuming that beliefs match historical data. The measurements

also produce additional empirical facts against which models can be tested. Of particular

importance among these facts is that measured expectations predict portfolio allocations,

a reality demonstrated by a vast literature and corroborated by this paper.

Because the estimated beliefs differ from the historical experience, individuals with

those beliefs would suffer welfare shortfalls if equities continued to perform as they have

in the past. These individual welfare shortfalls would be large, quantified as a share of

permanent income. They follow a hump shape across the life cycle, starting at less than

3.5 percent at age 24 and peaking at the age of retirement at averages of 8.1 percent for

high-school graduates and 14.2 percent for college graduates. Those who do not own

stocks due to their pessimistic beliefs suffer the greatest welfare shortfalls. I analyze the

variation of these shortfalls across individuals and age groups and relate the model’s

predictions to findings in the financial literacy literature (Lusardi and Mitchell 2023).

Beyond its effect on the fit of wealth and portfolios, the choice of how to specify

beliefs has stark implications for the welfare and counterfactual questions that life cycle

models answer. For example, the different preferences that these models need to fit the

data under historical and survey-based beliefs translate to different valuations of social

programs. Using changes to unemployment insurance and Social Security benefits as

4



illustrative examples, I show that estimates of the welfare effects of policy changes can

easily differ by factors of two to ten across models with different specifications of beliefs.

Related literature and contributions

This paper relates and contributes to various groups of studies in household finance and

behavioral macroeconomics.

The first group of related studies explores the reasons for the discrepancies between the

actual portfolio choices made by households throughout their lives and the predictions

of theoretical models like Merton (1969), Samuelson (1969), Viceira (2001), and Cocco,

Gomes, and Maenhout (2005). Since the detection of these discrepancies, numerous

studies have attempted to address them by adding various features to their models in-

cluding: more flexible specifications of households’ preferences (Gomes and Michaelides

2003, 2005; Wachter and Yogo 2010; Calvet et al. 2021), richer models of labor income

and its risks (Chang, Hong, and Karabarbounis 2018; Catherine 2021), and the addi-

tion of different costs that could be associated with stock ownership (Khorunzhina 2013;

Campanale, Fugazza, and Gomes 2015; Fagereng, Gottlieb, and Guiso 2017). My paper

contributes to this literature showing that if beliefs are aligned with survey measurements,

the predictions of the model come closer to the actual choices of households. This force

can complement the mechanisms identified in this group of papers; for example, my

estimates show that entry costs and rebalancing frictions become more powerful when

households expect the lower risk-adjusted returns that their responses imply.

The second group of related papers analyzes survey measurements of expectations

about future stock market returns.
8

In this literature, a large body of work has demon-

strated that expectations are heterogeneous across people and that differences in expecta-

tions are predictive of portfolio choices.
9

These facts have been corroborated in multiple

8
See Hurd (2009) and Manski (2018) for reviews on the measurement of economic expectations in surveys.

9
See, e.g.:Dominitz and Manski (2007), Hurd, Van Rooĳ, and Winter (2011), Amromin and Sharpe (2014),

Drerup, Enke, and von Gaudecker (2017), Ameriks, Kézdi, et al. (2020), Giglio et al. (2021), and Calvo-Pardo,

5



surveys, samples, and countries, as well as by using different ways of eliciting expectations.

In addition to their predictive power, other important features of measured expectations

about stock returns, such as pessimism (Dominitz and Manski 2007; Hurd, Van Rooĳ,

and Winter 2011), socioeconomic gradients (Das, Kuhnen, and Nagel 2020), and rounding

(Manski and Molinari 2010; Giustinelli, Manski, and Molinari 2022) have been estab-

lished. A critical characteristic for modeling these measured expectations is that most of

their variation comes from cross sectional differences that persist over time—individual

fixed effects. Only a small part of the variation of fixed effects across individuals is ex-

plained by sociodemographic characteristics (Giglio et al. 2021). My contribution to this

literature is a model that I use to estimate an interpretable representation of the persistent

component of beliefs (structural analogues to individual fixed effects) that can be incor-

porated into life cycle portfolio-choice models. The model, which builds on Kézdi and

Willis (2011), Ameriks, Kézdi, et al. (2020), and Giustinelli, Manski, and Molinari (2022),

accounts for persistent and heterogeneous rounding patterns, and its estimates capture

many of the empirical features of beliefs that have been highlighted in the literature.

The formation and dynamics of expectations are important areas that this paper does

not address. It is a well established fact in this domain that experiences—recent and

distant, personal and vicarious—have an effect on expectations (see, e.g., Malmendier

and Nagel 2011, 2016; Amromin and Sharpe 2014; Greenwood and Shleifer 2014; Coibion

and Gorodnichenko 2015; Bailey et al. 2018; Bordalo, Gennaioli, Porta, and Shleifer 2019).

However, despite the robustness of this fact and its macroeconomic significance, experi-

ences and common belief revisions (time fixed effects) capture only a small share of the

micro-level variation in measured expectations about stock returns (Giglio et al. 2021).

Therefore, with the goal of modeling households’ individual choices, this paper focuses

instead on the persistent components of individual expectations, which capture around

half of their variation.
10

Oliver, and Arrondel (2022).

10
Campanale (2011), Peĳnenburg (2018), and Foltyn (2020) have analyzed portfolio-choice models in
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This paper also relates to a growing literature that uses measurements of individual

expectations in the estimation of structural economic models.
11

Studies such as Guiso,

Jappelli, and Terlizzese (1992), Dominitz and Manski (1997), Lusardi (1997, 1998), and

Caplin et al. (2023) examine measurements of households’ expectations about their in-

come dynamics, showing that the expectations differ from standard estimates that use

administrative data, and using the measured expectations in models of saving decisions

and job-transitions. Similarly, measurements of beliefs are increasingly used in models

of other economic decisions, such as educational and occupational choices (Arcidiacono

et al. 2020; Wiswall and Zafar 2021), parental investments (Almås, Attanasio, and Jervis

2023), and purchase decisions (Erdem et al. 2005). Measured expectations have also been

shown to improve the performance of macroeconomic and asset pricing models (Nagel

and Xu 2022; Bordalo, Gennaioli, and Shleifer 2022; Bordalo, Gennaioli, Porta, and Shleifer

2024; Bordalo, Gennaioli, Porta, OBrien, et al. 2024; Bianchi, Ilut, and Saĳo 2024). However,

despite the well documented differences between households’ measured expectations and

the standard historically-based calibrations, this paper is the first to use survey measure-

ments of expectations about equity returns in a life cycle model to explain the savings and

portfolio choices of U.S. households to the best of my knowledge.

Finally, this paper contributes to the literature on wealth differences between socio-

demographic groups. Studies in this literature have identified cross-group differences that

are difficult to explain using life cycle or permanent income models of consumption and

saving. Precautionary savings, differences in time-preference rates and the differential

effects of social programs on the incentive to save have been explored as explanations for

these difficulties (Carroll 1994; Hubbard, Skinner, and Zeldes 1995; Cagetti 2003). More

recently, Lusardi, Michaud, and Mitchell (2017) show that cross-group differences in

which individuals learn about the distribution of risky returns form their experiences. While learning,

coupled with participation costs, helps to replicate participation patterns, it does not amend the basic

model’s prediction about conditional portfolio shares. Therefore, some of the studies rely on additional

mechanisms like ambiguity aversion.

11
See Koşar and O’Dea (2023) for an excellent review of this literature and Manski (2018), Caplin (2021),

and Almås, Attanasio, and Jervis (2023) for arguments in favor of this approach.
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financial proficiency have the potential to explain a large part of the empirical relationship

between savings as a fraction of income and educational attainment, and account for a large

share of wealth inequality between groups with different levels of education. I add to this

literature by demonstrating that, indeed, when a life cycle model accounts for measurable

differences in expectations about asset returns, it can replicate educational differences in

wealth and portfolios with much smaller cross-group differences in preferences.

The rest of this paper is organized as follows. Section 2 presents basic empirical facts

about U.S. households’ wealth, stock holdings, and beliefs about future stock returns.

Section 3 presents the model of beliefs and life cycle saving and portfolio choices. Section

4 discusses estimation. Section 5 presents estimates and discusses their implications.

Section 6 quantifies the welfare losses that individuals may suffer from misspecified

beliefs about future stock returns. Section 7 estimates the welfare effects of counterfactual

policy changes under different specifications of beliefs. Section 8 concludes.

2. The Portfolios and Expectations of U.S. Households

This section reviews various empirical facts about stockholding that challenge the pre-

dictions of portfolio-choice models that calibrate households’ beliefs to match historical

returns. Then, using 16 years of measured expectations, I show that U.S. households’

subjective distributions of stock returns appear to deviate from the historical distribution

of actual stock returns. The differences between measured expectations and the historical

distribution of returns have various features that could explain some of the discrepan-

cies between the predictions offered by traditional models and U.S. households’ actual

stockholding behaviors.

8



2.1 Aggregate Patterns of Stockholding

This section examines the stock market participation and portfolio choices of U.S. house-

holds. I highlight patterns that deviate from the predictions of standard life cycle models

of portfolio choice. Deviations include low participation rates and shares of wealth in

stocks, and a relatively flat share of wealth in stocks across the life cycle.

To study aggregate patterns in U.S. households’ savings and stock holdings, I use the

triennial Survey of Consumer Finances (SCF). I restrict my analysis to the survey waves

between 1995 and 2019.
12

The SCF provides a comprehensive picture of American house-

holds’ balance sheets, including “summary files” with useful aggregates such as the total

financial assets and stock holdings of each surveyed economic unit. These measures

include stocks owned both directly and indirectly through, e.g., mutual funds and re-

tirement accounts. Indirect stock holdings are based on respondents’ descriptions of the

types of assets that a given fund or account invests in. Although account level data can

offer more precise measurements of stock holdings (as noted by Parker et al. 2022), the

advantage of the SCF lies in its comprehensive coverage of a nationally representative

sample of economic units and all their financial accounts.

Table 1 presents summary statistics for the main variables of interest, as well as de-

mographic variables that describe the sample. The statistics are shown for the full set

of observations and split by the respondent’s highest level of education. The average

respondent is 51 years old. Out of respondents, 12% do not have a high school degree,

56% have a high school degree but no college degree, and 32% have obtained a college

degree. Due to changes in educational access, those without a high school degree were

born, on average, ten years earlier (1948) than those with high school or college degrees

(1957 and 1958).

I focus on high school and college graduates only. There are three main reasons why I

12
The waves before 1995 do not have the question of income “in normal times” that I use in my analysis.

I stop at 2019 because it is the latest pre-COVID wave.
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Table 1: Summary statistics: main variables of interest

All Less than H.S. High School College

Variable Mean St. Dev. Mean St. Dev. Mean St. Dev. Mean St. Dev.

Age and education
Birth Year 1,956.00 18.37 1,947.84 20.68 1,956.77 18.16 1,957.73 16.99

Age 51.00 17.16 58.23 18.55 50.06 17.16 49.92 15.94

Less Than H.S. 0.12 0.32 — — — — — —

High-School 0.56 0.50 — — — — — —

College 0.32 0.47 — — — — — —

Income, wealth, and stock ownership
Income (1000s) 67.42 145.88 30.82 48.65 51.07 61.79 109.60 236.75

Fin. Assets (1000s) 243.02 1,645.72 42.33 324.56 109.67 775.27 550.55 2,686.12

Owns stocks? 0.53 0.50 0.21 0.41 0.47 0.50 0.75 0.43

Stocks/Fin. Assets 0.25 0.31 0.09 0.23 0.21 0.30 0.37 0.32

Cond. stock share 0.46 0.29 0.44 0.31 0.44 0.29 0.49 0.28

The summary statistics in this table come from pooling the observations from the 1995 to 2019 SCF waves. The sample is restricted

to respondents above the age of 21 with non-negative financial assets and a stock-share of financial wealth between 0 and 100%. All

calculations use survey weights, which are pooled and re-scaled so that the total weight of each wave is the same. The unit of analysis

in SCF it is the “primary economic unit”. Wealth and income are expressed in 2010 U.S. dollars and were adjusted using the using

the CPI index. I refer to individuals that do not posses a high-school diploma or GED as “Less than H.S. ” to those with a high-school

diploma or GED but no college degree as “High school” and to those with a college degree as “College.”

exclude those without a high school degree. First, their number of available observations

is much lower than that of high school and college graduates. When grouped into age-

bins, as my analysis requires, the number of observations per group becomes too low to

produce sufficiently precise estimates of the moments of interest. Second, a large fraction

of respondents without a high school degree answer “does not know/refuse” to the

probabilistic questions in the Health and Retirement Study that I use in my analysis. Third,

as Table 1 shows, households in which the respondent does not have a high school degree

have low incomes and levels of wealth; as argued by Hubbard, Skinner, and Zeldes (1995)

the saving decisions of these households are severely impacted by social programs that I

do not model in this paper.

Table 1 reproduces the low rates of stockholding that constitute the “stockholding

puzzle” (Haliassos and Bertaut 1995). The table shows that, out of all observed economic

units, only 53% own stocks directly or indirectly. This fact is at odds with the prescription

that all households should own stocks, which is a feature of frictionless models in which

10



everyone expects the stock market to perform in the future as it has historically. There

is a positive correlation between level of education and stock market participation, with

the lowest participation rate (21%) observed among those without a high school degree

and the highest participation rate (75%) among those with a college degree. Multiple

factors could contribute to this correlation. One explanation could be that individuals

with higher education are more likely to believe in the existence of an equity premium.

Another possibility could be the existence of barriers like monetary participation costs

that disproportionately affect those with lower education and income.

The shares of wealth in stocks among those who participate in the stock market shows

a weaker relationship with education than the rate of participation, but they are also lower

than what baseline models predict. Given the low rates of participation, the mean share

of wealth in stocks is also low at 25%. A more meaningful measure is the share of wealth

invested in stocks among those who participate, commonly referred to as the conditional

share of wealth in stocks. College graduates have a slightly higher average conditional

share of 49% compared to that of high school graduates, which is 44%. These levels are

low compared to the prescriptions of life cycle portfolio-choice models like that of Cocco,

Gomes, and Maenhout (2005) which, even with a relative risk aversion coefficient of 10

and a moderate equity premium, finds an optimal share of wealth in stocks ranging from

60 to 100 percent depending on the age of the household.

The age patterns of stock market participation and conditional wealth in stocks are

similar for high school and college graduates. Figure 1 shows stock market participation

rates and quartiles of conditional shares calculated on five-year age bins. The figure shows

that, despite differences in levels, the stock market participation rates of both high school

and college graduates follow a similar inverted “U” shape as they age. For both groups, the

highest participation rates occur between the ages of 56 and 60, with 55% for high school

graduates and 81% for college graduates. In contrast, the conditional share of wealth in

stocks remains relatively stable across different age bins, showing little variation in the

11
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The summary statistics in this table come from pooling the observations from the 1989 to 2019 SCF waves and grouping them into 5-year

age bins. For the participation rate, the solid line and points displays the fraction of stock market participants. For the conditional

share of wealth in stocks, the solid line and points display the median, and the shaded areas span from the 25th to the 75th percentile.

The sample is restricted to respondents with non-negative financial wealth and a stock-share of financial wealth between 0 and 100%.

All calculations use pooled survey weights. Wealth is expressed in 2010 U.S. dollars and was adjusted using the using the CPI index.

Figure 1: Stockholding over the life cycle
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25th, 50th, and 75th percentiles of its distributions. In every age group, the distributions of

the conditional share of wealth in stocks for high school and college graduates are similar

to each other.

The stability of conditional shares of wealth in stocks over different age bins in the SCF

is inconsistent with traditional portfolio-choice models, which prescribe that these shares

must decline with age. This prescription comes from the assumption that a person’s future

lifetime earnings—their “human wealth”—act as a hedge against stock market fluctuations.

Therefore, it is optimal for a young person with high human wealth to allocate most of his

investable wealth to stocks and to reduce his exposure as he ages and his human wealth

decreases. Indeed, in Cocco, Gomes, and Maenhout’s (2005) benchmark calibration, young

agents invest 100% of their wealth in stocks and gradually lower this share as they age until

around 60 percent. Parker et al. (2022) show that the increasing popularity of target-date

funds has brought the conditional shares of recent cohorts more in line with the declining

patterns prescribed by life cycle models.

2.2 Households’ Expectations About Stock Returns

Survey measurements of people’s expectations about the future performance of the stock

market vary substantially across individuals and deviate from historical benchmarks.

Compared to the historical experience, the average person underestimates the probability

of positive returns and overestimates the probability of extreme returns (positive and

negative). The magnitude of these deviations decreases with education. A large fraction

of the variation in these survey measurements corresponds to persistent heterogeneity in

people’s expectations and this heterogeneity robustly associates with differences in their

portfolio choices.

To characterize U.S. households’ perceptions about the future performance of the stock

market, I use the Health and Retirement Study (HRS). The HRS is a biennial longitudinal

survey of U.S. adults over the age of 50 that gathers detailed information on respondents’

13



health, financial status, employment, and expectations. I restrict my sample to the “finan-

cial respondent” of each household: the person that answers most questions about the

income and assets of the household.
13

Since 2002, the expectations module of the HRS has included questions about the

future performance of the stock market. I use the following questions:

• [𝑃≥0] “By next year at this time, what is the percent chance that mutual fund shares invested

in blue chip stocks like those in the Dow Jones Industrial Average will be worth more than

they are today?”

• [𝑃≥20] “By next year at this time, what is the percent chance that mutual fund shares invested

in blue-chip stocks like those in the Dow Jones Industrial Average will have gained in value

by more than 20 percent compared to what they are worth today?”

• [𝑃≤−20] “By next year at this time, what is the percent chance that mutual fund shares

invested in blue-chip stocks like those in the Dow Jones Industrial Average will have fallen

in value by more than 20 percent compared to what they are worth today?”

I use 𝑃≥0
, 𝑃≥20

, and 𝑃≤−20
to denote these measurements. The HRS first measured 𝑃≥0

in

2002, with 𝑃≥20
and 𝑃≤−20

following in 2008.
14

Responses to the questions about future stock returns are disperse and their averages

deviate considerably from the historical performance of the stock market. Figure 2 depicts

the distribution of 𝑃≥0
, 𝑃≥20

, and 𝑃≤−20
across all survey waves and shows that, far

from concentrating around estimated answers from a common subjective distribution

of returns, the responses span wide ranges without signs of agreement. I compare the

responses to annual returns of the S&P 500 index from 1881 to 2018, as reported by Shiller

(1990). During this period, the S&P 500 saw positive returns on 72% of the years, returns

13
I also restrict my sample to those above the age of 50. There is a small number of younger respondents

that are interviewed because they are married to someone above the age of 50.

14
The 2008 wave asked various different combinations of “gain/fall in value by X%” to different indi-

viduals. The “gain/fall in value by 20%” versions of the question were incorporated in 2010. I use the

individuals who drew 𝑋 = 20 in 2008 to construct 𝑃≥20
and 𝑃≤−20

for that wave.
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Responses are rounded to the nearest multiple of 5% and each bar reports the fraction of observations corresponding to each multiple.

The sample consists of individuals above the age of 50 who report being the financial respondent of the household. The question about

positive growth in value (first row) was added in 2002 and the other two were added in 2008; therefore, the samples of both columns

do not exactly match. The “historical benchmark” lines correspond to the fraction of years between 1881 and 2018 that the S&P500

index had returns higher that 0%, higher than 20%, and lower than -20%; these calculations are based on the accompanying data file

to Chapter 26 of Shiller (1990).

Figure 2: Probabilistic assessments about stock returns

15



Table 2: Probabilistic assessments about stock returns and education

Question Mean St. Dev. N. Obs Fract. DK/RF

Less than High School
𝑃≥0

0.40 0.30 19,175 0.29

𝑃≥20
0.38 0.30 5,136 0.05

𝑃≤−20
0.30 0.27 5,401 0.04

High School
𝑃≥0

0.45 0.26 59,273 0.14

𝑃≥20
0.34 0.25 21,341 0.03

𝑃≤−20
0.33 0.25 21,380 0.02

College
𝑃≥0

0.53 0.25 23,257 0.06

𝑃≥20
0.30 0.23 10,594 0.01

𝑃≤−20
0.31 0.21 10,391 0.01

The sample consists of individuals above the age of 50 who report being the financial respondent of the household. The question about

positive growth in value (first row) was added in 2002 and the other two were added in 2008; therefore, the samples for the questions

do not exactly match. Furthermore, each wave the questions 𝑃≥20
and 𝑃≤−20

are asked only to participants who do not answer “does

not know/refused” to 𝑃≥0
.

greater than 20% on 29% of the years, and returns below −20% on 5% of the years. The

average response for the probability of positive nominal returns, which is 46%, is 26

percentage points below its historical benchmark. Conversely, the average responses for

the probabilities of extreme returns, which were 33% for 𝑃≥20
and 32% for 𝑃≤−20

, exceed

their respective historical benchmarks by 4 and 27 percentage points. The deviations

of average responses from historical benchmarks and households’ pessimism about the

chances of positive returns in particular are well known facts that have found support

across multiple surveys, conducted in the U.S. and abroad (see Hurd 2009; Manski 2018,

for reviews).

Expectations about future stock returns show a systematic relationship with educa-

tional attainment. Yet, significant variability remains among individuals with the same

level of education. Table 2 presents summary statistics of 𝑃≥0
, 𝑃≥20

, and 𝑃≤−20
for re-

spondents with different levels of education. While all groups are pessimistic about the

probability of positive returns (𝑃≥0
), the average response increases steeply with edu-

16



cation, from 40% for those without a high-school degree to 53% for college graduates.

This pattern is consistent with the findings of past studies, which have shown that more

educated individuals tend to have a more optimistic outlook on stock returns (Dominitz

and Manski 2011; Hurd, Van Rooĳ, and Winter 2011; Das, Kuhnen, and Nagel 2020). The

degree to which the average respondent overestimates the probability of extreme returns

also varies with educational attainment, with more educated households generally giving

lower responses.
15

However, within-group variability is greater than cross-group differ-

ences, as within-group standard deviations are higher than 20 percentage points for all

questions.

Table 2 also shows the fraction of participants who refused to answer each of the

questions or answered with “do not know.” The refusal/unsure rate is much higher for

𝑃≥0
than for 𝑃≥20

and 𝑃≤−20
because participants who refuse to answer 𝑃≥0

or answer this

question with “do not know” are not asked 𝑃≥20
or 𝑃≤−20

. While the refusal/unsure rates

for high school and college graduates are moderate, it is 29% for 𝑃≥0
for those without

a high-school degree. Such a high fraction of refusal/unsure answers casts doubt on

the representativeness of respondents without a high school degree who do answer the

probabilistic questions. For this reason, in addition to those presented in Section 2.1, I

limit the modeling exercises in this paper to high school and college graduates.

Rounding is pervasive in probabilistic assessments about future stock returns. Figure

2 shows that there are large masses of answers in focal points like 0%, 50%, and 100%,

and that all multiples of 10% occur more frequently than their neighboring multiples of

5%. Table 3 presents the fraction of responses that belong to different groups of frequent

answers. The groups are a similar partition to the one proposed by Giustinelli, Manski,

and Molinari (2022). For each question, more than 8% of the answers are multiples of

100% (0 or 100%), more that 80% are multiples of 10%, and more than 97% are multiples

of 5%. Using the full expectations module of the HRS, Giustinelli, Manski, and Molinari

15
The only exception to this pattern is the average 𝑃≤−20

of those without a high-school degree, which is

the lowest of the three groups.
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Table 3: Fractions of “rounded” probabilistic responses

Fraction of Answers in Group

Question {0%, 100%} 50% {25%, 75%} Other×10% Other×5% Other

𝑃≥0
0.12 0.30 0.09 0.44 0.05 0.01

𝑃≥20
0.09 0.15 0.07 0.57 0.09 0.02

𝑃≤−20
0.10 0.18 0.06 0.55 0.08 0.02

The sample consists of individuals above the age of 50 who report being the financial respondent of the household. The question

about positive growth in value (first column) was added in 2002 and the other two were added in 2008; therefore, the samples of the

three columns do not exactly match. Other×10% = {10, 20, 30, 40, 60, 70, 80, 90}%. Other×5% = {5, 15, 35, 45, 55, 65, 85, 95}%. “Other”

represents answers that do not fall into any of the other groups.

Table 4: Sources of variation in probabilistic assessments

Models’ 𝑅2

Question Time F.E. Indiv. F.E. Two-Way F.E

𝑃≥0
0.01 0.46 0.47

𝑃≥20
0.01 0.63 0.64

𝑃≤−20
0.01 0.60 0.60

The table reports 𝑅2
statistics from regressing each measurement on individual fixed-effects, month-of-interview fixed-effects, and

both. The sample consists of individuals above the age of 50 who report being the financial respondent of the household. The question

about positive growth in value (first row) was added in 2002 and the other two were added in 2008, therefore the samples of the three

rows do not exactly match.

(2022) show that individuals tend to round questions in the same domain (e.g., health or

finances) to consistent levels of coarseness, even though the level of rounding coarseness

varies between individuals and across domains. Based on these findings, the model of

beliefs that I use in this paper accounts for rounding practices that are stable over time

but heterogeneous across individuals.
16

A large fraction of the variation in probabilistic assessments about stock returns comes

from cross-sectional differences between individuals that persist over time. In their anal-

ysis of the macroeconomic beliefs of Vanguard account holders, Giglio et al. (2021) show

that, for all the measurements of expectations in their analysis, persistent differences in

16
Survey responses that reflect rounding and the use of heuristics are pervasive in other related contexts

such as the hypothetical choice of retirement wealth allocations (Bateman et al. 2017).
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expectations across individuals (individual fixed effects) explain a vastly larger fraction of

variation than common movements in expectations over time (time fixed effects). I repli-

cate their analysis with the HRS sample, which includes both investors and non-investors

and spans a longer period of time. Table 4 presents the 𝑅2
statistics of regressions of the

form:

Indiv. F.E., 𝑃𝑥
𝑖,𝑡

= 𝑎𝑖 + 𝜖1,𝑖 ,𝑡

Time F.E., 𝑃𝑥
𝑖,𝑡

= 𝑏𝑡 + 𝜖2,𝑖 ,𝑡

Two-way F.E., 𝑃𝑥
𝑖,𝑡

= 𝑎𝑖 + 𝑏𝑡 + 𝜖3,𝑖 ,𝑡 ,

where 𝑃𝑥
is one of the probabilistic assessments (𝑃≥0

, 𝑃≥20
, or 𝑃≤−20

), 𝑎𝑖 are individual

fixed effects, 𝑏𝑡 are month-of-interview fixed effects, and 𝜖·,𝑖 ,𝑡 are time-specific idiosyncratic

errors. The results are consistent with the findings of Giglio et al. (2021): individual fixed

effects explain a much larger fraction of the variance in responses than time fixed effects.

For the probability of positive returns 𝑃≥0
, individual fixed effects capture 46% of the

variance. For the probabilities of extreme returns 𝑃≥20
and 𝑃≤−20

, they capture 63% and

60% of the variance, respectively. Time fixed effects, in contrast, capture no more than 1%

of the variance in any of the questions. As Giglio et al. (2021) point out, the persistent

cross-sectional heterogeneity in beliefs manifest in these measurements stands at odds

with many of the models used in macroeconomics and finance.

To study the relationship between expectations and portfolios, I restrict the HRS sample

further to keep only respondents below the age of 65. The financial literacy literature has

found that the age around retirement is when people are best able to respond financial

questions (see, e.g., Agarwal et al. 2009; Lusardi and Mitchell 2023); I impose this restriction

to limit concerns about cognitive decline. My measure of equity holdings includes both

direct and indirect investments.
17

For financial wealth, I use the value of stocks, mutual

17
For direct holdings, I use the RAND HRS aggregate astck. For indirect holdings, I use the total amounts

and shares invested in stocks of the households’ retirement accounts.
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The sample consists of individuals between the ages of 50 and 65 who report being the financial respondent of the household. Binary

participation, stock-shares of wealth, and the expectation response are averaged over time at the individual level. The figure displays

the conditional mean “bin-scatter” estimates on the resulting dataset of one averaged observation per household.

Figure 3: Stockholding and the subjective probability of positive returns

funds, investment trusts; checking, savings, and money market accounts; fixed-income

assets; and IRA and Keogh accounts.
18

An extensive literature has consistently shown that cross sectional differences in in-

dividuals’ beliefs about stock returns predict their stock-holding behavior.
19

Giglio et al.

(2021) show that the persistent component of expectations—the individual fixed effect—is

the main driver of this predictive relationship; belief revisions have a much weaker link to

portfolios. To illustrate this relationship in my HRS sample, Figure 4 displays “bin-scatter”

estimators for the conditional mean of stock market participation and the share of wealth

in stocks as a function of the 𝑃≥0
expectation, aggregated at the individual level by taking

their average over time. The left panel of the figure shows a steep relationship between

stock market participation and the reported probability of positive returns: those with

the most optimistic answers participate at roughly twice the rate of the least optimistic.

18
This is the sum of RAND HRS aggregates astck, achck, acd, abond, and aira.

19
Dominitz and Manski (2007), Hurd, Van Rooĳ, and Winter (2011), Amromin and Sharpe (2014), Drerup,

Enke, and von Gaudecker (2017), Ameriks, Kézdi, et al. (2020), Giglio et al. (2021), and Calvo-Pardo, Oliver,

and Arrondel (2022) are some examples. See Hurd (2009) and Manski (2018) for reviews.

20



The right panel shows that the relationship also holds for the share of financial wealth

invested in stocks. These relationships hold for both levels of education and they have

similar magnitudes. A college degree shifts participation rates and portfolio shares up at

every level of optimism.

This section reviewed several challenges faced by traditional life cycle models in ex-

plaining U.S. households’ stockholding patterns. Stockholding rates are low and cor-

related with education, those who own stocks do not allocate as much wealth to them

as these models prescribe, and the optimal relationship between portfolio shares and age

predicted by these models does not match its empirical counterpart. These conflicting pre-

dictions arise in models that calibrate agents’ expectations about stocks using the historical

data on actual returns, which is at odds with survey measurements of these expectations.

Several properties of measured expectations could help bridge the gap between portfolio

choice models and U.S. households’ behavior. For instance, heterogeneous beliefs corre-

lated with education could help explain limited participation rates and pessimism could

rationalize low shares of wealth in stocks. In the next sections, I evaluate this possibility,

testing whether a life cycle model that matches expectations from survey measurements

can fit savings and portfolio choices better than its historically-calibrated counterpart.

3. A Model of Beliefs and Stock-Holding

The model that I propose consists of two parts. The first is a measurement system that

I use to interpret the probabilistic responses, 𝑃≥20
, 𝑃≥20

, and 𝑃≤−20
, and to estimate the

distribution of beliefs about stock returns across the population. The second part is a life

cycle model of saving and portfolio choices in which agents’ beliefs about asset returns

are fixed and exogenous. I discuss each part in turn.
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3.1 Representing the Beliefs of U.S. Households

To represent the beliefs about stock returns of U.S. households, I construct and estimate a

model that maps their probabilistic assessments to heterogeneous subjective distributions

of stock returns. The model represents beliefs in a way that can be estimated directly

from survey measurements and then plugged into life cycle models. I estimate the model

using almost twenty years of longitudinal measurements of U.S. households’ expectations

about stock returns. The estimates suggest that there are permanent differences in beliefs

about stock returns across people, that the average person is more pessimistic about stocks

than the historical experience would suggest, and that more educated people are more

optimistic about stocks. All these features are consistent with previous findings in the

literature.

3.1.1 A model of beliefs and probabilistic assessments

The model is an adaptation of the ones used by Kézdi and Willis (2011) and Ameriks,

Kézdi, et al. (2020). Every person believes that stock returns follow a distribution that

can change from one person to the next but does not change over time. People use their

subjective distributions to produce probabilistic assessments but their answers are also

perturbed by time-varying shocks that represent survey errors and short term fluctuations

in their beliefs. People also round their answers to different but personally-stable degrees:

some round all their answers to the nearest multiple of 5%, others to the nearest multiple

of 10%, 25%, 50%, or 100%. I identify and estimate the distribution of the persistent part

of beliefs across the population using the longitudinal nature of the data and the fact that

multiple questions about stock returns are asked in various survey waves.

In the model, people believe that nominal stock returns follow a log-normal distribu-
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tion
20

with individual-specific parameters 𝜇𝑖 and 𝜎𝑖 :

ln 𝑅̃𝑡+1

𝑖∼ 𝒩(𝜇𝑖 , 𝜎𝑖).

The individual-specific parameters of people’s beliefs are fixed over time and follow a

distribution Ω across the population, (𝜇𝑖 , 𝜎𝑖) ∼ Ω. This assumption is a parsimonious

way of modeling the fact that most of the panel variation in probabilistic assessments

about stock returns comes from persistent differences across individuals, as shown in

Section 2.2 and in Giglio et al. (2021). The literature has suggested various mechanisms

that could generate this persistent heterogeneity, offering differences in lived experiences

(Malmendier and Nagel 2011) or in costs of and returns to learning about stocks (Kézdi

and Willis 2011) as two examples. I take belief heterogeneity as given and model it using

the distribution Ω, which I estimate.

People make probabilistic assessments about stock returns using their log-normal

beliefs, but their responses are subject to time- and question-specific disturbances and

rounded to different degrees. Manski and Molinari (2010) and Giustinelli, Manski, and

Molinari (2022) demonstrate that rounding is prevalent in the answers to probabilistic

questions in the HRS, and that the degree or “coarseness” of rounding varies across

respondents but is stable over time. These studies show that ignoring the rounding

patterns present in the data and taking probabilistic assessments at face value can alter

the estimates of econometric models and their precision. I account for rounding assuming

that each person 𝑖 has a “rounding type” (or rounding behavior) ℛ𝑖 ∈ {5, 10, 25, 50, 100}.

An individual of rounding type ℛ𝑖 = 𝑥 rounds all of his answers to probabilistic questions

about stock returns to the nearest multiple of 𝑥% at every point in time. Rounding

types ℛ𝑖 are independent of (𝜇𝑖 , 𝜎𝑖) and I use ®℘ = {℘5, ℘10, ℘25, ℘50, ℘100} to denote their

20
The main qualitative results of Section 5 hold under different distributional assumptions. For example,

if the return factor of stocks is normal (with censoring at zero) instead of log-normal, it is still the case that

the life cycle model with beliefs estimated from surveys fits the data better than its historical counterpart for

both high school and college graduates, with smaller estimates of risk aversion and entry costs, and larger

estimates of time-discount factors.
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frequencies across the population.

In every survey wave, a person might be asked to estimate the chances of positive

returns, returns greater than 20%, or returns lower than −20%. In the model, person 𝑖’s

responses to these questions at time 𝑡 are:

𝑃≥0

𝑖 ,𝑡
=

[
Φ

(
𝜇𝑖

𝜎𝑖
+ 𝜀≥0

𝑖 ,𝑡

)]
ℛ𝑖

,

𝑃≥20

𝑖 ,𝑡
=

[
Φ

(
𝜇𝑖 − ln 1.20

𝜎𝑖
+ 𝜀≥20

𝑖 ,𝑡

)]
ℛ𝑖

, 𝑃≤−20

𝑖 ,𝑡
=

[
Φ

(
ln 0.8 − 𝜇𝑖

𝜎𝑖
+ 𝜀≤−20

𝑖 ,𝑡

)]
ℛ𝑖

,

(1)

where the operator [ · ]𝑥 rounds its argument to the nearest multiple of 𝑥%, Φ(·) is the

univariate standard normal CDF, and the random disturbances

{
𝜀≥0

𝑖 ,𝑡
, 𝜀≥20

𝑖 ,𝑡
, 𝜀≤−20

𝑖 ,𝑡

}′
follow

the joint normal distribution 𝒩(®0,Σ). I assume that Σ is diagonal, so that the shocks are

independent. Without rounding or disturbances, Equation 1 would imply that people

perfectly calculate and report the queried moments of their subjective log-normal distri-

bution every wave—their answers would not change over time. The time-specific random

disturbances represent survey errors and the effects of short term information that might

shift people’s responses but not their long term beliefs about stock returns.

3.1.2 The estimated distribution of beliefs

I represent the distribution of beliefs across the population Ω using grids of (𝜇, 𝜎) pairs.

The grids are discretizations of bivariate normal distributions that condition on the event

that subjective standard deviations must be positive:


𝜇𝑖

𝜎𝑖

 discretized∼ 𝒩 ©­«

𝜈𝜇

𝜈𝜎

 ,

Ψ1,1 Ψ1,2

Ψ2,1 Ψ2,2

ª®¬ | 𝜎𝑖 > 0. (2)

For any set of parameters {𝜈𝜇, 𝜈𝜎 ,Ψ}, I produce a set of 25 equiprobable (𝜇, 𝜎) pairs that

approximate the conditioned normal distribution in Equation 2; Appendix A discusses the
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discretization procedure in detail. There are two main advantages of this representation.

First, it is flexible enough to accommodate distributions where beliefs have different

averages, levels of dispersion, and correlations between subjective means and standard

deviations. Second, I can incorporate the resulting discrete set of estimated (𝜇, 𝜎) into a

life cycle model as a set of possible “belief types.”

I estimate the model by maximum likelihood, using responses to the three probabilistic

assessments in the nine biennial waves of the HRS between 2002 and 2018. The full set of

parameters to estimate in my representation of beliefs comprises those in the distribution

of 𝜇 and 𝜎 in Equation 2, the covariance matrix of random disturbances Σ, and the

prevalence of different rounding types ®℘: 𝜗B ≡ {𝜈𝜇, 𝜈𝜎 ,Ψ,Σ, ®℘}. Appendix A describes

the likelihood function. My estimation sample consists of all person-year observations in

which: a) the person being interviewed is the financial respondent of the household, b)

the person being interviewed is between 50 and 65 years old, and c) the respondent did

not refuse to answer nor answer “do not know” to any of the three questions regarding

future stock returns.
21

These restrictions, in addition to considering only respondents

with at least a high school degree, yield a sample of 35, 211 individual-wave observations

from 12, 025 unique individuals.

Because of the relationship between education and probabilistic assessments docu-

mented in Section 2.2, I estimate the model separately for those with and without a col-

lege degree. This lets people with different levels of educational attainment have different

average beliefs, levels of disagreement, rounding patterns, and covariance structures in

the random disturbances of their responses. Previous studies have found evidence of

these differences (see, e.g., Kézdi and Willis 2011; Das, Kuhnen, and Nagel 2020; Ameriks,

Kézdi, et al. 2020). A relationship between beliefs about stock returns and education could

explain part of the educational gradients in stockholding documented in Section 2.

The parameter estimates, which are presented in Table 11 of Appendix A, suggest that

21
Out of the person-year observations that satisfy a) and b), the fraction of observations that I drop for

not satisfying c) are 11.8% for those with a high-school degree and 5.2% for college graduates.
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The belief grids are equiprobable discretizations of the joint distribution in Equation 2, see Appendix A for details. The S&P 500 point

depicts the average and standard deviation of annual log-returns to that index between 1881 and 2018. The data for this calculation

comes from the accompanying data file to Chapter 26 of Shiller (1990).

Figure 4: Estimated belief grids

different degrees of rounding are prevalent in the data and that, as found by Giustinelli,

Manski, and Molinari (2022), more educated individuals tend to round their answers to

finer levels. The fraction of individuals belonging to the finest rounding type (multiples

of 5%) is 40% for high school graduates and 51% for college graduates. Coarse rounding

is non-negligible: 17% of high school graduates and 9% of college graduates round their

answers to levels coarser than 10% (25%, 50% or 100%).

The estimated models assign a large role to persistent differences in people’s beliefs

for explaining their probabilistic assessments.
22

Figure 4 depicts the estimated grids of

possible (𝜇, 𝜎) pairs for every level of education, showing that they span large ranges of

the mean-variance space. The breadth of the grids is a consequence of the fact that, as

discussed in Section 2.2, most of the variation in this data comes from persistent cross-

sectional differences, which in this model correspond to (𝜇𝑖 , 𝜎𝑖).
22

While the functional forms that I impose assume that (𝜇𝑖 , 𝜎𝑖) are fixed individually, they do not limit

the scale of their distribution across the population. In principle, the model could adjudicate the differences

in responses to the time-specific shocks

{
𝜀≥0

𝑖 ,𝑡
, 𝜀≥20

𝑖 ,𝑡
, 𝜀≤−20

𝑖 ,𝑡

}′
and find narrow distributions for (𝜇𝑖 , 𝜎𝑖).
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Table 5: Summary statistics of estimated beliefs about stock returns

𝜇𝑖 = 𝐸𝑖[ln 𝑅̃] 𝜎𝑖 =
√
𝑉𝑖(ln 𝑅̃) 𝐸𝑖[𝑅̃] − 𝑅 Sharpe Ratio*

Mean S.D. Mean S.D. Fract > 0 Mean S.D.

Estimated Beliefs
High School -0.017 0.131 0.512 0.221 0.60 0.283 0.111

College 0.020 0.118 0.424 0.172 0.72 0.266 0.169

Historical Realizations
S&P 500 (1881-2018) 0.087 - 0.169 - - 0.342 -

The Sharpe ratio and its summary statistics are computed only for those beliefs for which it is positive. All summary statistics are

taken over the points in the estimated beliefs grids for every level of education, depicted in Figure 4. The Sharpe ratios are computed

with the nominal “risk-free” return factor as a benchmark. I take the average yearly risk-free return factor between 1881 and 2018 from

the accompanying data file to Chapter 26 of Shiller (1990), which is 1.044.

For every level of educational attainment, the estimated distributions of persistent

beliefs imply that most people are more pessimistic about future stock log-returns than

standard calibrations based on the historical experience. Figure 4 compares the estimated

distribution of beliefs with the historical mean and standard deviation of log-returns to the

S&P500 index. For both levels of educational attainment, the majority of points lie below

and to the right of the S&P500. This means that most people believe log-returns to stock

investments are lower on average and more volatile than those historically experienced

by the S&P500. Moreover, many of the points fall below the 𝜇 = 0 line, suggesting

that a considerable fraction of the population believes that average log-returns are in fact

negative. As suggested by Dominitz and Manski (2007), this “pessimism” about stock

returns could help explain why a fraction of U.S. households do not own stocks at all,

despite having substantial wealth.
23

The estimated distributions of beliefs imply a steep relationship between educational

attainment and anticipated rewards from investing in stocks. Table 5 presents summary

23
In other countries, studies have also shown that stock-market participation is insensitive to wealth

windfalls (Andersen and Nielsen 2011; Briggs et al. 2021). These facts are difficult to accommodate for

models that try to explain non-participation using monetary costs. For instance, Catherine (2021) assumes

a fraction of the population—which he estimates to be 46%-47%—exogenously avoids the stock market.

Pessimistic beliefs could be behind this persistent non-participation.
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statistics of the distribution of persistent beliefs for every level of educational attainment.

Expected log-returns (𝜇) vary widely within educational attainment groups, with within-

group standard deviations of 1,300 and 1,200 basis points for high-school and college

graduates, respectively. Average expected log-returns are higher for college graduates (200

basis points) than for high school graduates (−170 basis points). Subjective assessments

of volatility (𝜎) vary considerably within educational attainment groups but also show a

relationship with education: both their mean and standard deviation across individuals

are lower for college graduates. The average subjective standard deviation of log-returns

is 4,200 basis points for college graduates and 5,100 basis points for high school graduates.

Both values are much greater than the historical standard deviation of the S&P500’s log-

returns, which has been around 1,700 basis points.

The estimated distributions of beliefs also imply differences in people’s expected re-

wards from the risks associated with stock market participation. For high school and

college graduates, these differences align qualitatively with their differing investment pat-

terns. The fourth column of Table 5 shows that not all individuals believe that the expected

returns to stocks are greater than those of a safe bond: only 60% of high school graduates

and 72% of college graduates do. For those who expect a premium from stocks, the fifth

and sixth column calculate the Sharpe ratio, which measures the expected excess returns

per unit of risk that they believe stocks offer. The average Sharpe ratios of high school

and college graduates who believe there is an equity premium are similar (0.28 and 0.27

respectively) but lower than the historical Sharpe ratio of the S&P500 index which, based

on 1881 to 2018 data from Shiller (1990), has been around 0.34.

The model can produce individual-level estimates of the persistent component of

beliefs that are interpretable, account for measurement error and rounding, and aggregate

the information of the multiple probabilistic questions. Similarly to Ameriks, Kézdi, et

al. (2020), the estimates of beliefs that I construct are the individual level expectation of

28



Table 6: Estimated beliefs and portfolio choices

Stock Market Participation Stock Share of Fin. Wealth

Probit Marg. Probit Marg. Tobit Tobit

𝜇̂𝑖 1.66 0.85 2.08 1.14

[1.31; 2.01] [0.63; 1.07] [1.68; 2.49] [0.88; 1.38]
𝜎𝑖 −1.08 −0.52 −1.24 −0.59

[−1.32;−0.88] [−0.66;−0.38] [−1.47;−1.02] [−0.76;−0.46]

Outcome Mean 0.45 0.45 0.27 0.27

Std. Dev. (𝜇̂𝑖) 0.08 0.08 0.08 0.08

Std. Dev. (𝜎̂𝑖) 0.11 0.11 0.11 0.11

Pseudo 𝑅2
0.13 0.27 0.11 0.24

Controls ✓ ✓
Num. obs. 5447 5447 5447 5447

The sample are HRS financial respondents between the ages of 50 and 65. I aggregate the data at the individual level by taking

averages over the time dimension. For multinomial variables like the willingness to take risk, I take the mode. The control variables

are: college degree, age, sex, log-income, general willingness to take risk (10 possible levels), and financial planning horizon (5 possible

levels).The first two columns report average marginal effects from Probit regressions. The second two columns report coefficients from

Tobit regressions that limit the outcome to the [0, 1] interval. Reported confidence intervals are 95% coverage sets from 150 bootstrap

replications. To account for the fact that 𝜇̂𝑖 and 𝜎̂𝑖 are generated regressors, each bootstrap replication re-samples households, re-

estimates the full beliefs model, re-calculates 𝜇̂𝑖 and 𝜎̂𝑖 for each sampled household, and re-estimates the regressions reported in this

table.

(𝜇𝑖 , 𝜎𝑖) given the full set of responses of the person:

𝜇̂𝑖 = E

[
𝜇𝑖

���� {𝑃≥0

𝑖 ,𝑡
, 𝑃≥20

𝑖 ,𝑡
, 𝑃≤−20

𝑖 ,𝑡

}
𝑡∈𝒯 (𝑖)

]
and 𝜎̂𝑖 = E

[
𝜎𝑖

���� {𝑃≥0

𝑖 ,𝑡
, 𝑃≥20

𝑖 ,𝑡
, 𝑃≤−20

𝑖 ,𝑡

}
𝑡∈𝒯 (𝑖)

]
, (3)

where 𝒯 (𝑖) are the waves in which 𝑖 appears satisfying the sample criteria.

The individual-level estimates of beliefs about stock returns are predictive of portfolio

choices. Table 6 reports regressions that relate these estimates to the stock ownership

and portfolio shares of financial respondents in the HRS sample. Individuals with higher

subjective means of log-returns participate at higher rates and have higher shares of their

wealth invested in stocks; the converse is true for those with higher expected volatilities.

These estimated relationships are precise and robust to the inclusion of socio-demographic

controls and measures of patience and risk preferences. The estimates imply that an

individual with a subjective mean 𝜇̂𝑖 that is higher by 100 basis points is 0.85 percentage
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points more likely to own stocks, and has an (unconditional) share of wealth in stocks

that is 1.14 percentage points higher. An individual with a subjective volatility 𝜎̂𝑖 that

is higher by 100 basis points is 0.52 percentage points less likely to own stocks, and has

a share of wealth in stocks that is 0.59 percentage points lower. These associations are

empirically weaker than the ones implied by frictionless models—Ameriks, Kézdi, et al.

(2020) call this fact “the attenuation puzzle”— however, their magnitudes are material

given the wide variation in 𝜇̂𝑖 and 𝜎̂𝑖 , which have standard deviations of 800 and 1,100

basis points respectively.
24

Qualitatively, the fact that not all households believe that there is an equity premium

could explain why some of them do not invest in stocks. The low perceived Sharpe ratios

could explain why those who do own stocks invest a limited share of their wealth in

them. In addition, the educational differences in beliefs about returns are also consistent

with the different stockholding patterns of high school and college graduates. Differences

in the share of respondents who believe there is an equity premium could explain the

relationship between education and participation rates. The similarity in the subjective

Sharpe ratios of those who believe there is a premium could explain why the conditional

shares of wealth in stocks are similar for high school and college graduates. To evaluate

these possibilities quantitatively, I now present a life cycle model of saving and portfolio

choices.

3.2 Life Cycle Model of Saving and Portfolio Choices

The life cycle model has several features in common with portfolio choice models in the

literature (see, e.g., Cocco, Gomes, and Maenhout 2005; Gomes and Michaelides 2005;

Campanale, Fugazza, and Gomes 2015; Fagereng, Gottlieb, and Guiso 2017; Catherine

2021). Households save to smooth their consumption against fluctuations in their income,

24
Enke et al. (2024) show that portfolio choice is only one of many instances in which people’s decisions are

empirically less responsive to economic fundamentals than we would expect based on theoretical models.

They argue that this “behavioral attenuation” is due to information processing constraints.
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which come from deterministic changes as they age and random shocks, both permanent

and transitory. My model features a bequest motive and age-varying health expenditure

shocks as additional reasons for saving; both are important motives in explaining post-

retirement wealth (De Nardi, French, and Jones 2010; Ameriks, Briggs, et al. 2020). Agents

face two different financial frictions when deciding how to allocate their savings between

assets. First, they must pay a monetary cost before owning stocks for the first time. Second,

they face a 10% early withdrawal penalty when liquidating stocks before retirement.

I now discuss the main components of the model and leave its full mathematical

description and treatment for Appendix C.

3.2.1 Lifespan, utility, and mortality

Time periods in the model represent a year. Agents enter the model at age 24 and can

live up to a maximum age of 100. At the end of every year, they face an exogenous risk of

death that becomes certain at the maximum age. The probability of surviving from age 𝑡

to 𝑡 + 1 is represented by 𝛿𝑡+1 and the probability of not surviving is ��𝛿𝑡+1 ≡ 1 − 𝛿𝑡+1.

Agents derive utility from consumption. Their utility function follows a constant

relative risk aversion specification,

𝑢(𝐶) = 𝐶1−𝜌

1 − 𝜌
, (4)

where 𝜌 is the coefficient of relative risk-aversion.

If an agent dies at the end of a year, after making all his choices, he derives warm-glow

utility from bequeathing his total wealth. The utility derived from bequeathing wealth 𝑥

is:

B(𝑥) = b × (𝑥/b)1−𝜌
1 − 𝜌

= b𝜌 × 𝑥1−𝜌

1 − 𝜌
= b𝜌 × 𝑢(𝑥),

where b ≥ 0 is a parameter that controls the intensity of the bequest motive. This is the

same specification used by, e.g., Gomes and Michaelides (2005).
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3.2.2 Income process

Agents supply labor inelastically and retire exogenously at the end of the year in which they

turn 65. Their labor earnings, denoted by 𝑌𝑖 ,𝑡 , are a product of two factors: a permanent

component represented by 𝑃𝑖 ,𝑡 and a transitory stochastic component represented by 𝜃𝑖 ,𝑡 .

Labor earnings and their permanent component follow:

ln𝑌𝑖 ,𝑡 = ln𝑃𝑖 ,𝑡 + ln𝜃𝑖 ,𝑡 and ln𝑃𝑖 ,𝑡 = ln𝑃𝑖 ,𝑡−1 + lnΓ𝑖 ,𝑡 + ln𝜓𝑖 ,𝑡 ,

where Γ𝑡 is a deterministic growth factor that captures life cycle patterns in earnings, and

ln𝜓𝑖 ,𝑡 ∼ 𝒩(−𝜎2

𝜓/2, 𝜎2

𝜓) is a multiplicative shock to permanent income.
25

The transitory component of earnings 𝜃𝑖 ,𝑡 is a mixture that represents unemployment

and temporal fluctuations in income that occur while employed:

ln𝜃𝑖 ,𝑡 =


ln𝒰 , With probability ℧

ln 𝜃̃𝑖 ,𝑡 ∼ 𝒩(−𝜎2

𝜃/2, 𝜎2

𝜃), With probability 1 −℧.

℧ denotes the probability of unemployment, and 𝒰 denotes the replacement factor of

unemployment benefits.

The sequences of growth factors {Γ𝑡}100

𝑡=25
differ for high school and college graduates. I

take their values from Cagetti (2003). Figure 5 displays the income paths that individuals

with different education levels would experience in the absence of shocks.
26

The decline

after age 65 corresponds to retirement. I also take the volatilities of transitory and per-

manent income shocks (𝜎𝜓 and 𝜎𝜃) used by Cagetti (2003), which come from Carroll and

Samwick’s (1997) estimates.

After retirement, individuals are no longer subject to transitory and permanent shocks

to their earnings. Instead, they face out-of-pocket medical expenditure shocks. As people

25
The mean of the shock is set so that 𝐸[𝜓𝑖 ,𝑡] = 1.

26
This is 𝑃𝑖 ,24 ×

∏𝑡
𝑗=25

Γ𝑖 ,𝑡 .
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These estimated trajectories for the deterministic component of permanent income come from Cagetti (2003). I thank the author for

sharing his exact estimates.

Figure 5: Deterministic component of income by education level
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The figure depicts estimates of the distribution of people’s out-of-pocket medical expenditures expressed as a ratio of their annual

income. At every age, the solid line represents the median, the dark shaded area represents the 25th and 75th percentiles, and the

light-shaded area represents the 10th and 90th percentiles.

Figure 6: Out-of-pocket medical expenditures over the life cycle
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age, medical expenditures increase rapidly (see Figure 6). The anticipation of these rising

expenditures has been shown to be one of the reasons why the elderly do not spend

their wealth as quickly as a basic life cycle model would predict (De Nardi, French, and

Jones 2010; Ameriks, Briggs, et al. 2020). The literature that specializes in the study of

these expenditures has identified several important features, such as their dependence

on persistent health states (Kopecky and Koreshkova 2014; Ameriks, Briggs, et al. 2020),

their relationship with permanent income (De Nardi, French, and Jones 2010), and the

prevalence of “catastrophic” shocks (French and Jones 2004). To incorporate these shocks

into my model, I adopt a parsimonious representation that matches the distribution of

expenditures across the population and matches the fact that they increase with age and

permanent income. Every year, agents draw a shock oop𝑖 ,𝑡 that represents the fraction

of their earnings used up by out-of-pocket medical expenses. I assume that government

programs cover any health expense above an agent’s income, so that income net of medical

expenses cannot be negative. The process for earnings net of costs and permanent income

becomes:

𝑌𝑖 ,𝑡 = 𝑃𝑖 ,𝑡 × max{0.0, 1 − oop𝑖 ,𝑡}

𝑃𝑖 ,𝑡 = 𝑃𝑖 ,𝑡−1Γ𝑖 .

The shocks oop𝑖 ,𝑡 are independent across time and follow age- and education-specific

distributions that approximate the patterns in Figure 6. I calibrate these distributions

using the RAND HRS longitudinal file; I describe the process in Appendix B.

3.2.3 Financial assets and frictions

Agents try to smooth their consumption by saving and they have two assets available for

this purpose. The first asset is a risk-free liquid account with a constant per-period return

factor 𝑅. The second asset is a stock fund with a stochastic return factor 𝑅̃ that agents view

as log-normally distributed and independent across time. I denote the dollar amounts
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available to agent 𝑖 at the start of period 𝑡 in the risk-free account and the stock fund with

𝑀𝑖 ,𝑡 and 𝑁𝑖 ,𝑡 , respectively. The flows between the two assets are one of the agents’ control

variables and denoted with 𝐷𝑖 ,𝑡 , with 𝐷𝑖 ,𝑡 > 0, representing a movement of funds from

the risk-free to the risky account.

The model has four different financial frictions. First, agents cannot short-sell any of the

assets or borrow against their future income. Second, agents enter the model not having

access to the stock fund and must pay a one-time financial cost to access it. As in Gomes

and Michaelides (2005), the cost represents the money and time spent opening a brokerage

account and getting familiarized with the stock market. The cost is proportional to agents’

permanent income, 𝑃𝑖 ,𝑡 × 𝐹, where 𝐹 is a parameter to be estimated. Third, withdrawals

from the stock fund are taxed at a constant rate 𝜏 = 0.1 before agents retire.
27

This

friction represents early retirement fund withdrawal penalties and the costs associated

with liquidating stock positions. Finally, agents must pay for their consumption using

funds from their risk-free accounts only.

As demonstrated by Campanale, Fugazza, and Gomes (2015), the combination of

rebalancing penalties and the fact that consumption must be paid for using risk-free funds

generates a reason for young people to not allocate all of their wealth to stocks, as is

predicted by standard life cycle portfolio models (see Cocco, Gomes, and Maenhout 2005).

An agent who anticipates the possibility of consuming part of his savings in the next

period—because of an unemployment spell, for instance—might keep a buffer of risk-

free funds to avoid having to pay the stock withdrawal tax if this is the case. The size

of the desired buffer will depend, among other factors, on the agent’s beliefs about the

equity premium and its volatility, the volatility of his income, and the magnitude of the

withdrawal tax.
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a) Agent who has not paid the stock-fund entry cost

Period 𝑡 − 1 ends

Period 𝑡 starts

Period 𝑡 ends

Period 𝑡 + 1 starts𝑡(Entry) 𝑡(Cns)

• Shocks {𝜓, 𝜃} are

realized.

• Income and assets

{𝑃, 𝑌, 𝑀} are determined.

• Agent chooses whether to

enter the stock-fund.

• If he enters, moves to

𝑡(Reb) in the timeline

below with liquid

balances 𝑀 − 𝑃 × 𝐹.

• If he does not enter,

continue in this timeline.

• Agent chooses

consumption 𝐶 out of

liquid assets 𝑀.

• Mortality is realized.

• If the agent dies, he

receives utility from

bequests.

b) Agent who has already paid the stock-fund entry cost

Period 𝑡 − 1 ends

Period 𝑡 starts

Period 𝑡 ends

Period 𝑡 + 1 starts𝑡(Reb) 𝑡(Cns)

• Shocks {𝑅̃,𝜓, 𝜃} are

realized.

• Income and assets

{𝑃, 𝑌, 𝑀, 𝑁} are

determined.

• Agent chooses 𝐷,

rebalancing his assets.

• Post-rebalancing assets 𝑀̃

and 𝑁̃ are determined.

• Agent chooses

consumption 𝐶 out of

post-rebalancing liquid

assets 𝑀̃.

• Mortality is realized.

• If the agent dies, he

receives utility from

bequests.

Figure 7: Summary of timing in the life cycle model
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3.2.4 Timing and recursive representation

Figure 7 summarizes the timing of stochastic shocks and optimizing decisions that occur

within a period of the life cycle model. Agents enter the model in timeline a), not having

paid the stock fund entry cost 𝑃𝑖 ,𝑡 × 𝐹. They are presented with the option to pay the

cost and enter the fund every year. Once they pay the cost, they move to the portfolio-

rebalancing stage 𝑡(Reb) of timeline b) and remain on timeline b) for the rest of their

lives.

To illustrate the choices and constraints faced by agents succinctly, Equation 5 presents

the recursive value function of an agent who has paid the financial participation cost and

therefore has access to the stock-fund.
28

I present the value function of the agent who

has not paid the financial participation cost in Appendix C, which also discusses various

alternative representations of the model that I use in its solution.

27
The withdrawal tax rate becomes 𝜏 = 0 after agents retire.

28
Individual subindices 𝑖 are dropped for simplicity.
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𝑉In𝑡 (𝑀𝑡 , 𝑁𝑡 , 𝑃𝑡) = max

𝐶𝑡 ,𝐷𝑡

𝑢(𝐶𝑡)+𝛽𝛿𝑡+1E𝑡

[
𝑉In𝑡+1

(𝑀𝑡+1, 𝑁𝑡+1, 𝑃𝑡+1)
]

+��𝛿𝑡+1B(𝐴𝑡 + 𝑁̃𝑡)

Subject to:

−𝑁𝑡 ≤ 𝐷𝑡 ≤ 𝑀𝑡 , 0 ≤ 𝐶𝑡 ≤ 𝑀̃𝑡

𝑀̃𝑡 =𝑀𝑡 − 𝐷𝑡

(
1 − 1[𝐷𝑡≤0]𝜏

)
𝑁̃𝑡 =𝑁𝑡 + 𝐷𝑡

𝐴𝑡 =𝑀̃𝑡 − 𝐶𝑡

𝑀𝑡+1 =𝑅𝐴𝑡 + 𝑌𝑡+1

𝑁𝑡+1 =𝑅̃𝑡+1𝑁̃𝑡

𝑃𝑡+1 =Γ𝑡+1𝜓𝑡+1𝑃𝑡

𝑌𝑡+1 =𝜃𝑡+1𝑃𝑡+1

. (5)

4. Estimation

To determine whether survey measurements of beliefs can improve the life cycle model’s

capacity to fit U.S. households’ savings and portfolios, I now estimate the model under

alternative specifications of beliefs about stock returns. In the first specification, all the

simulated agents believe that future stock fund returns will follow a distribution that

approximates their historical behavior—this is the commonly used full-information rational-

expectations (F.I.R.E.) specification. In the second specification, the agents’ beliefs about

future stock returns are heterogeneous and distributed across the population following

the specifications that I estimated from survey measurements in Section 3.1.2. For each

level of education and each specification of beliefs, I estimate the model’s unobservable
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parameters that govern agents’ preferences and barriers to stock market participation. The

estimation strategy searches for the parameters that best replicate the life cycle profiles of

U.S. households’ savings, stock market participation rates, and shares of financial wealth

in stocks.

4.1 Data, Sample Restrictions, and Targeted Variables

The estimation exercise targets the life cycle profiles of wealth-to-income ratios, stock

market participation rates, and the shares of wealth in stocks conditional on participation

of U.S. households. I construct these targeted variables using the nine waves of the

Survey of Consumer Finances (SCF) between 1995 and 2019. My variables of interest rely on

definitions and calculations in the SCF’s summary files, which produce standard measures

of households’ wealth and income from the raw survey.
29

The wealth-to-income ratio measures the financial savings of an individual relative to

what would be their “usual” income—their permanent income in the life cycle model.

For my measure of wealth, I take the economic unit’s total financial assets (fin). For

my measure of income, I take the sum of wage and salary income (wageinc) and social

security and pension income (ssretinc).

To measure stock holdings, I use the SCF’s estimated total value of financial assets

invested in stocks (equity), which includes direct and indirect investments. I define stock

market participation as a binary variable that takes the value of one if the given economic

unit has stock holdings greater than zero, and zero otherwise. Finally, I calculate the share

of wealth in stocks as a unit’s stock holdings divided by their wealth; if a unit’s wealth is

zero, I set the share to zero.

To generate a sample that more closely matches the type of household represented in

the model and to ensure that the variables of interest are well defined, I apply various

filters to the data before using it to compute the targeted moments. First, I keep only

29
Variables in teletype font denote calculations that are readily available in the summary files.
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Cond. Share
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Each point represents the relevant statistic computed over the group of SCF respondents with the given level of educational attainment

and falling in a 3-year age bin. See the main text for definitions of the sample and relevant variables. Error bands correspond to 95%

point-wise confidence intervals calculated using 500 bootstrapped samples for each level of education.

Figure 8: Targeted moments

economic units whose respondent was born between 1920 and 1995. To make the wealth-

to-income ratio comparable to a model analogue that uses permanent income, I only keep

units who report that their income was “normal” in the given year.
30

To ensure that the

ratio is defined, I only keep units with positive incomes. Finally, I exclude business owners

from the sample.
31

I group observations by the respondent’s level of education and age. For education, I

split the sample into those without a high school degree (which I do not analyze), those

with a high school but not a college degree, and those with a college degree. For age,

I form three-year bins starting at age 24 and up to a maximum age of 80, for a total of

19 groups: {24, 25, 26}, {27, 28, 90}, ..., {75, 76, 77}, {78, 79, 80}. The moments that my

estimation routine targets are summary statistics of the variables of interest calculated

over the education-by-age groups.

30
The question of whether income was unusual was added in the 1995 wave. For this reason, I exclude

previous waves from this part of the analysis.

31
I define business owners as those with bus > 0.
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For each group of observations, the moments that I target in estimation are:

• Average wealth-to-income ratio: the average of the wealth-to-income ratio. The

ratio can take on extreme values for agents with a low measured wage income. To

limit the influence of these extreme observations, I winsorize the wealth-to-income

ratios at their within-group 95th percentile before taking their average.

• Stock market participation rate: the average of the binary stock market participation

variable.

• Average conditional share of wealth in stocks: the average share of wealth in stocks

of those who participate in the stock market.
32

I use survey weights for the calculation of these moments and rescale the weights of differ-

ent waves so that each of them has an equal representation in the moments’ calculations.

Figure 8 displays each of the moments for every education-by-age group. The figure

also presents 95% confidence intervals for each targeted moment. The confidence inter-

vals come from calculating the targeted moments on 500 bootstrapped samples for each

level of education. The error bars correspond to the 2.5th and 97.5th percentiles of the

bootstrapped values of each moment. The bars demonstrate that the only moments with

considerable sampling variation are the post-retirement wealth ratios of college graduates.

4.2 Objective Function and Optimization

For every level of education and specification of beliefs, I estimate the preferences and

participation costs that minimize the distance between the targeted moments in the SCF

and their model-implied counterparts.

32
The model counterpart of the average conditional share can behave poorly in regions of the parameter

space where participation is very low (for instance, if entry costs are very high). To improve this behavior

and ensure that the SMM loss function is defined for all parameter values, I target a weighted average

of the unconditional share of wealth in stocks that gives very little weight (instead of a 0 weight) to non-

participants. Using Share𝑖 ,𝑡 to denote the unconditional share, I target

∑
𝑖 𝜔𝑖 ,𝑡Share𝑖 ,𝑡/

∑
𝑖 𝜔𝑖 ,𝑡 , where 𝜔𝑖 ,𝑡 = 1

for participants (Share𝑖 ,𝑡 > 0) and 𝜔𝑖 ,𝑡 = 10
−3

for non-participants (Share𝑖 ,𝑡 = 0). This moment is practically
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Table 7: Non-estimated parameter values

Symbol Interpretation Value Source

b Bequest Intensity 2.5 Gomes and Michaelides (2005)

{𝛿𝑡}𝑇𝑡=0
Survival probabilities - S.S.A. Actuarial tables 2010

33

{Γ𝑡}𝑇𝑡=0
Permanent income drift (educ.) - Cagetti (2003)

𝜎𝜓, 𝜎𝜃 Volatility of income shocks (educ.) - Carroll and Samwick (1997)

℧ Probability of unemployment 0.050 -

𝒰 Unemp. benefits replacement factor 0.500 National median, Ganong, Noel, and Vavra (2020)

𝜋 Log-inflation rate 0.024 Mean CPI Log-Inflation.

𝑟 Log risk-free rate (nominal) 0.043 Mean 1-year U.S. bond log-returns.

𝑅 Risk-free return factor (real) 1.019 exp{𝑟 − 𝜋}
𝜇𝑆𝑃500

Mean stock log-return 0.085 S&P500 Index (nominal).

𝜎𝑆𝑃500
St. Dev. stock log-returns 0.170 S&P500 Index (nominal).

Parameters that depend on educational attainment are marked with “(educ.).” Averages and standard deviations of financial variables

are all taken over the 1881-2018 period. The data on financial assets and the CPI index come from the ‘Chapter 26’ file in Robert Shiller’s

website: http://www.econ.yale.edu/ shiller/data.htm.

The set of parameters that I estimate structurally consists of the coefficient of relative

risk aversion (𝜌), the time-discount factor (𝛽), and the size of the cost of accessing the stock

fund for the first time (𝐹). I denote this set of parameters with 𝜗 ≡ {𝜌, 𝛽, 𝐹}. I set other

parameters related to the income process and mortality to historical estimates or values

from the literature and they remain fixed throughout the estimation process; I summarize

their values or sources in Table 7. The parameters that govern the returns to different

assets and agents’ expectations about them are discussed in detail in the next section.

For any given set of parameters, I solve the life cycle model and simulate populations of

agents that I use to find model-implied counterparts to the targeted moments. I solve the

model by backward induction using a combination of the techniques outlined in Carroll

(2006), Iskhakov et al. (2017), and Druedahl (2021); I describe the process in detail in

Appendix E. I use the resulting policy functions to simulate populations of agents on

which I calculate model-counterparts to the targeted empirical moments. The model is

not well suited to accommodate the transitional dynamics of households’ savings and

portfolios as they move into retirement; it assumes that all agents retire exogenously at

identical to the average conditional share at the participation levels observed in the data and targeted by the

model.
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age 65. Therefore, I exclude the bins spanning ages 60 to 71, leaving a total of 15 targeted

age-bins and 45 moments for each level of education.
34

For a level of education 𝑒, I

use 𝑚𝑒
0

to denote a vector of the 45 targeted empirical moments and 𝑚̂𝑒 (𝜗) to denote its

model-implied counterpart under parameters 𝜗.

The loss function that I minimize is:

𝐿𝑒(𝜗) =
(
𝑚𝑒

0
− 𝑚̂𝑒 (𝜗)

) ′
W

𝑒
(
𝑚𝑒

0
− 𝑚̂𝑒 (𝜗)

)
, (6)

where W
𝑒

is a diagonal weighting matrix. Since the moments have different scales, I set

W
𝑒

so that moment deviations are expressed as fractions of the average relevant statistic

across age groups.
35

I obtain estimates as:

𝜗̂𝑒 = arg min

𝜗
𝐿𝑒(𝜗). (7)

To solve the minimization problem, I use the TikTak algorithm (Arnoud, Guvenen, and

Kleineberg 2019) as implemented in the estimagic toolbox (Gabler 2022). I use 2,500

initial “exploration points” and allow for 10 full local-optimization runs using the DFO-LS

algorithm (Cartis et al. 2019), which takes advantage of the least-squares structure of the

optimization problem.

4.3 Agents’ Expectations and Returns to Financial Assets

In the model, returns of the stock fund follow a distribution that approximates the histor-

ical behavior of the S&P500 index. In the first specification of agents’ beliefs, everyone’s

expectations are consistent with this data generating process. In the second specification,

agents’ expectations match survey measurements instead.

34
15 age-bins times three moments of interest (median wealth-to-income ratio, participation rate, and

average conditional share of wealth in stocks).

35
For example, for individuals with a college degree, the diagonal positions ofW

Coll.
that multiply errors

in the stock market participation rate are set to 1/( ¯
Part)2 where

¯
Part is the average of the 15 stock market

participation rates in 𝑚Coll.

0
.
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The simulated log-returns of the stock fund follow a normal distribution. Their mean

and variance match those of the S&P500’s log-returns between 1881 and 2018, and I make

a constant adjustment for inflation 𝜋, which I take to be its average over the same period:

ln 𝑅̃ ∼ 𝒩(𝜇𝑆𝑃500 − 𝜋, 𝜎𝑆𝑃500). (8)

Table 7 presents the values of 𝜇𝑆𝑃500
, 𝜎𝑆𝑃500

, and 𝜋.

The first specification of beliefs that I use is full-information rational-expectations (F.I.R.E.).

Under this specification, agents have correct beliefs about the stock-fund’s returns (Equa-

tion 8) when solving their dynamic optimization problem. For each level of education,

I simulate populations of 500 agents that run for 1,000 years and use them to compute

the model’s counterparts to targeted moments, 𝑚̂𝑒 (𝜗). The second specification of beliefs

that I use is estimated beliefs. Under this specification, I replace every agent of the F.I.R.E.

simulation with 25 agents whose beliefs about the stock fund’s returns come from the dis-

tributions I estimated in Section 3.1.2.
36

The 𝑗th agent believes that ln 𝑅̃ ∼ 𝒩(𝜇̂𝑗 − 𝜋, 𝜎̂𝑗),

where {𝜇̂𝑗 , 𝜎̂𝑗}25

𝑗=1
is the grid of estimated beliefs for the given level of education, displayed

in Figure 4. I use the resulting populations of 12,500 agents to compute model-implied

moments.

5. Life Cycle Model Estimates

The results from structurally estimating the life cycle model confirm that incorporating

survey measurements of beliefs improves the model’s capacity to explain the savings

and portfolios of U.S. households. For both high school and college graduates, replac-

ing model-consistent (F.I.R.E.) beliefs with a specification that fits survey measurements

reduces the distance between the model’s predictions and the targeted moments of the

36
The 25 estimated-beliefs agents share the same shock realizations of the F.I.R.E. agent they are replacing.

They differ only in their beliefs about stock-fund returns.
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Table 8: S.M.M. estimated parameters under different belief models

College High-School

F.I.R.E. Est. Beliefs F.I.R.E. Est. Beliefs

CRRA (𝜌) 11.396 5.114 8.607 4.231

[11.344; 11.571] [5.058; 5.150] [8.494; 8.612] [4.191; 4.252]
Disc. Fact. (𝛽) 0.634 0.886 0.331 0.761

[0.621; 0.642] [0.884; 0.890] [0.311; 0.355] [0.751; 0.770]
Entry Cost (𝐹 × 100) 1.041 0.000 3.116 2.576

[0.485; 1.825] [0.000; 0.000] [2.848; 3.513] [2.292; 2.673]

SMM Loss, 𝐿𝑒(𝜗) 5.264 2.857 15.984 3.998

The brackets under each point estimate are 95% confidence intervals that come from estimating a surrogate model on bootstrapped

moments, see Appendix F for details. “F.I.R.E” stands for full-information rational-expectations and “Est. Beliefs” corresponds to the

heterogeneous beliefs specification, both described in Section 4. The “SMM Loss” row displays the value of the Simulated Method of

Moments loss function (Equation 6) attained by the given parameter values and belief specifications.

data. In both cases, the improvement comes from the capacity to fit low participation

rates with low participation costs and low portfolio shares with moderate levels of risk

aversion. This is possible because in the estimated distribution of beliefs not everyone

thinks that there is an equity premium, and those who do underestimate the risk-return

compensation that the stock market offers.

For both high school and college graduates, the life cycle model fits the targeted mo-

ments more closely when it uses estimated beliefs instead of F.I.R.E. beliefs. Table 8

displays the estimated parameters for each level of educational attainment and specifi-

cation of beliefs, along with the loss function (Equation 7) evaluated at the estimates.

The loss function aggregates squared differences between the model-implied and empir-

ical moments; thus, it serves as an index of how well each model fits the age profiles of

wealth-to-income ratios, stock market participation rates, and conditional shares of wealth

in stocks. Specifications that use the beliefs estimated from survey measurements have

lower losses than their F.I.R.E. counterparts. The reductions are substantial: 75% for high

school graduates (15.984 to 3.998) and 46% for college graduates (5.264 to 2.857).

Figure 9 compares the predicted moments of different model specifications with their
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Each dot in the figure represents the relevant statistic calculated over a three-year age-group. See the main text for precise definitions

of the age groups and statistics. Ages 60 to 71 are omitted because of transitional dynamics into retirement that the model does not

account for.

Figure 9: Model fit of targeted moments
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empirical counterparts, revealing the sources of the improvement in their measured fit.

The F.I.R.E. model does not replicate the humped-shaped participation rates of high

school graduates, which peak at less than 60%. Instead, it produces participation rates

that start at 2% and increase with age until they reach 100%. The reason is that under this

specification of beliefs every agent who saves even modest amounts wants to participate

and the only way to prevent them from doing so is to impose high entry costs. The costs

can only generate participation rates that increase with age because once an agent has paid

them he can participate for the rest of his life. Therefore, to generate a participation profile

with a low peak of less than 60%, the F.I.R.E. model would need high entry costs that

would make participation at younger ages counterfactually low. Instead, the best-fitting

entry cost of 3.1% of annual income generates participation rates that do not match the

shape of the true age profile but whose average across age bins (51%) is close to that in the

data (48%).

In contrast, the model that uses the estimated beliefs specification accurately repro-

duces the participation rates of high school graduates before retirement. Because not all

agents believe that there is an equity premium under this specification, the model gener-

ates participation rates that are moderate. This would be the case even in the absence of

entry costs. The model fits increasing participation rates between ages 24 and 40 with a

cost of 2.6% of permanent income. After age 40, the model uses the fraction of the popula-

tion who does not believe in an equity premium to match the plateauing of participation

rates until age 60. Without these agents, participation would continue to grow. Neither

specification of beliefs can replicate the decline in participation rates after retirement that

occurs in the data. This is due to the structure of costs: since there are no per-period

costs associated with owning stocks, agents who already participate have little incentive

to completely exit the stock market.

For college graduates, neither specification of beliefs replicates stock market partic-

ipation rates perfectly: the F.I.R.E. model overestimates them and the estimated beliefs
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model underestimates them. As was the case with high school graduates, the F.I.R.E.

model is constrained by the fact that all agents with sufficient savings want to own stocks.

For college graduates, it uses a cost of 1% of annual permanent income that reduces early

participation, but all agents overcome this cost by age 40, leading to a 100% participation

rate for most of the life cycle. The opposite problem occurs in the estimated beliefs model:

the fraction of agents that think there is an equity premium is lower than the actual par-

ticipation rates of college graduates aged 40 to 60. Therefore, despite its null estimated

participation cost, this model underestimates participation rates for most of the life cycle.

The differences between the wealth-to-income ratios and conditional stock shares gen-

erated by the two specifications of beliefs are subtler. For high school graduates, both

models overestimate the wealth-to-income ratios of young agents and underestimate

those of retirees; these errors are greater for the F.I.R.E. model. Similar issues appear

in the wealth-to-income ratio of college graduates but to a lesser degree, with both specifi-

cations of beliefs tracking the empirical age profile more closely. The average conditional

shares of wealth in stocks produced by the models are close to the empirical age profiles

for both levels of educational attainment and both specifications of beliefs. The profiles are

flatter than those predicted by baseline frictionless calibrations and this brings them closer

to the empirical profiles. The main noticeable discrepancy in the model with estimated

beliefs is the reduction of the average conditional share of wealth in stocks of college

graduates after retirement. This reduction comes from a change in the composition of

participants when the rebalancing tax is removed: some agents with pessimistic beliefs

(but who still think that there is an equity premium) enter the market, and they drive

down the average conditional share.

While the two specifications of beliefs produce qualitatively similar wealth-to-income

ratios and conditional shares of wealth in stocks, they rely on different mechanisms to

generate them. The main difference is how the two specifications reduce the conditional

share of wealth in stocks to the moderate levels observed in the data. Models with F.I.R.E.
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beliefs rely on high relative risk aversion coefficients of 𝜌 = 8.6 for high school graduates

and 𝜌 = 11.4 for college graduates. Since all agents believe in a large equity premium

under this specification, the only way to dissuade participants from allocating large shares

of their savings to stocks is to make them extremely risk averse. On the other hand, under

the estimated beliefs specification, Table 5 shows how even agents who believe in an

equity premium think (on average) that the risk-return trade-off offered by stocks is not

as attractive as historical benchmarks suggest. This feature enables the specification with

estimated beliefs to match the empirical age-profiles of the conditional shares of wealth

in stocks with lower relative risk aversion coefficients of 𝜌 = 4.2 for high school graduates

and 𝜌 = 5.1 for college graduates.

The different relative risk aversion coefficients required by the F.I.R.E. and estimated-

beliefs specifications produce differences in how the models fit wealth-to-income ratios.

High relative risk aversion coefficients increase agents’ precautionary saving, preventing

the models from producing agents with low wealth. This is evident in Figure 9, where

both belief specifications struggle to match the savings of younger agents, especially

high school graduates. To counteract the effect of precautionary saving on the wealth of

young agents, the models use lower time-discount factors (𝛽) than those typically found

in the macroeconomics and labor-economics literature.
37

This effect is stronger for F.I.R.E.

models because of their higher relative risk aversion coefficients; it results in 𝛽 = 0.33 for

high-school graduates and 𝛽 = 0.63 for college graduates, implying that agents discount

their future utility at rates of 67% and 37% per year respectively. The models that use

the estimated beliefs instead can afford higher time-discount factors of 𝛽 = 0.76 for high-

school graduates and 𝛽 = 0.89 for college graduates because of the lower pressure of

conditional portfolio shares on the relative risk aversion coefficients.

37
Most studies that use consumption-saving models to match wealth find annual discount factors 𝛽 > 0.9,

see e.g., Gourinchas and Parker (2002), Cagetti (2003), De Nardi, French, and Jones (2010), and Carroll,

Slacalek, et al. (2017). However, because of the higher relative risk aversion coefficients needed to match

portfolio shares, lower estimated discount factors are frequently found in the household finance literature,

see e.g., Fagereng, Gottlieb, and Guiso (2017) and Catherine (2021).
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Each marker in the figure represents the relevant statistic calculated over a three-year age-group. See the main text for precise

definitions of the age groups. None of the moments in this figure were targeted in estimation. Ages 60 to 71 are omitted because of

transitional dynamics into retirement that the model does not account for.

Figure 10: Model fit of non-targeted moments

In sum, replacing F.I.R.E. beliefs with the estimated specification of beliefs produces

a better fit of targeted moments, lower estimates of relative risk aversion coefficients,

higher estimates of discount factors, and lower estimates of entry costs. These conclusions

are robust to the sampling variation of the targeted moments shown in Figure 8. In

Appendix F, I follow Chen, Didisheim, and Scheidegger 2021 and Catherine et al. 2022

in approximating the structural life cycle models with deep neural networks. I use the

approximate models to demonstrate that these qualitative conclusions would hold if the

estimation exercise was repeated for 500 different bootstrapped values of the targeted

parameters. The confidence intervals in Table 8 come from the distributions of these

bootstrapped estimates.

Figure 10 presents age profiles for the quartiles of the unconditional share of wealth in
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Table 9: Average share of wealth in stocks by subjective mean quintiles

Quintile of 𝜇̂𝑖

Dataset 1 2 3 4 5

HRS 17.2% 24.5% 25.1% 32.8% 37.4%

Simulated HRS 9.3% 26.3% 34.4% 38.6% 40.9%

For each dataset (true and simulated HRS), I calculate the individual-level estimate of the mean of the subjective distribution of

log-returns 𝜇̂𝑖 (see Equation 3. I aggregate the datasets at the individual level by taking the average of the share of wealth in stocks

across waves. Then, I split the datasets by quintiles of 𝜇̂𝑖 and report the average share of wealth in stocks between those quintiles. The

“Simulated HRS” matches the sample composition and response patterns of the true HRS, but uses my estimated structural model to

produce probabilistic responses and portfolio choices.

stocks, which were not directly targeted in estimation. The estimated beliefs specification

models fit these moments better than their F.I.R.E. counterparts. The F.I.R.E. models

struggle to produce agents that participate in the stock market but invest a low share

of their wealth in stocks. Because they rely on the participation cost, the age profiles

that they imply for unconditional shares tend to start at 0% and then jump to higher

values when agents decide to enter. Additionally, they do not generate much variation

in the share of wealth in stocks of those who participate: the different percentiles of

the unconditional share are close at most ages. In contrast, the models with estimated

beliefs generate a distribution for the unconditional share whose different percentiles

follow qualitatively different trajectories across the life cycle—the levels and shapes of the

25th and 75th percentiles are different. The different percentiles implied by the models

with estimated beliefs track their empirical counterparts closely for both high school and

college graduates.

A core prediction of the model that is not targeted by the estimation process is the

relationship between people’s beliefs and their portfolio choices. To study this relation-

ship, I use the estimated models of beliefs and life cycle portfolio choices to simulate a

synthetic dataset that resembles the HRS. For each respondent in the HRS sample
38

I

create a simulated counterpart with the same level of education. Then, I draw the beliefs

38
I use the same sample from Section 3.1.2: financial respondents aged 50 to 65 that had at least a high

school degree and answered a probabilistic question about stocks.
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(𝜇𝑖 , 𝜎𝑖) and level of roundingℛ𝑖 of every simulated agent from the estimated measurement

system (Section 3.1.2). I generate the simulated responses to {𝑃≥0

𝑖 ,𝑡
, 𝑃≤−20

𝑖 ,𝑡
, 𝑃≥20

𝑖 ,𝑡
} using the

estimated distributions for the {𝜀≥0

𝑖 ,𝑡
, 𝜀≥20

𝑖 ,𝑡
, 𝜀≤−20

𝑖 ,𝑡
} shocks. Given their beliefs, I simulate

the savings and portfolios of each agent using the life cycle model. Finally, I drop ob-

servations from the simulated dataset to exactly reproduce non-response patterns of the

HRS sample: I observe the simulated counterpart of every respondent exactly the same

number of times, answering the same questions, at the same ages.

The model does well at reproducing the relationship between the portfolios of HRS

respondents and their expected log-returns. I use the noisy and rounded probabilistic re-

sponses in the simulated dataset to calculate individual estimates of the mean log-return 𝜇̂𝑖

as I did with the true HRS (see Equation 3). Using these estimates instead of the simulated

𝜇𝑖 approximates the role of noise and rounding in attenuating the relationship between

beliefs and portfolio choices in the true HRS. Table 9 presents the average unconditional

share of wealth in stocks for different quintiles of 𝜇̂𝑖 , comparing the true and simulated

HRS samples. The table shows that the true and simulated relationship between beliefs

and portfolios are similar. This is notable given that this relationship was not targeted:

the model of beliefs and the portfolio choice model were estimated independently.

Overall, using the specification of beliefs from survey measurements improves the life

cycle model’s fit of U.S. households’ portfolios with moderate levels of risk aversion, lower

financial costs of entry, and higher time-discount factors than its F.I.R.E. counterparts. The

model also reproduces non-targeted features of the distribution of portfolio shares and its

relationship with expectations.

6. The Welfare Costs of Misspecified Beliefs

This section considers a scenario in which stocks continue to perform as they have his-

torically. In this scenario, the beliefs estimated from survey measurements would be
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misspecified because they differ from the historical distribution of returns. An objective

observer expects lower welfare for an agent with misspecified beliefs than for a counter-

part with accurate beliefs because the decisions of the former are based on an incorrect

model of the world. Using the estimated life cycle model, I quantify these welfare short-

falls for agents with the beliefs estimated from survey measurements. The metric that I

use is the fraction of permanent income that the objective benevolent observer would take

from each agent in exchange for correcting their beliefs.
39

Average welfare shortfalls start

out at less than 3.5% of permanent income for young agents but follow a hump shape

that peaks around the age of retirement at 8% to 14% of permanent income, depending

on their level of education.

Since beliefs can differ from the data generating process for risky returns, the dis-

counted welfare that agents expect can differ from the discounted welfare that an objective

observer—one who knew the true data generating processes and their decision rules—

would expect them to receive. Let 𝔙𝑡(𝑃𝑡 , 𝑀𝑡 , 𝑁𝑡 , Paid𝑡 ;𝜇, 𝜎) denote the discounted

welfare that we objectively expect an agent to receive starting from age 𝑡 and state

(𝑃𝑡 , 𝑀𝑡 , 𝑁𝑡 , Paid𝑡)40
if his beliefs about returns are (𝜇, 𝜎). The function 𝔙𝑡(·), which I

define formally in Appendix G, uses the agent’s own preferences to discount the future

and assumes that he will follow the policy functions that solve his dynamic problem

according to his beliefs. The difference between 𝔙𝑡(·) and the agent’s subjective value

function 𝑉𝑡(·) is that 𝔙𝑡(·) uses the true data-generating parameters (𝜇𝑆𝑃500, 𝜎𝑆𝑃500) in its

expectations. Thus, if (𝜇, 𝜎) ≠ (𝜇𝑆𝑃500, 𝜎𝑆𝑃500), then 𝔙𝑡(·;𝜇, 𝜎) ≠ 𝑉𝑡(·) in general.

To measure the expected welfare shortfalls that misspecified beliefs cause, I use a

compensating variation. The metric is the proportional reduction in permanent income

(present and future) that would need to accompany the correction of an agent’s beliefs to

leave him at his current level of objectively-expected welfare. Formally, for an agent with

39
The objective benevolent observer is necessary because agents are not aware that their beliefs are

misspecified. They would not pay to change their beliefs because they think that they are correct.

40Paid𝑡 indicates whether the agent has paid the fixed stock-market entry cost or not.
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state variables (𝑃𝑡 , 𝑀𝑡 , 𝑁𝑡 , Paid𝑡) and beliefs (𝜇, 𝜎), I find the 𝜆 that satisfies:

𝔙𝑡

(
𝑃𝑡 , 𝑀𝑡 , 𝑁𝑡 , Paid𝑡 ;𝜇, 𝜎

)
= 𝔙𝑡

(
(1 − 𝜆) × 𝑃𝑡 , 𝑀𝑡 , 𝑁𝑡 , Paid𝑡 ;𝜇

𝑆𝑃500, 𝜎𝑆𝑃500

)
. (9)

The metric 𝜆 can be interpreted as the maximum fraction of permanent income that an

altruistic and objective planner would be willing to take from the agent in exchange for

amending his beliefs about returns. Equation 9 cannot be solved for 𝜆 analytically, but

it shows that an agent’s expected welfare shortfall is contingent on his age, permanent

income, assets, whether or not he has paid the entry cost, and his beliefs.
41

I calculate the expected welfare shortfalls from the estimated heterogeneous beliefs

for individuals with the preferences and assets implied by the estimated life cycle model.

For each level of education, I find the expected welfare functions {𝔙𝑡(·)}100

𝑡=24
using the

preference and cost parameters from Table 8 for the estimated beliefs specifications. Then,

I simulate the lives of agents with beliefs about stock returns drawn from the education-

specific estimated distributions. These simulations use the same population sizes and

shock realizations as in the estimation process (see Section 4). Finally, I evaluate the

estimated welfare shortfall 𝜆 of every agent at every year.

The welfare shortfalls from misspecified beliefs follow a hump shape across the life

cycle, starting low in agents’ youth and peaking at the age of retirement. Figure 11

presents the expected welfare shortfalls 𝜆 of high school and college graduates at every

age, evaluated at their simulated assets and incomes. For both levels of education, the

average shortfall is lowest at the youngest age, with values of 0.9% and 3.4% of permanent

income for high school and college graduates respectively. Accurate beliefs yield their

benefits later in life, when agents have accumulated more savings and they rely on them

for their consumption. The impatient discounting of these future benefits results in the

low initial welfare shortfalls. The shortfalls increase as agents accumulate wealth and

41
Because the model is homothetic in permanent income, 𝜆 can be expressed as a function of assets

normalized by permanent income, and the other states.
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The figure presents average welfare losses from misspecified beliefs about risky-asset returns at every age. I simulate populations of

agents that behave according to the beliefs and preferences estimated in Sections 3.1.2 and 5. Then, for every agent-period observation,

I compute the expected welfare shortfall 𝜆 defined in Equation 9. I report the average of this measure for every age-education

combination.

Figure 11: Expected welfare shortfalls across the life cycle

approach retirement, reaching their peak at age 64 for high school graduates with a value

of 8.1% of permanent income and at age 65 for college graduates with a value of 14.2% of

permanent income. The shortfalls decline progressively thereafter, as agents deplete their

wealth and life expectancy. Despite college graduates having beliefs closer on average to

the historical benchmark (see Table 5), their average welfare shortfalls are greater than

those of high school graduates at all ages. This is due to their higher estimated discount

factor, higher levels of savings, and lower replacement rates of retirement income.

The magnitude, age patterns, and educational differences in the welfare shortfalls from

distorted beliefs are consistent with several findings from the financial literacy literature.

First, Figure 11 indicates that agents would derive the greatest (discounted) benefits

from correcting their misconceptions about the risky asset at ages close to retirement.

Empirically, different measures of financial literacy follow a similar hump shape across the

life cycle of U.S. respondents and peak close to this age range (Lusardi and Mitchell 2023).

Additionally, models that allow for endogenous accumulation of financial knowledge

prescribe that it must peak around the age of retirement and at higher levels for those

with more education (Lusardi, Michaud, and Mitchell 2017, 2020). While these models
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The figure presents average welfare losses from misspecified beliefs about risky-asset returns for every set of beliefs considered in the

life-cycle model estimation. I simulate populations of agents that behave according to the beliefs and preferences estimated in Sections

3.1.2 and 5. Then, for every agent-period observation, I compute the expected welfare shortfall 𝜆 defined in Equation 9. I report the

average of this measure for every belief-education combination at age 65.

Figure 12: Expected welfare shortfalls from different beliefs at age 65

find start-of-life welfare shortfalls of similar magnitudes to those that I calculate,
42

my

findings show that, as a percentage of income, the shortfalls can be far greater around the

age of retirement. These patterns highlight the years preceding retirement as a potential

“teachable moment” for financial knowledge interventions since people have accumulated

enough wealth to put their knowledge to use and anticipate that they will become more

reliant on this knowledge for their support. Identifying these “teachable moments” has

been highlighted as a crucial determinant of the success of these interventions in changing

downstream behaviors (Kaiser and Menkhoff 2017). Workplace interventions, for instance,

are a modality of financial knowledge program that has gathered increasing interest

(see Clark 2023; Lusardi and Mitchell 2023) and which these results favor over earlier

interventions.

The shortfalls in welfare vary substantially with individuals’ beliefs about stock returns,

42
For example, in their model of costly investments in financial knowledge, Lusardi, Michaud, and Mitchell

(2017) find that endowing 25-year-olds with perfect financial knowledge would increase their welfare by

magnitudes comparable to 2-3% increases in their lifetime consumption.
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and the largest impacts fall on those with beliefs that discourage them from ever owning

stocks. Figure 12 displays the average expected welfare shortfall for simulated individuals

with different beliefs and levels of education at age 65, their last working year. For

both levels of education, the largest welfare shortfalls occur among individuals with low

subjective means and volatilities of log-returns. These individuals do not perceive an

equity premium and, therefore, they refrain from ever participating in the stock market.

The average welfare shortfall for these groups of non-participants is 10.9% of permanent

income for high school graduates and 20.0% for college graduates. Welfare shortfalls are

lower for the group of agents who perceive an equity premium, progressively increasing

as beliefs move further away from the model-consistent benchmark. The average welfare

shortfall among those who believe there is an equity premium is 6.1% of permanent

income for high-school graduates and 11.9% for college graduates.

The results in this section highlight considerations for the design and application of

interventions aimed at changing financial knowledge and behaviors. Lusardi and Mitchell

(2023) stress the importance of pinpointing the groups for which these interventions

have the greatest effects and suggest that they might not be cost-effective for groups

that will not use their financial knowledge in a timely manner. The foregoing analysis

suggests that interventions aimed at improving the financial knowledge of young and

disadvantaged individuals with low savings can have smaller effects on welfare than

those targeted at wealthier and more educated individuals. This conclusion is consistent

with the findings of, e.g., Lusardi, Michaud, and Mitchell (2020). This socioeconomic

gradient notwithstanding, the potential welfare effects of information treatments on the

most disadvantaged are large. The question of how to design interventions effective

at changing both financial knowledge and behaviors remains a crucial area of ongoing

research (see Kaiser and Menkhoff 2017; Kaiser, Lusardi, et al. 2022; Clark 2023).
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7. Misspecified Beliefs and the Value of Public Policies

The preceding sections demonstrate that different assumptions about beliefs can produce

different estimates of preferences in saving and portfolio choice models. Do these differ-

ences change the answers that these models offer to counterfactual questions about the

welfare impacts of policy changes? This section demonstrates that they do, by calculating

the welfare impacts of two simple policy changes under the different models estimated in

Section 5.

The first policy change that I evaluate is the elimination of unemployment insur-

ance. I model this change by making the unemployment benefits replacement factor

zero, 𝒰C.F. = 0; this makes the worst transitory income shock that working agents can

draw much worse. The second policy change that I evaluate is a reduction in Social Se-

curity benefits that makes the retirement income of all agents 20% lower. I model this

change by shrinking the permanent income growth factor that is applied at retirement,

ΓC.F.

𝑖 ,66
= 0.8 × Γ𝑖 ,66. The goal of these exercises is to clearly illustrate the effects of the

estimated preferences, not to represent realistic policy proposals. The change in unem-

ployment benefits highlights differences in the implied value of insurance and the change

to retirement benefits highlights differences in the value of future income.

The metric that I use to represent the welfare effects of policy changes is the one-

time cash transfer that, if bundled with the policy change, would leave each agent at

their original level of objectively-expected welfare. I express this quantity as a fraction

of permanent income. Using the objective expected welfare function 𝔙(·) introduced in

Section 6 and denoting its counterpart under the counterfactual changes with 𝔙C.F.(·), the

welfare metric 𝐶𝑉 solves

𝔙𝑡 (𝑃𝑡 , 𝑀𝑡 , ...) = 𝔙C.F.

𝑡 (𝑃𝑡 , 𝑀𝑡 + 𝐶𝑉 × 𝑃𝑡 , ...) . (10)

58



Table 10: Average Welfare Losses from Policy Changes Under Different Models

High School College

Model Age 30 Age 60 Age 30 Age 60

Welfare Loss from Removal of U.I. (as % of a year’s wages)
F.I.R.E. 46% 25% 120% 10%

Est. Beliefs 41% 7% 50% 4%

Welfare Loss from Reduction of S.S. (as % of a year’s wages)
F.I.R.E. 0% 6% 1% 98%

Est. Beliefs 0% 60% 8% 123%

See the main text for the definition of the policy changes. The welfare losses are calculated at the simulated states and ages of the

populations used in the estimation of the life-cycle models. Each row indicates which preferences and (and corresponding policy

functions) from Table 8 were used to calculate welfare losses. Losses are expressed as a fraction of agents’ permanent income; see

Equation 10.

I evaluate this metric for each agent and period in the simulated populations used to

estimate the life cycle model (see Section 4). This gives the metric the interpretation of

the losses incurred by agents at different ages and states if the policies are introduced as

a surprise.

The preference estimates and policy functions generated by different specifications of

beliefs produce very different estimates of the welfare effects of the policy changes. Table

10 presents the average welfare costs of the policy changes for individuals of different ages

and levels of education, comparing their implied values under the F.I.R.E. models and the

models that use estimated beliefs. As the table shows, the average welfare losses estimated

under the F.I.R.E. models can be multiples of those estimated under the model with

heterogeneous beliefs and vice-versa. These differences come mainly from the different

preference estimates that the models imply (see Table 8). The removal of unemployment

benefits produces much greater welfare losses under the F.I.R.E. model, because its higher

estimates of risk aversion raise the value of insurance. With a relative-risk aversion (𝜌)

of 11, 30-year-old college graduates in the F.I.R.E. model value unemployment benefits at

120% of a year’s wages; this falls to less than half with the risk aversion of 5 in the model

that uses estimated beliefs. For retirement benefits that occur in the future, valuations

59



are higher under the model that uses estimated beliefs due to its higher estimates of the

time-discount factor (𝛽). For instance, at age 60, the difference in discount factors for high-

school graduates make the welfare losses from the reduction in social security benefits

implied by the model with estimated beliefs 10 times larger than those implied by the

F.I.R.E. model.

Different specifications of beliefs could simply be considered alternative strategies to

explain the same set of empirical facts. With beliefs given, other features of our models—

preferences in this case—can change to accommodate the targeted moments. However,

as the exercises in this section demonstrate, the alternative explanations of facts derived

from different specifications of beliefs can have starkly different implications for the type

of counterfactual and welfare questions that the structure of our models affords.

8. Concluding Remarks

Dominitz and Manski (2007) note that “many households (...) are not as convinced as

economists are about the existence of an equity premium.” Since the their pioneering work,

the HRS has expanded the range of available measurements of household expectations

in both time and variety, having collected nearly two decades of measurements and

now including three different questions regarding equity returns. This paper uses this

expanded set of measurements to show that many households remain unconvinced of the

existence of an equity premium and that even those who seem to believe in its existence

deem it smaller in risk-adjusted terms than what economists usually assume.

These facts about measured expectations provide a qualitative explanation for why

most households do not invest most of their wealth in equities. The exercises carried out

in this paper quantitatively evaluate the plausibility of this explanation. They demon-

strate that the explanation has several attractive features: it substantially enhances the

capacity of the considered model to reproduce both portfolio choices and savings, and

60



their relationship with age and education; it brings the estimates of unobserved prefer-

ence parameters to ranges more consistent with alternative sources of evidence; and it is

backed by a robust body of measurements and empirical results.

Important challenges and questions remain. The model put forward in this paper

faces difficulties in matching the low savings of groups like young households and those

without a college degree. Allowing households to borrow and modeling the social pro-

grams that low-wealth households use to smooth their consumption are possible ways to

reduce these difficulties. Additionally, the model proposed in this paper assumes that

households do not change their beliefs about equity returns or that they do not react to

short-term fluctuations in their opinions. I make this assumption to replicate features of

belief measurements like the “dominance of individual fixed effects” (Giglio et al. 2021)

and the fact that households’ portfolios have weak responses to changes in their elicited

expectations. Questions such as why households do not learn in ways that eliminate

the persistent heterogeneity in their measured beliefs or why the association between

changes in their elicited expectations and changes in their portfolios is weak are left unre-

solved. The increasing availability of individual-level measurements of expectations and

portfolios can help address these questions.
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Appendix

A. Estimating the Model of Beliefs

As discussed in Section 2.2 and in previous studies like Giustinelli, Manski, and Molinari

(2022), people round their answers to probabilistic questions. For each of the probabilistic

questions about stock returns, Table 3 shows the fraction of all answers that are multiples

of 5%, 10%, 25%, 50% and 100%. The Table shows that, for each question, less than 2.5% of

the answers are not multiples of 5%. Based on this fact, 5% is the finest level of rounding

in my model and I round the few answers that are not multiples of 5% to the nearest 5%

multiple.

A.1 The Likelihood Function

The likelihood function and its derivation are similar to those in Kézdi and Willis (2011)

and Ameriks, Kézdi, et al. (2020).

Denote the set of parameters of the beliefs model with

𝜗B ≡ {𝜈𝜇, 𝜈𝜎 ,Ψ,Σ, ®℘},

and let the data consist of triplets of responses to probabilistic questions{{
𝑃≥0

𝑖 ,𝑡
, 𝑃≥20

𝑖 ,𝑡
, 𝑃≤−20

𝑖 ,𝑡

}
𝑡∈𝒯 (𝑖)

}
𝑖∈ℐ

where ℐ is the set of respondents and 𝒯 (𝑖) denotes the set of time periods in which

individual 𝑖 answered the probabilistic questions.

The first step in evaluating the likelihood function for 𝜗B
is to find the equiprobable

grid for (𝜇, 𝜎) that is associated with 𝜗B. Grid ≡ {𝜈𝜇, 𝜈𝜎 ,Ψ}. I construct an equiprobable

grid with 𝑛2
points that approximates distribution 2 using the following steps.
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1. Find an equiprobable 𝑛-point grid for 𝑥 ∼ 𝒩(𝜈𝜎 ,Ψ2,2)|𝑥 > 0. Denote the grid with

𝜎#
.

2. For every 𝜎 in 𝜎#
, find an equiprobable 𝑛-point grid for the distribution of 𝜇𝑖 condi-

tional on 𝜎𝑖 = 𝜎, which given Equation 2 is

𝒩
(
𝜈𝜇 +

Ψ1,2

Ψ2,2
(𝜎 − 𝜈𝜎) , Ψ1,1 −

Ψ2

1,2

Ψ2,2

)
.

Denote that grid with 𝜇#(𝜎).

3. The joint 𝑛2
-point grid will be

(𝜇, 𝜎)# ≡ {(𝜇, 𝜎) : 𝜇 ∈ 𝜇#(𝜎), 𝜎 ∈ 𝜎#}.

The likelihood of an agent’s response depends both on the parameters of their subjec-

tive distribution of returns (𝜇𝑖 , 𝜎𝑖) and on the degree to which they round their answers. I

denote agent 𝑖’s level of rounding withℛ𝑖 and consider 5%, 10%, 25%, 50%, and 100% as the

possible levels to which agents round their answers. Therefore, ∀𝑖 ℛ𝑖 ∈ {5, 10, 25, 50, 100}.

The likelihood of an answer that has been rounded is that of the interval of all the

real numbers that round to that answer. To facilitate the representation of these intervals,

define the following two sets of functions:

• 𝑢ℛ(𝑥) gives the lowest number in [0, 1] that rounds to 𝑥 when the level of rounding is

ℛ. For instance, 𝑢
5
(0.15) = 0.125, 𝑢

10
(0.30) = 0.25, 𝑢

25
(0.5) = 0.375, 𝑢

50
(100) = 0.75,

and 𝑢
100

(0.0) = 0.0.

• 𝑢̄ℛ(𝑥) gives the highest number in [0, 1] that rounds to 𝑥 when the level of rounding

is ℛ. For instance, 𝑢̄5(0.15) = 0.175, 𝑢̄10(0.30) = 0.35, 𝑢̄25(0.5) = 0.625, 𝑢̄50(100) = 1.0,

and 𝑢̄100(0.0) = 0.5.
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With these functions and the response model from Equation 1, we can say that if agent

𝑖 rounds their answers to the ℛ𝑖-level and has subjective-distribution parameters (𝜇𝑖 , 𝜎𝑖),

then

𝑃≥0

𝑖 ,𝑡
= 𝑥 ↔𝑢ℛ𝑖

(𝑥) ≤ Φ

(
𝜇𝑖

𝜎𝑖
+ 𝜀≥0

𝑖 ,𝑡

)
≤ 𝑢̄ℛ𝑖 (𝑥)

↔Φ−1(𝑢ℛ𝑖
(𝑥)) − 𝜇𝑖

𝜎𝑖
≤ 𝜀≥0

𝑖 ,𝑡
≤ Φ−1(𝑢̄ℛ𝑖 (𝑥)) −

𝜇𝑖

𝜎𝑖
,

(11)

𝑃≥20

𝑖 ,𝑡
= 𝑦 ↔𝑢ℛ𝑖

(𝑦) ≤ Φ

(
𝜇𝑖 − ln 1.20

𝜎𝑖
+ 𝜀≥20

𝑖 ,𝑡

)
≤ 𝑢̄ℛ𝑖 (𝑦)

↔Φ−1(𝑢ℛ𝑖
(𝑦)) − 𝜇𝑖 − ln 1.20

𝜎𝑖
≤ 𝜀≥20

𝑖 ,𝑡
≤ Φ−1(𝑢̄ℛ𝑖 (𝑦)) −

𝜇𝑖 − ln 1.20

𝜎𝑖
,

(12)

and

𝑃≤−20

𝑖 ,𝑡
= 𝑧 ↔𝑢ℛ𝑖

(𝑧) ≤ Φ

(
ln 0.8 − 𝜇𝑖

𝜎𝑖
+ 𝜀≤−20

𝑖 ,𝑡

)
≤ 𝑢̄ℛ𝑖 (𝑧)

↔Φ−1(𝑢ℛ𝑖
(𝑧)) − ln 0.8 − 𝜇𝑖

𝜎𝑖
≤ 𝜀≤−20

𝑖 ,𝑡
≤ Φ−1(𝑢̄ℛ𝑖 (𝑧)) −

ln 0.8 − 𝜇𝑖

𝜎𝑖
.

(13)

Equations 11-13 and the assumption that (𝜀≥0, 𝜀≥20, 𝜀≤−20) ∼ 𝒩(0,Σ) allow me to

compute

P
(
𝑃≥0

𝑖 ,𝑡
= 𝑥, 𝑃≥20

𝑖 ,𝑡
= 𝑦, 𝑃≤−20

𝑖 ,𝑡
= 𝑧|

(
𝜇𝑖 , 𝜎𝑖

)
,ℛ𝑖

)
(14)

as the integral of a normal density over a cube. Since I do not use observations in which

the answer to any of the questions is “do not know/refuse,” observations where responses

for at least one of the question is missing correspond to instances where not all questions

were asked. For instance, in all observations before 2008, only 𝑃≥0
was asked. For these

observations, the likelihood of the given answers omits the questions that were not asked

and it becomes an integral over a real interval (if only one question is asked) or a rectangle

(if two questions were asked). With this clarification, I use the same notation in Equation

14 for complete and incomplete sets of answers.
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Now, I can write the likelihood of observing an individual 𝑖 with responses

{(𝑃≥0

𝑖 ,𝑡
, 𝑃≥20

𝑖 ,𝑡
, 𝑃≤−20

𝑖 ,𝑡
)}𝑡∈𝒯 (𝑖)

conditional on his rounding type as

ℓ

({
(𝑃≥0

𝑖 ,𝑡
, 𝑃≥20

𝑖 ,𝑡
, 𝑃≤−20

𝑖 ,𝑡
)
}
𝑡∈𝒯 (𝑖)

|ℛ𝑖

)
=

1

𝑛2

∑
(𝜇𝑖 ,𝜎𝑖)∈(𝜇,𝜎)#

©­«
∏

𝑡∈𝒯 (𝑖)
P

(
𝑃≥0

𝑖 ,𝑡
, 𝑃≥20

𝑖 ,𝑡
, 𝑃≤−20

𝑖 ,𝑡
|
(
𝜇𝑖 , 𝜎𝑖

)
,ℛ𝑖

)ª®¬ ,
where I have integrated over the 𝑛2

equiprobable (𝜇, 𝜎) grid-points. The unconditional

likelihood follows from integrating over the rounding types using the prior ®℘,

ℓ

({
(𝑃≥0

𝑖 ,𝑡
, 𝑃≥20

𝑖 ,𝑡
, 𝑃≤−20

𝑖 ,𝑡
)
}
𝑡∈𝒯 (𝑖)

)
=∑

ℛ𝑖∈{5,10,25,50,100}
℘ℛ𝑖 × ℓ

({
(𝑃≥0

𝑖 ,𝑡
, 𝑃≥20

𝑖 ,𝑡
, 𝑃≤−20

𝑖 ,𝑡
)
}
𝑡∈𝒯 (𝑖)

|ℛ𝑖

)
Finally, the log-likelihood function comes from aggregating over individuals

lnℒ
({{

𝑃≥0

𝑖 ,𝑡
, 𝑃≥20

𝑖 ,𝑡
, 𝑃≤−20

𝑖 ,𝑡

}
𝑡∈𝒯 (𝑖)

}
𝑖∈ℐ

|𝜗B

)
=

∑
𝑖∈ℐ

ln ℓ

({
(𝑃≥0

𝑖 ,𝑡
, 𝑃≥20

𝑖 ,𝑡
, 𝑃≤−20

𝑖 ,𝑡
)
}
𝑡∈𝒯 (𝑖)

)
.

A.2 Parameter Estimates

I estimate the beliefs model by maximum likelihood for every level of education,

𝜗B

𝐸 = arg max

𝜗
lnℒ

({{
𝑃≥0

𝑖 ,𝑡
, 𝑃≥20

𝑖 ,𝑡
, 𝑃≤−20

𝑖 ,𝑡

}
𝑡∈𝒯 (𝑖)

}
𝑖∈ℐ𝐸

|𝜗
)

where 𝐸 indexes educational attainment levels—high school and college graduates.

Table 11 presents the parameter estimates for every level of education. Readers should
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Table 11: Maximum-likelihood estimates of the beliefs model

High School College

𝜈𝜇 −0.108 −0.071

(0.014) (0.009)
𝜈𝜎 0.499 0.418

(0.009) (0.008)
Ψ1,1 0.019 0.016

(0.001) (0.001)
Ψ2,1 0.011 0.008

(0.002) (0.001)
Ψ2,2 0.060 0.035

(0.005) (0.003)
Σ1,1 0.607 0.453

(0.007) (0.008)
Σ2,2 0.574 0.460

(0.010) (0.011)
Σ3,3 0.642 0.397

(0.011) (0.009)
℘5 0.403 0.512

(0.006) (0.009)
℘10 0.425 0.400

(0.006) (0.009)
℘25 0.043 0.029

(0.003) (0.004)
℘50 0.116 0.052

(0.004) (0.005)
℘100 0.013 0.007

(0.002) (0.002)
Log-Likeligood −121667.124 −59763.868

N. Obs 24027 11184

N. Individuals 8463 3562

N. Excluded DK/RF Obs. 3216 613

Standard errors come from the inverse of the negative of the hessian of the log-likelihood function, evaluated exactly at the parameter

estimates using automatic differentiation tools.
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note, however, that the estimates of Equation 2 do not have the traditional mean-covariance

interpretation of multivariate normal parameters. The reason is that the actual distribu-

tions from which (𝜇, 𝜎) are drawn condition on the event 𝜎 > 0. These estimates are

presented for completeness; for interpreting and comparing the belief distributions that

go into the structural model, I refer readers to the depictions of the discretized belief

distributions (Figure 4 in the main text).
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B. Calibration of the Medical Expenditures Process

The shocks oop𝑖 ,𝑡 represent the ratio of an agent’s income that is used up by out-of pocket

medical expenditures in a year. To approximate their distribution at different ages and

for agents with different levels of education, I use the RAND HRS longitudinal file, which

constructs various variables of interest in a manner that is consistent across HRS waves.

I start by defining a measure of what would be a retiree’s household’s income. The

measure that I use includes the household’s earnings, income from pensions and annuities,

income from Social Security Disability and Supplemental Security Income, and income

from Social Security retirement. This corresponds to the sum of the RAND HRS variables

IEARN, IPENA, ISSDI, and ISRET. It also corresponds to their measure of “total income”

minus government transfers, capital income, and income from “other sources.”

Starting with the third wave of the HRS, The RAND HRS longitudinal file includes

a measure of out of pocket medical expenses over the previous two years at the time

of the interview, OOPMD.43
I divide this measure by two to obtain an estimate of medical

expenses over a year at the household level. The ratio between this measure and the

previously defined income of the respondent’s household—for households with strictly

positive income—is what I take as the ratio of out-of-pocket medical expenditures to

income over a year; I denote it with oop. Figure 6 depicts the distribution of oop for

individuals of different ages and levels of education.

To construct discrete distributions that approximate the variability of oop, I start by

grouping observations according to their level of education and age. I use 5-year age bins

[66, 70], [71, 75],...,[85, 90] and a final [91, 100] bin. For each combination of age-group and

education, I construct discrete equiprobable distributions using quantiles of the empirical

distribution of oop. First, I split the [0, 1] interval in 𝑛 intervals of the same length, where

𝑛 is the number of points of the discrete approximation—in my case, 𝑛 = 7. Then, I

43
The measure is not constructed for the first wave. In the second wave, the question that is used to build

the measure had a different time horizon and therefore I exclude it.
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Table 12: Discrete approximations of medical expenditures/income ratios

Equiprobable Points

Age Group

High-School
[50,55] 0.000 0.004 0.010 0.019 0.033 0.064 0.205

(55,60] 0.000 0.005 0.013 0.023 0.040 0.077 0.245

(60,65] 0.000 0.008 0.018 0.032 0.055 0.104 0.290

(65,70] 0.001 0.011 0.023 0.038 0.064 0.111 0.264

(70,75] 0.002 0.014 0.028 0.046 0.074 0.126 0.293

(75,80] 0.001 0.015 0.031 0.053 0.084 0.143 0.346

(80,85] 0.001 0.016 0.033 0.059 0.096 0.168 0.433

(85,90] 0.000 0.016 0.036 0.066 0.110 0.229 0.849

(90,100] 0.000 0.011 0.034 0.069 0.131 0.301 1.479

College
[50,55] 0.000 0.003 0.007 0.012 0.021 0.039 0.121

(55,60] 0.001 0.005 0.010 0.016 0.027 0.049 0.163

(60,65] 0.002 0.007 0.014 0.023 0.040 0.078 0.227

(65,70] 0.003 0.010 0.019 0.031 0.050 0.089 0.227

(70,75] 0.004 0.013 0.024 0.039 0.060 0.103 0.262

(75,80] 0.004 0.015 0.028 0.047 0.074 0.123 0.294

(80,85] 0.004 0.017 0.033 0.054 0.089 0.155 0.410

(85,90] 0.002 0.015 0.033 0.057 0.100 0.191 0.719

(90,100] 0.000 0.015 0.039 0.075 0.160 0.389 1.485

The table presents approximations to the distribution of health expenditure shocks as a fraction of income. I approximate de distribution

of these shocks for each age group and level of education with an equiprobable discrete distribution. Each row displays the seven

points used to approximate the distribution for each age group and level of education. Each point has a probability of 1/7. See the text

for a description of how I obtain the points.

take the midpoint of each interval and denote with 𝑄 the set of midpoints—for 𝑛 = 7,

𝑄 = {0.071, 0.214, ..., 0.786, 0.929}. Finally, for every 𝑞 ∈ 𝑄, I obtain the 𝑞 quantile of the

empirical distribution of oop for the given group. My approximation of the distribution of

oop is a discrete random variable where the possible draws are the 𝑛 previously obtained

quantiles and each of them occurs with probability 1/𝑛. Table 12 displays the points that

I use in the model for every age group and level of education.
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C. Recursive Formulation and Normalization of the Model

Individual subscripts are dropped for simplicity throughout this section.

An agent starts his life not having paid the stock-market entry cost. In periods when

the cost has not been paid, the agent observes his risk-free resources and his permanent

income, and then decides whether to enter the stock market or not. His value function is

𝑉Out𝑡 (𝑀𝑡 , 𝑃𝑡) = max{𝑉Stay𝑡 (𝑀𝑡 , 𝑃𝑡), 𝑉In𝑡 (𝑀𝑡 − 𝐹 × 𝑃𝑡 , 0, 𝑃𝑡)},

where 𝑉
Stay
𝑡 (·) is the value function of an agent who stays out of the stock market and

𝑉In(·) is the value function of an agent who has already paid the stock-market entry cost.

An agent who has just decided not to pay the stock-market entry cost decides how

much to consume out of his assets, knowing that in the next time period he will have the

opportunity to enter the stock market again. His value function is

𝑉
Stay
𝑡 (𝑀𝑡 , 𝑃𝑡) = max

𝐶𝑡

𝑢(𝐶𝑡)+𝛽𝛿𝑡+1E𝑡

[
𝑉Out𝑡+1

(𝑀𝑡+1, 𝑃𝑡+1)
]
+��𝛿𝑡+1B(𝐴𝑡)

Subject to:

0 ≤𝐶𝑡 ≤ 𝑀𝑡

𝐴𝑡 =𝑀𝑡 − 𝐶𝑡

𝑀𝑡+1 =𝑅𝐴𝑡 + 𝑌𝑡+1

𝑃𝑡+1 =Γ𝑡+1𝜓𝑡+1𝑃𝑡

𝑌𝑡+1 =𝜃𝑡+1𝑃𝑡+1

.

Finally, an agent who has already paid the stock-market entry cost observes his balances

in both the risky and risk-free assets and his permanent income, and then decides how

to reallocate his balances and how much to consume. He forms expectations about the
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future knowing that he will not need to pay the entry cost again. His value function is

𝑉In𝑡 (𝑀𝑡 , 𝑁𝑡 , 𝑃𝑡) = max

𝐶𝑡 ,𝐷𝑡

𝑢(𝐶𝑡)+𝛽𝛿𝑡+1E𝑡

[
𝑉In𝑡+1

(𝑀𝑡+1, 𝑁𝑡+1, 𝑃𝑡+1)
]

+��𝛿𝑡+1B(𝐴𝑡 + 𝑁̃𝑡)

Subject to:

−𝑁𝑡 ≤ 𝐷𝑡 ≤ 𝑀𝑡 , 0 ≤ 𝐶𝑡 ≤ 𝑀̃𝑡

𝑀̃𝑡 =𝑀𝑡 − 𝐷𝑡

(
1 − 1[𝐷𝑡≤0]𝜏

)
𝑁̃𝑡 =𝑁𝑡 + 𝐷𝑡

𝐴𝑡 =𝑀̃𝑡 − 𝐶𝑡

𝑀𝑡+1 =𝑅𝐴𝑡 + 𝑌𝑡+1

𝑁𝑡+1 =𝑅̃𝑡+1𝑁̃𝑡

𝑃𝑡+1 =Γ𝑡+1𝜓𝑡+1𝑃𝑡

𝑌𝑡+1 =𝜃𝑡+1𝑃𝑡+1

.

I assume that the utility function 𝑢(·) and the bequest function B(·) are homothetic

of the same degree (1 − 𝜌). With this assumption, the problem can be normalized by

permanent income, following Carroll (2022). Using lower case variables to denote their

upper-case counterparts normalized by permanent income (𝑥𝑡 = 𝑋𝑡/𝑃𝑡) and defining

Γ̃𝑡 = Γ𝑡𝜓𝑡 , we can write normalized versions of the previous value functions as

𝑣Out𝑡 (𝑚𝑡) = max{𝑣Stay𝑡 (𝑚𝑡), 𝑣In𝑡 (𝑚𝑡 − 𝐹, 0)}, (15)
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𝑣
Stay
𝑡 (𝑚𝑡) = max

𝑐𝑡
𝑢(𝑐𝑡)+𝛽𝛿𝑡+1E𝑡

[
Γ̃

1−𝜌
𝑡+1

𝑣Out𝑡+1
(𝑚𝑡+1)

]
+��𝛿𝑡+1B(𝑎𝑡)

Subject to:

0 ≤𝑐𝑡 ≤ 𝑚𝑡

𝑎𝑡 =𝑚𝑡 − 𝑐𝑡

𝑚𝑡+1 =
𝑅

Γ̃𝑡+1

𝑎𝑡 + 𝜃𝑡+1

, (16)

and

𝑣In𝑡 (𝑚𝑡 , 𝑛𝑡) = max

𝑐𝑡 ,𝑑𝑡
𝑢(𝑐𝑡)+𝛽𝛿𝑡+1E𝑡

[
Γ̃

1−𝜌
𝑡+1

𝑣In𝑡+1
(𝑚𝑡+1, 𝑛𝑡+1)

]
+��𝛿𝑡+1B(𝑎𝑡 + 𝑛̃𝑡)

Subject to:

−𝑛𝑡 ≤ 𝑑𝑡 ≤ 𝑚𝑡 , 0 ≤ 𝑐𝑡 ≤ 𝑚̃𝑡

𝑚̃𝑡 =𝑚𝑡 − 𝑑𝑡
(
1 − 1[𝑑𝑡≤0]𝜏

)
𝑛̃𝑡 =𝑛𝑡 + 𝑑𝑡

𝑎𝑡 =𝑚̃𝑡 − 𝑐𝑡

𝑚𝑡+1 =
𝑅

Γ̃𝑡+1

𝑎𝑡 + 𝜃𝑡+1

𝑛𝑡+1 =
𝑅̃𝑡+1

Γ̃𝑡+1

𝑛̃𝑡

.

It can be shown that

𝑉Out𝑡 (𝑀𝑡 , 𝑃𝑡) =𝑃1−𝜌
𝑡 𝑣Out𝑡 (𝑚𝑡),

𝑉
Stay
𝑡 (𝑀𝑡 , 𝑃𝑡) =𝑃1−𝜌

𝑡 𝑣
Stay
𝑡 (𝑚𝑡),

𝑉In𝑡 (𝑀𝑡 , 𝑁𝑡 , 𝑃𝑡) =𝑃1−𝜌
𝑡 𝑣In𝑡 (𝑚𝑡 , 𝑛𝑡)
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and that the policy functions that solve each of the problems are related through

𝐶
Stay
𝑡 (𝑀𝑡 , 𝑃𝑡) = 𝑃𝑡𝑐

Stay
𝑡 (𝑚𝑡)

𝐶In𝑡 (𝑀𝑡 , 𝑁𝑡 , 𝑃𝑡) = 𝑃𝑡𝑐
In
𝑡 (𝑚𝑡 , 𝑛𝑡)

𝐷𝑡(𝑀𝑡 , 𝑁𝑡 , 𝑃𝑡) = 𝑃𝑡𝑑𝑡(𝑚𝑡 , 𝑛𝑡).

Therefore, I solve the normalized problem and re-scale its solutions to obtain the original

problem’s solutions.

C.1 Partition Into Stages

An additional insight that facilitates solving the dynamic problem of the agent who

has paid the stock-market entry cost is that the two decisions that he takes in a period

(rebalancing his assets and consuming) can be seen as happening sequentially. This is

convenient because the sequential sub-problems are easier to solve than the multi-choice

full problem.

To re-express the problem, I take the order of the decisions to be: first rebalance assets,

then consume. I denote the stages at which these decisions are taken with Reb and Cns. I

will use 𝑣Reb(·) and 𝑣Cns(·) to represent the respective stage value functions.

I now present each stage in detail, working backwards in time.

C.1.1 Consumption stage, Cns

The important fact to realize at this stage is that the first thing that the agent will do in

period 𝑡 + 1 is make his asset-rebalancing decision. Therefore, that is the value function

about which the agent forms expectations.
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The consumption stage problem is

𝑣Cns𝑡 (𝑚̃𝑡 , 𝑛̃𝑡) = max

𝑐𝑡
𝑢(𝑐𝑡)+𝛽𝛿𝑡+1E𝑡

[
Γ̃

1−𝜌
𝑡+1

𝑣Reb𝑡+1
(𝑚𝑡+1, 𝑛𝑡+1)

]
+��𝛿𝑡+1B(𝑎𝑡 + 𝑛̃𝑡)

Subject to:

0 ≤𝑐𝑡 ≤ 𝑚̃𝑡

𝑎𝑡 =𝑚̃𝑡 − 𝑐𝑡

𝑚𝑡+1 =
𝑅

Γ̃𝑡+1

𝑎𝑡 + 𝜃𝑡+1

𝑛𝑡+1 =
𝑅̃𝑡+1

Γ̃𝑡+1

𝑛̃𝑡

(17)

C.1.2 Rebalancing stage, Reb

The first decision that an agent takes is how to reallocate his assets. His payoff is given by

the subsequent consumption problem’s value function, evaluated at his post-rebalancing

assets.

𝑣Reb𝑡 (𝑚𝑡 , 𝑛𝑡) =max

𝑑𝑡
𝑣Cns𝑡 (𝑚̃𝑡 , 𝑛̃𝑡)

Subject to:

−𝑛𝑡 ≤𝑑𝑡 ≤ 𝑚𝑡

𝑚̃𝑡 =𝑚𝑡 − 𝑑𝑡
(
1 − 1[𝑑𝑡≤0]𝜏

)
𝑛̃𝑡 =𝑛𝑡 + 𝑑𝑡

(18)
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D. First Order Conditions and Value Function Derivatives

The computational solution of the model uses the first order conditions of the optimization

problems and the derivatives of the value functions defined above. This appendix writes

the first order conditions and value function derivatives explicitly.

D.0.1 Agent who is staying out of the stock market, Stay

The first order condition of the maximization problem in Equation 16 is

𝑢′(𝑐𝑡) = 𝛽𝑅𝛿𝑡+1 E𝑡

[
Γ̃
−𝜌
𝑡+1

𝜕𝑣Out
𝑡+1

𝜕𝑚𝑡+1

]
+��𝛿𝑡+1B

′(𝑎𝑡). (19)

The condition, while necessary, is not sufficient because 𝑣Out(·) is not concave. Therefore,

I use the DC-EGM method (Iskhakov et al. 2017) to solve this sub-problem.

D.0.2 Consumption stage, Cns

The first order condition for an interior solution (𝑐 < 𝑚̃) of the consumption stage problem

(Equation 17) is

𝑢′(𝑐𝑡) = 𝛽𝑅𝛿𝑡+1E𝑡

[
Γ̃
−𝜌
𝑡+1

𝜕𝑣Reb
𝑡+1

𝜕𝑚𝑡+1

]
+��𝛿𝑡+1B

′(𝑎𝑡 + 𝑛̃𝑡) (20)

The derivatives of the stage value function are

𝜕𝑣Cns𝑡 (𝑚̃𝑡 , 𝑛̃𝑡)
𝜕𝑚̃𝑡

= 𝑢′(𝑐𝑡) (21)

𝜕𝑣Cns𝑡 (𝑚̃𝑡 , 𝑛̃𝑡)
𝜕𝑛̃𝑡

= 𝛽𝛿𝑡+1E𝑡

[
𝑅̃𝑡+1Γ̃

−𝜌
𝑡+1

𝜕𝑣Reb
𝑡+1

𝜕𝑛𝑡+1

]
+��𝛿𝑡+1B

′(𝑎𝑡 + 𝑛̃𝑡) (22)
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D.0.3 Rebalancing stage, Reb

The first order condition for a solution of the type 𝑑 ∈ [(−𝑛, 0) ∪ (0, 𝑚)] in the rebalancing

stage problem (Equation 18) is

(
1 − 1[𝑑𝑡≤0]𝜏

) 𝜕𝑣Cns𝑡

𝜕𝑚̃𝑡
=

𝜕𝑣Cns𝑡

𝜕𝑛̃𝑡
, (23)

and a necessary condition for a solution of the type 𝑑 = 0 is

(1 − 𝜏)
𝜕𝑣Cns𝑡

𝜕𝑚̃𝑡
≤

𝜕𝑣Cns𝑡

𝜕𝑛̃𝑡
≤

𝜕𝑣Cns𝑡

𝜕𝑚̃𝑡
(24)

The derivatives of the stage value function are

𝜕𝑣Reb𝑡 (𝑚𝑡 , 𝑛𝑡)
𝜕𝑚𝑡

= max

{
𝜕𝑣Cns𝑡

𝜕𝑚̃
,
𝜕𝑣Cns𝑡

𝜕𝑛̃

}
(25)

𝜕𝑣Reb𝑡 (𝑚𝑡 , 𝑛𝑡)
𝜕𝑛𝑡

= max

{
(1 − 𝜏)

𝜕𝑣Cns𝑡

𝜕𝑚̃𝑡
,
𝜕𝑣Cns𝑡

𝜕𝑛̃𝑡

}
(26)
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Table 13: Grids and Discretizations

Symbol # Points Type of grid/Discretiza-

tion

Grids for 𝑎, 𝑚, 𝑛, 𝑚̃, 𝑛̃ 𝑎#
, 𝑚#

, 𝑛#
, 𝑚̃#

,

𝑛̃#

101 Equispaced in logs be-

tween 1𝑒 − 6 and 5𝑒3, with

0 added.

Perm. Inc. Shock 𝜓 5 Equiprobable.

Trans. Inc. Shock 𝜃̃ 5 Equiprobable.

Risky return 𝑅̃ 5 Equiprobable.

E. Numerical Solution of the Life-Cycle Model.

E.1 Grids and discretizations

The solution of the model uses various discrete grids over state variables and discretiza-

tions of stochastic variables. Table 13 summarizes the grids and discretization schemes

that I use for every variable and shock. The only shock discretization not addressed

in Table 13 is the out-of-pocket medical expenditure shock, which I discuss in detail in

Appendix B.

E.2 Transformed-space interpolation

In my solution, I treat the continuous choice variables 𝑐 and 𝑑 as continuous, instead of

discretizing them. Because of this decision and the multiple shocks in the model, I must

evaluate value functions and their derivatives on values of the state vector that are not on

my grids. In these instances, I interpolate (and extrapolate) using on-grid values.

To improve my approximation of properties of the value and marginal-value functions,

such as their curvature, and the fact that they approach −∞ or ∞ as wealth approaches

zero, I perform my interpolations and extrapolations in a “transformed” space. The trick,

discussed in Carroll (2022), consists in finding a transformation 𝑇 : R → R such that
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𝑇( 𝑓 (·)) behaves more like an affine function than 𝑓 (·), the function that we are trying to

approximate. Then, with our chosen transformation, we create an interpolator 𝑔̂(·) for

𝑇( 𝑓 (·)). When asked to approximate 𝑓 (𝑥) for some off-grid 𝑥 we return 𝑇−1(𝑔̂(𝑥)), where

𝑇−1(·) is the inverse of 𝑇(·).

I apply this trick when constructing interpolators for value functions and marginal

value functions. For value functions, I use

𝑇(𝑥) = 𝑢−1(𝑥) =
( (

1 − 𝜌
)
× 𝑥

) 1

1−𝜌 , 𝑇−1(𝑥) = 𝑢(𝑥) = 𝑥1−𝜌

1 − 𝜌
.

For marginal value functions, I use

𝑇(𝑥) = 𝑢′−1(𝑥) = 𝑥
− 1

𝜌 , 𝑇−1(𝑥) = 𝑢′(𝑥) = 𝑥−𝜌.

E.3 Solving the Consumption Stage, Cns

For this stage, I use the method of endogenous gridpoints (Carroll 2006) over risk-free

resources at different fixed levels of risky resources.

First, for every 𝑛̃ in the risky-asset balances grid 𝑛̃#
,

• Apply the endogenous gridpoint method using Equation 20 over the grid 𝑎#
for

end-of-period risk-free assets. The result is a set of optimal consumption points on

an endogenous grid of post-rebalancing risk-free assets 𝑚̃
#−endog
𝑡 (𝑛̃),

𝑐∗𝑡(𝑚̃, 𝑛̃) for 𝑚̃ ∈ 𝑚̃
#−endog
𝑡 (𝑛̃).

• Denote the endogenous 𝑚̃ associated with 𝑎𝑡 = 0 by 𝑚̃0(𝑛̃). This is the point where

the liquidity constraint stops binding. If 𝑚̃0(𝑛̃) > 0, then add 𝑚̃ = 0, 𝑐∗𝑡(0, 𝑛̃) = 0 to

the set of endogenous risk-free assets and optimal consumption points.

• Use the optimal consumption points to find 𝑣Cns𝑡 ,

𝜕𝑣Cns𝑡

𝜕𝑚̃ ,

𝜕𝑣Cns𝑡

𝜕𝑛̃ at (𝑚̃, 𝑛̃), for 𝑚̃ ∈
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𝑚̃
#−endog
𝑡 (𝑛̃) using Equations 17, 21, and 22.

The result is a set of (𝑚̃, 𝑛̃) points on which we know the consumption, value, and

marginal value functions. This set of points is not a rectangular grid because the values

of 𝑚̃ are different for every 𝑛̃. The next step is to use the current points to obtain an

approximation of the functions over a rectangular grid.

I start with an exogenous grid for post-rebalancing risk-free assets 𝑚̃#
which I augment

by adding the points where the liquidity constraint stops binding, {𝑚̃0(𝑛̃) : 𝑛̃ ∈ 𝑛̃#}.

Denote the augmented grid with 𝑚̃#+
. For every 𝑛̃ in the risky-asset balances grid 𝑛̃#

,

• Use the values of 𝑐∗𝑡 , 𝑣
Cns
𝑡 ,

𝜕𝑣Cns𝑡

𝜕𝑚̃ ,

𝜕𝑣Cns𝑡

𝜕𝑛̃ calculated at {(𝑚̃, 𝑛̃) : 𝑚̃ ∈ 𝑚̃
#−endog
𝑡 (𝑛̃)} to ap-

proximate the value of 𝑐∗, 𝑣Cns𝑡 ,

𝜕𝑣Cns𝑡

𝜕𝑚̃ ,

𝜕𝑣Cns𝑡

𝜕𝑛̃ at {(𝑚̃, 𝑛̃) : 𝑚̃ ∈ 𝑚̃#+} using transformed-

space linear interpolation (and extrapolation).

This process yields approximations of the functions of interest on a rectangular grid,

{(𝑚̃, 𝑛̃) : 𝑚̃ ∈ 𝑚̃#+
and 𝑛̃ ∈ 𝑛̃#}. I use these approximations to construct bilinear

transformed-space interpolators for 𝑐∗𝑡 , 𝑣
Cns
𝑡 ,

𝜕𝑣Cns𝑡

𝜕𝑚̃ ,

𝜕𝑣Cns𝑡

𝜕𝑛̃ .

E.4 Solving the Rebalancing Stage, Reb

In this stage, I look for the optimal deposit/withdrawal function 𝑑∗𝑡(𝑚, 𝑛).

I start by defining the following convenient transformation of the optimal deposit/with-

drawal

𝔡𝑡(𝑚, 𝑛) =


𝑑∗𝑡(𝑚, 𝑛)/𝑚 𝑑∗𝑡(𝑚, 𝑛) > 0

𝑑∗𝑡(𝑚, 𝑛)/𝑛 𝑑∗𝑡(𝑚, 𝑛) < 0

0 𝑑∗𝑡(𝑚, 𝑛) = 0.

The transformation simply re-scales the deposits or withdrawals by the balance of the

fund that they are coming from, so that 𝔡𝑡 = 1 corresponds to moving all the risk-free

balances to the risky stocks fund, and 𝔡𝑡 = −1 corresponds to withdrawing all balances

from the stocks fund.
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I search for the optimal 𝔡𝑡 in a rectangular exogenous grid {(𝑚, 𝑛) : 𝑚 ∈ 𝑚#
and 𝑛 ∈

𝑛#}. The search uses the first order conditions in Equations 23 and 24 and proceeds as

follows.

For every (𝑚, 𝑛) in the rectangular grid,

• Evaluate

𝜕𝑣Reb𝑡 (𝑚,𝑛)
𝜕𝑚̃ and

𝜕𝑣Reb𝑡 (𝑚,𝑛)
𝜕𝑛̃ .

• If (1 − 𝜏) 𝜕𝑣Cns𝑡 (𝑚,𝑛)
𝜕𝑚̃ ≤ 𝜕𝑣Cns𝑡 (𝑚,𝑛)

𝜕𝑛̃ ≤ 𝜕𝑣Cns𝑡 (𝑚,𝑛)
𝜕𝑚̃ , then 𝔡𝑡(𝑚, 𝑛) = 0.

• If

𝜕𝑣Cns𝑡 (𝑚,𝑛)
𝜕𝑛̃ < (1 − 𝜏) 𝜕𝑣Cns𝑡 (𝑚,𝑛)

𝜕𝑚̃

– We know that the solution involves withdrawing funds, 𝔡𝑡(𝑚, 𝑛) < 0. We have

to check the corner solution 𝔡𝑡(𝑚, 𝑛) = −1.

– If

𝜕𝑣Cns𝑡 (𝑚 + (1 − 𝜏)𝑛, 0)
𝜕𝑛̃

< (1 − 𝜏)
𝜕𝑣Cns𝑡 (𝑚 + (1 − 𝜏)𝑛, 0)

𝜕𝑚̃
,

then set 𝔡𝑡(𝑚, 𝑛) = −1.

– Otherwise, use bisection search to find the 𝑑∗ ∈ (−1, 0) that solves

𝜕𝑣Cns𝑡 (𝑚 − (1 − 𝜏)𝑑∗, 𝑛 + 𝑑∗)
𝜕𝑛̃

= (1 − 𝜏)
𝜕𝑣Cns𝑡 (𝑚 − (1 − 𝜏)𝑑∗, 𝑛 + 𝑑∗)

𝜕𝑚̃

and set 𝔡𝑡(𝑚, 𝑛) = 𝑑∗/𝑛.

• If

𝜕𝑣Cns𝑡 (𝑚,𝑛)
𝜕𝑚̃ <

𝜕𝑣Cns𝑡 (𝑚,𝑛)
𝜕𝑛̃

– We know that the solution involves depositing funds, 𝔡𝑡(𝑚, 𝑛) > 0. We also

know that the corner solution 𝔡𝑡(𝑚, 𝑛) = 1 is not optimal because it leaves the

agent without funds to consume.

– Use bisection search to find the 𝑑∗ ∈ (0, 1) that solves

𝜕𝑣Cns𝑡 (𝑚 − 𝑑∗, 𝑛 + 𝑑∗)
𝜕𝑚̃

=
𝜕𝑣Cns𝑡 (𝑚 − 𝑑∗, 𝑛 + 𝑑∗)

𝜕𝑛̃
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– Set 𝔡𝑡(𝑚, 𝑛) = 𝑑∗/𝑚.

The result of this process is a rectangular grid of asset-combinations and their associ-

ated optimal rebalancing solutions. I use these points to construct a bilinear interpolator

for 𝔡𝑡(·, ·). Then, I use the fact that (from Equation 18),

𝑣Reb𝑡 (𝑚𝑡 , 𝑛𝑡) =𝑣Cns𝑡 (𝑚̃𝑡 , 𝑛̃𝑡)

Where:

𝑑𝑡 =


𝔡𝑡(𝑚, 𝑛) × 𝑚𝑡 , If 𝔡𝑡(𝑚, 𝑛) ≥ 0

𝔡𝑡(𝑚, 𝑛) × 𝑛𝑡 , If 𝔡𝑡(𝑚, 𝑛) < 0

𝑚̃𝑡 =𝑚𝑡 − 𝑑𝑡
(
1 − 1[𝑑𝑡≤0]𝜏

)
𝑛̃𝑡 =𝑛𝑡 + 𝑑𝑡

to calculate 𝑣Reb𝑡 (·, ·) and its derivatives whenever they are needed.

E.5 Solving the Problem of the Agent Staying Out, Stay

Agents who have not paid the one-time entry cost must decide whether to pay it at the

start of every period. They do this by comparing the value of staying out and not paying,

versus entering and paying, as shown in Equation 15. An agent who enters passes onto the

asset-rebalancing stage, Reb. An agent who does not enter must choose his consumption

knowing that next period he will start outside of the stocks-fund again. I use the “DC-

EGM” method (Iskhakov et al. 2017) to solve this problem.

I start with an exogenous grid for end-of-period risk-free assets, 𝑎#
. I apply the

endogenous-gridpoint method inversion over 𝑎#
using the first-order condition in Equa-

tion 19. The result is a set of candidate endogenous consumption and beginning-of-
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period-assets points, associated with the exogenous end-of-period-assets points,

{(
𝑐𝑒𝑡 (𝑎) , 𝑚𝑒

𝑡 (𝑎)
)

: 𝑎 ∈ 𝑎#

}
.

As argued by Iskhakov et al. (2017), these points will not necessarily be optimal. The future

discrete decision of whether to pay the cost or not makes the value function not-concave

and therefore points that satisfy the first order condition are not necessarily optimal. I

calculate the discounted utility associated with the points from the endogenous-gridpoint

inversion,

𝑣𝑒𝑡 (𝑎) = 𝑢(𝑐𝑒𝑡 (𝑎))+𝛽𝛿𝑡+1E𝑡

[
Γ̃

1−𝜌
𝑡+1

𝑣Out𝑡+1
(𝑎)

]
+��𝛿𝑡+1B(𝑎𝑡)

𝑚𝑡+1 =
𝑅

Γ̃𝑡+1

𝑎 + 𝜃𝑡+1.

Then, I apply the upper-envelope algorithm in Iskhakov et al. (2017) to the candidate points{(
𝑐𝑒𝑡 (𝑎) , 𝑚𝑒

𝑡 (𝑎) , 𝑣𝑒𝑡 (𝑎)
)

: 𝑎 ∈ 𝑎#

}
to eliminate non-optimal points. I add the “kink points”

of the value function to the grid. The result is a set of optimal consumption and value points

over a refined endogenous grid for start-of-period assets 𝑚∗#
𝑡 ,

{(
𝑐∗𝑡 (𝑚) , 𝑣∗𝑡 (𝑚)

)
: 𝑚 ∈ 𝑚∗#}

.

I use these points to create linear transformed-space interpolators for 𝑣
Stay
𝑡 , 𝑐

Stay
𝑡 , and

𝜕𝑣Stay𝑡

𝜕𝑚 .
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F. Surrogate Bootstrap

The estimated parameters of the structural life cycle models are functions of the targeted

moments. Uncertainty about these moments generates uncertainty about the best-fitting

values of the parameters. I quantify this uncertainty by calculating the targeted moments

on bootstrapped samples, estimating an approximate—“surrogate”—model on each set

of moments and presenting various summary statistics of the resulting distribution of

estimated parameters.

The bootstrapped targeted moments come from education-specific re-samplings of

the SCF analytical sample defined in Section 4.1. I divide the sample into high-school

and college graduates, and draw 500 bootstrapped samples for each level of education

using the re-scaled survey weights. Then, I calculate the targeted moments on each of the

bootstrapped samples. This results in 500 vectors of 45 targeted moments each for both

levels of education, {𝑚HS

𝑏,𝑘
}500

𝑘=0
and {𝑚College

𝑏,𝑘
}500

𝑘=0
.

To find the estimated parameters that would be result from each vector of moments,

I use accurate surrogate models that approximate the relationship between parameters

and moments embedded in the true structural models. Estimating the structural models

500 times for each level of education would come at a high computational arising mainly

from their solution and simulation at each candidate vector of parameters. Recent studies

like Chen, Didisheim, and Scheidegger (2021) and Catherine et al. (2022) show that these

costly evaluations can be avoided using accurate approximations of the structural model

that can be constructed using known parameter-moments pairs. These approximations

are know as “surrogate models.” Denoting with � the space of admissible parameter

values and with M the set of possible values for targeted moments, a model is a function

𝑓 : � → M and a surrogate model is a different function 𝑓 : � → M that approximates the

true model 𝑓 , but which is ideally much faster to evaluate.

The surrogate models that I use to approximate the true structural models are deep
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Table 14: Root-Mean-Squared-Errors of Surrogate Models over Targeted Moments

High-School College

Sample F.I.R.E. Est. Beliefs F.I.R.E. Est. Beliefs

Training 5 × 10
−3

2 × 10
−3

4 × 10
−3

2 × 10
−3

Validation 1 × 10
−2

9 × 10
−2

1 × 10
−2

3 × 10
−3

neural networks. The networks have 3 inputs (the parameters {𝜌, 𝛽, 𝐹}) and 45 outputs

(the targeted moments), and 4 hidden layers with 192 neurons each. I use sigmoid-linear-

unit “SiLU” activation functions for the hidden layers; for the output layer, I use “softplus”

functions for positive moments (like the wealth ratio) and sigmoid functions for moments

that are shares (like conditional stock-shares and participation rates). I use a different

network for each combination of educational attainment and specification of beliefs (high

school, college, and F.I.R.E., Est. Beliefs).

As suggested by Catherine et al. (2022), I train and validate the surrogate models us-

ing the parameter-moment points that I evaluate when estimating the true models. The

optimization routine outlined in Section 4.2 evaluates each structural model at at least

2,500 points of the space of admissible parameter values �. The initial 2,500 points come

from a Sobol sequence that covers � well. The local optimization runs of the TikTak

algorithm generate additional evaluations, which concentrate around the best-fitting pa-

rameter values. I save the parameter-moments pair of every one of these evaluations for

each specification of the model. Then, I randomly split the points into 90% training and

10% validation samples. I train the deep networks using the “Adam” algorithm (Kingma

and Ba 2017) to minimize the root-mean-squared-error (RMSE) over the targeted mo-

ments. Table 14 presents the RMSEs of every surrogate model at the end of estimation,

confirming that they do a good job of approximating the predictions of the true models

both in- and out-of-sample.

For each vector of bootstrapped moments, I find the input parameters of its correspond-
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Table 15: Different Percentiles of Bootstrapped Estimates

Percentiles

F.I.R.E. Est. Belifs Difference

Parameter 𝑃5 𝑃50 𝑃95 𝑃5 𝑃50 𝑃95 Frac. > 0

High School
CRRA (𝜌) 8.51 8.56 8.61 4.20 4.22 4.25 1

Disc. Fac (𝛽) 0.31 0.33 0.35 0.75 0.76 0.77 0

Entry Cost (𝐹 × 100) 2.87 3.11 3.42 2.33 2.49 2.64 1

MSM Loss 15.45 16.01 16.69 3.69 4.04 4.44 1

College
CRRA (𝜌) 11.36 11.48 11.55 5.07 5.10 5.14 1

Disc. Fac (𝛽) 0.62 0.63 0.64 0.88 0.89 0.89 0

Entry Cost (𝐹 × 100) 0.51 0.57 1.75 0.00 0.00 0.00 1

MSM Loss 4.60 5.33 6.13 2.27 2.94 3.73 1

ing surrogate model that minimizes the SMM loss function using the same optimization

routine that I use for the main estimates. The 𝑘−𝑡ℎ set of bootstrapped parameter estimates

for the pair of education and beliefs-specification (𝑒 , b) is

𝜗̂𝑒 ,b
𝑘

= arg min

𝜗

(
𝑚𝑒

𝑏,𝑘
− 𝑓 𝑒 ,b (𝜗)

) ′
W

𝑒
(
𝑚𝑒

𝑏,𝑘
− 𝑓 𝑒 ,b (𝜗)

)
, (27)

where 𝑓 𝑒 ,b is the surrogate model for education level 𝑒 and belief specification b. The

results are sets of bootstrapped estimates

{𝜗̂HS,F.I.R.E.

𝑏,𝑘
}500

𝑘=0
, {𝜗̂College, F.I.R.E.

𝑏,𝑘
}500

𝑘=0
, and {𝜗̂HS, Est. Beliefs

𝑏,𝑘
}500

𝑘=0
, {𝜗̂College, Est. Beliefs

𝑏,𝑘
}500

𝑘=0
.

I additionally store and present the values of the loss functions associated with each

parameter estimate.

Table 15 presents the 5th, 50th, and 95th percentiles of every parameter for every com-

bination of educational attainment and belief specification, in addition to the minimized

loss function “MSM Loss.” The table shows that all the parameter estimates and attained
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losses are tightly distributed around the main estimates reported in Table 8. For each vec-

tor of bootstrapped moments 𝑚𝑒
𝑏,𝑘

, I find the difference between the parameter estimates

and attained losses under the F.I.R.E. and “Est. Beliefs” specifications. The last column

in Table 15 presents the fraction of moment vectors for which this difference is positive.

This column shows the robustness of the conclusions that, for both levels of education,

models that use the estimated beliefs improve upon the fit of F.I.R.E. models and do so

with lower levels of relative risk aversion, higher discount factors, and lower entry costs.

These conclusions are true for each of the 500 bootstrapped vectors of moments for each

level of education.

The 95% confidence intervals presented in Table 8 correspond to the 2.5-th and 97.5-th

percentiles of the bootstrapped values of each parameter, for each model specification.
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G. The expected welfare function

The welfare calculations presented in Section 6 rely on the calculation of individuals’

objectively expected welfare, which can differ from their subjective expectations due to

their misspecified beliefs. This section defines my measure of expected welfare and

discusses how I calculate it.

For a given set of beliefs about risky returns denoted with ℬ = (𝜇, 𝜎) and other param-

eters, I solve the life cycle model and its components described in Appendix C. Denote the

resulting policy functions for every age 𝑡 with 𝐶
Stay
𝑡 (·; ℬ), 𝐷𝑡(·; ℬ), and 𝐶In𝑡 (·; ℬ). I cal-

culate functions 𝔙𝑡(·) that allow me to find the expected lifetime welfare that an objective

observer would expect an agent to derive from his remaining years of life if he behaved

according to the policy functions associated with his beliefs ℬ. These functions are

𝔙
Stay
𝑡 (𝑀𝑡 , 𝑃𝑡 ; ℬ) = 𝑢(𝐶𝑡)+𝛽𝛿𝑡+1E𝑡

[
𝔙Out𝑡+1

(𝑀𝑡+1, 𝑃𝑡+1; ℬ)
]
+��𝛿𝑡+1B(𝐴𝑡)

Where:

𝐶𝑡 =𝐶
Stay
𝑡 (𝑀𝑡 , 𝑃𝑡 ; ℬ)

𝐴𝑡 = 𝑀𝑡 − 𝐶𝑡 , 𝑀𝑡+1 = 𝑅𝐴𝑡+𝑌𝑡+1, 𝑃𝑡+1 = Γ𝑡+1𝜓𝑡+1𝑃𝑡 , 𝑌𝑡+1 = 𝜃𝑡+1𝑃𝑡+1

(28)

87



for agents who have not paid the risky-asset entry cost and decide to not pay it in 𝑡, and

𝔙In𝑡 (𝑀𝑡 , 𝑁𝑡 , 𝑃𝑡 ; ℬ) = 𝑢(𝐶𝑡)+𝛽𝛿𝑡+1E𝑡

[
𝔙In𝑡+1

(𝑀𝑡+1, 𝑁𝑡+1, 𝑃𝑡+1; ℬ)
]

+��𝛿𝑡+1B(𝐴𝑡 + 𝑁𝑡 + 𝐷𝑡)

Where:

𝐷𝑡 = 𝐷𝑡(𝑀𝑡 , 𝑁𝑡 , 𝑃𝑡 ; ℬ), 𝐶𝑡 = 𝐶In𝑡 (𝑀𝑡 , 𝑁𝑡 , 𝑃𝑡 ; ℬ)

𝐴𝑡 = 𝑀𝑡 − 𝐷𝑡

(
1 − 1[𝐷𝑡≤0]𝜏

)
− 𝐶𝑡 , 𝑀𝑡+1 = 𝑅𝐴𝑡 + 𝑌𝑡+1

𝑁𝑡+1 = 𝑅̃𝑡+1 × (𝑁𝑡 + 𝐷𝑡) , 𝑃𝑡+1 =Γ𝑡+1𝜓𝑡+1𝑃𝑡 , 𝑌𝑡+1 = 𝜃𝑡+1𝑃𝑡+1

(29)

for agents who have already paid the entry cost. Equations 28 and 29 differ from the

value functions defined in Appendix C because the expectations are taken using the

true distribution of risky asset returns. Numerically, I construct interpolators for these

functions iterating backwards, using the solved policy functions and the same grids and

discretizations described in Appendix E.

The simplified notation that I use for 𝔙𝑡(·) in the main text is corresponds to

𝔙𝑡(𝑃𝑡 , 𝑀𝑡 , 𝑁𝑡 = 0, Paid𝑡 = 0; ℬ) ≡ max

{
𝔙
Stay
𝑡 (𝑀𝑡 , 𝑃𝑡 ; ℬ),𝔙In𝑡 (𝑀𝑡 − 𝐹 × 𝑃𝑡 , 0, 𝑃𝑡 ; ℬ)

}

𝔙𝑡(𝑃𝑡 , 𝑀𝑡 , 𝑁𝑡 , Paid𝑡 = 1; ℬ) ≡ 𝔙In𝑡 (𝑀𝑡 , 𝑁𝑡 , 𝑃𝑡 ; ℬ).
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