
Finance and Economics Discussion Series

Federal Reserve Board, Washington, D.C.
ISSN 1936-2854 (Print)

ISSN 2767-3898 (Online)

Trend-Cycle Decomposition and Forecasting Using Bayesian
Multivariate Unobserved Components

Mohammad R. Jahan-Parvar, Charles Knipp, and Pawe l J. Szerszeń
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Abstract

We propose a generalized multivariate unobserved components model to decompose
macroeconomic data into trend and cyclical components. We then forecast the series
using Bayesian methods. We document that a fully Bayesian estimation, that accounts
for state and parameter uncertainty, consistently dominates out-of-sample forecasts
produced by alternative multivariate and univariate models. In addition, allowing for
stochastic volatility components in variables improves forecasts. To address data limi-
tations, we exploit cross-sectional information, use the commonalities across variables,
and account for both parameter and state uncertainty. Finally, we find that an op-
timally pooled univariate model outperforms individual univariate specifications, and
performs generally closer to the benchmark model.
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1 Introduction

A central problem in empirical econometrics is decomposing macroeconomic or financial time-series
into long-run trends and cyclical components. Often, the econometrician wishes to forecast these
components as they are of paramount research or policy importance. Important examples include
the congressional budget office’s (CBO) estimates of the output gap and potential output, often
used for budgetary projections and debt sustainability studies (see Shackleton, 2018).

Univariate trend-cycle decomposition methods have a long history in applied econometrics.1

However, current research increasingly requires decomposition of multivariate systems, often using
information embedded in several variables and thus exploiting the cross-sectional variations, to
extract the common trend and cyclical components. Exploiting these cross-sectional variations
is a practical solution to overcome deficiencies in data, for example, relatively short time-series
available for macroeconomic or financial research or policy making. Studies such as Creal, Koopman
and Zivot (2010) in a partially estimated Bayesian smoother setting, González-Astudillo (2019a,b)
within the unobserved component framework, Li and Koopman (2021) in state-space simulated
maximum likelihood (SMLE) setting, and Barigozzi and Luciani (2023) using a dynamic factor
model (DFM) set up, exploit different aspects of cross-sectional variations and recover trend and
cyclical components of macroeconomic time-series. In this study, we use recent developments, such
as Chopin, Jacob and Papaspiliopoulos (2013) sequential Monte Carlo and Andrieu, Doucet and
Holenstein (2010) particle MCMC methods, and develop a continuously re-estimated Bayesian,
online, trend-cycle decomposition and forecasting method that, by construction, avoids the look-
ahead bias present in studies that rely on a smoother, such as Creal et al. (2010). In a related
literature, Dobrev, Hansen and Szerszen (2022) also rely on online estimation to guard against
data outliers using Randomized Missing Data approach for estimation of univariate UC models in
forecasting inflation.

We recover trend and cyclical components of U.S. output (measured by real GDP), unemploy-
ment, and personal consumption expenditure (PCE) inflation, in a sample that includes the 2008-
2009 global financial crisis (GFC), the COVID-19 pandemic, and the recent inflationary period.
We show that our proposed model outperforms a host of alternative multivariate and univariate
models, in both estimation and forecasting. We find that the following ingredients are essential to
deliver the model’s success:

• A fully estimated stochastic volatility (SV) component across all series modeled to induce
estimation and forecasting flexibility, especially over periods of abrupt change, such as the
COVID-19 pandemic. Indeed, Clark (2011) implements a Bayesian vector autoregression

1 Among them, we note Hodrick and Prescott (1997), Baxter and King (1999) band-pass, and Hamilton (2018) filters,
as well as unobserved component (UC) methods popularized by Stock and Watson (2007) and used by many others,
which are among those that we focus in this study.
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(BVAR) model featuring SV components and documents notable real-time forecast improve-
ments of U.S. macroeconomic quantities.

• Fully accounting for both parameter and state uncertainty, through using filtering instead of
smoother or (S)MLE methods. Moreover, using a filtering approach avoids the look-ahead
bias problems inherent in smoother-based estimation (as in Panovska and Ramamurthy, 2022,
Li and Koopman, 2021 or Clark, 2011), that use the full sample.2 We note that using the
entire sample (as in smoothing exercises) assumes access to future information that limits the
appeal of such estimated models for policy making.

• Taking the commonalities and correlations across various time-series seriously, and putting
every effort to use the cross-section of modeled time series to overcome generally short samples.
An example of this approach in the literature is Panovska and Ramamurthy (2022) study,
that uses learning about inflation to improve output gap estimation in a UC framework.
We note that, as shown later in the paper, ignoring any of these components as in Stock
and Watson (2007), Grant and Chan (2017), and Kamber et al. (2018) univariate studies or
Creal et al. (2010) multivariate but less flexible and partially calibrated specification, leads
to non-negligible underestimation of gaps.

• We show that when using univariate models, an optimally pooled model (following Amisano
and Geweke, 2017) outperforms individual constituent models.

We document that the benchmark model in the paper, that could be viewed as a fully esti-
mated version of Creal et al. (2010) with stochastic volatility components present in all series, and
unrestricted estimation of volatility-of-volatility parameters, is easy to use in forecasting exercises,
computationally feasible, avoids many pitfalls of earlier studies, and in comparison with DFM stud-
ies, generates very good out-of-sample forecasts using a parsimonious model. Our study explicitly
incorporates relevant stylized facts about the United States macroeconomic data (comovements,
nonstationarity, and the slow drift in long-run output growth over time). The method used in
this study is a single-step procedure that does not require stationarity, cointegration, or partial
integration among time-series variables used to identify potential common trends. However, we
note that ours is a general estimation method suitable for various macroeconomic and financial
time-series estimation, and is not tailored for the specific application presented in the paper.

Figure 1 highlights some important contributions of the study. The top row displays the cyclical
components extracted from U.S. output, unemployment, and PCE inflation. The CBO produces
highly influential forecasts of cyclical components for GDP and unemployment often called output
and unemployment gaps, respectively, on a regular basis (quarterly for GDP and monthly for

2 In comparison to Clark (2011)’s BVAR method, our method imposes less stringent structures on variables and allows
for direct trend-cycle decomposition.
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unemployment rate). We plot these forecasts as blue dotted lines in the top panel of the figure.
The shaded areas represent 99, 95, and 75% credible intervals for cyclical components recovered
through application of the benchmark method to the series. The choice of these credible intervals
are similar but more stringent than those reported by Barigozzi and Luciani (2023). It is clear that
CBO gap estimates generally fall within the 95% credible intervals of ours. Notable exceptions to
this pattern are large spikes in output and unemployment gaps during the COVID-19 pandemic,
and the recovery from large spike in the unemployment gap following the GFC, where our estimates
show a smaller rise compared to CBO’s. The bottom panel reports the extracted stochastic trends
(solid lines) and data points (black dashed lines) for the same series.

Figure 1: Data and decomposition results
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The figure displays the cyclical components of output, unemployment, and personal consumption expenditure on the top row,
and their respective trends and raw data on the bottom row. For the cyclical components, the blue dotted line is the CBO
estimate, while the solid line is our estimate. The shaded areas around our estimate are 75, 90, and 95% confidence bands,
respectively. On the bottom row, solid lines represent the extracted stochastic trends and dashed black lines represent the data.
All data are from FRED data bank, maintained by the Federal Reserve Bank of St. Louis.

We follow a statistical approach in recovering trend and cyclical components of macroeconomic
time-series.3 However, our estimation results yield gaps that are close to CBO’s, that follow a more
involved production function-based approach (see Shackleton, 2018). Thus, our study at least
partially bridges an existing gap in the literature. Moreover, given the relative simplicity of our
model and estimation procedures, these estimates are easy to update in real time. In comparison,
New-Keynesian estimation of gaps (as in Justiniano et al., 2013) or DFM-based methods usually
require more careful treatment of variables. In DFM’s case, the number of variables that feed into

3 While we use a statistical model, we exploit intuition from economic theory and reduced form estimations to model
dependencies between variables.
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the forecasting exercise is typically large, and estimated DSGE models used in New-Keynesian gap
extraction tend to be sensitive to both modeling assumptions and data samples used.

The rest of the paper proceeds as follows. In Section 2 we discuss the data used in the estimations
for the selected macroeconomic data series. In Section 3 we discuss the estimated models with an
emphasis on the preferred benchmark model, the SMC2 algorithm, and the online forecasting
approach. In Section 4 we present our empirical findings, including comparisons between the
benchmark model, alternative multivariate models, and alternative univariate models, and other
ancillary results. Section 5 concludes.

2 Data

As mentioned in the introduction, we are interested in recovering the cyclical components of output
and unemployment, and study their interactions with inflation. To this end, we use data from FRED
database maintained by the Federal Reserve Bank of St. Louis to collect the following variables:
1) annualized, seasonally adjusted, quarterly, real gross domestic product (henceforth, GDP) in
billions of chained 2012 dollars; 2) seasonally adjusted monthly unemployment rate (henceforth,
UNRATE), that represents the number of unemployed as a percentage of the labor force (United
States civilian and non-institutionalized residents 16 years of age and older); and 3) the monthly
core personal consumption expenditures (henceforth, PCE) price index.

We use logarithmic values of real GDP (in levels) following the example of, among others,
Kamber et al. (2018). The GDP sample spans the first quarter of 1960 to the first quarter of
2023. Monthly measures of inflation are based on the price index for PCE. Inflation rates are
computed as annualized log-changes in monthly PCE price index. We consider PCE inflation for
two important reasons. First, PCE inflation is the Federal Reserve’s preferred inflation measure;
Federal Reserve’s longer-run inflation objectives are stated in terms of this measure. Second, PCE’s
historical data has been revised to reflect methodology changes over time, thus reducing concerns
about instabilities that such changes might induce. PCE price index and unemployment samples
span January 1960 to April 2023. In our multivariate studies, we use end-of-the-quarter values for
PCE inflation and unemployment.

3 Methodology

3.1 The benchmark model

In this section we define our preferred trend-cycle decomposition, denoted as CKZ-SV, based on
Harvey and Trimbur (2003) and further generalized to multivariate case following Creal et al.
(2010). We extend the model by Creal et al. (2010) and allow for stochastic volatilities in all
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studied variables. We also unrestrict and estimate volatility of volatility parameters.
The model decomposes each series yi,t for i ∈ 1, 2, 3 (respectively PCE, unemployment and

GDP) into trend xi,t, the band-pass type common stochastic cycle ψ(q)
t and individual idiosyncratic

cyclical (irregular and i.i.d.) components ηi,t:

yi,t = xi,t + δi cos(ξiλ)ψ
(q)
t + δi sin(ξiλ)ψ

+(q)
t + ηi,t (1)

xi,t+1 = xi,t + µi + εi,t (2)

where

ηi,t ∼ N(0, σ2i,t,η) (3)

εi,t ∼ N(0, σ2i,t,ε) (4)

are the idiosyncratic trend and idiosyncratic cyclical components, respectively. The coefficient ξi
controls the shift in time of the common cycle component for the series i, while the parameter δi
controls the scale of the cycle. We pick the PCE series i = 1 (PCE), to be the numeraire and
hence set δ1 = 1 and ξ1 = 0. so that the scale and shift of the common cycle is measured with
respect to the PCE series. The coefficient λ measures the length of the cycle given by 2π/λ.

We model the volatilities of ηi,t and εi,t to be stochastic but restrict our specification to two
regimes due to data limitations stemming from the relatively short quarterly data sets

σ2i,t,z = exp(hi,t,z) (5)

hi,t+1,z = hi,t,z + γi,t,z γi,t,z ∼ N(0,K2
i,t,z) (6)

where z denotes either η or ε and where the regime switches are defined by

Ki,t,z =

K
(1)
z with probability p

K
(2)
z = 0 with probability 1− p

(7)

with the first regime denoting the high-volatility regime. Due to data limitations we assume that
the high volatility states do not depend on the series i, which significantly reduces the number of
model parameters.

Finally, the stochastic cycle ψ is modeled as in Harvey and Trimbur (2003) where we set q = 2.
By construction of the ”cascading” stochastic cycle, we iterate through starting with j = 1, ..., q,
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where j = 0 is the cyclical noise:[
ψ
(j)
t+1

ψ
+(j)
t+1

]
= ρ

[
cosλ sinλ

− sinλ cosλ

][
ψ
(j)
t

ψ
+(j)
t

]
+

[
ψ
(j−1)
t

ψ
+(j−1)
t

]
(8)

[
ψ
(0)
t

ψ
+(0)
t

]
=

[
κt

κ+t

]
and

[
κt

κ+t

]
∼ N(0, σ2t,κI2) (9)

As for the trend and idiosyncratic cyclical components, the volatility σ2t,κ is stochastic and time
varying and follows equations (5) - (7) by removing dependence on an series index i and for z = κ.
The coefficient ρ controls the width of the frequency band of the filter in the band pass filter
representation.

In addition to parameters controlling stochastic volatilities K(1)
η , K(1)

ε and K(1)
κ we estimate the

drift parameter for the GDP, µ3, set the drifts for PCE and unemployment rate at zero with µ1 = 0

and µ2 = 0, and estimate the parameters controlling the common cycle λ ∈ (0, π), ρ ∈ (−1, 1),
ξi=2,3 ≥ 0, δi=2,3. Further restrictions on ξ make its estimation difficult in order to satisfy the
condition −0.5π < ξiλ < 0.5π that directly depends on the parameter λ. As an alternative, we
define a new parameter ωi = ξiλ ∈ (−0.5π, 0.5π) that replaces ξi during the model estimation.

Similar to Creal et al. (2010) we do not estimate the probability of the regime switches p and set
it to one of the values commonly found in the literature 3%, 5% and 10% due to data limitations
and a short sample size. Most importantly, we allow for stochastic volatility in all studied series
and estimate all parameters controlling the volatility of volatility in the high states for trend, cycle
and idiosyncratic cyclical components.

3.2 Alternative Model Specifications

3.2.1 Multivariate Models

Our benchmark model, CKZ-SV, presented in Section 3.1, includes stochastic volatility for all
studied series, which poses a question whether certain constraints might be beneficial in addressing
potential overfitting in performing out-of-sample forecasts. Our model of choice restricts parameter
p = 0.03 following Creal et al. (2010), since the parameter is only weakly identified using the short
quarterly series available for the estimation.

The first alternative, called CKZ-UR (unrestricted CKZ) is directly based on the Creal et al.
(2010) specification with stochastic volatility in the PCE and GDP series and with constant volatil-
ity for the unemployment series, hence setting up the restrictions σ22,t,z = σ22,z for z ∈ {η, ε} in the
CKZ-SV model. However, in contrast to Creal et al. (2010) who calibrate the parameters that
control the volatility of volatility in Ki,t,z, we estimate these parameters.

The second alternative, which we refer to as CKZ is directly based on Creal et al. (2010)
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specification with stochastic volatility in the PCE and GDP series and with constant volatility
for the unemployment series. Volatility of volatility parameters Ki,t,z in this model take the same
values given in Creal et al. (2010): Ki,t,ε = 0.05, Ki,t,η = 0.001 for i = 1, 3, and Kt,κ = 0.05.

The third alternative, called MUC-SV-BP, is a version of the CKZ-SV model that imposes even
further restrictions with stochastic volatility present only in the PCE series and in the common
cyclical component. Finally, the fourth alternative, called MUC-BP assumes a common cyclical
component with no stochastic volatility and constant volatility across all components for all studied
series.

3.2.2 Univariate Models

In this study, we consider a variety of unobserved component (UC) models, first introduced by
Harvey (1985) to decompose time-series data into cyclical and trend components using a Kalman
filter, and generalized later to accommodate several salient features of the data. Among these
extensions, we note the unobserved component model with stochastic volatility (UCSV) proposed
by Stock and Watson (2007), the UC model with auto-regressive cyclical component (UC-0), and
the UC model with both auto-regressive cyclical components and correlated innovations, the “un-
restricted” UC model (UC-UR), developed by Morley, Nelson and Zivot (2003). Details of these
models are available in the Appendix. In addition, we also present results for the univariate version
of the CKZ model, the UC-BP model, that was first introduced by Harvey and Trimbur (2003). In
the model each of the series is estimated in isolation and with no stochastic volatility.

Since each class of univariate models allows to account for different features of the data like
stochastic volatility (UCSV), persistence of cyclical component (UC-0 or UC-UR), instantaneous
correlation between trend and cycle innovations (UC-UR), or a band-pass based cycle (UC-BP)
with a varying degree of parametrization, we also investigate if optimal model pooling improves
forecasting performance. We follow model pooling introduced in Amisano and Geweke (2017) and
dynamically change optimal model weights according to

wt = argmax
t∑

s=1

log
n∑

j=1

wt,jp(yi,s|ys−1
i ,Mj) (10)

where wt = {wt,1, . . . , wt,n} ≥ 0,
∑n

j=1wt,j = 1, n = 5 is a number of univariate models in the
pool, Mj is a jth univariate model, and p(yi,t|yt−1

i ,Mj) is a marginal likelihood evaluated at time t
given model Mj . We discuss the evaluation of the marginal likelihood in the fully Bayesian context
in the following Section 3.3.
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3.3 Online Parameter Estimation and Forecasting

Since our models clearly fit into the state-space modeling framework, we use Bayesian estimation
methods specifically designed to account for both parameter and state uncertainty. As shown in
Section 4, addressing parameter uncertainty is an important feature that can significantly affect
model ability for out-of-sample forecasts especially for the multivariate models. The reason for its
importance stems from the relatively limited number of observations for macroeconomic variables
with quarterly or monthly data frequencies that translate into higher parameter uncertainty the
hence forecast uncertainty. However, due to computational difficulties, parameter uncertainty is
rarely accounted for in the trend-cycle decomposition problems and the parameter estimation is
frequently applied only once using all available observations. Such approach naturally imposes
significant out-of-sample biases on the derived forecast evaluation measures.

In this paper we address both of these issues and perform an online estimation of parameters and
states jointly. Recent advances in Bayesian literature and sequential Monte Carlo methods make
such estimation feasible. In this work we utilize the SMC2 online estimation algorithm of Chopin
et al. (2013) and apply the PMCMC estimation method of Andrieu et al. (2010) to rejuvenate the
filter particles. To initialize the estimation we use the batch estimation method of Duan and Fulop
(2015), which proved to enforce stability when the total number of observations used is very small.
The output from the SMC2 algorithm consists of a sequence of filtered distributions of parameters
and states approximated with M parameter particles with their respective weights (θ1:Mt , w1:M

Θ,t ).
For each of the m-th parameter particle with m ∈ (1, . . . ,M), there are N associated state particles
along with their respective weights (xm,1:N

t , wm,1:N
t ). The SMC2 method is summarized below as

Algorithm 1.
We use the first 50 observations spanning dates from 1960:Q1 to 1972:Q1, which we treat as

a training sample, to estimate all models using the Duan and Fulop (2015) method. Since the
method provides the smoothed distribution of parameters and states, we use it as an input for the
on-line estimation method of Chopin et al. (2013) for the rest of the sample up to 2023:Q2. We
pick M = 1024 and N = 8192 to obtain a high degree of precision. Our forecasts are performed
along with the iterations of the SMC2 algorithm for k ∈ {1, 2, 4, 8} quarters ahead. The forecast
density for horizon k formulated at time t for model Mj is given as

p(yi,t+k|yti ,Mj) =∫
Θ(j)

∫
x
p(yi,t+k|xi,t+k, θ

(j)
t )p(xi,t+k|xi,t+k−1, θ

(j)
t ) · · · p(xi,t+1|xi,t, θ(j)t )p(xi,t|yti , θ

(j)
t )dp(θ

(j)
t |yti) (11)

where the first integration is replaced by a finite sum over the time t filtered parameter particles, the
second integration is replaced by a finite sum over the respective filtered and propagated particles
up to time t + k given the parameters. The dependence on model Mj is explicit through θ

(j)
t and
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Algorithm 1 SMC2 estimation algorithm for a joint state and parameter inference.
Require: Start at time t = 0 with M parameter parameter particles {θmt }m∈(1,...,M), each asso-

ciated with N state particles xm,1:N
t ≡ {xm,n

t }n∈(1:N), m ∈ (1, . . . ,M). fθmt denotes the state
evolution pdf and gθmt denotes the observation equation pdf for parameters θmt .
for do t ∈ (1, . . . , T )

for do m ∈ (1, . . . ,M)
for do n ∈ (1, . . . , N)

sample xm,n
t ∼ fθm(xt | xm,n

t−1 )
wm,n
t ← gθm(yt | xm,n

t )
end for
xm,1:N
t ∼ resample(xm,1:N

t , wm,1:N
t )

ωm
Θ,t ← ωm

Θ,t−1 ·
∑N

n=1w
m,n
Θ,t

end for

if degeneracy condition for parameter weights ω1:M
Θ,t ≡ {ωm

Θ,t}m∈(1:M) is satisfied then
(θ1:Mt , x1:N,1:M

t , w1:M,1:N
t ) ∼ rejuvenate(θ1:Mt , x1:M,1:N

t , w1:M,1:N
t )

ω1:M
Θ,t ← 1

end if
end for

its parameter support Θ(j). It is important to note that our analysis differs significantly from
that of Creal et al. (2010) since we formulate our forecasts with no look-ahead bias and re-estimate
parameters at each time increment thanks to the SMC2 pseudo-online estimation method discussed
above.

3.4 Priors

The multivariate models that we study are richly parameterized. We impose priors along with
restrictions on parameter supports in our estimation. The goal is to ensure stability and allow
for maximum extraction of information content from the data in the estimation process. Thus,
for some parameters we have fairly loose but informative priors, while for the rest the priors are
practically uninformative, as shown in Table 1.

For the multivariate models, the parameter set, Θ, includes location, scale, and autocorrelation
parameters. We picked uninformative log normal priors for scale parameters, σ2i,z and K2

z , where
z ∈ {ε, η, κ} and i ∈ {1, 2, 3}. For location parameters we imposed uninformative normal priors. For
the models with a common cycle, we rescale parameters λ and ωi by π. We define an uninformative
beta prior for λ̂ with a beta prior that imposes a mode length of business cycle corresponding
to about 20 quarters periodicity. Finally, for the univariate models for the parameters common
to the multivariate setting we pick the same priors. The uninformative priors for the parameters
controlling the AR specification for UC-UR and UC-0 models are shown in the last two rows of
Table 1.
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Table 1: Priors for model parameters

Models
Param. Distr. Hyperparam. CKZ-SV CKZ-UR MUC-SV-BP MUC-BP UC-UR
Kε Uniform (1e− 5, 1) Y Y Y
Kη Uniform (1e− 5, 1) Y Y Y
Kκ Uniform (1e− 5, 1) Y Y Y
σ2
i,ε lognormal (0, 1) Y: i=2 Y: i=2,3 Y: i=1,2,3 Y
σ2
i,η lognormal (0, 1) Y: i=2 Y: i=2,3 Y: i=1,2,3 Y
σ2
κ lognormal (0, 1) Y
ρ Uniform (0, 0.99) Y Y Y Y
λ̂ Beta (2.64, 15.06) Y Y Y Y
µi Normal (1, 1) Y: i=3 Y: i=3 Y: i=3 Y: i=3 Y
δi Normal (0, 1) Y: i=2,3 Y: i=2,3 Y: i=2,3 Y: i=2,3
ω̂i Uniform (1e− 5, 1.5) Y: i=2,3 Y: i=2,3 Y: i=2,3 Y: i=2,3
ϱi Uniform (-1, 1) Y
ϕi Uniform (-1, 1) Y

This table reports prior distributions imposed on the set of parameters in each estimated model. λ̂ = λ/π and
ω̂i = ωi/π are the scaled versions of λ and ω, respectively. The UC-SV and UC-UR models are discussed in the
Appendix. The parameters for the UC-SV model overlap with the multivariate stochastic volatility models. The
parameters for the univariate models should be estimated separately for each data set i.

What distinguishes our approach from that in Creal et al. (2010) is that we allow for a free
estimation of parameters related to the volatility of volatility Kz, and do not impose an informative
δ prior assuming their values. Hence, we directly account for additional source of parameter
uncertainty present in the unrestricted versions of the model like CKZ-SV and CKZ-UR.

4 Empirical Findings

In this section, we summarize the empirical results from fitting the benchmark CKZ-SV model
and alternative models to the data. We first discuss parameter estimates and informativness of
priors for the benchmark model. We then compare forecasting results across estimated multivariate
and univariate models estimated with either fully Bayesian or MLE methods. Finally, we compare
trend-cycle decompositions stemming from the studied multivariate and univariate models.

4.1 CKZ-SV Benchmark Model Parameter Estimates

We discuss parameter estimates of the benchmark CKZ-SV model. Factor loadings δi=2,3 filtered
mean estimates, shown in the top panel of Figure 2, suggest that the dependence of GDP and
UNRATE on the common cycle increased in time and almost tripled since the early 1970s. However,
there are several instances of abrupt decrease in the factor loadings during crisis periods. The most
notable decreases in the factor loadings can be associated with the GFC and COVID periods, where
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factor loadings sharply decreased by two- and three-fold, respectively. The sharp declines suggest
that the changes in cyclical component were, in relative terms, mostly contributing to changes in
PCE rather than GDP and UNRATE at these times.

Phase shift parameter ξi=2,3 filtered mean estimates are presented in the middle panel of Figure
2. The values of phase shift parameters represent leads (positive values) or lags (negative values)
of the common cycle, measured in quarters, in explaining GDP (left chart) and UNRATE (right
chart) with the phase shift set at 0 for PCE. Unlike the factor loadings, the phase shift parameters
showed stable estimates through time with more abrupt changes present in the recessions (marked
in grey). Similar to the factor loadings, the phase shift parameters for both GDP and UNRATE
showed sharp declines during the GFC and COVID periods. The relation was close to instantaneous
during the GFC period and instantaneous during the COVID period, rather than leading relative
to PCE. A plausible explanation is a need to explain sharp PCE movements during the GFC and
COVID periods by the common cycle that coincided with the movements in GDP and UNRATE.
In other times, however, the common cycle affected GDP and UNRATE about two quarters before
affecting PCE.

The last row of Figure 2 shows filtered mean estimates of parameter λ, λ̂, further reparam-
eterized as 2π/λ̂ to interpret the values as the typical length of the business cycle discussed in
Section 3.1. The mid-length of business cycle showed an increasing trend from the 1970s up to
the GFC, reaching values of about 75 quarters, and then from the GFC up to the COVID period,
reaching values of about 110 quarters. Most notably, the mid-length of the common cycle dropped
significantly during the GFC and the COVID periods. The drop can be explained by the common
cycle property of explaining high-frequency jump events.

In Figure 3 we present prior distributions (dotted lines) and the full-sample posteriors for the
CKZ-SV model. The top row presents the results for the volatility of volatility parameters K(1)

η ,
K

(1)
ε and K

(1)
κ , respectively. As seen in the charts, the posterior distributions differ substantially

from the assumed uninformative priors supporting our claim that the volatility of volatility pa-
rameters can be efficiently estimated in our sample. Similarly, the parameters ξi=2,3 and δi=2,3

governing the phase shift and factor loadings for GDP and UNRATE can be estimated with pre-
cision using uninformative priors. The same holds true for the parameter controlling the width of
the frequency band of the common cycle.
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Figure 2: Filtered Posterior Means of Common Cycle Parameters
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Figure 3: Prior and posterior distributions of estimated parameters for the benchmark model
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4.2 Comparison of Forecasting Performance

4.2.1 Forecasting Performance of Multivariate Models

Panel A in Table 2 reports fully Bayesian root mean squared forecast errors (RMSFE) for PCE, UN-
RATE, and GDP based on SMC2 algorithm and online forecasting paradigm, for forecast horizons
k = 1, . . . , 8, across all multivariate models described in Sections 3.1 and 3.2.1.

Table 2: Root Mean Squared Forecast Errors: multivariate models

Panel A: SMC2 estimation, with parameter uncertainty
k CKZ-SV CKZ-UR CKZ MUC-BP-SV MUC-BP
1 1.8590 1.8712 1.9849 1.9204 2.1381

PCE 2 2.0505 2.0531 2.2283 2.1194 2.5338
4 2.2665 2.3075 2.4928 2.4815 3.3841
8 2.6621 2.6714 2.8154 2.9127 4.9543
1 0.6012 0.5630 0.5617 0.5578 0.7339

UNRATE 2 0.8007 0.8453 0.8215 0.8522 1.1691
4 1.1824 1.2661 1.2413 1.2935 1.8716
8 1.6501 1.7106 1.7172 1.7793 2.8217
1 0.9484 1.1047 0.9849 1.1151 1.3456

GDP 2 1.4140 1.6837 1.4725 1.6630 1.9664
4 2.1615 2.5870 2.2881 2.5192 3.0117
8 3.3047 3.7507 3.5019 3.6391 4.5975

Panel B: MLE Estimation, no parameter uncertainty
1 2.0060 1.9331 2.0133 1.9747 2.1176

PCE 2 2.1254 2.0716 2.2402 2.1641 2.4659
4 2.3455 2.3214 2.5215 2.5444 3.1955
8 2.8810 2.7879 2.8129 2.9463 4.5274
1 0.6694 0.5825 0.5698 0.5973 0.6976

UNRATE 2 0.8354 0.7961 0.8074 0.8925 1.0536
4 1.1793 1.1997 1.1992 1.3350 1.5995
8 1.7312 1.6705 1.5942 1.8331 2.7121
1 1.0838 1.0383 1.0065 1.1917 1.2527

GDP 2 1.5418 1.5953 1.5374 1.7497 1.7518
4 2.4188 2.5409 2.4164 2.6765 2.5780
8 4.0756 4.1354 3.8279 4.0695 4.2092

The table shows the root mean squared forecast errors for models estimated with the SMC2 method that acounts
for parameter uncertainty (Panel A) and estimated with the MLE method with no parameter uncertainty (Panel B).
The results are presented for all considered multivariet specifications discussed in Section 3.2.1 and for all studied
macroeconomic series of PCE, UNRATE and GDP.

Starting with PCE results in Table 2, we notice that our benchmark CKZ-SV model yields
forecast improvements compared to the baseline CKZ, and all other multivariate models across all
forecast horizons. We note that while the benchmark CKZ-SV model outperforms the CKZ-UR
model, RMSFEs of these two models are very close for PCE forecasts. Since equation (7) imposes
the same restrictions on all three variables, this may force the CKZ-SV and CKS-UR estimations
to be close, resulting in no apparent gains from spillovers from UNRATE volatility of volatility to
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other variables. In comparison to other multivariate models, CKZ-SV clearly and unambiguously
yields better forecasts.

We next turn to UNRATE forecast results. The benchmark CKZ-SV model dominates other
multivariate models and yields smaller RMSFEs for k = 2, . . . , 8. For k = 1, CKZ-UR, CKZ, and
MUC-BP-SV models outperform the benchmark slightly. Finally, for GDP the benchmark CKZ-
SV model yields smaller RMSFEs compared to all other multivariate models studied and across all
forecast horizons.

We notice that the relative performance (in terms of RMSFE) of the benchmark CKZ-SV com-
pared to other models, especially the baseline CKZ model, generally improves as k increases. This
observation generally holds across all three variables considered. Parameter uncertainty induces
fatter tails in forecast densities for variables. We believe that the benchmark model, given the
presence of the stochastic volatility components and the resulting additional flexibility, is better
suited to handle draws from such regions as forecast horizon increases, helping in higher forecast
precision.

In Panel B of Table 2, we report the RMSFEs based on full information maximum likelihood
estimations for all time t for the same models studied in Panel A. In this exercise, there is no
parameter uncertainty by construction, and the point estimates of parameters are used. When
comparing RMSFEs across models and forecast horizons k in Panels A and B, it is easy to see that
MLE-based RMSFEs are generally much larger than their SMC2 counterparts. In particular, fully
Bayesian benchmark CKZ-SV model RMSFEs are uniformly smaller than their MLE counterparts,
and by a wide margin. This pattern holds for other multivariate models when forecasting PCE
and UNRATE. There two exceptions for GDP: CKZ-UR (only for smaller forecast horizons) and
MUC-BP maximum likelihood-based RMSFEs are smaller than their fully Bayesian counterparts.
The fact that MUC-BP does not feature a stochastic volatility component and the unrestricted
nature of CKZ-UR (thus, a relatively higher burden to identify dynamics from a relatively smooth
variable) are likely to contribute to these results.

In addition, we present in the Appendix alternative CKZ-SV(p) model forecasting results for
different values of parameter p that was set at 3% in the benchmark model (we use CKZ-SV(3) and
CKZ-SV notation interchangeably). While, in general, the CKZ-SV(3) benchmark model performs
overall best for UNRATE and GDP series, it can potentially further be improved by choosing a
higher probability of high volatility of volatility states for PCE with the best performance for 10%

level. We leave further improvements of the CKZ-SV specification for future research.

4.2.2 Forecasting Performance of Univariate Models

In Table 3 we report RMSFEs for all univariate results discussed in Section 3.2.2. It is immediately
clear that except for two cases where forecast horizon is k = 8, the UC-SV model yields the
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lowest RMSFEs across all three variables and forecast horizons. Thus, it appears that including a
stochastic volatility component in the standard Harvey (1985) and Stock and Watson (2007) UC
model, materially improves it’s forecast ability for important macroeconomic variables.

Table 3: Root Mean Squared Forecast Errors: univariate models

Panel A: SMC2 estimation, with parameter uncertainty
k UC UC-0 UC-UR UC-BP UC-SV Pool
1 1.9170 1.9451 1.9397 1.9187 1.8748 1.8652

PCE 2 2.0707 2.1022 2.0939 2.0731 2.0294 2.0254
4 2.3731 2.3954 2.3894 2.3582 2.3208 2.3159
8 2.6440 2.6784 2.6720 2.5977 2.8105 2.6096
1 0.6454 0.6372 0.7076 0.6733 0.6614 0.5951

UNRATE 2 0.9324 0.9218 1.0558 0.9930 0.8806 0.8579
4 1.3647 1.3455 1.5556 1.4181 1.2695 1.2774
8 1.9464 1.9040 2.2204 1.8707 1.8329 1.8858
1 1.1572 1.1460 1.1999 1.2173 1.1740 1.0361

GDP 2 1.6411 1.6371 1.6882 1.7892 1.6331 1.5027
4 2.4608 2.4704 2.5100 2.8513 2.4562 2.3119
8 3.6895 3.7234 3.6989 4.5607 3.8729 3.6179

Panel B: MLE Estimation
1 1.9160 1.9406 1.9401 1.9267 1.8762 1.8662

PCE 2 2.0697 2.1044 2.0984 2.0905 2.0302 2.0271
4 2.3770 2.3982 2.3967 2.3349 2.3312 2.3166
8 2.6409 2.6910 2.6897 2.5096 2.6095 2.5126
1 0.6381 0.6356 0.7189 0.6715 0.6951 0.5791

UNRATE 2 0.9251 0.9200 1.0794 0.9908 0.8997 0.8376
4 1.3589 1.3460 1.5965 1.4261 1.2730 1.3538
8 1.9444 1.9101 2.2630 1.8818 1.8249 1.9094
1 1.1395 1.1403 1.1876 1.2084 1.1617 1.0095

GDP 2 1.6195 1.6268 1.7002 1.7635 1.6301 1.5015
4 2.4310 2.4615 2.5889 2.7812 2.4587 2.4098
8 3.6403 3.7222 3.8481 4.3969 3.9385 3.7143

This table reports fully Bayesian root mean squared forecast errors, based on SMC2 algorithm, for univariate models
introduced in Section 3.2.2. The column labeled as “Pool” reports RMSFE for optimally pooled combinations of all
estimated univariate models, closely following Amisano and Geweke (2017).

Among others, Amisano and Geweke (2017) have shown that univariate forecasts of macroeco-
nomic variables could be improved by optimally pooling forecasts of many models, as described in
Section 3.2.2. The final column in the table reports RMSFE for such optimally pooled forecasts.
We note that these optimal pooled forecasts consistently yield RMSFEs that are smaller than the
best individual univariate models’ RMSFEs. Based on the evidence from studies such as Andreou
et al. (2013) and Jahan-Pavar and Lang (2024), we know that in a simple model averaging exercise,
the averaged RMSFEs are not necessarily smaller than all estimated models, but they are more
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stable. In other words, for a sample {yi,t}Tt=1, there exists a “best” model that outperforms the
averaged forecast in terms of RMSFE, while we do not observe a similar pattern for optimally
pooled Bayesian forecasts.

The superior performance of optimally pooled forecasts (compared to optimally averaged fore-
casts) stems from the way that univariate models receive a weight in optimal pooling exercises.
Figure 4 reports the weights assigned to each univariate model. As expected, the UC-SV model
typically receives a high optimal weight in the pooling procedure, closely followed by the UC-UR
model of Kamber et al. (2018) and the UC-BP model of Harvey and Trimbur (2003). These are
extreme-case models: UC-UR allows for correlation between trend and cyclical components of the
variable, while the flexibility of the band-pass UC-BP admits dynamic adjustment of frequency
bands associated with the cyclical component.

In contrast to the multivariate estimation results reported in Table 2, the difference between
fully Bayesian (Panel A in Table 3) and full-information maximum-likelihood (Panel B in Table
3) estimations of univariate model do not yield significantly different RMSFEs. The closeness of
these results could be partially due to the small number of parameters to be estimated in univariate
models, and thus higher precision of estimation and thus less impact from accounting for parameter
uncertainty.

4.3 Comparing trend-cycle decomposition results

As shown in Figure 1, the CBO estimates of output gap and cyclical unemployment fall within
the 95 percent credible intervals of the cyclical components that we recover from applying the
benchmark CKZ-SV model to the data. In comparison to a recent study by Barigozzi and Luciani
(2023), our estimates do not point to a sustained positive output gap between 1999 and 2008. As
with CBO and González-Astudillo (2019a) estimates, we find two positive output gaps in this time
interval: one between mid-1990s and the 2001 recession, and the other between mid-2000s and
2008. In terms of magnitude, both are smaller than Barigozzi and Luciani (2023) estimates. That
said, Figure 5 shows that among all multivariate models considered in our study, CKZ-SV yields
cyclical components (output gaps and unemployment gaps) that are closer to Barigozzi and Luciani
(2023).

Alternative models considered in our study yield output and unemployment gaps that differ
markedly from CKZ-SV-based measures (see Figure 5), and are notably different from both CBO
estimates and findings of studies such as Barigozzi and Luciani (2023). Alternative output (unem-
ployment) gaps typically tend to dip (peak) more than the benchmark model in downturns, peak
(dip) less in upturns, and rise (fall) much slower in expansions. As a result, these gaps typically
underestimate (overestimate) positive (negative) output (unemployment) gaps compared to the
benchmark CKZ-SV model. In comparison to the benchmark model, they generate relatively deep
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Figure 4: Weights of univariate models in the forecast combination exercise

The figure reports the evolution of weights assigned to each univariate model used in the forecast combination
exercise described in Section 4.2.2. The top row shows results for PCE, the middle row for UNRATE and the bottom
row for GDP series.

negative output gaps and relatively large positive unemployment gaps. However, the behavior of
alternative models yields counter-intuitive results during the COVID-19 pandemic when alternative
models showed much smaller unemployment gaps implying inability to capture the abrupt turns in
macroeconomic variables’ trends. Thus, if employed as policy tools, the failures of these alterna-
tive models could have serious implications. This observation validates and reinforces our earlier
conclusions about the crucial importance of incorporating time-variation in volatility and careful
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Figure 5: Comparison of trend-cycle decomposition of variables across multivariate models
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The top row reports the data and extracted stochastic trends for three multivariate models studied in this paper. The bottom
row does the same for the extracted cyclical components. The details of modeling choices are available in Section 3.1 and
Section 3.2.1.

modeling of feedback channels and dependencies between macroeconomic variables.
We now compare the trend-cycle decomposition of the data based on the univariate models dis-

cussed in Sections 3.2.2 and 4.2.2 with the benchmark model. Figure 6 displays these comparisons.
It is immediately clear that output and unemployment gaps generated by the univariate methods
severely underestimate peaks and troughs of the gap measures, both compared to the benchmark
CKZ-SV model and to CBO estimates. The representative univariate methods displayed in Fig-
ure 6 are the UC-SV model of Stock and Watson (2007) and the UC-O model of Morley (2011).
This comparison validates and reinforces our earlier conclusions about the crucial importance of
using multivariate models and careful modeling of feedback channels and dependencies between
macroeconomic variables.
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Figure 6: Comparison of trend-cycle decomposition of variables across univariate models
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The top row reports the data and extracted stochastic trends for the benchmark multivariate model and two univariate models
studied in this paper. The bottom row does the same for the extracted cyclical components. The details of modeling choices
are available in Section 3.2.2 and the Appendix.
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5 Conclusion

In this study, we propose a generalized multivariate unobserved component model to decompose and
forecast U.S. output, unemployment, and inflation jointly. We expand and refine the multivariate
unobserved components model proposed by Creal et al. (2010), by incorporating fully estimated
SV components to induce estimation and forecasting flexibility–especially over periods of abrupt
change, such as the COVID-19 pandemic–in all time series. The study exploits the capabilities of
Chopin et al. (2013) SMC2 method and perform online forecasting. We document that the fully
Bayesian estimation, accounting for both parameter and state uncertainty, consistently dominates
forecasts produced by many alternative multivariate (such as Creal et al., 2010) and univariate
(such as Stock and Watson, 2007 and Kamber et al., 2018) models. Moreover, using a filtering
approach avoids the look-ahead bias problems inherent in smoother-based estimation (as in Li
and Koopman, 2021), that use the full sample. In addition, we show that when using univariate
models, an optimally pooled model (following Amisano and Geweke, 2017) outperforms individual
constituent models.

Our study explicitly incorporates relevant stylized facts about the United States macroeco-
nomic data (comovements, nonstationarity, and the slow drift in long-run output growth over
time). However, our method is a general estimation method suitable for various macroeconomic
and financial time-series estimation, and is not tightly tailored and constrained for the specific
application presented in the paper.
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Appendix
Univariate State-Space Models
UC and UCSV Models

The UC model of Harvey (1985) decomposes a time series into the trend component, xt, driven by
permanent shocks, and a cyclical component, ηt, driven by transitory shocks. The UCSV model
of Stock and Watson (2007) further extends the UC specification by adding stochastic volatility
components to the trend and the cycle. The UCSV model for a time series i can be defined as:

yi,t = xi,t + ηi,t

xi,t = µi + xi,t−1 + εi,t

ηi,t ∼ N
(
0, σ2i,t,η

)
εi,t ∼ N

(
0, σ2i,t,ε

)
log σ2i,t,η ∼ N

(
log σ2i,t−1,η,K

2
i,η

)
log σ2i,t,ε ∼ N

(
log σ2i,t−1,ε,K

2
i,ε

)
for t = 1, . . . , T , where yi,t is the decomposed time-series, and where σi,t,η and σi,t,ε are the stochastic
volatility components of the trend and the cycle, respectively. The parametersKi,ε > 0 andKi,η > 0
control volatility of volatility. The innovations propagating stochastic volatility are mutually and
serially independent. The standard UC model does not include stochastic volatility components
and uses the restrictions σ2i,t,η = σ2i,η and σ2i,t,ε = σ2i,ε to impose time-invariant volatilities. The
parameters (K2

i,ε, K2
i,η) and the parameters (σ2i,η, σ

2
i,ε) for the UCSV and UC models, respectively,

are unknown and estimated.

UC-UR and UC-0 Models

Morley et al. (2003) propose the unrestricted unobserved component (UC-UR) model to reconcile
differences in trend-cycle decomposition of real GDP implied by the UC model and Beveridge and
Nelson (1981) approach. The UC-UR model allows for autocorrelated cyclical components. It
also introduces correlations between innovations for trend and cycle components. The following
state-space specification characterizes the UC-UR trend-cycle decomposition for a time-series i:

yi,t = xi,t + ηi,t

xi,t = µi + xi,t−1 + εi,t

ηi,t ∼ N
(
ϕi,1ηi,t−1, σ

2
i,η

)
εi,t ∼ N

(
0, σ2i,ε

)
ϱi = corr(εi,t, ηi,t − ϕi,1ηi,t−1)

where the overlapping notation matches the preceding section. The parameter ϱi ∈ (−1, 1) controls
the correlation between innovations of trend and cycle components. The parameter ϕ1 induces
autocorellation in the cyclical component and satisfy the stationarity condition |ϕi,1| < 1. The
UC-0 model is a constrained version of UC-UR, where ϱi = 0.
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Multivariate Models: Probability of High Volatility States

Table 4: Root Mean Squared Forecast Errors and Probability of High Volatility States

MUC-SV-BP CKZ-UR CKZ-SV
k 0.03 0.05 0.10 0.03 0.05 0.10 0.03 0.05 0.10

PCE

1 1.9204 2.0228 1.8716 1.8712 1.8526 1.8527 1.8590 1.8569 1.8389
2 2.1194 2.1991 2.0324 2.0531 2.0397 2.0121 2.0505 2.0419 1.9994
4 2.4815 2.6989 2.2785 2.3075 2.2620 2.2423 2.2665 2.2939 2.2239
8 2.9127 3.5445 2.5842 2.6714 2.6438 2.5968 2.6621 2.7933 2.6585

UNRATE

1 0.5578 0.5735 0.8228 0.5630 0.5363 0.5466 0.6012 0.5506 0.5870
2 0.8522 0.8733 1.1994 0.8453 0.7983 0.7960 0.8007 0.7829 0.7748
4 1.2935 1.4145 1.5082 1.2661 1.2253 1.1996 1.1824 1.2108 1.1581
8 1.7793 2.5100 1.7248 1.7106 1.7265 1.6589 1.6501 1.7683 1.6423

GDP

1 1.1151 1.1799 1.6471 1.1047 0.9778 0.9487 0.9484 0.9630 0.9332
2 1.6630 1.7503 2.2205 1.6837 1.4900 1.4833 1.4140 1.4858 1.4572
4 2.5192 2.9118 2.8134 2.5870 2.3227 2.3427 2.1615 2.3083 2.3220
8 3.6391 5.2008 3.6038 3.7507 3.4372 3.6489 3.3047 3.4018 3.5981

The table shows the root mean squared forecast errors for models estimated with the SMC2 method across different
values of paramater p in equation (7). The results are presented for multivariate specifications discussed in Section
3.2.1 and for all studied macroeconomic series of PCE, UNRATE and GDP.
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CKZ-UR Model Parameter Full-Sample Posteriors

Figure 7: Prior and posterior distributions of estimated parameters for the unrestricted Creal,
Koopman and Zivot (2010) model.
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The dashed lines represent the prior distributions for estimated parameters, while the histograms represent the
porterior distributions using all observations. Cloud sizes are M = 1024 and N = 8192.
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