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Abstract

We measure the Euro Area (EA) output gap and potential output using a non-stationary dynamic
factor model estimated on a large dataset of macroeconomic and financial variables. From 2012
to 2023, we estimate that the EA economy was tighter than the European Commission and the
International Monetary Fund estimate, suggesting that the slow EA growth is the result of a
potential output issue, not a business cycle issue. Moreover, we find that credit indicators are
crucial for pinning down the output gap, as excluding them leads to estimating a lower output
gap in periods of debt build-up and a higher gap in periods of deleveraging.

1 Introduction
The decomposition of GDP in potential output and the output gap—defined as the percentage
deviation of GDP from its potential—is a fundamental task for policymakers. These quantities
are essential for the common Euro Area (EA) monetary policy and the fiscal policy of individual
countries. The output gap helps assess the cyclical position of the economy and, thus, potential
inflationary pressures (e.g., Bańbura and Bobeica, 2023). Potential output and the output gap
are among the main pillars of the EA fiscal surveillance framework, ultimately affecting the fiscal
capacity of each member country (European Commission, 2018). However, since both quantities
are unobserved, policymakers need a model that can extract them from the data.

This paper proposes a new measure of potential output and the output gap for the EA based
on a non-stationary dynamic factor model estimated on a large dataset of EA macroeconomic
and financial variables that incorporates relevant EA data features. Compared to the prevailing
literature, which focuses on theoretical structural models with few variables of interest, we adopt a
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distinct approach because we let the data speak by leveraging a large information set conditional
on a few key macroeconomic priors—for example, the long-run slowdown in output growth (Cette
et al., 2016).

There are at least two reasons why using a rich information set is crucial when estimating the
output gap. First, cross-sectional aggregation of a large number of series allows us to consistently
disentangle the co-movements in the data from idiosyncratic dynamics. Second, it is now widely
recognized that potential output and the output gap, along with many other macroeconomic latent
policy variables, commonly referred to as “stars,” are driven by a large number of shocks; hence, we
need a large information set to obtain meaningful estimates of these quantities (Buncic and Pagan,
2022). To the best of our knowledge, this is the first paper that estimates the EA output gap with
such a rich information set.

We conduct our analysis on a new large-dimensional dataset comprising 119 EA economic indi-
cators from 2001:Q1-2023:Q4. Three main results emerge from our analysis: first, our output gap
estimate is in line with those published by the European Commission (EC) and the International
Monetary Fund (IMF) in that the dating of the turning points perfectly coincides. The three es-
timates closely align until the 2011–2012 Sovereign Debt Recession (henceforth, SDR), after which
our output gap measure suggests that the EA economy was tighter than estimated by the EC
and the IMF. Moreover, we estimate that potential output growth decelerated after the 2008–2009
Global Financial Crisis (henceforth, GFC), the SDR further compounded this deceleration, and as
of the end of 2023, potential output growth has yet to return to the pre-GFC pace. In other words,
our results suggest that the EA has a potential output issue, not a business cycle issue. Hence,
if the goal is to achieve better economic conditions in the EA, European countries should imple-
ment supply-side structural reforms that have long-run effects, while policies aiming at stimulating
aggregate demand will have only short-term effects at best.

Second, we find that our model takes considerable signal for estimating the output gap from
labor market and inflation variables, as, on average, it satisfies the Okun’s law relationship and
exhibits Phillips correlation, despite the fact we do not impose either of them. Moreover, we find
that our output gap measure better predicts inflation than those obtained using commonly adopted
methods. These results confirm that our data-driven measure is economically meaningful.

Third, in line with the argument of Borio et al. (2017), who argue that incorporating financial
indicators in the dataset is necessary to obtain meaningful estimates of the business cycle, we
find that credit indicators (mainly household liabilities) are crucial for pinning down the cyclical
position of the economy. Specifically, we find that excluding household liabilities leads to estimating
a lower output gap in periods of debt build-up (e.g., before the GFC) and a higher gap in periods
of deleveraging (e.g., from 2013 to 2016), as the boost to GDP from increased leveraging is offset in
periods of deleveraging. In other words, our results show that growth financed through household
debt is not sustainable in the long run.

To measure potential output and the output gap, we first estimate the non-stationary dynamic
factor model by Quasi Maximum Likelihood using the EM algorithm (Doz et al., 2012; Barigozzi
and Luciani, 2024). Then, we extract a common trend from the estimated common factors running
a second EM algorithm compute the cyclical component by subtracting the common trend from the
common factors. In practice, however, to account for the Covid shock, we run this procedure twice,
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as we first estimate the model using only pre-Covid data. Then, we estimate the effects induced by
the Covid shock (level-shift and increased volatility). Lastly, we re-estimate the model on the full
dataset after purging the data from Covid-induced dynamics. Having estimated the common trend
and the common cyclical component, we measure potential output as the part of GDP explained
by the common trends and the output gap as the part of GDP explained by the common cyclical
component.

How to estimate potential output and the output gap has been a hotly debated topic for several
decades. The literature has proposed two main approaches: a theoretical approach and a statistical
approach. The theoretical approach uses theoretical models, such as production-function-based
models used by the EC (Havik et al., 2014) and the IMF (De Masi, 1997) or New-Keynesian
DSGE models (Justiniano et al., 2013; Burlon and D’Imperio, 2020; Furlanetto et al., 2021). The
statistical approach uses (univariate or multivariate) statistical models, sometimes paired with some
macroeconomic relationships of interest, e.g., the Phillips curve. For example, many papers rely on
univariate models (e.g., Morley et al., 2003; Kamber et al., 2018; Hamilton, 2018; Phillips and Jin,
2021; Phillips and Shi, 2021; Hartl et al., 2022), while few others employ multivariate non-stationary
methods, which are either low-dimensional models (Jarociński and Lenza, 2018; González-Astudillo,
2019; Tóth, 2021; Hasenzagl et al., 2022), or medium-size, but stationary, models (Aastveit and
Trovik, 2014; Morley and Wong, 2020; Morley et al., 2023). Most of these works focus on the US,
while only a few of them focus on the EA, the most recent being Morley et al. (2023).

Our model is large-dimensional and non-stationary, thus allowing us to capture well-established
co-movements in macroeconomic variables while retaining data in levels. Moreover, being an en-
hanced version of the model Barigozzi and Luciani (2023) used to measure the US output gap—
enhanced because it does not require a long sample to identify the trend and deals with the Covid
pandemic—our model follows the statistical approach and belongs to the class of unobserved com-
ponent models. This class of models is among the most indicated ones for extracting the transitory
component of GDP (Canova, 2022).

The rest of the paper is structured as follows. In Section 2, we present the data used. In Section
3, we present the model, the estimation strategy, and the model setup. Section 4 presents the main
results. Next, Sections 5 and 6 shed light on from which variables the model takes more signal for the
output gap estimation, with Section 5 focusing on labor market and inflation variables, and Section
6 on credit indicators. In Section 7, we assess the ability of our output gap estimate to forecast
inflation. Section 8 concludes. This paper also contains an online appendix providing additional
details and robustness analysis. Specifically, Appendix A provides full details on the dataset, while
Appendixes B, D, and E provide additional details about the model. Next, Appendixes F, H, and
I provide robustness analysis. Lastly, Appendixes C, G, and J provide additional results that did
not make the cut to be in the main text.

2 A large Euro Area dataset
We construct a large macroeconomic dataset of n = 119 EA series, observed from 2001:Q1 to
2023:Q4, (T = 92). The dataset contains a wide range of macroeconomic indicators, including
national account statistics, industrial production and turnover indicators, labor market and com-
pensation indicators, price indexes, oil prices, natural gas prices, house prices, exchange rates,
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interest rates, a stock market index, monetary aggregates, non-financial assets and liabilities, and
confidence indexes.

In terms of broad categories of data, we include in the dataset the usual suspects normally
considered for high-dimensional macroeconomic analysis (see, for example, McCracken and Ng,
2016, 2020).

In terms of which and how many series to include for each category, we use a mix of economic and
statistical reasoning. On the one hand, to identify the common factors driving the co-movement
in the data, it is crucial to pool information from many indicators; hence, a larger information
set should be preferred. On the other hand, a key assumption of the model is the presence of
mild cross-sectional correlation among the idiosyncratic components: violating this assumption
leads to a deterioration of the model’s performance (Boivin and Ng, 2006; Luciani, 2014). Thus,
when building a dataset for factor analysis, we face a trade-off between the need for a larger
information set and the risk of introducing too much idiosyncratic correlation. For this reason,
we selected the variables to include in the dataset to maximize economic signal while limiting
the noise, with exceptions motivated by economic reasoning. For instance, we include GDP and
its components since their informational content justifies a relatively high level of idiosyncratic
correlations. Similarly, consumption and employment are decomposed according to durability and
sectoral composition, respectively, while assets and liabilities are decomposed by ownership. In
contrast, we keep the consumer price index for energy while dropping the producer price index for
energy, as they carry the same signal (their correlation is greater than 0.95). Likewise, we drop the
consumer price index for industrial goods because it has a correlation greater than 0.95 with the
goods consumer price index.

As for the treatment of the series, we take logarithms for all variables except for confidence
indicators and those already expressed in percentage points. We keep all variables in levels except
for price indicators, for which we take first differences; i.e., we work with inflation rates. This is
a common approach used in the literature to avoid spurious dynamics resulting from the potential
I(2) behavior in price indexes (Stock and Watson, 2016; McCracken and Ng, 2016, 2020). Appendix
A provides the complete list of variables included in the dataset, along with their sources and
treatment.

3 Methodology
In Section 3.1, we outline the model and its main features—we discuss all the details, formal
assumptions, and further comments in Appendix B. In Section 3.2, we sketch how we estimate
the model, while referring the reader to Appendix D for a step-by-step guide on how estimation is
carried out in practice, and to Appendix E for the bootstrap procedure used to measure uncertainty
around our estimates. Finally, in Section 3.3 we discuss the model setup.

3.1 The model
We denote the observed i-th time series at a given quarter t as yit, with 1 ≤ i ≤ 119 and 2001 :
Q1 ≤ t ≤ 2023 : Q4. In our non-stationary dynamic factor model, each variable is the sum of: (i) a
secular component Dit, which is treated either as deterministic or stochastic, (ii) q common factors
ft = (f1t · · · fqt)′, which capture the macroeconomic long- and short-run co-movements and have a
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dynamics governed by a VAR, (ii) an idiosyncratic component ξit, which captures local dynamics
or measurement errors and is possibly correlated across i and t.

We partition the n series according to two features. First, according to the nature of the secular
component, that is whether Dit is a stochastic or a deterministic process. Second, according to the
nature of the idiosyncratic component, that is whether ξit has a stochastic trend or it is stationary.

In particular, we model Dit as a local linear trend for GDP to account for the well-documented
slowdown in productivity (Cette et al., 2016) and for households’ financial liabilities (HHLB) and
households’ long-term loans (HHLB.LLN), which are more than 80% of total household’s liabilities,
whose average growth rate has slowed down consistently since the GFC. Moreover, we model Dit

as a local level model for the unemployment rate (UNETOT) to account for relevant labor market
features, such as the reallocation of employees across sectors, which contributed to the slowdown in
the EA productivity growth (Cette et al., 2016), and for overall and core inflation (HICPOV and
HICPNEF, respectively) to account for the slowdown in inflation occurred after the GFC.1 For all
other series, Dit is either a linear trend with a constant slope, in which case we say that i ∈ Ib, or
Dit is just a constant equal to Di0.

As for the idiosyncratic components, if ξit ∼ I(1), then we say that i ∈ I1 and we model ξit as a
random walk, while if ξit ∼ I(0), we say that i /∈ I1 and we leave its dynamics unspecified to avoid
over-parametrization of the model.

Furthermore, we capture the effect of the Covid shock, which generated a large shift both in the
levels (Ng, 2021; Maroz et al., 2021), and in the volatility (Carriero et al., 2022; Lenza and Primiceri,
2022) of most macroeconomic EA series, through an additional common factor gt (Maroz et al.,
2021), and a scalar st scaling the conditional volatility of the latent factors (Lenza and Primiceri,
2022). While the former has an impact on all series only in 2020 and 2021, the latter has an effect
that persists even after the recovery from the pandemic. This parametrization is different from the
one normally used for the US, where the Covid factor’s effect persists only through the summer of
2020 (Maroz et al., 2021), and the increase in volatility lasts for a shorter amount of time (Lenza and
Primiceri, 2022). We use this different parametrization because mobility restrictions and lockdowns
in the EA have been on and off until early 2022, while in the US were enforced only at the beginning
of the pandemic.

Formally, the model reads as follows:

yit = Dit + λ′
ift + γi gtI2020:Q1≤ t ≤2021:Q4 + ξit, 1 ≤ i ≤ 119, 2001:Q1 ≤ t ≤ 2023:Q4, (1)

Dit = Dit−1 + bi,t−1Ii∈Ib
+ ϵit , ϵit

i.i.d.∼ (0, σ2
ϵi
Ii=UNETOT,HICPOV,HICPNEF), (2)

bit = bit−1 + ηit , ηit
i.i.d.∼ (0, σ2

ηi
Ii=GDP,HHLB,HHLB.LLN), (3)

ft =
p−1∑
j=0

Ajft−j + {stI t ≥ 2020:Q1 + I t < 2020:Q1)}ut , ut
i.i.d.∼ (0, Σu), (4)

ξit = ξit−1Ii∈I1 + eit, eit ∼ (0, σ2
ei

), (5)

where IA = 1, if A is true, and IA = 0, otherwise.
Furthermore, we assume that one common trend, τt, which we model as a random walk, drives

1 Appendix I shows robustness results when removing the time-variation in the secular trends.
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the non-stationarity in the factors ft (Del Negro et al., 2007). We remain agnostic on the law of
motion of the residual, i.e., the stationary cyclical component, which we denote as ωt. Specifically,
we consider the decomposition:

ft = ψτt + ωt, ωt ∼ (0, Σω), (6)
τt = τt−1 + νt, νt ∼ (0, σ2

ν). (7)

We can then identify the common trend τt by properly initializing its variance σ2
ν , which is analogous

to controlling the signal-to-noise ratio. This approach is equivalent to Morley et al. (2023) approach,
as it has the same goal (smoothing the trend) but achieves it differently: we smooth the trend using
the Kalman smoother properly initialized by setting σ2

ν ; Morley et al. (2023) smooth the trend using
the estimated parameters of an ARIMA model. A comparison between the two approaches is in
Appendix F.

In addition, by properly initializing its variance σ2
ν , our estimation strategy for the common trend

is consistent with the results of Kim and Kim (2022), who show that extracting a common trend
modeled with an unconstrained random walk component overfits GDP, thus producing a potential
output that fluctuates too much and generating the so-called “pile-up” problem. Moreover, Kim
and Kim (2022) show that the common practice of modeling the stationary component as an AR(2)
poses identification problems since the same state-space representation can also be obtained with
an ARMA(2,1) specification. For this reason, we do not impose any parametric model for ωt.

The model we just described is a modified version of the model Barigozzi and Luciani (2023)
(BL) used to estimate the output gap in the US. We modified BL’s model to overcome two impor-
tant limitations. First, their model relies on estimating cointegrating relationships to identify the
common trends, thus requiring long time series to get a reliable estimate. As such, BL’s model can
be estimated only on US macroeconomic data for which more than 50 years of quarterly data are
available. Second, BL estimate their model on pre-Covid data; thus, to incorporate more recent
observations, some modification is needed to handle the different co-movements brought about by
the Covid pandemic. In this paper, we solve both limitations by introducing (6)-(7), which we
can estimate even on short samples and by incorporating recently proposed methods to handle the
Covid period in the estimation strategy.

Combining Equations (1) and (6), we obtain the decomposition of each observed variable:

yit = Dit + λ′
iψτt + λ′

iωt + γigtI2020:Q1≤ t ≤2021:Q4 + ξit.

Focusing on GDP, we define potential output, POt, and the output gap, OGt, as:

POt = DGDP,t + λ′
GDPψτt, (8)

OGt = λ′
GDPωt. (9)

Hence, in our framework, potential output is the sum of the time-varying secular trend of GDP
(DGDP,t), which captures the long-run decline in EA output growth, and the part of GDP driven
by the common trend component (τt); the output gap is the part of GDP driven by the stationary
cyclical component (ωt). What is left out are the idiosyncratic component, ξGDP,t and the Covid
component γGDPgt. While the idiosyncratic component is likely to be just a measurement error
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(Aruoba et al., 2016), hence, it is clear why we are leaving it out; the exclusion of the Covid shock
deserves an explanation.

The Covid component represents the co-movements from 2020:Q1 to 2021:Q4 that neither po-
tential output nor the output gap captures. In principle, this component could be allocated to the
output gap, which would be equivalent to assuming that the productive capacity of the EA “froze”
due to the lockdowns. While this view is commonly accepted by European institutions (Thum-
Thysen et al., 2022), it is still unclear whether, and by what amount, the EA productive capacity
has been affected by the Covid shock. Thus, we remain agnostic on the allocation of the Covid
component between potential output and the output gap, and we will present it as a standalone
component.

In summary, our setup lets the data speak by leveraging a large number of variables. Moreover,
it allows us to reconcile a purely statistical factor model with some key macroeconomic priors that
are likely important to obtain meaningful estimates of potential output and the output gap. Lastly,
it allows us to go beyond the common practice of pre-transforming data to work with stationary
and centered variables, thus being able to capture essential features that would be inevitably lost if
we were to difference the data to achieve stationarity (Ng, 2018).

3.2 Estimating the model

To estimate the model in (1)-(5), we need to extract the latent states ft, gt, DGDP,t, DHHLB,t,
DHHLB.LLN,t, DUNETOT,t, DHICPOV,t, DHICPNEF,t, and ξit (if i ∈ I1), and estimate the parameters λi, γi,
Aj , st, Σu, σ2

ei
, ai, and bi. To do so, we use a three-step estimation procedure that we summarize

below.

Step 1: Estimate the model up to 2019:Q4 (pre-Covid step). We obtain a preliminary
estimate of the parameters using non-stationary PCAs (Bai and Ng, 2004; Barigozzi et al., 2021;
Onatski and Wang, 2021). Then, we run the EM algorithm, jointly with the Kalman smoother, as
described in Doz et al. (2012) and Barigozzi and Luciani (2024) in the high-dimensional stationary
case, and reconsidered in the non-stationary case by Barigozzi and Luciani (2019, 2023).

Step 2: Estimate the Covid factor and volatility (Covid step). Using the parameter
estimated over the pre-Covid period, we apply the Kalman filter and smoother to extract the
latent states using data up to the end of the sample. To address the influence of the Covid
outliers on the estimates, we truncate the Kalman Smoother at 2020:Q1 and then we continue
the backward iterations by re-initializing the Kalman smoother using the Kalman filter estimate
for 2019:Q4. This truncation avoids any backward spurious effect from the Covid period to
the pre-Covid estimates, but creates a structural break in the estimated secular components in
2020:Q1. For this reason, we adjust the level of the smoothed secular components by judgmentally
allocating the break in 2020:Q1 to the idiosyncratic component, as suggested by Ahn and Luciani
(2024).2

2 An alternative approach we could have taken consists in adjusting for outliers on a series-by-series basis. However,
we did not pursue this option because much of the additional volatility during the Covid shock is “economic” volatility
induced by the pandemic, not measurement error (Ng, 2021). A univariate outlier adjustment method cannot dis-
tinguish between the two, so it likely removes economically relevant information. Indeed, if we do univariate outlier
adjustment, we get that the Covid factor is essentially zero and that the output gap is flat as if nothing happened.
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At this point, we have an estimate of the states over the entire sample given the information
set prior to the Covid shock. This implies that the co-movements in the Covid period are left
unaccounted for, and are captured by the idiosyncratic component ξit. Thus, since Covid was a
common shock affecting most of (if not all) the series in the dataset, we estimate the Covid factor
ĝt and its loadings γ̂i by PCA on the variance-covariance matrix of the idiosyncratic component
for the period 2020:Q1-2021:Q4, following Maroz et al. (2021).

Lastly, we estimate the Covid volatilities ŝt for the period 2020:Q1-2023:Q4 by maximum
likelihood and by using the factors extracted using pre-Covid parameters. We find that ŝt jumps
from 1 to about 3.5 at the onset of the Covid pandemic, and then remain larger than 2 until the
end of 2022, thus justifying our choice of imposing a time-varying volatility until the end of the
sample. In Appendix H, we show how our measures would change if we do not model the effect
of Covid explicitly, or if we use the exponential decay parametrization proposed by Lenza and
Primiceri (2022).

Step 3: Full sample estimation. We estimate all the parameters and latent states up to the
end of the sample, by using data net of the Covid component, i.e., with yit − γ̂iĝt. Specifically,
by using the factors estimated over the whole sample in Step 2 rescaled by ŝt in the last part of
the sample, we estimate the parameters, λ̂i, Âj , Σ̂u, σ̂2

ei
, âi, and b̂i, by maximizing the expected

likelihood. Finally, with the estimated parameters in hand, we obtain a final estimate of the states,
f̂t, D̂i,t, and ξ̂it, through the Kalman smoother again truncated in 2020:Q1 and reinitialized before
iterating backward, as explained in Step 2.

Having estimated the model parameters and unobserved states, we can now estimate the common
trend. To this end, we estimate the state-space model in (6)-(7) using the EM algorithm by replacing
the true factors with the estimated factors.

At convergence of the EM algorithm, we obtain a final estimate of the parameters, ψ̂, Σ̂ω, and
σ̂2

ν , and using these estimates we have a final estimate of the trend τ̂t and of the cyclical component
ω̂t = f̂t − ψ̂τ̂t, obtained through the Kalman smoother. Given the estimates of the common trend
and the cyclical common component, we compute our final estimates of potential output and the
output gap according to (8) and (9), respectively.

The estimation procedure we just outlined delivers consistent estimators of all parameters and
of the factors, provided that n and T grow to infinity. Furthermore, we neither have to impose the
gaussianity assumption, nor we have to require uncorrelatedness of the idiosyncratic components
(ξit if i /∈ I1 or eit if i ∈ I1) across i or t. Rather, we just have to impose mild moment conditions
(see Doz et al., 2012, Bai and Li, 2016, and Barigozzi and Luciani, 2019, 2024, for details).

3.3 Setting-up the model
Before estimating the model, we need to choose the number of common factors q, the number of
common trends and the number of lags p in the VAR for the common factors. As for the number
of lags p, we select p = 2 based on the BIC criterion for a VAR on the estimated factors.

Assumptions (1)-(3), and (7) imply that the covariance matrix of the differenced data ∆yt =
(∆y1t · · · ∆ynt)′ has at most q eigenvalues diverging as n → ∞, with all the others staying bounded.
Furthermore, the q-largest eigenvalues of the spectral density of ∆yt diverge as n → ∞ at all
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frequencies except the zero-frequency, where the number of diverging eigenvalues corresponds to
the number of common trends, while all the others stay bounded. This allows us to consistently
recover the numbers of common factors and common trends via the information criteria by (Bai
and Ng, 2002; Hallin and Lǐska, 2007; Barigozzi et al., 2021). We find evidence of q = 4 common
factors and one common trend. Details are in Appendix C.

Finally, we need to choose which idiosyncratic component to model as random walk and for
which variable to include a linear trend. For the idiosyncratic component, we employ the test
proposed by Bai and Ng (2004) for the null hypothesis of an idiosyncratic unit root. To determine
for which variable to include a linear trend, we test the significance of the sample mean of ∆yit.
The results of these tests can be found in Appendix A.

4 Potential output and output gap of the Euro Area
Figure 1 presents our potential output estimate, both in 100 × log levels (left plot) and in year-
on-year (YoY) growth rates (right plot). The right plot also shows estimates of potential output
growth from EC and IMF. Comparing our estimates with those of the EC and IMF is useful because
our approach differs from that of these institutions, as our estimate of the output gap is primarily
data-driven, whereas the EC’s and IMF’s estimates are based mainly on theoretical macroeconomic
models. Specifically, both the EC and IMF derive the output gap and potential output according
to the so-called “production function approach” (Kiley, 2013): after having specified a neoclassical
production function endowed with a Phillips curve and an Okun’s law, the trend component of GDP
is extracted, and the output gap is defined as the deviation from the trend (Havik et al., 2014).

Three main results emerge from Figure 1. First, potential output growth decelerated after the
GFC, and the SDR further compounded this deceleration. This result aligns with the prevailing
institutional perspective, according to which the GFC had a persistent negative effect on economic
capacity (Thum-Thysen et al., 2022)—potential output growth was 1.9% right before the GFC, and
the subsequent peak was 1.4% right before the Covid pandemic.3 Second, while the EC and IMF
also estimate a slowdown in potential growth after the GFC (as shown by blue and red lines in the
right plot), they do not estimate any effects of the SDR on potential growth. Third, in contrast
with the GFC, the Covid recession had only a transitory effect on potential output growth, with
potential growth averaging 1.6% in the second half of 2022 before slipping to 0.7% at the end of
the sample.

Figure 2 presents the estimated output gap, together with the estimates from the EC and the
IMF.4 Our output gap estimate looks similar to those of the EC and IMF in that the dating of
the turning points perfectly coincides. Moreover, the three estimates closely align until the SDR,
as they all suggest a substantial overheating of the economy in the pre-GFC period, followed by
a persistently negative output gap during the two recessions. However, our measure increased

3 Our result is also consistent with Schmöller and Spitzer’s (2021) interpretation that the decline in total factor
productivity resulting from the GFC induced hysteresis effects which can explain the decline in potential growth.

4 In Appendix G, we show alternative estimates of the output gap based on: the HP filter, the filter by Hamilton
(2018), the boosted HP filter Phillips and Shi (2021), the Butterworth filter as recommended by Canova (2022), and
the large Bayesian VAR approach by Morley et al. (2023)—overall, the Butterworth filter estimate of the output gap
seems to be the most similar to ours and the most stable one. Moreover, in Appendix J, we assess the real-time
reliability of our output gap estimate.
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Figure 1: Potential output.
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Notes: In all charts, the black solid line is our estimate of potential output, the grey shaded areas are the 68% and 84%
confidence bands, and the dashed black line is GDP—we truncated the y-axis in the right chart for readability. In the
right chart, the blue and red lines are the potential output estimates published by the European Commission and the IMF,
respectively. The IMF estimate of YoY potential output growth reported in the right chart is the result of our own calculation.
Indeed, the IMF publishes only an estimate of the output gap from which we backed out potential output. Thus, the blue
line in the right chart does not account for any adjustment for Covid that the IMF might have done.

after the SDR, hovering at about 2% from 2017 to the Covid pandemic, thus signaling a much
tighter economy than the EC or the IMF. As we will discuss in Section 6, household liabilities,
whose growth rate picked up in 2014 after declining for seven years in a row, are key drivers of the
output gap after the GFC (see also Borio et al., 2017).5 This result highlights how considering
many variables beyond the usual suspects (i.e., inflation indexes and labor market indicators) is
important to estimate the cyclical position of the economy (Buncic and Pagan, 2022).

Figure 2: Output gap.
Levels Year-on-year growth rates
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Notes: The black line is our estimate of the output gap (OG) in levels (left plot) and YoY growth rates (right plot)—the
level of the output gap is the percentage deviation from potential, the YoY growth rates is OGt − OGt−4. Each black marker
denotes one year (four quarters), starting from 2001:Q1. The grey shaded areas are the 68% and 84% confidence bands. The
red and blue lines are the output gap estimates published by the European Commission and the IMF, respectively.

Figure 3 decomposes GDP growth. During the Covid pandemic, the output gap subtracted 7.3
percentage points (p.p.) from YoY GDP growth in 2020:Q2. At a YoY GDP growth rate of -15.3%,
a -7.3 p.p. contribution from the output gap seems dubious. However, as explained in Section 3.2,

5 In line with our result, Gambetti and Musso (2017) find that loan supply shocks have a significant effect on the
EA business cycle.
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our output gap estimate captures only standard co-movements, while the Covid factor captures the
additional co-movements brought about by the Covid shock. As shown by the green bars in the
right plot in Figure 3, the Covid factor accounts for an additional -5.5 p.p. of the YoY GDP plunge
in 2020:Q2.

Figure 3: Decomposition of GDP growth
Annual year-on-year growth rate Quarterly year-on-year growth rates

Notes: The black line with dot markers is GDP growth. The bars represent the contribution of each component to GDP
growth rate of GDP. The left plot shows YoY growth for the full year, while the right plot shows YoY growth in each quarter.

In 2021 and 2022, GDP growth was driven by the output gap and the Covid factor, while in
2023, GDP growth was sustained by potential output. However, as shown in the left plot, potential
output growth reached only about half its pre-GFC average pace of around 1.6%. This result,
coupled with the left plot in Figure 2 showing the output gap at 3 p.p. above potential at the
end of 2023, suggests that there is a potential output issue in the EA, not a business cycle issue.
Consequently, European countries should implement supply-side structural reforms with long-term
effects to boost growth, as policies aimed solely at stimulating aggregate demand are likely to yield
short-lived effects.

5 What about the Okun’s law and the Phillips curve?
Our estimate of the output gap has a different meaning than the production-function-based model
estimate. In production-function-based models, the output and unemployment gaps are related
through the Okun’s law. Thus, in these models, the labor and the goods and services markets are
tightly related. As a result, the unemployment gap decreases whenever the output gap increases,
and vice-versa. Likewise, in these models, the output gap is related to inflation through the Phillips
curve. As a result, these models take considerable signal from inflation data to estimate the output
gap: the absence of inflation typically suggests a negative output gap, while high inflation indicates
a positive gap; similarly, a decrease in inflation generally corresponds to a reduction in the output
gap, and vice-versa.

In our model (like any statistical model), there is no Okun’s law or Phillips curve, just the data.
The output gap is the part of GDP driven by the common cyclical component, and as such, it is
about whether or not the recent GDP growth pace is sustainable in the long run. Thus, when we
compare our estimate with those of the IMF or the EC, we are not really comparing apples to apples.
Nonetheless, this comparison is useful because whenever these measures differ, inspecting why they
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differ can be very useful to better understand what happened (or is happening) in the economy.
Thus, in this section and the next, we try to open the black box to understand what signals the
model takes from the data and how these signals affect our estimate of the output gap. In this
section, we will focus on labor market indicators (and so, the Okun’s law) and on price inflation
indicators (and so, the Phillips curve); in the next section, we will focus on credit variables, which
production-function-based models usually do not consider.

5.1 The Okun’s law
Figure 4 shows what our output gap estimate would be if we remove all 18 labor market indicators
included in our dataset. As can be seen, our output gap estimate would be much lower than our
baseline estimate between 2015 and the end of the sample. Indeed, since 2012, the unemployment
rate has constantly decreased from just over 12% to just under 7%, except between 2020 and 2021
during the Covid lockdowns and mobility restrictions. If not fed with this information, the model
would have concluded that the economy was less tight than our benchmark estimate.

Figure 4: Output gap and potential output growth when excluding labor market indicators
Potential output growth Output gap
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Notes: The black solid line is our benchmark estimate and the grey shaded areas are the 68% and 84% confidence bands, the
black dashed line is GDP YoY growth rate, the red lines are estimates obtained by excluding labor market indicators from
the dataset.

To further corroborate the intuition that there is a tight relationship between our output gap
estimate and labor market indicators, the left chart in Figure 5 shows that in our model, the
unemployment rate gap and the output gap are negatively correlated; that is, our model captures
the Okun’s law relationship in the data. As shown by the slope of the least squares fit line in
the chart, on average, for every percentage point increase in the output gap, the unemployment
gap decreases 0.6 p.p. Moreover, as shown by the similar slope of the pre-Covid (blue) and post-
Covid (red) least squares fit lines, this relationship has remained stable over time. We reach a similar
conclusion even when we estimate an Okun’s law regression of the output gap on the unemployment
rate using an expanding window, as shown in the right chart.6

Lastly, Figure 6 shows the Generalized Impulse Response Functions (GIRFs) of the common
component of the unemployment rate, GDP, potential output, and the output gap to a 1 p.p. shock

6 We also estimated the relationship between the output gap and hours worked gap and find a positive relationship
in line with the results of Morley et al. (2023). Moreover, we find this relation to be stable in time.
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Figure 5: Okun’s Law
Unemployment rate gap vs. output gap Okun’s law (Expanding windows estimation)
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Notes: The left chart shows the Okun’s law relationship with the output gap on the horizontal axis and the unemployment
rate gap on the vertical axis. Each circle correspond to an output gap - unemployment gap pair at time t. The blue circles
refer to pre-Covid observations, the red circles refer to post-Covid observations. The dotted/blue/redlines are the least squares
fit lines.
The right chart shows the least squares estimate, based on an expanding window starting from 2015:Q1, of the Okun’s
law slope β given by the regression (URt − DUR,t) = α + βOGt + εUR,t, where DUR,t is the time-varying mean of the
unemployment rate defined in (2). Each dot is an estimate of α while the whiskers are ± one HAC standard errors.

to the common component of the unemployment rate (Crump et al., 2021).7 Results confirm that
our model, on average, associates an unemployment rate increase with an output gap decrease. The
common component of the unemployment rate remains 1 p.p. (or more) above the baseline for
about a year and a half before decreasing and slowly returning to zero. In response, GDP decreases
and keeps decreasing, reaching a through a year after the shock; then, it slowly returns to baseline.
The model attributes most of the GDP response to movements in the output gap, while potential
output slightly decreases only after a few quarters. The shock is fully absorbed in about 4 years.

Figure 6: Generalized Impulse Response Functions to a shock to the unemployment rate
Common component: UR Common component: GDP Potential output and output gap
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Notes: The black solid/dashed lines are the GIRFs to a 1 p.p. shock to the common component of the unemployment rate.
The major ticks in the x-axis represent quarters after the shock.

5.2 The Phillips curve

Figure 7 shows our estimated output gap after removing all 15 inflation indicators (i.e., price indexes,
and natural gas and the oil prices) from the dataset. As can be seen, our output gap estimate would

7 The lag-h GIRF of all variables is obtained by computing the differences between the h-step ahead forecast of their
common component conditional on a shock to a given variable at time T + 1 minus the h-step ahead unconditional
forecast of the common component, i.e., when no shock is imposed. Both forecasts are computed conditional on all
information available at time T (the last observation in our sample) by means of the Kalman filter (Bańbura et al.,
2015).
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have indicated a much tighter economy after the GFC and a less tight economy in 2022 and 2023
had we not included inflation indicators. In other words, our model interprets the low inflation after
the GFC as a signal that there is slack in the economy (see also Jarociński and Lenza, 2018) and
the high inflation in 2022 and 2023 as a signal that the economy is tight, even accounting for the
surge in oil and natural gas prices.

Figure 7: Output gap and potential output growth when excluding price indexes
Potential output growth Output gap
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Notes: The black solid line is our benchmark estimate and the grey shaded areas are the 68% and 84% confidence bands, the
black dashed line is GDP YoY growth rate, the red lines are estimates obtained by excluding price indexes from the dataset.

To further corroborate the intuition that there is a relationship between our output gap estimate
and inflation indicators, the left plot in Figure 8 shows that in our model, the core inflation rate gap
(i.e., the cyclical common component of core inflation) and the output gap are positively correlated;
that is, there is Phillips correlation in the data and our model captures it. As shown by the slope of
the least squares fit line in the chart, on average, for every percentage point increase in the output
gap, the core inflation gap increases 4 basis points. Moreover, as shown by the difference between
the slope of the pre-Covid (blue) and post-Covid (red) least squares fit lines, this correlation has
increased significantly after Covid (the slope of the fit line increases from 0.017 to 0.062). The
right plot in Figure 8, which shows expanding window estimates of the slope of the Phillips Curve,
together with the respective standard errors, confirms that the relationship between inflation and
the output gap has strengthened after Covid.

Lastly, Figure 9 shows the GIRFs of the common component of core inflation, GDP, potential
output, and the output gap to a 0.5 p.p. shock to the common component of core inflation. Results
confirm that our model, on average, associates an increase in inflation with an output gap increase.
The GIRF of the common component of core inflation peaks one quarter after the shocks before
decreasing and slowly returning to zero. In response, GDP initially increases, but then after about
a year, it starts decreasing, reaching a trough about 2 years after the shock—the shock is fully
absorbed in 5 years. The response of potential output is negative and persistent. The output gap
initially increases, then decreases, and increases again before returning to zero.

6 The role of credit indicators
Borio et al. (2017) argue that incorporating financial indicators in the dataset is necessary to obtain
meaningful estimates of the business cycle because credit expansions tend to overheat the economy,

14



Figure 8: Phillips Curve
Core Inflation gap vs Output gap Slope of the Phillips Curve over time
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Notes: The left chart shows the Phillips Curve relationship with the output gap on the horizontal axis and the core inflation
gap on the vertical axis. Each circle correspond to an output gap - core inflation gap pair at time t. The blue circles refer to
pre-Covid observations, the red circles refer to post-Covid observations. The dotted/blue/red lines are the least squares fit
lines.
The right chart shows the least squares estimate, based on an expanding window starting from 2015:Q1, of the slope of the
Phillips Curve given by the following expectation-augmented specification (e.g., Conti, 2021): πt = c + αOGt + βπt−1 +
γEπt+k + επ,t, where πt is core inflation and Eπt+k are the long-run (5-year ahead) inflation expectations in the Survey of
Professional Forecasters. Each dot is an estimate of α while the whiskers are ± one HAC standard errors.

Figure 9: Generalized Impulse Response Functions to a shock to core inflation
Common component: core HICP Common component: GDP Potential output and output gap
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Notes: The black solid/dashed lines are the GIRF to a 0.5 p.p. shock to the common component of core inflation. The
major ticks in the x-axis represent quarters after the shock.

particularly from the late 1990s onward. In support of Borio et al.’s results, Berger et al. (2022)
find that a large share of the US economy overheating in the build-up of the financial crisis was
due to financial imbalances in the credit and housing market. Moreover, Claessens et al. (2012),
Rünstler and Vlekke (2018), and Winter et al. (2022) find that the business and financial cycles are
correlated and co-move in the medium run, thus supporting the idea of a “medium-term” business
cycle (Comin and Gertler, 2006). Our dataset includes various indicators of financial conditions,
including credit indicators, monetary aggregates, and house prices, totaling 26 variables. What is
the role of those financial variables (and in particular, credit indicators) in our model? Does our
model support the view that the financial and business cycles are correlated? Out of its intrinsic
interest, answering this question is very important because it may explain why our output gap
estimate differs from those of the IMF and EC, which do not consider credit indicators.

As shown in the left plot in Figure 10, removing all 26 financial variables from our dataset
yields significant consequences. Is this outcome primarily due to removing many variables from
the dataset? Or is there a specific sub-group of financial variables that carries more weight? The
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right plot in Figure 10 conclusively shows that household credit indicators are the primary driver
of this result. Additionally, the left plot in Figure 11 clarifies that it is household liabilities that
matter for the output gap estimation, while household assets do not have any significant effect.
The results in Figures 10 and 11 provide further evidence that household leverage is an important
driver of the business cycle, a trend that emerged in the early 2000s in many advanced economies
(Mian et al., 2017). Indeed, while in the 1990s, non-financial corporations were the main driver
of the financial cycle, households were behind both the pre-GFC excess leverage, which boosted
households’ demand, and the subsequent deleveraging, which curtailed household’s demand (Mian
and Sufi, 2018; Plagborg-Møller et al., 2020; Reichlin et al., 2020).

Figure 10: Output gap excluding financial financial assets/liabilities or their sub-groups
No financial assets/liabilities No financial assets/liabilities by sector
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Notes: The black line is our estimate of the output gap in levels, the grey shaded areas are its 68% and 84% confidence bands,
and the red/blue/green lines are the estimates obtained omitting all the information from: financial assets/liabilities (FIN);
assets/liabilities of households (HH); assets/liabilities of Non-Financial Corporations (NFC); assets/liabilities of Government
(GOV).

Figure 11: Potential output and output gap excluding households assets/liabilities
Potential output – no liabilities Output gap – no assets and liabilities
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Notes: In the left chart, the black line is our estimate of the output gap in levels, the grey shaded areas are its 68%
and 84% confidence bands, the red line is the estimate obtained omitting the information from all liabilities of households
(HH.liabilities) and the blue line is the estimate obtained omitting the information from all assets of households (HH.assets).
In the right chart, the black solid line is our estimate of year-on-year potential output growth, the grey shaded areas are the
68% and 84% confidence bands, the black dashed line is GDP YoY growth rate, and the red line is the estimate obtained
omitting all the information from all liabilities of households (HH.liabilities).

In summary, credit indicators, notably household liabilities, have a crucial role when estimating

16



the output gap—this is confirmed by the inflation forecasting exercise presented in Section 7. When
we exclude these variables, in periods of debt build-up (e.g., before the GFC), we estimate a lower
output gap, while in periods of deleveraging (e.g., from 2013 to 2016), we estimate a higher output
gap. The scenario analysis in Figure 12 confirm this interpretation of the results in Figure 11.

Figure 12: Scenario analysis
Household liabilities Household liabilities

(Data and counterfactual) (Conditional and unconditional forecast)

GDP Potential output and output gap
(Scenario dynamic effects) (Scenario dynamic effects)

Notes: In the upper-left chart, the black line is the data (in 100×log-levels), and the red line is a linear path starting from
the value of household liabilities in 2003:Q1 and ending in 2011:Q4. In the upper-right chart, the black line are the data,the
blue line is the scenario we simulate, and the red line is the forecast of household liabilities when no alternative scenario is
imposed. In the lower charts, the black solid/dashed lines are the dynamic effects of the simulated scenario.

Figure 12 shows the impact of a scenario in which household liabilities increase faster than in
the baseline for about 31⁄2 years—reaching a level about 61⁄4 p.p. higher than in the baseline—and
then return to baseline after about 8 years. To calibrate this scenario, we looked at the difference
between the actual times series of household liabilities between 2003:Q1 and 2011:Q4 against the
counterfactual had household liabilities grew linearly in this period (upper-left chart of Figure 12),8

and then smoothed it with a 5-th order degree polynomial. We then added this smoothed path to
the unconditional forecast of household liabilities (the red line in the upper-right chart in Figure

8 Between 2003:Q1 and 2011:Q4, household liabilities grew at an average annualized growth rate of 5.4%. This is
the result of period of increased leverage between 2003 and 2008:Q1, when household liabilities grew at an average
annualized growth rate of 7.6%, and a period of slower growth between 2008:Q1 and 2011:Q4, when household
liabilities grew at an average annualized growth rate of 2.5%.
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12), which gives us a path for household liabilities (blue line) conditional on which we can obtain
forecasts for all the variables in the model.

The lower charts in Figure 12 show the dynamic effects of this scenario on the log level of GDP
and on the output gap and potential output (Crump et al., 2021).9 Specifically, GDP increases for
a little over three years, reaching a peak at 3 p.p. above the baseline. Since then it starts declining
and after six years turns negative. The response of the output gap mimics that of GDP, but it
is a little faster. Potential output slowly increases for the first five years and then returns to the
baseline. These results show that growth financed through household debt is not sustainable in the
long run.

7 Has our output gap measure predictive power for inflation?
The output gap is often seen as an indicator of current/future inflationary pressure (or easing).
Thus, predicting inflation is considered a must-have property for any output gap measure. This is
the case, even though, as opposed to production-function-based model estimates of the output gap,
our measure is not directly tied to inflation and was not designed to be an inflation gauge.

To assess the forecasting properties of our output gap estimate, we replicate the analysis con-
ducted in Bańbura and Bobeica (2023), and we employ a simple autoregressive distributed lag
model:

πt+4 = απt + βOGt + vt+4, (10)
where πt = 100 log(Pt/Pt−1) is the quarter-on-quarter inflation rate in quarter t, Pt is the harmo-
nized consumer price index (either headline or core), πt+4 = ∑4

i=1 πt+i is year-on-year inflation in
quarter t + 4, and OGt is the output gap. Bańbura and Bobeica (2023) labeled model (10) the
“benchmark model,” and they show that, despite being very simple, it delivers decent forecasts
compared to more complex alternative models.

Our exercise compares the inflation forecast obtained using the benchmark model (10) with a
forecast obtained by replacing our estimate of the output gap with different univariate and multivari-
ate statistical models (see Appendix G for a description of the alternative models). This comparison
is carried out through an expanding window exercise, where the first window is a 60-quarter win-
dow. We look at the forecasting performance of the different output gap measures over two distinct
samples: a pre-Covid sample, 2015:Q4–2019:Q4, and a post-Covid sample, 2022:Q1–2023:Q4.

Table 1 compares the forecasting performance of the different output gap measures in terms of
relative Root Mean Squared Error (RMSE)—numbers lower than one indicate a better forecasting
performance when using our output gap estimate. As shown in rows (1)-(8), in the pre-Covid period,
when inflation was low and stable, our output gap measure performed better than all the other
alternatives in forecasting headline inflation and better than most alternatives when forecasting
core inflation. However, in the post-Covid period, when inflation surged and then declined, our
model outperformed all the other measures, sometimes substantially.

Row (9) in Table 1 compares the forecasting performance of two different estimates of the output
9 The dynamic effects of the simulated scenario at a lag h on all variables are computed as the difference between

the h-step ahead forecast of their common component conditional on the simulated path of household liabilities minus
the h-step ahead unconditional forecast of the common component, i.e., when no alternative path is simulated. Both
forecasts are computed conditional on all information available at time T (the last observation in our sample) by
means of the Kalman filter (Bańbura et al., 2015).
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gap obtained with our model: the benchmark estimate and the one obtained excluding all credit
indicators. The results in Table 1 add evidence to our claim that including credit variables in
the dataset when estimating the output gap is crucial, as the model including credit indicators
outperforms the model excluding credit indicators.

Table 1: 4-quarter ahead year-over-year inflation forecasting
Relative Root Mean Squared Errors

2015:Q4-2019:Q4 2022:Q1-2023:Q4
Output Gap Measure Headline Core Headline Core

(1) HP Filter (λ = 1600) 0.91 1.02 0.81 0.96
(2) HP Filter (λ = 51200) 0.97 0.97 0.90 0.97
(3) Hamilton Filter 0.88 0.83 0.89 0.85
(4) Boosted HP Filter (λ = 1600) 0.88 0.95 0.71 0.76
(5) Boosted HP Filter (λ = 51200) 0.88 1.00 0.74 0.80
(6) Christiano-Fitzgerald Filter 0.89 1.00 0.85 0.83
(7) Butterworth Filter 0.93 0.95 0.83 0.78
(8) Multivariate Beveridge-Nelson 0.90 0.97 - -
(9) No household 0.95 0.98 0.93 0.94

Notes: The table shows the relative RMSE of forecasting year-on-year inflation using (10), where OGt is either our output gap
estimate, or an alternative output gap estimate. Our benchmark output gap estimate is always the numerator of the RMSE,
thus numbers lower than 1 indicate a better forecasting performance when using our benchmark output gap estimate. Rows
(1)–(8) compare our benchmark estimate with alternative models, while row (9) compares our benchmark estimate with the
one obtained with our model but excluding all credit indicators. In row (8) forecasts are obtained with the output gap measure
by Morley et al. (2023) which is available only until 2021:Q3. Therefore, we only present results for the pre-Covid forecasting
exercise.

Figure 13: Conditional forecasts of inflation
HICP: Overall HICP: Core
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Notes: In both charts, the black line is the quarter-on-quarter annualized inflation, the red line is the common component
estimated in-sample, and the blue line is the conditional forecast. The dashed lines are the 84% confidence intervals.

To conclude, having established that our model captures the Phillips correlation in the data
and is capable of forecasting inflation, we use our model to understand how much of the inflation
surge and deceleration is driven by macroeconomic co-movement. To this end, we produce Kalman
filter based forecasts of the common component of inflation conditional on observing at each point in
time all the variables in the model except price indicators (Bańbura et al., 2015).10 The conditional
forecasts in Figure 13 show that the macroeconomic co-movement can only account for some of the

10 The choice of where to start the exercise requires some explanation. The first two consecutive quarter-on-quarter
(qoq) at an annual rate (a.r.) core inflation reading above 2% occurred in the second half of 2021. After that, from
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inflation acceleration and very little of the inflation deceleration. Thus, according to our model, the
2023 inflation deceleration was not due to the aggregate demand cooling down (as indicated by our
almost flat output gap estimate in 2023) but to other factors, such as the expansion of aggregate
supply or the normalization of inflation expectations.

8 Conclusions
This paper proposes a new measure of potential output and the output gap for the EA based on
letting a large number of macroeconomic and financial indicators speak. To do so, we estimate a
large-dimensional non-stationary dynamic factor model, which allows us to capture co-movements
across series while incorporating relevant macroeconomic priors, such as the long-run decline in
output growth. Our model is a modified version of the model Barigozzi and Luciani (2023) used to
estimate the output gap in the US, which we upgraded so that it can also be estimated on short
samples and can handle the anomalous dynamics induced by the Covid pandemic.

Our output gap estimate is in line with those published by the EC and the IMF in most of the
sample. However, our estimate diverges significantly after the 2011–2012 sovereign debt recession
when our output gap measure suggests that the EA economy was tighter than estimated by the EC
and the IMF. This result suggests that the EA has a potential output issue, not a business cycle
issue. Hence, if the goal is to achieve better economic conditions in the EA, its member countries
should implement supply-side structural reforms that have long-run effects, while policies aiming at
stimulating aggregate demand will have only short-term effects at best.

Moreover, we find that incorporating financial indicators in the dataset, particularly household
liabilities, is necessary to pin down the output gap. Excluding these variables leads to estimating a
lower output gap in periods of debt build-up (e.g., before the GFC) and a higher gap in periods of
deleveraging (e.g., from 2013 to 2016), as growth financed through household debt is not sustainable
in the long run.
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Summary
In Appendix A, we provide full details on the dataset. In Appendix B, we formally state all
assumptions of our model and provide motivation and comments for each of them. In Appendix D,
we provide details of all estimation steps, and Appendix E explains how we compute the confidence
bands to measure the uncertainty around our output gap estimate. Next, Appendix F compares our
estimate of the output gap with the one obtained when identifying the common trend as suggested
by Morley et al. (2023), and Appendix G compares it with alternative methodologies. In Appendix
H, we show how our measures would change if we did not model the effect of Covid explicitly,
and we also compare our measure of the output gap with the ones obtained by using a different
estimate of the Covid factor or when modeling the Covid induced volatility as suggested by Lenza
and Primiceri (2022). In Appendix I, we show the effect of not allowing some parameters to be
time-varying. In Appendix J, we assess the reliability of our output gap estimate.
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A Data Description
Table A2 provides a brief description for each of the 119 series in our dataset. Moreover, for each
variable, Table A2 indicates the source, the unit of measure, the seasonal adjustment treatment, the
transformation (if any), model for the deterministic component for the idiosyncratic component.
Table A1 presents a glossary to proper understand the data description presented in Table A2.

All the series were retrieved starting from January 2000 up to June 2023. After dropping missing
values and transforming the variables, the actual starting point for the analysis is 2001:Q1. Monthly
series, which constitute around one-third of the dataset, are aggregated at the quarterly level by
simple averages, hence, the sample used for the analysis is 2001:Q1-2023:Q4 (T = 92).

Most of the series in the dataset are available already seasonally adjusted from the source,
while others, e.g., financial variables and producer price indexes, are only available not seasonality
adjusted. In these cases, we deseasonalize the series using a simple dummy variable approach.

Table A1: Glossary
Source Unit
EUR = Eurostat CLV= Chain-linked volumes
OECD = Organization for Economic Co-operation and Development 1000-ppl= Thousands of persons
ECB = European Central Bank 1000-U = Thousands of Units
FRED = Federal Reserve Economic Data CP = Current Prices

SA F Trans Trend Idio
NSA = No Seasonal Adjustment Q = Quarterly 0 = No Transformation 0 = No Trend 0 = I(0)
SA = Seasonal Adjustment M = Monthly 1 = First Differences 1 = Deterministic Trend 1 = I(1)
SCA = Seasonal and Calendar Adjustment 2 = Log-Transformations 2 = Time-Varying Trend
MSA = Manual adjustment 3 = First-Differences in Logs 3 = Time-varying Mean
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Table A2: Data Description: Euro Area
N ID Series Unit SA F Source Trans Trend Idio

(1) National Accounts
1 GDP Real Gross Domestic Product CLV(2015) SCA Q EUR 2 2 0
2 EXPGS Real Export Goods and services CLV(2015) SCA Q EUR 2 1 0
3 IMPGS Real Import Goods and services CLV(2015) SCA Q EUR 2 1 0
4 GFCE Real Government Final consumption expenditure CLV(2015) SCA Q EUR 2 1 1
5 HFCE Real Households consumption expenditure CLV(2015) SCA Q EUR 2 1 1
6 CONSD Real Households consumption expenditure: Durable Goods CLV(2015) SCA Q EUR 2 1 1
7 CONSND Real Households consumption expenditure: Non-Durable Goods and Services CLV(2015) SCA Q EUR 2 1 1
8 GCF Real Gross capital formation CLV(2015) SCA Q EUR 2 0 1
9 GCFC Real Gross fixed capital formation CLV(2015) SCA Q EUR 2 0 1
10 GFACON Real Gross Fixed Capital Formation: Construction CLV(2015) SCA Q EUR 2 1 1
11 GFAMG Real Gross Fixed Capital Formation: Machinery and Equipment CLV(2015) SCA Q EUR 2 1 1
12 AHRDI Adjusted Households Real Disposable Income %change SCA Q EUR 0 0 0
13 AHFCE Actual Final Consumption Expenditure of Households %change SCA Q EUR 0 0 0
14 GNFCPS Gross Profit Share of Non-Financial Corporations Percent SCA Q EUR 0 0 0
15 GNFCIR Gross Investment Share of Non-Financial Corporations Percent SCA Q EUR 0 0 0
16 GHIR Gross Investment Rate of Households Percent SCA Q EUR 0 0 0
17 GHSR Gross Households Savings Rate Percent SCA Q EUR 0 0 0

(2) Labor Market Indicators
18 TEMP Total Employment (domestic concept) 1000-ppl SCA Q EUR 2 1 1
19 EMP Employees (domestic concept) 1000-ppl SCA Q EUR 2 1 1
20 SEMP Self Employment (domestic concept) 1000-ppl SCA Q EUR 2 0 1
21 THOURS Hours Worked: Total 2015=100 SCA Q EUR 2 1 0
22 EMPAG Quarterly Employment: Agriculture, Forestry, Fishing 1000-ppl SCA Q EUR 2 1 0
23 EMPIN Quarterly Employment: Industry 1000-ppl SCA Q EUR 2 0 0
24 EMPMN Quarterly Employment: Manufacturing 1000-ppl SCA Q EUR 2 1 0
25 EMPCON Quarterly Employment: Construction 1000-ppl SCA Q EUR 2 0 1
26 EMPRT Quarterly Employment: Wholesale/Retail trade, transport, food 1000-ppl SCA Q EUR 2 1 1
27 EMPIT Quarterly Employment: Information and Communication 1000-ppl SCA Q EUR 2 1 1
28 EMPFC Quarterly Employment: Financial and Insurance activities 1000-ppl SCA Q EUR 2 0 1
29 EMPRE Quarterly Employment: Real Estate 1000-ppl SCA Q EUR 2 0 0
30 EMPPR Quarterly Employment: Professional, Scientific, Technical activities 1000-ppl SCA Q EUR 2 1 1
31 EMPPA Quarterly Employment: PA, education, health ad social services 1000-ppl SCA Q EUR 2 1 1
32 EMPENT Quarterly Employment: Arts and recreational activities 1000-ppl SCA Q EUR 2 1 0
33 UNETOT Unemployment: Total %active SA M EUR 0 3 0
34 UNEO25 Unemployment: Over 25 years %active SA M EUR 0 0 1
35 UNEU25 Unemployment: Under 25 years %active SA M EUR 0 0 0
36 RPRP Real Labour Productivity (person) 2015=100 SCA Q EUR 2 1 1
37 WS Wages and salaries CP SCA Q EUR 2 1 0
38 ESC Employers’ Social Contributions CP SCA Q EUR 2 1 0

(3) Credit Aggregates
39 TAS.SDB Total Economy - Assets: Short-Term Debt Securities MLNe MSA Q EUR 2 1 1
40 TAS.LDB Total Economy - Assets: Long-Term Debt Securities MLNe MSA Q EUR 2 1 0
41 TAS.SLN Total Economy - Assets: Short-Term Loans MLNe MSA Q EUR 2 1 0
42 TAS.LLN Total Economy - Assets: Long-Term Loans MLNe MSA Q EUR 2 1 1
43 TLB.SDB Total Economy - Liabilities: Short-Term Debt Securities MLNe MSA Q EUR 2 0 1
44 TLB.LDB Total Economy - Liabilities: Long-Term Debt Securities MLNe MSA Q EUR 2 1 0
45 TLB.SLN Total Economy - Liabilities: Short-Term Loans MLNe MSA Q EUR 2 1 1
46 TLB.LLN Total Economy - Liabilities: Long-Term Loans MLNe MSA Q EUR 2 1 1
47 NFCAS Non-Financial Corporations: Total Financial Assets MLNe MSA Q EUR 2 1 0
48 NFCAS.SLN Non-Financial Corporations - Assets: Short-Term Loans MLNe MSA Q EUR 2 1 1
49 NFCAS.LLN Non-Financial Corporations - Assets: Long-Term Loans MLNe MSA Q EUR 2 1 1
50 NFCLB Non-Financial Corporations: Total Financial Liabilities MLNe MSA Q EUR 2 1 1
51 NFCLB.SLN Non-Financial Corporations - Liabilities - Short-Term Loans MLNe MSA Q EUR 2 1 1
52 NFCLB.LLN Non-Financial Corporations - Liabilities - Long-Term Loans MLNe MSA Q EUR 2 1 1
53 GGAS General Government: Total Financial Assets MLNe MSA Q EUR 2 1 0
54 GGAS.SLN General Government - Assets: Short-Term Loans MLNe MSA Q EUR 2 1 0
55 GGAS.LLN General Government - Assets: Short-Term Loans MLNe MSA Q EUR 2 0 1
56 GGLB General Government: Total Financial Liabilities MLNe MSA Q EUR 2 1 1
57 GGLB.SLN General Government - Liabilities: Short-Term Loans MLNe MSA Q EUR 2 1 0
58 GGLB.LLN General Government - Liabilities: Long-Term Loans MLNe MSA Q EUR 2 0 1
59 HHAS Households: Total Financial Assets MLNe MSA Q EUR 2 1 1
60 HHAS.SLN Households - Assets: Short-Term Loans MLNe MSA Q EUR 2 1 0
61 HHAS.LLN Households - Assets: Long-Term Loans MLNe MSA Q EUR 2 1 0
62 HHLB Households: Total Financial Liabilities MLNe MSA Q EUR 2 2 3
63 HHLB.SLN Households - Liabilities: Short-Term Loans MLNe MSA Q EUR 2 0 1
64 HHLB.LLN Households - Liabilities: Long-Term Loans MLNe MSA Q EUR 2 2 3

In absence of available data on durable and non-durable goods for the Euro Area, we follow Casalis and Krustev (2022) and build the aggregate
series of durable consumption (CONSD) aggregating the data for the 20 individual Euro Area countries. Since data for services and non-durable
goods are unavailable for many individual countries as well, we build an aggregate measure of non-durable goods (CONSND) which also includes
semi-durable goods and services.
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Table A2: Data Description: Euro Area
N ID Series Unit SA F Source Trans Trend Idio

(4) Labor Costs
65 ULCIN Nominal Unit Labor Costs: Industry 2016=100 SCA Q EUR 2 1 0
66 ULCMQ Nominal Unit Labor Costs: Mining and Quarrying 2016=100 SCA Q EUR 2 1 1
67 ULCMN Nominal Unit Labor Costs: Manufacturing 2016=100 SCA Q EUR 2 1 0
68 ULCCON Nominal Unit Labor Costs: Construction 2016=100 SCA Q EUR 2 1 0
69 ULCRT Nominal Unit Labor Costs: Wholesale/Retail Trade, Transport, Food, IT 2016=100 SCA Q EUR 2 1 0
70 ULCFC Nominal Unit Labor Costs: Financial Activities 2016=100 SCA Q EUR 2 1 0
71 ULCRE Nominal Unit Labor Costs: Real Estate 2016=100 SCA Q EUR 2 1 0
72 ULCPR Nominal Unit Labor Costs: Professional, Scientific, Technical activities 2016=100 SCA Q EUR 2 1 0

(5) Exchange Rates
73 REER42 Real Exchange Rate (42 main industrial countries) 2010=100 NSA M EUR 2 0 0
74 ERUS Exchange Rate (US dollar) 2010=100 NSA M EUR 2 0 0

(6) Interest Rates
75 IRT3M 3-Months Interest Rates Percent NSA M EUR 0 0 1
76 IRT6M 6-Months Interest Rates Percent NSA M EUR 0 0 1
77 LTIRT Long-Term Interest Rates (EMU Criterion) Percent NSA M EUR 0 1 1

(7) Industrial Production and Turnover
78 IPMN Industrial Production Index: Manufacturing 2021=100 SCA M EUR 2 0 1
79 IPCAG Industrial Production Index: Capital Goods 2021=100 SCA M EUR 2 0 1
80 IPCOG Industrial Production Index: Consumer Goods 2021=100 SCA M EUR 2 1 0
81 IPDCOG Industrial Production Index: Durable Consumer Goods 2021=100 SCA M EUR 2 1 0
82 IPNDCOG Industrial Production Index: Non Durable Consumer Goods 2021=100 SCA M EUR 2 1 0
83 IPING Industrial Production Index: Intermediate Goods 2021=100 SCA M EUR 2 0 1
84 IPNRG Industrial Production Index: Energy 2021=100 SCA M EUR 2 1 0
85 TRNMN Turnover Index: Manufacturing 2021=100 SCA M EUR 2 1 1
86 TRNCAG Turnover Index: Capital Goods 2021=100 SCA M EUR 2 1 1
87 TRNCOG Turnover Index: Consumer Goods 2021=100 SCA M EUR 2 1 1
88 TRNDCOG Turnover Index: Durable Consumer Goods 2021=100 SCA M EUR 2 0 0
89 TRNNDCOG Turnover Index: Non Durable Consumer Goods 2021=100 SCA M EUR 2 1 0
90 TRNING Turnover Index: Intermediate Goods 2021=100 SCA M EUR 2 0 0
91 TRNNRG Turnover Index: Energy 2021=100 SCA M EUR 2 0 1

(8) Prices
92 PPICAG Producer Price Index: Capital Goods 2021=100 MSA M EUR 3 0 0
93 PPIDCOG Producer Price Index: Durable Consumer Goods 2021=100 MSA M EUR 3 0 0
94 PPINDCOG Producer Price Index: Non Durable Consumer Goods 2021=100 MSA M EUR 3 0 0
95 PPIING Producer Price Index: Intermediate Goods 2021=100 MSA M EUR 3 0 0
96 PPIFD Producer Price Index: Food 2021=100 MSA M EUR 3 0 1
97 HICPOV Harmonized Index of Consumer Prices: Overall Index 2010=100 SCA M ECB 3 0 1
98 HICPNEF Harmonized Index of Consumer Prices: All Items: no Energy & Food 2010=100 SCA M ECB 3 0 0
99 HICPG Harmonized Index of Consumer Prices: Goods 2010=100 SCA M ECB 3 0 1
100 HICPSV Harmonized Index of Consumer Prices: Services 2010=100 SCA M ECB 3 0 0
101 HICPNG Harmonized Index of Consumer Prices: Energy 2010=100 MSA M EUR 3 0 1
102 HICPFD Harmonized Index of Consumer Prices: Food 2010=100 MSA M EUR 3 0 1
103 DFGDP Real Gross Domestic Product Deflator 2015=100 SCA Q EUR 3 0 0
104 HPRC Residential Property Prices (BIS) MLNe SCA Q FRED 3 0 0
105 POIL Crude Oil Prices: Brent - Europe e/barrel MSA Q FRED 3 0 0
106 PNGAS Global price of Natural gas, EU e/MMbtu MSA Q FRED 3 0 0

(9) Confidence Indicators
107 ICONFIX Industrial Confidence Indicator Index SA M EUR 0 0 1
108 CCONFIX Consumer Confidence Indicator Index SA M EUR 0 0 0
109 ESENTIX Economic Sentiment Indicator Index SA M EUR 0 0 1
110 KCONFIX Construction Confidence Indicator Index SA M EUR 0 0 1
111 RTCONFIX Retail Confidence Indicator Index SA M EUR 0 0 0
112 SCONFIX Services Confidence Indicator Index SA M EUR 0 0 1
113 BCI Cyclically-Adjusted Business Confidence Index 2010=100 SA M OECD 0 0 1
114 CCI Cyclically-Adjusted Consumer Confidence Index 2010=100 SA M OECD 0 0 0

(10) Monetary Aggregates
115 CURR Money Stock: Currency MLNe SCA M ECB 2 1 1
116 M1 Money Stock: M1 MLNe SCA M ECB 2 1 1
117 M2 Money Stock: M2 MLNe SCA M ECB 2 1 1

(11) Others
118 SHIX Share Prices 2010=100 SA M OECD 2 0 1
119 CAREG Passenger’s Cars Registrations 1000-U SCA M ECB 2 0 1
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B Assumptions
In this section, we state all the formal assumptions underlying the model outlined in Section 3.1,
and we provide both econometric and economic justifications for these assumptions. Throughout
the text, we let t19Q4, t20Q1 and t21Q4 denote 2019:Q4, 2020:Q1 and 2021:Q4, respectively.

Identifying assumptions for the space spanned by the factors

(1) The number of factors q is such that q < n and is independent of n.

(2) The q-dimensional vector ft is such that E[∆ft] = 0 and E[∆ft∆f ′
t ] = I.

(3) The n×q matrix Λ = (λ1 · · ·λn)′, with λi = (λi1 · · · λiq)′, 1 ≤ i ≤ n, is such that limn→∞ n−1Λ′Λ =
H positive definite.

(4) The scalar gt is such that E[∆gt] = 0 and E[(∆gt)2] = 1.

(5) The n-dimensional vector γ = (γ1 · · · γn)′, is such that limn→∞ n−1γ ′γ > 0.

(6) The q-dimensional vector ut is such that E[ut] = 0, E[utu′
t] = Σu is positive definite, and

E[utu′
t−k] = 0 for k ̸= 0. Moreover, st is deterministic with st > 0.

(7) The idiosyncratic innovations eit, 1 ≤ i ≤ n, are such that E[eit] = 0, E[e2
it] = σ2

ei
> 0 for all t.

Moreover, there exist finite constants Mij independent of t and 0 < ρ < 1 independent of t, i,
and j such that |E[eitej,t−k]| ≤ Mijρ|k| for all k ∈ Z, with ∑n

i=1 Mij ≤ M and ∑n
j=1 Mij ≤ M

for some finite constant M > 0 independent of n.

(8) E[eitus] = 0, for all i, t, s.

Assumptions (1)-(3) require the q factors ft to be pervasive so that they have a non-negligible
effect on the variables of interest (Bai and Ng, 2004; Barigozzi et al., 2021). Following Maroz
et al. (2021), these assumptions are extended in parts (4) and (5) to the Covid factor, gt, where
pervasiveness stems from the common nature of the Covid shock affecting most of the series included
in the dataset. Including both 2020 and 2021 in the Covid period is consistent with the evolution
of the pandemic in Europe. Ng (2021) has proposed an alternative approach that uses external
information from health statistics.

Assumption (6) assumes white noise innovations whose volatility changes over time after the
Covid shock—time-varying volatility is not a prominent feature in the pre-2020 sample (Jarociński
and Lenza, 2018). Accounting for the change in volatility due to Covid has proven to be funda-
mental both for estimation and forecasting, and here we adopt an approach similar to Lenza and
Primiceri (2022) by introducing a scaling term st modeled independently for each period starting
from 2020:Q1. Lenza and Primiceri (2022) analyze monthly US data and impose an exponential
decay for st starting in June 2020. In contrast, we estimate one parameter for each period starting
in 2020:Q1 because many series exhibit large variation even after the first half of 2020, which is not
surprising given that (i) mobility restriction measures in the EA were much more restrictive than
in the US, lasted for longer, and were also implemented in 2021, and (2) the Russia-Ukraine war
had a much larger impact on Europe by pushing natural gas prices (and gasoline prices to a lesser
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extent) to the roof, and in creating a lot of macro-financial uncertainty. Moreover, as Morley et al.
(2023) pointed out, quarterly data do not allow for a sharp identification of the decay parameter.

Assumption (7) allows the idiosyncratic innovations to be mildly cross-sectionally correlated
and serially correlated with summable autocovariances, thus compatible with stationary ARMA
dynamics (Bai and Ng, 2004; Barigozzi et al., 2021). Last, Assumption (8) requires the idiosyncratic
and factor innovations to be uncorrelated at all leads and lags, a requirement consistent with the
idea of global macroeconomic shocks being unrelated to local dynamics.

Assumptions on the dynamic specifications on the non-stationary idiosyncratic components and the
secular components

(9) Let I1 be the set of indexes such that ξit ∼ I(1) if i ∈ I1, then nI = #{i : i ∈ I1} is such that
0 < nI < n.

(10) Let Ib be the set of indexes such that bit ̸= 0 if i ∈ Ib, then nB = #{i : i ∈ Ib} is such that
0 < nB < n. Moreover, Di0 = ai ̸= 0, for all i.

(11) For i = GDP, HHLB, HHLB.LLN, E[ηit] = 0 and σ2
ηi

= (400σ̂2
∆yi

)−1, while for i = UNETOT

HICPOV, HICPNEF, E[ϵit] = 0 and σ2
ϵi

= (400σ̂2
yi

)−1 where σ̂2
∆yi

and σ2
yi

are the sample variances
of ∆yit and yit respectively, computed for 1 ≤ t ≤ t19Q4 and t21Q4 + 1 ≤ t ≤ T .

Assumption (9) allows the idiosyncratic component to be I(1) for some, but not all, of the series.
This assumption is crucial when estimating the model on a large dataset. Imposing the assumption
of all idiosyncratic components being I(0) would be overly restrictive, as it implies cointegration for
any q-dimensional vector of series (Barigozzi et al., 2021). While cointegration may hold for certain
series, it is highly unlikely to hold for many others. To accommodate potential cointegration, we
allow only a limited number nI of variables to possess a non-stationary idiosyncratic component.
Our dataset, where only nI = 57 out of n = 119 series exhibit a non-stationary idiosyncratic
component, supports this assumption.

Assumption (10) allows for a non-stationary secular component for some, but not all, of the
variables in the dataset. This modeling choice is coherent with the properties of a standard macroe-
conomic dataset. Specifically, variables related to the real sector of the economy, such as consump-
tion or investments, commonly display a distinct (upward) trend. Conversely, this may not hold for
other variables, such as inflation rates or interest rates, for example. This intuition finds support
in the empirical data, where only nB = 58 out of n = 119 series exhibit a linear trend.

Specifically, letting ai = Di0, Assumptions (10) and (11) imply that GDP, households’ financial
liabilities and long-term loans, have a secular component given by the local linear trend model

Dit = ai + bitt, bit = bi,t−1 + ηit, i = GDP, LBHH, HHLB.LLN. (B1)

We introduce a local-linear trend for GDP to capture the gradual drift in the secular decline
in long-run output growth documented both for the US and the EA (Cette et al., 2016; Antolin-
Diaz et al., 2017; Gordon, 2018). The literature has identified several factors contributing to this
slowdown, with particular emphasis on declining productivity growth. This decline has been more
pronounced in the EA due to heterogeneity between core and peripheral countries, as peripheral
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countries are experiencing a larger misallocation of economic resources (Cette et al., 2016). There-
fore, it is crucial to accurately account for these features to assess GDP’s long-run dynamics. This
assessment is essential for estimating potential output, as it avoids spuriously inflating the output
gap with unexplained predictable variation (Ng, 2018).

We introduce a local-linear trend for household financial liabilities and long-term loans, which
constitute about 85% of total household liabilities, to capture the slowdown in their average growth
rates that occurred since the GFC.

Assumption (11) implies that the unemployment rate, overall and core inflation have a secular
component given by the local level model

Dit = ait, ait = ai,t−1 + ϵit, i = UNETOT, HICPOV, HICPNEF. (B2)

This specification captures relevant labor and demographic factors that may affect the unemploy-
ment rate secular trend, such as, for example, the aging of the population and the misallocation of
resources in the labor market due to “soft budget constraints” or stringent labor market policies
can lead to a mismatch between employers’ needs and the skill-set of the unemployed (Cette et al.,
2016). Similarly, this specification also allows us to account for the slowdown in inflation occurred
after the GFC.

All the other variables in the dataset have either a deterministic linear trend or a constant
mean, i.e, Dit = ai + bit if i ∈ Ib, or Dit = ai otherwise. Although it is technically possible to model
a time-varying component for all the variables in the dataset, such an approach would introduce
complexities in the estimation framework, with the number of latent states increasing linearly with
the number of series.

In Assumption (11) we fix the variances of the stochastic secular components following Del Ne-
gro et al. (2019) in order to effectively capture the gradual and persistent nature of the secular
trends. This specification implies that the standard deviation of the secular trend, over a century,
is approximately 1%, a choice consistent with the notion of a slow-moving secular component.

Assumptions on the dynamics of the factors, trend, and cycles

(12) The polynomial det(I −
∑p−1

j=0 Ajzj+1) = 0 has 1 root in z = 1 and the remaining q − 1 roots
in |z| > 1.

(13) The q-dimensional vector ψ is such that β′ψ = 0, where β is the q × (q − 1) matrix having as
columns the cointegrating vectors of ft, i.e., such that β′ft is weakly stationary.

(14) The q-dimensional vector ωt is weakly stationary and such that E[ωt] = 0 and E[ωtω
′
t] = Σω

is positive definite.

(15) The scalar νt is such that E[νt] = 0 and E[ν2
t ] = σ2

ν > 0.

(16) E[νtωt] = 0 for all t.

Assumption (12) imposes that 1 common trend drives the non-stationarity in the common fac-
tors, hence, that the factors are cointegrated with q − 1 cointegrating relations—our data provide
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strong support for the presence of just one common trend. This is a standard assumption in the lit-
erature, which often assumes that common productivity trend is the sole driver of long-run economic
growth (see, e.g., Del Negro et al., 2007).

Assumptions (13) and (14) imply that ωt, defined in (6), belongs to the cointegration space
of the common factors. This view is consistent with theoretical models assuming that the output
gap represents deviations from long-run equilibria determined by a common productivity trend
(Del Negro et al., 2007; Tóth, 2021).

Assumption (15) assumes that νt is a stochastic process—hence τt is a common stochastic trend—
but it does not constraint νt to be a white noise—hence τt to be a random walk. Indeed, our
estimates suggest that νt is autocorrelated, in line with the theoretical arguments by Lippi and
Reichlin (1994).

Finally, Assumption (16) implies contemporaneous orthogonality between potential output and
the output gap, which is also assumed in the non-parametric approaches used by Barigozzi and
Luciani (2023).

C Number of Common Factors
In this section, we present the results of various information criteria employed to select the number
of common factors. Specifically, we look at the log-information criteria IC of Bai and Ng (2002)
(BN), Hallin and Lǐska (2007) (HL), and Alessi et al. (2010) (ABC), as well at the eigenvalue-ratio
criterion by Ahn and Horenstein (2013) (AH), and the test proposed by Onatski (2009) (ON).
In order to avoid spurious effects from the Covid period, we employ standardized and de-meaned
first-differenced data up to 2019:Q4.

Table C1: Number of common factors
ABC AH BN HL ON

q 4 1 4 4 1
Notes: ABC = Alessi et al. (2010) criteria; AH = Ahn and Horenstein
(2013) test; BN = Bai and Ng (2002) criteria, HL = Hallin and Lǐska
(2007) criteria, ON = Onatski (2009).

As shown in Table C1, the ABC, BN, and HL criteria suggest q = 4, while the AH criteria
and the ON test suggest q = 1. We picked q = 4 because (i) the criteria of Ahn and Horenstein
(2013) may underperform if there is a significant difference in the explanatory power of the different
factors, which is the case in our dataset where the first factor has a much larger explanatory power
than the others; and (ii) the Onatski (2009) may not perform well when T is small compared to n.

D Estimation in detail
In this section, we provide details on the estimation procedure described in Section 3.2. Then, the
extended state-space form of the model is given by:

yit = Dit + λ′
ift + γi gtI t20Q1 ≤ t ≤ t21Q4 + ζit + zi,t, zit

i.i.d.∼ (0, Ri), 1 ≤ i ≤ n, 1 ≤ t ≤ T, (D1a)

ft =
p−1∑
j=0

Ajft−j + {stI t ≥ t20Q1 + (1 − I t ≥ t20Q1)}ut, ut
i.i.d.∼ (0, Σu), (D1b)
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Dit =


ai if i ∈ Ia,

ai + bit if i ∈ Ib,

Dit−1 + bit−1, bit = bit−1 + ηit if i = GDP, HHLB, HHLB.LLN, ηit
i.i.d.∼ (0, σ2

ηi
),

Dit−1 + ϵi,t if i = UNETOT, HICPOV, HICPNEF, ϵi,t
i.i.d.∼ (0, σ2

ϵi
),

(D1c)

ζit =
{

ζit + eit if i ∈ I1, eit
i.i.d.∼ (0, σ2

ei
)

0 if i /∈ I1,
(D1d)

Ri =
{

σ2
z if i ∈ I1,

σ2
ei

if i /∈ I1,
(D1e)

where Ia denotes the set of series with only a constant intercept, while Ib denotes the set of series
with a deterministic linear trend. Similarly, I1 denotes the set of series with a I(1) idiosyncratic
component.

Initialization
In order to apply the Kalman Filter and Smoother, we need initial estimates of all the quantities
described in Equations (D1a)-(D1e). We denote with the superscript “19” all quantities computed
with data up to 2019. Let y̆19

it = (y19
t − ă19

i − b̆19
i · t)/σ2

∆y19
i

, where σ2
∆y19

i
is the sample variance of ∆y19

it ,
and ă19

i and b̆19
i are estimated by regressing a constant and a time trend on y19

it , whenever i ∈ Ib or
i = GDP, HHLB, HHLB.LLN. If i ∈ Ia or i = UNETOT, HICPOV, HICPNEF we let y̆it = y19

it − ă19
i , where

ă19
i is the sample average of yit. The standardized slopes are denoted as b̂19

i = b̆19
i /σ2

∆y19
i

. We initialize
the loadings using the estimator of Barigozzi et al. (2021): the n × q matrix of estimated loadings
Λ̂19 = (λ̂19

1 , . . . , λ̂19
q )′ is obtained by principal components on the standardized first differences of

the data, i.e. (∆y19
it − ∆y19

i )/σ2
∆y19

i
, where ∆y19

i is the sample mean of ∆y19
it . Given the loadings,

we also obtain a first estimate of the q common factors, f̂ 19
t = n−1Λ̂19′ y̆19

t and of the idiosyncratic
components, ξ̂19

it = y̆19
it − λ̂19′

i f̂ 19
t . Furthermore, we obtain Â19

j , j = 1, . . . , p, by fitting a VAR(p) on
f̂ 19
t . Given the residuals û19

t = f̂ 19
t − Ĵ19f̂ 19

t−1, where Ĵ19 is the companion form representation of the
autoregressive matrices Â19

1 , . . . , Â19
p , an estimate of the latent variance is given by Σ̂19

u = Ĉov(û19
t ),

where Ĉov is the sample covariance matrix.
We are left with the initialization of the variances of the time-varying parameters of the model

and of the idiosyncratic components. We calibrate the variances of the time-varying parameters
following Del Negro et al. (2019). In this way, we assume these quantities to slowly drift over time,
with a standard deviation of approximately 1% over a century. This results in σ̂2

ηi
≈ 4 × 10−3 for

i = GDP, σ̂2
ηi

≈ 10−3 for i = HHLB, HHLB.LLN and σ̂2
ϵ ≈ 10−2 for i = UNETOT, HICPOV, HICPNEF.

For the idiosyncratic variances, if i /∈ I1 we set R̂19
i = V̂ar(ξ̂19

it ). On the other hand, if i ∈ I1, we set
R̂19

i = 10−2, a value sufficiently high to guarantee more accurate estimates (Opschoor and van Dijk,
2023).

Table D1 provides an overview of the initial values of the states for the Kalman Filter. We
denote as f 19

t | t, D19
t | t, b19

t | t and ζ19
t | t the Kalman Filter estimates (up to 2019:Q4) of the states at time

t, estimated using all the information up to time t. Similarly, we denote as f 19
t |T , D19

t |T , b19
t | t and ζ19

t |T

the Kalman Smoother estimates (up to 2019:Q4) of the states at time t, estimated using all the
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Table D1: Initialization of states for the Kalman Filter

f 19
0|0 = f̂ 19

0

vec
(
P19

0|0

)
=
(
Ipq2 − Â19 ⊗ Â19

)−1
vec

(
Σ̂19

u

)
D19

i,0|0 = 0
D19

i,0|0 = b̂19
i

D19
i,0|0 = 0

b19
i,0 |0 = b̂19

i

if i ∈ Ia

if i ∈ Ib, i = GDP, HHLB, HHLB.LLN

if i = UNETOT, HICPOV, HICPNEF

if i ∈ Ib, i = GDP, HHLB, HHLB.LLN

P D(19)

i,0|0 = 0
P D(19)

i,0|0 = 1
(1−0.99)2 σ̂2

ηi

P D(19)

i,0|0 = σ̂2
ϵi

P b(19)

i,0|0 = 1
(1−0.99)2 σ̂2

ηi

if i ∈ {Ia, Ib}
if i = GDP, HHLB, HHLB.LLN
if i = UNETOT, HICPOV, HICPNEF

if i = GDP, HHLB, HHLB.LLN

ζ19
i,0|0 = ξ̂ζ(19)

i1

P ζ(19)

i,0|0 = 1
(1−0.99)2 V̂ar

(
∆ξ̂it

) if i ∈ I1

if i ∈ I1

information up to time T .
Estimation is carried on using a standardized version of the data in levels, that is:

ỹit =


yit−ǎi

σ2
∆yi

if i ∈ {Ib, GDP, HHLB, HHLB.LLN}
yit−ȳi

σ2
∆yi

if i ∈ {Ia, UNETOT,HICPOV,HICPNEF}

with ỹ19
it being the standardized data up to 2019. When computing σ2

∆yi
, ăi and b̆i b̂i) for the entire

sample, we treat Covid outliers as missing values.

Step 1: Estimate the model up to 2019:Q4 (pre-Covid step)
Given the initial values of the parameters and the states, we run the Kalman Filter and Smoother
using standardized data up to 2019, ỹ19

t = (ỹ1,t, . . . , ỹn,t)′, to obtain a new estimate of the states,
namely the factors f 19

t |T , the time-varying secular components D19
t |T and slopes b19

t | t, and the non-
stationary idiosyncratic components ζ19

t |T , along with the corresponding conditional covariances.
Given the smoothed states, we estimate all the parameters as follows:

- Factor loadings:

λ̂19′
i =

(
T∑

t=1

(
ỹ19

it − D19
i,t |T − ζ19

i,t |T

)
f 19′

t |T

)(
T∑

t=1
f 19
t |T f 19′

t |T + P19
t |T

)−1

Page 10 of 26



Supplementary material for the paper: Measuring the Euro Area Output Gap

- Parameters of the law of motion of the common factors:

Â19 =
(

T∑
t=2

f 19
t|T f 19′

t−1|T + P19
t,t−1 |T

)(
T∑

t=2
f 19
t−1|T f 19′

t−1|T + P19
t−1 |T

)

Σ̂19
u = 1

T

(
T∑

t=2

(
f 19
t|T f 19′

t|T + P19
t |T

)
− Â19

T∑
t=2

(
f 19
t|T f 19′

t−1|T + P19
t,t−1 |T

))

- Slopes of secular trend:

b̂19
i =

(
T∑

t=1

(
ỹ19

it − λ̂19′
i f 19

t|T − ζ19
i,t|T

)
t

)(
T∑

t=1
t2
)−1

- Variance of I(1) idiosyncratic components:

σ̂2,19
ei

= 1
T

T∑
t=2

(
ζ19

i,t|T ζ19′

i,t|T + P ζ(19)
i,t |T

)
+ 1

T

T∑
t=2

(
ζ19

it−1|T ζ19′

it−1|T + P ζ(19)
i,t−1 |T

)
−

− 2
T

T∑
t=2

(
ζ19

it|T ζ19′

it−1|T + P ζ(19)
i,t,t−1 |T

)
- Covariance prediction error:

R̂19
i = 1

T

T∑
t=1

{(
ỹ19

i,t − λ̂19′
i f 19

t|T − Ii∈Ib
D19

i,t|T − Ii∈I1ζ19
i,t|T

)2
+ λ̂19′

i P19
t,T |T λ̂

19
i +

+ Ii∈Ib
P D(19)

i,t |T + Ii∈I1P ζ(19)
i,t |T

}
Given the estimated factors, f 19

t |T we obtain an estimate of the trend and cyclical component
for the pre-Covid period by means of the EM algorithm. To run the algorithm, we need an initial
estimate of the parameters ψ, Σω, and σ2

ν .
(a) We compute an initial estimate of ψ19, denoted as ψ̂(0),19 by PCA on the long-run variance-

covariance matrix of the factors (Zhang et al., 2019).
(b) We compute an initial estimate of the common trend, denoted as τ̂ (0),19

t , by projecting f 19
t |T onto

ψ̂(0),19. This also yields an initial estimate of the cyclical component ω̂(0)
t = f 19

t |T − ψ̂(0),19τ̂ (0),19
t .

(c) We initialize σ2,19
ν following Del Negro et al. (2017, 2019), so that σ̂2(0),19

ν = (400σ̂2
∆τ 19)−1, where

σ̂2
∆τ 19 is the sample variance of ∆τ̂ (0),19

t . We chose a very small value for the variance of σ̂2(0),19
ν

to incorporate our prior assumption of a slow-moving trend.
(d) Lastly, since by construction ω̂(0),19

t has a sample covariance matrix of reduced rank (q − 1), in
order to run the EM algorithm we initialize this covariance as Σ̂(0),19

ω = T −1∑T
t=1 ω̂

(0),19
t ω̂(0),19′

t +
κIq, where we set κ = 10−2. This choice is consistent with the recommendations by Opschoor
and van Dijk (2023) who show that smaller values of κ might be detrimental for the perfor-
mance of the algorithm.

Once the initial estimates for the algorithm have been computed, in the E-step we run the Kalman
Filter and Smoother to obtain a new estimate of the trend, namely τ (1),19

t |T , along with an estimate
of its conditional variance and covariance, P τ (1),19

t |T and P τ (1),19
t,t−1 |T , respectively. The smoothed trend is
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then used to estimate the parameters in the M-step, until convergence of the algorithm is achieved.
For a generic iteration k of the algorithm, the parameters are estimated as follow:

- Trend loadings:

ψ̂(k),19 =
(

T∑
t=1

f 19
t |T τ (k),19

t |T

)(
T∑

t=1
τ2(k),19

t |T + P τ (k),19
t |T

)−1

- Variance of common trend:

σ̂2(k),19
ν = 1

T

T∑
t=2

(
τ2(k),19

t|T + P τ (k),19
t |T

)
+ 1

T

T∑
t=2

(
τ2(k),19

t−1|T + P τ (k),19
t−1 |T

)
− 2

T

T∑
t=2

(
τ (k),19

t|T τ (k),19
t−1|T + P τ (k),19

t,t−1 |T

)
- Covariance of transitory component

Σ̂(k),19
ω = 1

T

T∑
t=1

{(
f 19
t |T − ψ̂(k),19τ (k),19

t |T

) (
f 19
t |T − ψ̂(k),19τ (k),19

t |T

)′
+ ψ̂(k),19P τ (k),19

t |T ψ̂(k),19′
}

The algorithm is stopped using the likelihood-based criterion of Doz et al. (2012), with a threshold of
10−3. At convergence, we obtain an estimate of the trend and transitory component up to 2019:Q4,
τ 19

t |T and ω19
t |T , respectively, along with the estimated parameters ψ̂19, σ̂2,19

ν and Σ̂19
ω .

Step 2: Estimate the Covid factor and volatility (Covid step)
Given the estimated parameters up to 2019:Q4, we run the Kalman Filter and Smoother using all
the (standardized) data, ỹt = (ỹ1,t, . . . , ỹn,t)′, to obtain the estimated states given the pre-Covid
parameters. In doing so, we truncate the Kalman smoother in correspondence of 2020:Q1, to avoid
spurious backward effects from the presence of Covid outliers. The estimated states are denoted as
f (0)
t |T , D(0)

t |T , b(0)
t |T and ζ(0)

t |T .
Given the smoothed states, let:

ξ̂t = ỹt − Λ̂19f (0)
t|T − D(0)

t|T

and denote as Ξ̂ = (ξ1, . . . , ξt)′ the T ×n matrix of idiosyncratic components. Then we estimate the
Covid factor by estimating the first principal component using the n×n variance-covariance matrix
of the estimated idiosyncratic components from 2020:Q1 to 2021:Q4, denoted as Σ̂ΞC . This is the
procedure proposed by Maroz et al. (2021) that we modify to account for non-stationarity in the
idiosyncratic component. This done by partitioning the matrix of idiosyncratic components during
the Covid period as Ξ̂C = (Ξ̂C,1|Ξ̂C,0), where Ξ̂C,1 and Ξ̂C,1 are the matrices of estimated idiosyncratic
components in the period 2020:Q1 to 2021:Q4 for i ∈ I1 and i ∈ I0, respectively. Then, we estimate
Σ̂ΞC (Hamilton, 2020, Chapter 17; Bai, 2004):

Σ̂ΞC =

 1
(T C)2 Ξ̂C,1′Ξ̂C,1 1

(T C)3/2 Ξ̂C,1′Ξ̂C,0

1
(T C)3/2 Ξ̂C,0′Ξ̂C,1 1

T C Ξ̂C,0′Ξ̂C,0
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where T c = 8 denotes the time-periods between 2020:Q1 and 2021:Q4. Given Σ̂ΞC , we obtain the
Covid factor and the corresponding loadings as:

γ̂ =
√

n · V̂Ξ̄C

ĝ = 1√
n

· (Ξ̂CV̂Ξ̄C )

where ĝ is the T C × 1 vector with entries ĝt and V̂ΞC is the n × 1 eigenvector corresponding to the
largest eigenvalue of Σ̂Ξ̂C . Given ĝ, the associated loadings are γ̂ = (γ̂1, . . . , γ̂n)′.

Next, give the estimate of states and the Covid factor, we account for the presence of changes
in the volatility after the Covid shock by modifying the Lenza and Primiceri (2022) procedure to
accommodate for quarterly data. Let s∗

t = stI t ≥ t20Q1 + (1 − I t ≥ t20Q1), the likelihood writes as:

L(f (0) |A, Σu, s∗
1, . . . , s∗

T ) ∝
T∏

t=2

∣∣(s∗
t )2Σu

∣∣− 1
2 · exp

{
−1

2

T∑
t=2

(
f (0)

t|T − Af (0)

t−1|T

)′ (
s2

t Σu

)−1 (f (0)

t|T − Af (0)

t−1|T

)}

∝

(
T∏

t=2

(s∗
t )−n

)
|Σu|−

T −1
2 · exp

{
−1

2

T∑
t=2

(
f ∗(0)

t|T − Af ∗(0)

t−1|T

)′ (Σu)−1 (f ∗(0)

t|T − Af ∗(0)

t−1|T

)}

where f∗(0)
t |T = f (0)

t |T /s∗
t , with corresponding variance-covariance matrix P∗(0)

t |T .
The maximum-likelihood estimators of A and Σu given the factors are:

Ǎ =
(

T∑
t=2

f∗(0)
t|T f∗(0)′

t−1|T + P∗(0)
t,t−1 |T

)−1( T∑
t=1

f∗(0)
t−1|T f∗(0)′

t−1|T + P∗(0)
t−1 |T

)

Σ̌u = 1
T

(
T∑

t=2

(
f∗(0)
t|T f∗(0)′

t|T + P∗(0)
t |T

)
− Ǎ

T∑
t=2

(
f∗(0)
t|T f∗(0)′

t−1|T + P∗(0)
t,t−1 |T

))

Substituting Ǎ and Σ̌u in the likelihood, we obtain the concentrated likelihood:

L(f (0) |Ǎ, Σ̌u, s∗
1 , . . . , s∗

T ) =
T∏

t=2
(s∗

t )−n ·
∣∣∣Σ̌u

∣∣∣− T
2

By numerically maximizing the concentrated likelihood we obtain the volatility parameters ŝt.

Step 3: Full sample estimation
Given the Covid factor estimated in Step 2, we obtain all the other parameters in the model:

- Factor loadings:

λ̂′
i =

(
T∑

t=1

(
ỹit − D(0)

i,t |T − ζ (0)
i,t |T

)
f (0)′

t |T − γ̂iĝt

)(
T∑

t=1
f (0)
t |T f (0)′

t |T + P(0)
t |T

)−1

- Slopes of secular trend:

b̂i =
(

T∑
t=1

(
ỹit − λ̂′

if
(0)
t|T − ζ (0)

i,t|T − γ̂iĝt

)
t

)(
T∑

t=1
t2
)−1
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- Variance of I(1) idiosyncratic components:

σ̂2
ei

= 1
T

T∑
t=2

(
ζ (0)

i,t|T ζ (0)′

i,t|T + P ζ(0)
i,t |T

)
+ 1

T

T∑
t=2

(
ζ (0)

it−1|T ζ (0)′

it−1|T + P ζ(0)
i,t−1 |T

)
−

− 2
T

T∑
t=2

(
ζ (0)

it|T ζ (0)′

it−1|T + P ζ(0)
i,t,t−1 |T

)
- Covariance prediction error:

R̂i = 1
T

{
T∑

t=1

(
ỹ(0)

i,t − λ̂(0)′

i f (0)
t|T − Ii∈Ib

D(0)
i,t|T − Ii∈I1ζ (0)

i,t|T − γ̂iĝt

)2
+ λ̂′

iP
(0)
t,T |T λ̂i+

+ Ii∈Ib
P D(0)

i,t |T + Ii∈I1P ζ(0)
i,t |T

}
Given the estimated parameters, using data net of the Covid component, i.e. ỹt − γ̂ĝt, we obtain

a final estimates of all the states, ft |T , Dt |T , bt |T , ζt |T and their conditional covariances with the
Kalman Filter and Smoother. Note that, for this final run, the Kalman Filter and Smoother do not
need to be truncated in 2019:Q4 because we have already controlled for the Covid pandemic.

With the final estimates of the factors, ft |T we obtain a final estimate of the trend and transitory
component by means of the EM algorithm. We initialize the EM algorithm with the estimated
trend loadings up to 2019:Q4, normalized so that ψ̂19′

ψ̂19 = 1. We denote this initial estimate
as ψ̂(0). An initial estimate of the trend component is obtained by projecting ft |T onto ψ̂(0), i.e.
τ (0)

t = (ψ̂(0)′ψ̂(0))−1ψ̂(0)′ft |T . This also yields an initial estimate of the transitory component ω(0)
t =

ft |T − ψ̂(0)τ (0)
t . Finally, σ2

ν is initialized as (400σ̂2
∆τ )−1, where σ̂2

∆τ is the sample variance of τ̂ (0)
t .

After having computed the initial estimates for the algorithm, we estimate the trend via the
usual EM algorithm.

For a generic iteration k of the algorithm, we estimate the parameters as follow:

- Trend loadings:

ψ̂(k) =
(

T∑
t=1

ft |T τ (k)
t |T

)(
T∑

t=1
τ2(k)

t |T + P τ (k)
t |T

)−1

- Variance of common trend:

σ̂2(k)
ν = 1

T

T∑
t=2

(
τ2(k)

t|T + P τ (k)
t |T

)
+ 1

T

T∑
t=2

(
τ2(k)

t−1|T + P τ (k)
t−1 |T

)
−

− 2
T

T∑
t=2

(
τ (k)

t|T τ (k)
t−1|T + P τ (k)

t,t−1 |T

)
- Covariance of transitory component

Σ̂(k)
ω = 1

T

T∑
t=1

{(
ft |T − ψ̂(k)τ (k)

t |T

) (
ft |T − ψ̂(k)τ (k)

t |T

)′
+ ψ̂(k)P τ (k)

t |T ψ̂
(k)′
}
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The algorithm is stopped using the likelihood-based criterion of Doz et al. (2012), with a threshold
of 10−3. At convergence, we obtain an estimate of the trend and transitory components, τt |T and
ωt |T , respectively, along with the estimated parameters ψ̂, σ̂2

ν and Σ̂ω.
Ultimately, given the estimated trend and transitory components, the estimated output gap and

potential output are defined as:

P̂Ot = DGDP,t |T + λ̂′
GDPψ̂τt |T ,

ÔGt = λ̂′
GDPωt |T

E Confidence bands
To obtain confidence bands for our quantities of interest, we follow the procedure outlined in
Barigozzi and Luciani (2023). In particular, we simulate all the states in the model using the
simulation smoother of Durbin and Koopman (2002), and we generate all the stationary residuals
of the model using a stationary block bootstrap procedure (Politis and Romano, 1994). In practice,
we have an estimate of all the states, namely ft |T , Dt |T , bt |T and ζt |T , an estimate of the Covid
factor ĝt and the estimated volatility parameters ŝt, t ≥ t20Q1. Then, the algorithm is structured as
follows:

1. Simulate the states by the simulation smoother (Durbin and Koopman, 2002)

(a) Common factors:

i. simulate f̃ (b)
1 ∼ N

(
f1 |T , P1|T

)
;

ii. simulate ũ(b)
t ∼ N

(
0q, Σ̌u

)
;

iii. for t = 2, . . . , T generate f̃ (b)
t = ∑p

k=1 Ǎk f̃ (b)
t−k + {stI t ≥ t20Q1 + (1 − I t ≥ t20Q1)}ũ(b)

t .

(b) I(1) idiosyncratic components. For each i ∈ I1:

i. simulate ζ̃
(b)
i1 ∼ N

(
ζi,1 |T , P ζ

i,1|T

)
;

ii. simulate ẽ
(b)
it ∼ N

(
0, σ̂2

ei

)
;

iii. for t = 2, . . . , T generate ζ̃
(b)
it = ζ̃

(b)
it−1 + ẽ

(b)
it .

(c) Time-varying secular components:

• i = GDP, HHLB, HHLB.LLN:
i. simulate b̃

(b)
i,1 ∼ N

(
bi,1 |T , P b

i,1|T

)
, and set D̃(b)

i,1 = b̃
(b)
i,1 ;

ii. simulate η̃
(b)
t ∼ N

(
0, σ̂2

ηi

)
;

iii. for t = 2, . . . , T generate b̃
(b)
i,t = b̃

(b)
i,t−1 + η̃

(b)
t ;

iv. for t = 2, . . . , T generate D̃(b)
i,t = D̃(b)

i,t−1 + b̃
(b)
i,t .

• i = UNETOT, HICPOV, HICPNEF:
i. simulate D̃(b)

i,1 ∼ N
(
bi,1 |T , P D

i,1|T

)
ii. simulate η̃

(b)
t ∼ N

(
0, σ̂2

ϵi

)
;

iii. for t = 2, . . . , T generate D̃(b)
i,t = D̃i,t−1 + η̃

(b)
t .
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2. Simulate the stationary residuals of the model, zt = (z1,t, . . . , zn,t)′, using a stationary block-
bootstrap (Politis and Romano, 1994) with an average block length of four quarters. Denote
the resulting simulated residuals as z̃(b)

t = (z̃(b)
1,t , . . . , z̃

(b)
n,t)′. This step, along with step 2(b),

gives us the simulated idiosyncratic component, i.e. ξ̃
(b)
i,t = ζ̃

(b)
i,t + z̃

(b)
i,t if i ∈ I1 and ξ̃

(b)
i,t = z̃

(b)
i,t

if i ∈ I0.

3. Generate the data. For t = 1, . . . , T , generate:

(a) ỹ
(b)
it = D̃(b)

it + λ̂′
if̃

(b)
t + γ̂iĝt + ξ̃

(b)
it , for i = GDP, HHLB, HHLB.LLN, UNETOT, HICPOV, HICPNEF

(b) ỹ
(b)
it = Di,t |T + λ̂′

if̃
(b)
t + γ̂iĝt + ξ̃

(b)
it , for all other variables.

4. Using ỹ(b)
t = (ỹ(b)

1,t , . . . , ỹ
(b)
n,t)′, estimate the model as described in Appendix D to get a new

estimate of the loadings, Λ̂(b) = (λ̂(b)′

1 , . . . , λ̂
(b)′

N )′, and all the other parameters in the model,
as well as a new estimate of the states f (b)

t |T , D(b)
t |T , b(b)

t |T and ζ(b)
t |T .

5. Center the estimated states: f̄ (b)
t |T = ft |T − f̃ (b)

t , D̄(b)
t |T = Dt |T − D̃(b)

t + D(b)
t |T , b̄(b)

t |T = bt |T −
b̃(b)

t + b(b)
t |T and ζ̄(b)

t = ζt |T − ζ̃(b)
t + ζ(b)

t |T .

6. Run the trend cycle decomposition on the estimated factors f̄ (b)
t to get a new estimate of the

common trend τ
(b)
t |T , the transitory component ω(b)

t |T , and the parameter ψ̂(b).

7. Estimate potential output as P̂O(b)
t = D̄(b)

GDP,t |T + λ̂
(b)′

GDPψ̂
(b)τ

(b)
t |T , and the output gap as

ÔG(b)
t = λ̂

(b)′

GDPω
(b)
t |T .

Repeating this procedure B times, we obtain a distribution of the output gap: {ÔG(b)
t , b = 1, . . . , B}.

Then, we construct the (1 − α) confidence interval as [ÔGt + zα/2σ̂OG
t , ÔGt + z1−α/2σ̂OG

t ], where σ̂OG
t

is the sample standard deviation of {ÔG(b)
t − ÔGt} and zα/2 = −z1−α/2 is the α/2-th quantile of a

standard normal distribution.

F Identification à la Morley et al. (2023)
Morley et al. (2023), henceforth MTW, propose an alternative trend smoothing approach to correct
the estimated trend whenever it displays some serial correlation in first differences despite being
assumed to be a random walk. We can apply the MTW approach in our setting by estimating an
ARMA(1,1) model on the first difference of the estimated common trend ∆τ̂

(0)
t . The trend estimate

corrected as in MTW is given by
∆τ̃t =

(
1 + θ̂

1 − ϕ̂

)
ε̂t, (F1)

where ϕ̂ and θ̂ are the estimated ARMA parameters, and ε̂t are the ARMA residuals. By cumulating
∆τ̃t, we obtain the corrected estimate of the common trend, τ̃t.

In practice, smoothing as in (F1) seems to be less efficient than our proposal of using the
Kalman smoother due to the presence of some residual Covid volatility in the estimated factors
that affects the ARMA estimation. In particular, V̂ar(∆τ̂t) = σ̂2

ν = 0.092 (computed by excluding
observation in 2020 and 2021 from the calculation) when estimating the model with our method,
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and V̂ar(∆τ̃t) = (1 + θ̂)(1 − ϕ̂)−1σ̂2
ε = 0.17, when estimating the model as in (F1), using MTW’s

method, where σ̂2
ε is the sample variance of ε̂t. Although these values are quite similar, they become

very different if we compute them using the whole sample; indeed, they increase to 0.095 and 0.52,
respectively. This difference is essentially due to anomalous fluctuations in the ARMA residuals ε̂t

during 2020-2021.
Figure F1 compares our output gap estimate with the one obtained by applying the correction

proposed by Morley et al. (2023). As expected, the two approaches yield very similar estimates,
but in 2021 and 2022, when the MTW corrections reduce the estimate of the output gap from +4%
to +3%.

Figure F1: Output gap estimate with identification à la Morley et al. (2023)
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Notes: The black bold line is our estimate of the output gap.
The grey shaded areas are the 68% and 84% confidence bands.
The light red line is the estimated output gap obtained applying
the correction of the preliminary estimated trend proposed by
Morley et al. (2023) (MTW).

G Comparison with alternative measures
In this section, we compare our estimates of potential output and the output gap with those obtained
using four different univariate filters and one multivariate approach:
1) The Hodrick and Prescott (1997) filter (HP), with two different values for the smoothing param-

eter λ: (i) λ = 1600, commonly used for quarterly data, (ii) λ = 51200, as proposed by Borio
(2014) to capture variability at lower frequencies.

2) The Hamilton (2018) filter (Ham), where the trend is the 8−step ahead forecast of quarterly
GDP growth, obtained using the 4 most recent values of quarterly GDP for each time t, and the
cycle is the residual obtained from this regression.

3) The boosted HP filter (bHP) of Phillips and Shi (2021), which improves on the standard HP
filter by applying the filter recursively on the residuals extracted from previous iterations. The
number of iterations m is a tuning parameter that controls the intensity of the updating, and it
is chosen to minimize the information criterion proposed by the authors.

4) The Christiano and Fitzgerald (2003) filter (CF), with cutoff frequencies for the transitory com-
ponent between 8 and 32 quarters.

5) A Butterworth filter (BT) for the transitory component, as proposed by Canova (2022). This

Page 17 of 26



Supplementary material for the paper: Measuring the Euro Area Output Gap

filter can be cast in state-space form, and its squared-gain function defines the frequencies at-
tributed to the cycles. Here, we employ a first-order polynomial n = 1, with a cutoff point for
the frequency set at ω = 0.04 and scale G0 = 1.

6) The multivariate Beveridge-Nelson (BN) decomposition based on a large Bayesian VAR, as
proposed by Morley et al. (2023). The authors estimate the Euro Area output gap from 1999:Q1
to 2021:Q3. Here, due to the lack of availability of their data, we keep their original estimates,
truncating the figure in correspondence with our starting point, i.e. 2001:Q1.

Figure G1 presents the results of this exercise. Overall, the output gap obtained with our method-
ology aligns with those estimated with univariate models in terms of peaks and troughs. However,
there are several differences in terms of shape and amplitude.

Figure G1: Output gap estimates with alternative methods
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2001 2003 2005 2007 2009 2011 2013 2015 2017 2019 2021 2023

-14

-12

-10

-8

-6

-4

-2

0

2

4

6

BLL
HP: 6 = 1600
HP: 6 = 52000

2001 2003 2005 2007 2009 2011 2013 2015 2017 2019 2021 2023

-15

-10

-5

0

5

BLL
HAM

2001 2003 2005 2007 2009 2011 2013 2015 2017 2019 2021 2023
-14

-12

-10

-8

-6

-4

-2

0

2

4

6

BLL
bHP: 6 = 1600
bHP: 6 = 52000

Christiano-Fitzgerald filter 0 Butterworth filter 000000 Multivariate BN

2001 2003 2005 2007 2009 2011 2013 2015 2017 2019 2021 2023

-6

-4

-2

0

2

4

6

BLL
CF

2001 2003 2005 2007 2009 2011 2013 2015 2017 2019 2021 2023
-14

-12

-10

-8

-6

-4

-2

0

2

4

6

BLL
BT

2001 2003 2005 2007 2009 2011 2013 2015 2017 2019 2021 2023

-12

-10

-8

-6

-4

-2

0

2

4

6

BLL
BN

Notes: The black line is our benchmark estimate and the grey shaded areas are the 68% and 84% confidence bands, the red
and blue lines are alternative estimates.

H Accounting for Covid

H.1 Why adjusting for the Covid shock matters
Section 3.2 explained how we accounted for the Covid shock when estimating the model. The upper
plots in Figure H1 compare our benchmark estimates with the one we would have obtained if we
had estimated the model over the full sample without applying any adjustment for the Covid shock
(“no adj.”). As can be seen, ignoring the Covid shock affects the estimates of potential output and
the output gap throughout the sample, which is undesirable; moreover, ignoring the Covid shock
distorts the estimate of common dynamics in 2020 and 2021.

Having shown that accounting for the Covid shock is necessary, the question is whether a strategy
different from the one we adopted would have been desirable. For example, what if we had estimated
all parameters up to 2019:Q4 and then extracted the states by simply truncating the Kalman
Smoother? Despite being effective, this strategy is sub-optimal because estimating the parameters
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Figure H1: Output gap when using pre-Covid parameters or without Covid adjustment
Potential output growth Output gap

N
o

C
ov

id
ad

ju
st

m
en

t

2002 2004 2006 2008 2010 2012 2014 2016 2018 2020 2022

-6

-4

-2

0

2

4

GDP
BLL
no adj.

2001 2003 2005 2007 2009 2011 2013 2015 2017 2019 2021 2023

-12

-10

-8

-6

-4

-2

0

2

4

6

8

BLL
no adj.

P
re

-C
ov

id
pa

ra
m

et
er

s

2002 2004 2006 2008 2010 2012 2014 2016 2018 2020 2022

-6

-4

-2

0

2

4

GDP
BLL
pars 2019

2001 2003 2005 2007 2009 2011 2013 2015 2017 2019 2021 2023

-12

-10

-8

-6

-4

-2

0

2

4

6

8

BLL
pars 2019

Notes: The black solid line is our benchmark estimate and the grey shaded areas are the 68% and 84% confidence bands, the
black dashed line is GDP YoY growth rate, the red lines are the estimates obtained with two alternative estimation strategies:
1. (left) fixing parameters estimated up to 2019:Q4 (pars 2019); 2. (right) estimating the model with no adjustment for Covid
(no adj.).

up to 2019 becomes less and less justifiable as new data come in. Moreover, if the increase in
volatility induced by the Covid shock turns out to be very persistent, confidence intervals would be
underestimated because they only account for the pre-Covid volatility regime. By accounting for
the Covid shock, we avoid both these issues.

The lower plots in Figure H1 compare our benchmark estimate with the one obtained by esti-
mating the parameters up to the last quarter of 2019 (“pars 2019”). The two estimates are very
similar up to the pandemic, after which the estimate using the up-to-2019 parameters points to-
wards much larger fluctuations in potential output growth and a much larger output gap, which, if
taken at face value, signals a very tight economy.

H.2 Covid volatiliy
Section 3.2 explained how we accounted for the effect of the Covid shock on the volatility of the
common factors. Specifically, we follow Lenza and Primiceri (2022) and introduce a factor st that
scales the volatility of the common factors from the beginning of the pandemic onward. Lenza and
Primiceri (2022) analyzed monthly US data and impose an exponential decay for st starting in June
2020. In contrast, we estimate one parameter for each period starting in 2020:Q1. This choice
is motivated by both the different impact and policy response of the Covid pandemic in Europe
and by the fact that, as Morley et al. (2023) pointed out, quarterly data do not allow for a sharp
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identification of the decay parameter.
The left plot in Figure H2 shows the estimated scaling factor st obtained under both our

parametrization (black line) and under the exponential decay parametrization proposed by Lenza
and Primiceri (2022) (red line). Our estimate of the volatility closely tracks the evolution of the
pandemic, as it spikes in the first two quarters of 2020 when mobility restrictions were most strin-
gent in Europe, and pick-up again in 2021:Q1 when the spread of the Delta variant reached its
peak. Moreover, we estimate that the volatility is very persistent—the decay we get is very close to
1 (≈ 0.98)—much more persistent than estimated by Lenza and Primiceri (2022), who estimated
their model on monthly US data. This difference is likely due to the evolution of the pandemic
in Europe, where mobility restriction measures were much more restrictive than in the US, lasted
for longer, and were also implemented in 2021. Moreover, the Russia-Ukraine war had a much
larger impact on Europe by pushing natural gas (and gasoline prices to a lesser extent) to the roof
and creating a lot of macro-financial uncertainty. This result motivates the need to allow for time
variation in the factor volatility until the end of the sample.

Figure H2: Output gap estimate with alternative Covid volatility
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Notes: In the left plot, the black line is our estimate of Covid volatility (st), the red line is the estimate obtained by assuming
the exponential decay parametrization of the Covid volatility as in Lenza and Primiceri (2022). In the right plot, the black
line is our benchmark estimate and the grey shaded areas are the 68% and 84% confidence bands, the red line is the estimate
obtained with the exponential decay parametrization of the Covid volatility.

As shown in the right plot in Figure H2, the two parametrizations lead to virtually identical
results.

H.3 Alternative estimator for the Covid factor
The approach we described in Appendix D to estimate the Covid factor has the benefit of retaining
all the information in ξ̂t, but it has the problem of relying only on eight data points. That said,
since we are only interested in the first eigenvector of Σ̂Ξ̂C , and given the extent to which the series
co-moved during the Covid period, even a few data points should be informative. However, the
estimates could be imprecise, thereby motivating an alternative estimation strategy.

As an alternative approach, we estimate the Covid factor by estimating the first principal com-
ponent using the T C × T C variance-covariance matrix of the estimated idiosyncratic components
from 2020:Q1 to 2021:Q4, denoted as Σ̃ΞC . In order to estimate Σ̃ΞC , we consider ξ̂it if i ∈ I0 and
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∆ξ̂it if i ∈ I1, i.e. we take first-differences of all non-stationary idiosyncratic components.(xi) We
obtain the Covid factor and the corresponding loadings as:

g̃ =
√

T C · ṼΞ̄C

γ̃ = 1√
T C

· (Ξ̂CṼΞ̄C )

where g̃ is the T C × 1 vector with entries g̃t and ṼΞC is the T C × 1 eigenvector corresponding to
the largest eigenvalue of Σ̃Ξ̂C . Given g̃, the associated loadings are γ̃ = (γ̃1, . . . , γ̃n)′.

This second strategy allows us to estimate Σ̃Ξ̂C with N data points, thereby yielding a more pre-
cise estimate. However, this comes at the cost of missing important information due to differencing
of the non-stationary idiosyncratic component. Which one of the two approaches is better?

As a robustness exercise, in this Appendix we look at what would have been the output gap
estimate, had we adopted the second strategy to estimate the Covid factor that we just laid out.
As shown in Figure H3, the results obtained with the alternative Covid factor are almost identical
to those obtained in the benchmark specification. This is not surprising, since the co-movoments
observed in most of the series during the Covid period are so large to be easily identified even with
a limited range of observations.

Figure H3: Output gap estimate with the alternative Covid factor
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Notes: The black solid line is our benchmark estimate and the grey shaded areas are the 68% and 84% confidence bands.
The red solid lines are the estimates obtained with the alternative Covid factor (B̃LL). The level of the output gap is the
percentage deviation from potential.

I No time-varying parameters
Figure I1 compares the benchmark estimates of the output gap (right plot) and YoY potential
output growth (left plot) with those obtained without allowing for a local linear trend for GDP,
household liabilities, and long-term loans and no time-varying mean for the unemployment rate.
Removing the time variation in the secular trends leads to a flatter estimate of potential output
growth in the post-pandemic periods. This result shows that allowing for a time-varying trend

(xi)In this case ξ̂i will be a T − 1 vector denoting at time t the level of the idiosyncratic component for i ∈ I0 and
the growth rate of the idiosyncratic component for i ∈ I1.
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for GDP is crucial to properly capture the slowdown in potential output in the latter part of the
sample.

Figure I1: Output gap estimate when imposing no time-varying parameters
Potential Output: YoY Growth Rates Output Gap: Levels

2002 2004 2006 2008 2010 2012 2014 2016 2018 2020 2022

-6

-4

-2

0

2

4

GDP
BLL
no TV pars

2001 2003 2005 2007 2009 2011 2013 2015 2017 2019 2021 2023

-6

-4

-2

0

2

4

6

BLL
no TV pars

Notes: The black solid line is our benchmark estimate, the grey shaded areas are the 68% and 84% confidence bands, the
black dashed line is GDP YoY growth rate, the red line is the estimate obtained without time-varying parameters (no TV
pars). The level of the output gap is the percentage deviation from potential.

J Real-time reliability
There is skepticism in the literature on the reliability of model-based output gap estimates in real
time because of the size of end-of-sample revisions (Orphanides and van Norden, 2002). Model-
based estimates of the output gap are subject to revisions in real time because new information
leads to changes in both the estimates of the model parameters and the latent states. In this section,
we assess the reliability of our output gap estimate through a quasi-real-time exercise on expanding
windows, where the first window begins in 2000:Q1 ends in 2015:Q1 (T = 57).

Looking at the upper charts in Figure J1, it is clear that the model is slow in recognizing how
deep the 2012 Sovereign debt crisis is, only doing so once data for 2016 becomes available. Inasmuch
as this result is disappointing, we cannot help but notice that 60 observations are probably too few to
pin down the output gap accurately. As more information becomes available, the model’s estimate
of the output gap stabilizes, so much so that from 2017 onward, the quasi-real-time estimate is very
close to the final estimate.

Moving to the Covid pandemic and its aftermath, it is evident that our strategy for adapting to
the COVID shock was viable only starting from the second half of 2020 or even 2021. Moreover,
it is reasonable to assume that anybody would have understood that doing nothing and allowing
the Covid shock to affect the estimates was a huge mistake. Thus, we consider the quasi-real-time
performance of the simple strategy of freezing the parameters to pre-Covid data. As shown by the
green line, if we had followed this approach, we would have had very reliable output gap estimates,
as opposed to extreme estimates, had we chosen to do nothing. Finally, by comparing the red and
the green lines, we can appreciate the impact of the adjustment we implemented to account for the
Covid shock.
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Figure J1: Output Gap: quasi-real time, expanding window
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Notes: The black line is the estimate of the output gap obtained using the final sample of data, up to 2023:Q4. The red line
in Figure J1 displays the evolution of our quasi-real-time estimate of the output gap obtained using the procedure outlined in
Section 3. The blue line shows the estimate we would have obtained without any adjustment for the Covid shock. Lastly, the
green line is the estimate we would have obtained if we had frozen the parameter estimate at the value in 2019:Q4.

Figure J2: Output gap: quasi-real time results
Adjusted for Covid HP CF
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Notes: the black line is the estimate of the output gap obtained over the full sample, and the thin grey lines are the estimate
obtained on all the other subsamples. Each black dots represent the estimate of the output gap for quarter Q and year Y
obtained on the sample ending at quarter Q and year Y.

Figure J2 compares the quasi-real-time estimate of the output gap from our model with those
obtained from an HP filter and a Christiano-Fitzgerald band-pass filter. As mentioned earlier, our
estimate’s weakness is that the one obtained on the sample ending in 2015 is quite different from
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the final estimate. However, its strength is that from 2017 onward, the quasi-real-time estimates
converge to the final and are very robust. In contrast, the HP filter and the Christiano-Fitzgerald
filter yield quasi-real-time estimates that are never to far from the final estimate. However, they
converge to the final estimate very late, making them unreliable for real-time analysis.
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