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Dobrev, Dobrislav, and Pawe l J. Szerszeń (2025). “Missing Data Substitution for Enhanced
Robust Filtering and Forecasting in Linear State-Space Models,” Finance and Economics
Discussion Series 2025-001. Washington: Board of Governors of the Federal Reserve System,
https://doi.org/10.17016/FEDS.2025.001.

NOTE: Staff working papers in the Finance and Economics Discussion Series (FEDS) are preliminary
materials circulated to stimulate discussion and critical comment. The analysis and conclusions set forth
are those of the authors and do not indicate concurrence by other members of the research staff or the
Board of Governors. References in publications to the Finance and Economics Discussion Series (other than
acknowledgement) should be cleared with the author(s) to protect the tentative character of these papers.



Missing Data Substitution for Enhanced Robust

Filtering and Forecasting in Linear State-Space Models

Dobrislav Dobrev∗ Pawe l J. Szerszeń∗
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Abstract

Replacing faulty measurements with missing values can suppress outlier-induced distortions

in state-space inference. We therefore put forward two complementary methods for enhanced

outlier-robust filtering and forecasting: supervised missing data substitution (MD) upon

exceeding a Huber threshold, and unsupervised missing data substitution via exogenous

randomization (RMDX).

Our supervised method, MD, is designed to improve performance of existing Huber-based

linear filters known to lose optimality when outliers of the same sign are clustered in time rather

than arriving independently. The unsupervised method, RMDX, further aims to suppress

smaller outliers whose size may fall below the Huber detection threshold. To this end,

RMDX averages filtered or forecasted targets based on measurement series with randomly

induced subsets of missing data at an exogenously set randomization rate. This gives rise

to regularization and bias-variance trade-off as a function of the missing data randomization

rate, which can be set optimally using standard cross-validation techniques.

We validate through Monte Carlo simulations that both methods for missing data

substitution can significantly improve robust filtering, especially when combined together. As

further empirical validation, we document consistently attractive performance in linear models

for forecasting inflation trends prone to clustering of measurement outliers.
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1. Introduction

In many applications involving state-space models the optimality of existing robust filters

may not hold in practice when imposed assumptions on the structure of measurement errors

are violated. Thus, even if state-space models are an important workhorse in many natural

and social sciences, the filtering and forecasting performance of available methods can still

be improved upon in the presence of incorrectly specified measurement outliers. This is the

case both for robust filtering approaches based on heavy-tailed distributional assumptions as

in Durbin and Koopman (2000) or Harvey and Luati (2014) and for more recent alternatives

adding Huber-based thresholding or outlier detection as in Calvet et al. (2015), Crevits and

Croux (2017), Màız et al. (2012), among others.

In this paper, we build on the concept that replacing faulty measurements with missing

data reduces filtering distortions due to outliers. We thus put forward two complementary

methods for enhanced robust filtering and forecasting: supervised missing data substitution

(MD) upon exceeding a Huber threshold, and unsupervised missing data substitution via

exogenous randomization (RMDX).

Our supervised method for missing data substitution, MD, is specifically designed to

improve the performance of existing Huber-based linear filters whose optimality gets violated

when outliers of the same sign are clustered in time instead of arriving independently. More

specifically, we formulate the MD-RobKF filter as an enhancement of the RobKF filter of

(Calvet et al., 2015) based on supervised missing data substitution in lieu of truncation

upon exceeding a Huber threshold. MD-RobKF performs similarly to RobKF when the

latter is optimal in the root-mean square error (RMSE) sense but MD-RobKF improves on

RobKF when its optimality condition is not satisfied, e.g. in case outliers of the same sign are

clustered in time. This is because missing data substitution in MD-RobKF eliminates outliers

instead of truncating them as done in the RobKF filter. In doing so, our MD-RobKF filter
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naturally suppresses the accumulation of filtering errors in the presence of patches of outliers

of the same sign (or clusters of highly correlated outliers), thereby improving performance

relative to the RobKF filter, which can accumulate consecutive filtering error terms despite

trimming them in size to the Huber truncation threshold.

Our unsupervised method for missing data substitution via exogenous randomization,

RMDX, is designed to further suppress smaller outliers whose size might fall below the Huber

detection threshold. To accomplish this, given a filter F, we formulate the enhanced filter

RMDX-F with exogenously randomized missing data substitution by taking the average of

filtered or forecasted targets based on the filter F for measurement series with randomly

induced subsets of missing values at an exogenously set randomization rate. This gives rise

to a bias-variance trade-off controlled solely by the missing data randomization rate. As

a result, the randomization rate plays the role of a regularization parameter and can be

optimally set using standard cross-validation techniques under RMSE or other loss functions

of interest.

From this standpoint, RMDX can improve the performance of any filter in the

presence of outliers violating its optimality conditions. We thus consider the following three

RMDX-enhanced filters:

1. RMDX-KF enhancing the standard Kalman filter KF;

2. RMDX-RobKF enhancing the robust RobKF filter;

3. RMDX-MD-RobKF enhancing our supervised MD-RobKF filter.

The last one of these should be expected to outperform the rest as it combines supervised

missing data substitution in MD-RobKF to suppress outliers above the Huber threshold

and unsupervised missing data substitution in RMDX to further suppress outliers below the

Huber threshold.

Conceptually, our RMDX method can be viewed as a time-series extension of bootstrap

aggregation (bagging), originally developed by Breiman (1996). As a key distinction from
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bagging, RMDX preserves time-series dependence by retaining the original time index of

each observation and randomly drawing only induced missing values in each re-sampled

measurement series. This connection to bagging gives some further insight into the sources

of efficiency gains offered by RMDX.

At a more intuitive level, RMDX exploits the fact that a significant portion of the

information needed for filtering latent states, estimating model parameters, and generating

out-of-sample forecasts can often be extracted from a relatively small subset of the available

measurements. This is especially the case when the latent process is highly persistent, which

limits information loss when replacing subsets of data points with missing values. Thus,

randomizing over the induced missing data points can achieve robustness to outliers and

model misspecification without much efficiency loss.

On the theory side, we formally derive the arising bias-variance trade-off in RMDX

as a function of the missing data randomization rate. Our key result is that the bias

term decreases, while the variance term increases as the proportion of measurements

not substituted by missing values shrinks. This establishes the existence of an optimal

randomization rate for filters violating RMSE-optimality in the presence of outliers and

justifies grid search for the optimal randomization rate via standard cross-validation

techniques.

To validate these findings, we conduct Monte Carlo simulations demonstrating that

both our supervised and unsupervised methods for missing data substitution can offer

substantial improvements in robust filtering, particularly in the case where outliers arrive

in clusters rather than independently. In the case of iid outliers - when optimality of

the RobKF filter holds - we find that our enhanced MD-RobKF filter does not outperform

RobKF by a significant margin as should be expected. By contrast, in the case of clustered

outliers of the same sign - when RobKF optimality is violated - we find that MD-RobKF

significantly outperforms the RobKF filter. Similarly, we document that the RMDX-enhanced
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filters do not outperform significantly RobKF when outliers arrive independently. However,

when outliers of the same sign arrive in patches, our combined RMDX-MD-RobKF filter

significantly outperforms the RobKF and RMDX-RobKF as well as the KF and RMDX-KF

filters for a wide range of outlier sizes and missing data randomization rates, as dictated

by our theory results for the arising bias-variance trade-off. The efficiency gains for the

combined RMDX-MD-RobKF filter relative to MD-RobKF are most pronounced in the

presence of outliers falling below the Huber truncation threshold that remain undetected by

MD-RobKF but are being suppressed at least to some extent through randomized missing

data substitution in the combined RMDX-MD-RobKF filter.

For further empirical validation on real data, we consider state-space models for

extracting inflation trends and document favorable performance of our supervised and

unsupervised missing data substitution enhancements of robust filters and the resulting

out-of-sample forecasts. We consider three alternative state-space models: the standard

unobserved components (UC) model with an inflation trend following a random walk, the

UC model with autoregressive (AR) inflation trend, and the UC model with AR inflation

trend having a mean fixed to the long-run inflation target of 2% (ARMF). It has been well

documented by Stock and Watson (2007) and Stock and Watson (2016), among others,

that the forecasting performance of the UC model is hindered by the presence of clustered

outliers in inflation measurements. For this reason, the considered setting can serve as a

natural real-world testing platform to evaluate the effectiveness of the proposed methods for

improved robust filtering.

We demonstrate that our RMDX-MD-RobKF filter employing both supervised and

unsupervised missing data substitution meaningfully improves out-of-sample performance

for all considered models and is preferred across all considered forecast horizons, with the

longest horizons experiencing the largest performance gains. We find strongest support for

the ARMF version of the UC model, where we fix the inflation mean to the long-run inflation

target of 2% and therefore reduce the impact of parameter uncertainty. We further document
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that our RMDX-MD-RobKF filter performs especially well for the less parsimonious AR and

ARMF specification for inflation dynamics where overfitting outliers can lead to more severe

distortions. The predictive accuracy achieved using our RMDX-MD-RobKF filter for these

models compares well also to that of the well-established UCSVO model of Stock and Watson

(2016) at short forecast horizons and improves even further when forecasting inflation trends

over longer horizons. We conclude that the proposed methods for missing data substitution

to enhance outlier-robust filtering and forecasting are easy to implement and most effective

when combined together.

2. Robust Filtering in The Presence of Outliers

In this section we lay down our missing data substitution framework for robust filtering as

an enhancement to the Huberization approach to robust filtering by Calvet et al. (2015).

We propose two complementary methods: supervised missing data substitution (MD) upon

exceeding a Huber threshold, and unsupervised missing data substitution via exogenous

randomization (RMDX). As a key theory result, we establish that the exogenously set missing

data randomization rate in RMDX acts as a regularization parameter controlling the arising

bias-variance trade-off. This implies the existence of an optimal randomization rate for filters

violating RMSE-optimality in the presence of outliers and justifies grid search for the optimal

randomization rate via standard cross-validation techniques.

2.1 Problem formulation

We consider a Gaussian state-space model with state density gθ(xt|xt−1, θ) and observation

density fθ(yt|xt, θ). The available measurements are contaminated by additive outliers (AO)

as follows:

yt = y⋆t + η ut , (1)
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where y⋆t ∼ fθ(·|xt, θ) follows the true observation density, while the AO term is characterized

by the disturbance ut scaled by magnitude η ∈ R.

Although the standard Kalman filter (KF) is optimal in this setting in the absence of

AO (i.e. η = 0), the presence of AO (i.e. η ̸= 0) generally invalidates the use of KF for

optimal inference of the unobserved states Xt = (x1, · · · , xt), model parameters θ, or any

associated function of interest h(Xt, θ|Yt = (y1, ..., yt)). This leads to the need to develop

robust filtering alternatives to the standard KF. In what follows, we restrict attention to root

mean squared error (RMSE) optimal filtering, noting that our results extend also to other

applicable generalizations of the arising bias-variance trade-off under other loss functions.

2.2 Robust KF via Huberization

Under the additional restriction of zero mean and locally bounded AO disturbances ut, Calvet

et al. (2015) establish the RMSE optimality of the robust KF (henceforth RobKF) using

Huberization of the Kalman updates. Estimation of the filtering distribution xt|Yt for Yt =

{y1, y2, ..., yt} based on the RobKF modification of Kalman’s algorithm is as follows. Given

x̄t = E[xt|Yt−1], Pt = V[xt|Yt], Kalman gain Kt and innovation ϵt at time t, the standard

Kalman update for the state distribution xt|Yt ∼ N (x̂t, Pt) would be x̂t = x̄t +Kt ϵt. RobKF

bounds the impact of AO entering yt on ϵt by Huberizing the prediction error:

x̂RobKF
t = x̄t + Kt ϵt min

(
1 ,

κ

∥ Kt ϵt ∥

)
(2)

The optimal value of the Huberization constant κ depends on the model parameters.

However, RMSE optimality of RobKF need not hold in real-world settings with AO

disturbances ut that are not zero mean and locally bounded. This includes the important

case of patches of outliers with the same sign (or clusters of highly correlated outliers) known

to pose a particular challenge in many applications. Not only the dependence structure, but
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also the distribution of ut is generally unknown in practice and can vary over time, reducing

filtering robustness and effectiveness of both Huberization approaches like Calvet et al. (2015)

and heavy-tailed modeling approaches in the spirit of Harvey and Luati (2014).

All of this suggests that existing robust filters can still be further enhanced in many

real-world applications. Here, we propose two simple methods for enhanced robust filtering,

building on the concept that replacing faulty measurements with missing data can help reduce

remaining filtering distortions due to outliers.

2.3 Robust KF via Supervised Missing Data Substitution

Our supervised method for missing data substitution is designed to improve the performance

of RobKF in cases when its optimality gets violated. We thus formulate the supervised MD

filter (MD-RobKF) by missing data substitution in lieu of truncation upon exceeding the

Huber threshold in RobKF by modifying equation (2) above as follows:

x̂MDRobKF
t = x̄t + Kt ϵt I

[
1 ≤ κ

∥ Kt ϵt ∥

]
(3)

In this way, filtering errors due to outliers above the Huber threshold ( ∥ Ktϵt ∥> κ ) get

eliminated instead of truncated. This prevents accumulation of errors in the same direction

in the presence of patches of outliers of the same sign (or clusters of correlated outliers) as

in the case of the standard RobKF filter in equation (2). Consequently, supervised missing

data substitution significantly improves the filter’s ability to overcome patches or clusters of

correlated outliers. As we document below, our MD-RobKF filter can therefore outperform

the standard RobKF filter of Calvet et al. (2015) in such settings by a wide margin.

It should be noted that other outlier detection methods can be employed for robust

filtering via supervised missing data substitution in a similar fashion. However, all techniques

for outlier detection share one common drawback: they cannot identify smaller outliers that
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do not exceed the detection threshold. This motivates our unsupervised approach to missing

data substitution based on exogenous randomization aiming to improve robustness also to

smaller outliers falling below viable detection thresholds.

2.4 Robust Filtering via Unsupervised Randomization of

Missing Data

Our unsupervised missing data substitution method, RMDX, is based on averaging filtering

and forecasting targets for randomly induced subsets of missing data in the measurement

series at an exogenously set randomization rate. We start by augmenting any given

state-space model to induce exogenously randomized missing data as follows:

x0 ∼ µθ(·) (4)

xt|xt−1, θ ∼ gθ(·|xt−1, θ) (5)

ct ∼ P (.|y1, ..., yT , β) = P (.|β) (6)

yt|xt, θ ∼


fθ(·|xt) if ct = 1

missing if ct = 0

(7)

As standard, xt ∈ Rdx is a latent Markov process parameterized by θ ∈ Θ with an

initial distribution µθ (equation (4)) and a transition kernel gθ (equation (5)).

The observation yt ∈ Rdy contains information about the latent states xt through the

kernel fθ (equation (7)). However, unlike a standard state-space model, we further impose

that yt is only observed a fraction of the time and governed by random infusion of missing

data via the exogenously drawn indicator ct as specified by equations (6) and (7).

We then consider a filter F and enhance its robustness to outliers with randomized

missing data substitution to obtain filter RMDX-F. Let xF
t |Yt, Ct denote the F-filtered
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distribution of xt given an exogenous draw Ct = {c1, c2, ..., ct} inducing missing data points

in the observations Yt = {y1, y2, ..., yt} for the states Xt = {x1, x2, ..., xt} as specified by

equations (6) and (7). Under the AO contamination structure given by equation (1) this

F-filtered distribution would be distorted only for draws of Ct such that the subsets of time

indices {t : ct = 1} and {t : ut ̸= 0} have a non-empty intersection. As a key theory result

below we show that, under mild regularity conditions, a simple combinatorial argument

implies that the share of draws subject to such distortion would shrink as missing data gets

induced at a higher rate. Therefore, constructing the filter RMDX-F by averaging targets of

interest over the full set of F-filtered distributions {xF
t |Yt, Ct, β} for all possible draws {Ct|β}

can lead to bias reduction at the expense of higher variance. This gives rise to regularization

and bias-variance trade-off as a function of the randomization rate β, which can be set

optimally using standard cross-validation techniques.

More formally, our RMDX enhancement of filter F through unsupervised missing data

substitution can thus be defined as follows:

Definition 1. RMDX-F filter extension of filter F

Given filter F and function h(XF
T , θ

F |Yt) of filtered states XT and model parameters θ,

define the RMDX-F filtered estimate of h(XT , θ|Yt, β) for T ≥ t as

h̄RMDX-F(XT , θ|Yt, β) :=
∑

Ci
t∈{0,1}t

h(XF
T , θ

F |Yt, C
i
t)P (Ci

t |β) , (8)

where XF
T , θ

F |Yt, C
i
t stand for the F-filtered states XT and model parameters θ given

measurements Yt and indicators Ci
t inducing missing data points at randomization rate β

as dictated by equations (6) and (7).

In essence, RMDX aims to enhance robustness to outliers of F-filtered estimates for

any function of interest h(XT , θ) of latent states and model parameters by averaging over

all respective estimates h(XF
T , θ

F |Yt, C
i
t) based on F-filtered XF

t and θFt given Yt, T ≥ t,
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and each possible draw of the induced missing data indicator Ci
t under P (·|β). In terms of

implementation, the choice of probability weights P (Ct|β) for the missing data indicators

Ct is flexible. The most basic scheme one could use is sampling each Ct ∼ Bernoulli(β)

independently. However, especially for low β, this design assigns significant probability to

using a low number of observations, which can lead to identification and numerical instability

issues due to an insufficient number of observations. Therefore, as a more practical approach

we recommend fixing the number of observations at [βt], where [x] is the nearest integer to

x. This leads to the following distribution for Ct:

P (Ct) =


(

t
[βt]

)−1
if |Ct| = [βt]

0 otherwise

(9)

In practice, since the sample space of Ct is growing exponentially with t, it is infeasible

to calculate the expectation in equation (8) across all possible Ct. Therefore, in applications,

we replace it with an average over Monte Carlo samples from P (.|β). While this introduces

some stochastic noise to the estimation, in practice we find that this noise is small provided

a large enough number of indicator draws.

This specific formulation of our RMDX method represents a natural time-series

extension of bagging, originally developed by Breiman (1996) for iid data. Time-series

dependence is fully preserved by RMDX thanks to retaining the original time index of

each observation and randomly drawing only induced missing values in each re-sampled

measurement series, exploiting the ability of state-space models to handle missing data.

As such, the RMDX construction of alternative measurement series by inducing randomly

missing data points plays a similar role in a time-series setting as the drawing of random

subsamples in iid settings originally considered by Breiman (1996). To the best of our

knowledge, the benefits of this particular avenue for extending bagging to a time-series setting

have not been explored in such context.
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2.5 Bias Variance Decomposition Theory

We show that RMDX introduces a bias-variance trade-off controlled by the missing data

randomization rate β. Our key result is that the bias term decreases, while the variance

term increases as the proportion of measurements not substituted by missing values

shrinks. This establishes the existence of an optimal randomization rate for filters violating

RMSE-optimality in the presence of outliers and justifies grid search for the optimal

randomization rate via standard cross-validation techniques. Our theory builds on the

following generic assumption on the prevalence and nature of outliers contaminating the

available measurements as the sample size t gets large.

Assumption 1. A fraction m ∈ [0, 1) of the observations are corrupted by outliers, with M ⊂

{1, 2, ..., t} denoting the subset of time indices of the observations contaminated by outliers

and M ′ = {1, 2, ..., t} \ M denoting the subset of time indices of all other uncontaminated

observations.

As a key result, we first establish bias reduction by RMDX under mild regularity

conditions ensuring that outliers are not prevalent and cannot cause explosive filtering biases.

Proposition 1. Given Assumption 1 and t ≤ T , let r = m · t = |M | be the number

of outliers among the observations Yt for time indices in set M and k = βt = |Ci
t |

be the number of retained observations by each RMDX draw of the indicator path Ci
t ,

i = 1, 2, ...,
(
t
k

)
with P (Ci

t |β) given by equation (9) and corresponding F-filtered states and

model parameters XF
T , θ

F |Yt, C
i
t . Further assume that r = o(t) and the biases associated

with the function h(XF
T , θ

F |Yt, C
i
t) for each indicator path Ci

t , i = 1, 2, ...,
(
t
k

)
are uniformly

bounded:
∣∣Eth(XF

T , θ
F |Yt, C

i
t) − Eth(xT , θ)

∣∣ < B as t gets large. Then the RMDX-F filtered

and forecasted function values h̄RMDX-F(XT , θ|Yt, β) = 1

(t
k)

∑
i h(XF

T , θ
F |Yt, C

i
t) would be
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asymptotically unbiased as β = k
t
becomes small when t gets large:

Eth̄
RMDX-F(XT , θ|Yt, β) − Eth(XT , θ) −→ 0 as β =

k

t
→ 0 with t → ∞ (10)

Proof. See Appendix A

The obtained results in Propositions 1 establish that the RMDX framework offers a way

to reduce prediction biases by lowering the randomization rate (β < 1). On the flip side, akin

to sub-sampling, restricting data utilization always comes at the expense of larger variance

relative to utilizing the full sample (β = 1). This leads to our main theory result that the

RMDX framework introduces a bias-variance trade-off controlled by the randomization rate

β as detailed by Proposition 2 below.

Proposition 2. Bias-Variance Decomposition

Et

(
h̄RMDX-F(XT , θ|β) − h(XT , θ)

)2
= Et

(
h̄RMDX-F(XT , θ|β) − Eth̄

RMDX-F(XT , θ|β)
)2

︸ ︷︷ ︸
Reducible variance term ↓ as β ↑

+

+
(
Et

(
h̄RMDX-F(XT , θ|β)

)
− Eth(XT , θ)

)2
︸ ︷︷ ︸

Reducible bias term ↓ as β ↓

+ Et

(
Eth(XT , θ) − h(XT , θ)

)2
︸ ︷︷ ︸

Irreducible variance term

where t ≤ T , and all expectations reflect the distribution of measurements and latent states

given information up to time t.

Proof. See Appendix B

The arising bias-variance trade-off establishes the existence of an optimal randomization

rate for filters violating RMSE-optimality in the presence of outliers and justifies grid search

for the optimal randomization rate via standard cross-validation techniques.

Corollary 1. Existence of optimal missing data randomization rate

For any filter F that is not RMSE optimal in the presence of measurement outliers there
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exists an optimal β̃ ∈ (0, 1] minimizing RMSE of the RMDX-F filter as a function of the

randomization rate β.

To broaden the scope of these insights beyond the popular special case of a square loss

function, it is useful to note that the bias-variance decomposition in Proposition 2 readily

extends also to a wide range of other loss functions. First, James and Hastie (1997) and

James (2003) have shown how to obtain a straightforward generalization of the bias-variance

decomposition in Proposition 2 for any symmetric loss function. Second, Heskes (1998), Wu

and Vos (2012) and Vos and Wu (2015) have further obtained an analogous bias-variance

decomposition valid for any kind of error measure that can be derived from a Kullback-Leibler

divergence or loglikelihood stemming from the underlying probability model. Therefore,

the above insights regarding the RMDX-induced bias-variance tradeoff as a function of the

randomization rate β readily extend for any such loss functions.

3. Performance Comparisons on Simulated Data

To validate our theory results and demonstrate the attainable enhancements in robust

filtering via missing data substitution, we conduct finite-sample performance comparisons

in controlled Monte Carlo experiments. We consider the following three filters and their

RMDX-enhanced counterparts: (1) RMDX-KF enhancing the standard Kalman filter KF;

(2) RMDX-RobKF enhancing the robust RobKF filter; (3) RMDX-MD-RobKF enhancing

our supervised MD-RobKF filter.

Our simulations are based on the setup studied in Calvet et al. (2015) under i.i.d.

AO contamination structure with varying contamination magnitudes η in accordance with

equation 1. However, apart from i.i.d outliers when RobKF optimality holds we also consider

the empirically relevant case of clustered arrivals of outliers of the same sign (patches of

one-sided AO contamination) violating the necessary condition for RMSE optimality of
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RobKF. We document substantial improvements in robust filtering when employing our

methods for missing data substitution, particularly in the case where outliers arrive in clusters

rather than independently. We discuss the data generating process and contamination

structures in Section 3.1 and then compare filtering performance in Section 3.2.

3.1 Monte Carlo Setup

3.1.1. State Space Model with Additive Outliers

Following Calvet et al. (2015) we consider the following linear Gaussian state-space model

y1t = 0.1x1
t − 0.1x2

t + ν1
t y2t = 0.1x1

t + 0.1x2
t + ν2

t

x1
t = 0.9x1

t−1 + ω1
t−1 x2

t = 0.9x2
t−1 + ω2

t−1

where yt = (y1t , y
2
t ) ∈ R2, xt = (x1

t , x
2
t ) ∈ R2, νt ∼ N(0, I2), ωt ∼ N(0, I2), and E(νtω

′
t) = 0.

We consider two types of AO-based contamination structures in accordance with

equation (1). First, we consider continuous contamination used in Calvet et al. (2015)

with i.i.d. arrivals at 5% frequency. Conditional on contamination present in the data,

the contamination term is given by a product of contamination coefficient η ∈ R and

ut ∈ R2, η · ut, where ut is sampled uniformly from a ball of radius ||y∗t − µ∗
t ||, where µ∗

t

is a filtered mean of states at time t formulated with uncontaminated observations y∗1, ..., y
∗
t ,

i.e., µ∗
t = E(xt|y∗1, ..., y∗t ) that can be easily obtained with an application of the Kalman filter

upon observing the true measurements. The value of contamination coefficient controls the

size of the arriving outliers. We assume that η ∈ [−40, 40], which allows to study a wide

range of AO contamination levels.1

In our second contamination scenario, we consider patch-based arrivals of outliers of the

1 The values studied in Calvet et al. (2015) range from −25 to 25.
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same sign but keeping the definition of the outlier size the same as in the first setup. More

specifically, we assume that contaminated observations have frequency of 5% and are clustered

(patched) on blocks of Nc observations. The blocks are assumed to be interleaved by the same

constant number of uncontaminated observations. The length of contamination clusters Nc

determines the extent of the patch-based contamination, with higher values of Nc indicating

longer uninterrupted spans of unreliable information that can distort an insufficiently robust

filter.

In both scenarios, we set the sample length to 10, 000.2 This translates into about 500

contaminated observations for the i.i.d. contaminated scenario. For the second scenario we

pick 10 blocks of Nc = 50 observations each for the patch-based contamination.

3.1.2. Robust Kalman Filters

We consider six filter specifications. The standard KF, the RobKF and the supervised

MD-RobKF filters are discussed in Section 2. We contrast each filter’s performance to the

proposed extensions augmenting all three filters with unsupervised missing data substitution

based on RMDX. The unsupervised RMDX versions of KF, RobKF and MD-RobKF filters

are denoted as RMDX-KF, RMDX-RobKF and RMDX-MD-RobKF, respectively. For the

RobKF-based filters we set κ = 3.08 as the optimal Huberization threshold for this model

from Calvet et al. (2015). For the RMDX augmented filters, we specify the randomization

paramater β(η) to take the values that minimize the root mean squared error (RMSE) for

the true states for an assumed contamination magnitude η.

Our filter comparisons are based on evaluating RMSEs for the filtered states and the

failure rates for 90% prediction bands for the states. As documented in Calvet et al. (2015),

the RobKF filter clearly dominates the KF filter, yielding lower RMSEs and failure rates

closer to the theoretical 10%. We explore the scope for further improvement via RMDX.

2 This sample length has been found by Calvet et al. (2015) to be sufficient to produce satisfactory
precision when comparing filtering performance for this model.
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3.2 Efficiency and Robustness Comparisons

3.2.1. The case of i.i.d. - contaminated measurements

The RMSEs attained by each filter for a range of contamination levels η are presented in the

top panel of Figure 1 and Panel A of Table 1. Calvet et al. (2015) show RMSE-optimality of

the RobKF filter in the case of iid contamination. The attained RMSE values of the RobKF

filter clearly dominate the standard KF filter at any contamination level with a reduction of

up to 65% of the RMSE for the extreme size of contamination with |η| = 40. Our proposed

supervised MD-RobKF filter still improves on the RobKF filter showing the lowest RMSEs

among filters not augmented by RMDX. The unsupervised RMDX method further improves

the KF, RobKF and MD-RobKF filters, with the higher improvements for the standard KF

filter, followed by RobKF filter and only minimal gains for the supervised MD-RobKF filter.

The improvements for the MD-RobKF filter although minor, are largest in the middle-range of

contamination sizes. Overall, the performance of the supervised MD-RobKF filter dominates

other filters, including the Huberized RobKF filter thanks to removing outliers exceeding

the Huber detection threshold. Enhancing the filters using our unsupervised RMDX method

yields extra gains thanks to further suppressing filtering distortions by smaller outliers falling

below the Huber detection threshold.

In the bottom-panel of Figure 1 and in Panel B of Table 1 we present failure rates

computed for every contamination level at 10% theoretical coverage based on 90% prediction

bands. Overall, the results for failure rates are similar to those for RMSE performance. It is

evident that both the KF and RobKF filters are outperformed by the MD-RobKF filter. The

RMDX-augmented filters show further improvements and perform best. The RMDX method

offers smallest gains for the already very well performing MD-RobKF filter.
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Figure 1: RMSE and failure rates as a function of contamination size for i.i.d. contaminated observations.
The values are computed for the KF, RobKF, MD-RobKF, RMDX-KF, RMDX-RobKF, RMDX-MD-RobKF
filters with β minimizing each filter’s RMSE for a given contamination size.
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Table 1: Filter-optimized RMSEs and failure rates at 10% level for i.i.d.-contaminated data.

Contamination coefficient
Filter -40 -20 -10 -5 0 5 10 20 40

Panel A: RMSEs
KF 6.150 3.499 2.417 2.058 1.922 2.053 2.408 3.487 6.136

RobKF 2.132 2.119 2.083 2.015 1.922 2.009 2.069 2.105 2.122
MD-RobKF 1.945 1.954 1.975 1.991 1.922 1.982 1.969 1.957 1.950
RMDX-KF 2.289 2.246 2.149 2.025 1.922 2.016 2.131 2.230 2.280

RMDX-RobKF 2.059 2.052 2.036 1.999 1.922 1.989 2.020 2.037 2.045
RMDX-MD-RobKF 1.944 1.952 1.971 1.982 1.922 1.971 1.964 1.955 1.949

Panel B: Failure Rates
KF 0.324 0.237 0.165 0.124 0.100 0.120 0.161 0.233 0.323

RobKF 0.137 0.135 0.130 0.117 0.100 0.116 0.128 0.134 0.137
MD-RobKF 0.103 0.104 0.109 0.113 0.100 0.110 0.109 0.105 0.103
RMDX-KF 0.106 0.125 0.130 0.119 0.100 0.115 0.128 0.125 0.123

RMDX-RobKF 0.123 0.122 0.118 0.113 0.100 0.112 0.117 0.120 0.122
RMDX-MD-RobKF 0.102 0.103 0.108 0.110 0.100 0.108 0.108 0.104 0.103

The optimal randomization rates β minimizing each filter’s RMSE depicted in Figure

2 suggest that the optimal values are markedly lower for the RMDX-augmented KF and

RobKF filters and the optimal values decrease with the level of contamination. In contrast,

the supervised MD-RobKF filter does not benefit to the same extent when augmenting it with

missing data randomization using RMDX as outliers below the Huber detection threshold are

less likely to cause large filtering distortions in the i.i.d case and its lowest values of optimal

β of around 0.8 coincide with the highest improvements in RMSEs at mid-sized levels of

contamination in Panel A of Table 1.
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Figure 2: Opitmal β minimizing each filter’s RMSE as a function of contamination size for i.i.d. contaminated
observations. The values are computed for the RMDX-KF, RMDX-RobKF and RMDX-MD-RobKF filters.

3.2.2. The case of patch-contaminated measurements

In the case of patch-contaminated measurements, the necessary condition for RMSE-based

optimality of the RobKF filter is violated. As a result, both the KF and RobKF filters have

subpar RMSE performance as can be seen in the top panel of Figure 3 and in Panel A of

Table 2. The performance of the supervised MD-RobKF filter is superior to other non-RMDX

augmented filters and even in the most challenging scenario of middle-sized outliers is

about 30% worse than under no contamination. The unsupervised RMDX method improves

performance of all filters. The RMSE reduction increases with contamination size for both

the KF and Rob-KF filters. The RMDX-MD-RobKF version of the supervised MD-RobKF

filter clearly outperforms all other filters. As seen in Figure 3, the RMDX-MD-RobKF filter
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significantly improves over the MD-RobKF filter especially in the range of mid-sized outliers

and shows only minimal performance gains for large-sized outliers where performance of the

MD-RobKF filter is already close to optimal.

When it comes to the observed failure rates shown in the bottom panel of Figure 3 and

reported in Panel B of Table 2, the filters perform similarly to their RMSE performance. The

KF and the RobKF filters perform the worst and are clearly dominated by the MD-RobKF

filter and RMDX-augmented filters. Similar to the case of iid contamination, the biggest gains

attributed to RMDX-augmentation of the supervised MD-RobKF filter can be observed for

small and middle-range contamination levels.

An inspection of the optimal randomization rates β minimizing each filter’s RMSE,

presented in Figure 4, shows that the optimal values are markedly lower for the

RMDX-augmented KF and RobKF filters when compared to the case of iid outliers, with

optimal values of β decreasing with the magnitude of contamination going up. Among

these filters, the RobKF filter shows the most drastic drop in optimal β when compared

to those in the iid case for all contamination levels. The more extreme randomization of

missing data helps in somewhat alleviating the lack of robustness of the RobKF filter when

outliers are clustered. The drop in the optimal missing data randomization level for the

RMDX-MD-RobKF filter is not as extreme and is more significant for the most challenging

region of mid-sized outliers with only marginal benefit from randomization for larger-sized

outliers.
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Figure 3: RMSE and failure rates as a function of contamination size for patch-contaminated
observations. The values are computed for the KF, RobKF, MD-RobKF, RMDX-KF, RMDX-RobKF and
RMDX-MD-RobKF filters with β minimizing each filter’s RMSE for a given contamination size.
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Table 2: Filter-optimized RMSEs and failure rates at 10% level for patch-contaminated data.

Contamination coefficient
Filter -40 -20 -10 -5 0 5 10 20 40

Panel A: RMSEs
KF 20.113 10.212 5.389 3.182 1.922 3.120 5.315 10.135 20.035

RobKF 5.355 4.851 4.012 3.026 1.922 2.937 3.959 4.818 5.332
MD-RobKF 1.951 1.986 2.220 2.493 1.922 2.488 2.221 1.978 1.942
RMDX-KF 2.323 2.295 2.287 2.244 1.922 2.237 2.287 2.293 2.318

RMDX-RobKF 2.261 2.260 2.248 2.226 1.922 2.216 2.243 2.257 2.258
RMDX-MD-RobKF 1.949 1.973 2.061 2.124 1.922 2.125 2.054 1.965 1.940

Panel B: Failure Rates
KF 0.163 0.161 0.157 0.153 0.100 0.151 0.156 0.160 0.164

RobKF 0.157 0.157 0.155 0.153 0.100 0.151 0.154 0.155 0.156
MD-RobKF 0.103 0.109 0.131 0.146 0.100 0.144 0.128 0.107 0.102
RMDX-KF 0.109 0.106 0.104 0.112 0.100 0.111 0.104 0.107 0.109

RMDX-RobKF 0.107 0.107 0.112 0.108 0.100 0.118 0.112 0.114 0.107
RMDX-MD-RobKF 0.103 0.106 0.112 0.112 0.100 0.112 0.111 0.105 0.102

Figure 4: Opitmal β minimizing each filter’s RMSE as a function of contamination size for patch-contaminated
observations. The values are computed for the RMDX-KF, RMDX-RobKF and RMDX-MD-RobKF filters.
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4. Empirical Illustration: Inflation forecasting

To illustrate the empirical performance of the robust supervised and unsupervised filters in

filtering and forecasting we choose a well-known setting from the time-series literature on

extracting inflation trends where the use of standard state-space models is known to suffer

from the presence of clustered measurement outliers. This time-series setting offers an ideal

real-world testing setup allowing us to compare the empirical performance of the proposed

robust filters in forecasting when applied to standard state-space models.

A large part of the literature on inflation forecasting has considered alternative

econometric approaches to estimating inflation trends based on time series modelling of

officially released price index data.3 Stock and Watson (2007) and Stock and Watson (2016)

provide compelling evidence for time-variation in the precision of inflation rate measurements

as well as the presence of additional persistent measurement distortions due to outliers.

Inspired by these findings, we consider the ability of our robust filtering approach to

successfully guard against the impact of inflation measurement imperfections without the

need to explicitly model them for the purposes of improved forecasting of long-run inflation

trends. What makes such real-data applications especially challenging are unknown model

parameters that also need to be estimated. If parameters were known and set to true values,

they would provide a natural anchor for the Huberized filters in limiting the impact of

outliers on state estimation. Hence, if a filter is unable to perform well in the estimation of

parameters, it is also likely to fail to detect outliers.

4.1 Models and Filters

We consider three model specifications: the standard unobserved components model (UC)

with a random walk inflation trend, an unobserved components model with autoregressive

3 For a literature survey on inflation forecasting see for example Faust and Wright (2013).
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inflation trend and fixed mean at the long-run inflation target of 2% (ARMF), and an

unobserved components model with autoregressive inflation trend (AR) with unknown mean.

The first two models can be seen as constrained versions of the AR model:

xt|xt−1, θ ∼ g(xt|xt−1) = N(µ + ρ(xt−1 − µ), σ2
x) (11)

yt|xt, θ ∼ f(yt|xt) = N(xt, σ
2
y) (12)

where ρ = 1 for the UC model, ρ ∈ (−1, 1) and µ = 2% for the ARMF model, and ρ ∈ (−1, 1)

for the AR model.4,5 The model observations are given by yt that is the annualized change

in the log price-level (PCE) at quarter t. We estimate the above model with the same

aggregate PCE price index quarterly data series (PCE-all) used in Stock and Watson (2016)

from 1960Q1 to 2015Q1 with a forecast evaluation period set to 1990Q1-2015Q1, in order to

directly compare with the more recent UCSVO model presented in that paper.6

We estimate all models using maximum likelihood estimation with expanding window

using PCE inflation data from 1960Q1 to 2015Q1 and with no look-ahead, i.e., parameter

estimates and state estimates at time t depend only on observations Yt = (y1, y2, . . . , yt).

The estimation starts from 1979Q1. We consider all studied filters: the KF, the Rob-KF,

the supervised MD-RobKF, and their extensions using our RMDX method for randomized

missing data substitution. We re-estimate each model-filter pair given different values of

β ∈ {0.05, 0.1, . . . , 1} (if a filter is RMDX-augmented) and/or different values of the Huber

threshold κ = (κ1, κ2, κ3,∞).7

To better illustrate how model estimates differ across filters, the parameter estimates

4 Note that the mean µ is not estimated in the UC model.
5 We set the mean of the ARMF model at 2% which is an inflation target in the United States maintained

by the Federal Reserve for many years (see Federal Reserve Board (2015)).
6 We thank Stock and Watson (2016) for making publicly available the data and program codes necessary

for replicating their results.
7 In our application we set κ1 = 5.67, κ2 = 7.63, and κ3 = 11.34, which coincide with Huberization at

levels of 90%, 95%, and 99% for a choice of unconditional variance of x implied by σx = 0.8 and ρ = 0.99.
We found points within such grid to produce viable estimation results. There is no Huberization with
κ = ∞.
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for the UC model estimated with representative types of filters are shown in Figure 5 (top

two panels). It is evident that the highest values of volatilities σx and σy are estimated with

the standard Kalman filter followed by the RMDX-KF filter that allows for missing data

randomization.8 The plots suggest that for the same level of missing data randomization β

and Huberization κ, the parameter estimates can differ significantly across all studied filters.

Overall, the lowest values of volatility estimates are produced by the RMDX-MD-RobKF

filter consistent with its superior ability to suppress the impact of outliers also found in

our simulation study. Most importantly, the measurement volatility estimates σy based on

the RMDX-RobKF and the RMDX-MD-RobKF filters start to deviate significantly starting

from the 2008 financial crisis suggesting a large number of clustered outliers above the Huber

threshold that are accounted for by the supervised MD-RobKF filter.

To further illustrate how the choice of filters impact the estimation of latent states, we

compare the filtered mean from the original UC model using the same pool of representative

filters. As shown in Figure 5 (bottom panel), without applying missing data randomization

the filtered mean given by the standard KF filter visually overfits the observed inflation

in each quarter. On the other hand, the filtered mean produced by the RMDX-KF filter

appears to follow a smoother path which better tracks the long-run trend of the process.

Our proposed RMDX-MD-RobKF filter even further smooths the estimates over time with

greatly reduced impact of visually clustered extreme observations towards the end of the

sample in the post-2000 period. Hence, these results support our main finding in Section 3

that our preferred RMDX-MD-RobKF filter tends to be most effective in guarding against

distortions by both i.i.d. and clustered outliers.

8 We choose a sufficiently small value of β = 0.25 across all unsupervised filters augmented with our RMDX
method to demonstrate filter performance with significant extent of missing data randomization. We
also pick a value of κ = 5.67 that implies significant Huberization level.
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Figure 5: Expanding window maximum likelihood parameter estimates of σx and σy for the Unobserved
Components (UC) model of Stock & Watson (2007) using PCE inflation data from 1960Q1 to 2015Q1 (top
two panels). The estimation starts at 1979Q1. The presented estimates are produced with the standard KF
filter with no RMDX (β = 1, dashed red), the RMDX-KF filter (β = 0.25, dashed green), the RMDX-RobKF
filter (β = 0.25, dashed blue) and the RMDX-MD-RobKF filter (β = 0.25, solid black). Filtered mean
estimates are produced given MLE-estimated parameters (bottom panel). The plot shows filtered mean
estimates of the standard KF filter with no RMDX (β = 1, dashed red), the RMDX-KF filter (β = 0.25,
dashed green), the RMDX-RobKF filter (β = 0.25, dashed blue) and the RMDX-MD-RobKF filter (β = 0.25,
solid black) applied to the UC model. The black dots represent the observed log-quarterly inflation.
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4.2 Inflation Forecasting Performance

We compare the Mean Squared Forecasting Errors (MSFEs) of the UC, ARMF and

AR models estimated with the standard KF, RobKF and MD-RobKF filters either

non-augmented (β = 1), or augmented with RMDX, as discussed in the previous section.
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Following Stock and Watson (2007) and Stock and Watson (2016), we set as a forecast

target the average inflation 4-, 8-, and 12-quarters ahead and consider the forecast period

starting from 1990Q1 up to 2015Q1, evaluating forecast performance based on the same

MSFE criterion they use. In order to avoid look-ahead bias, we design our analysis such

that it does not use any future observations to determine model parameters, states, the

randomization parameter β and Huberization constant κ when forecasts are formulated. We

first estimate all models given each filter using expanding windows for all time periods t and

for all considered values of β and κ. We then formulate optimal strategies for the optimal

choice of the randomization rate β and Huber threshold κ given all observations Yt available at

time t and hence all associated recursive forecasts for each model, filter and forecast horizon.

The first strategy minimizes mean squared forecast errors available up to time t, formulated

recursively, of average inflation with horizon h, over all possible pairs of (β, κ). We denote

such strategy as (Optimal, Optimal). The second strategy denoted as (Optimal, κ) minimizes

the same mean squared forecast errors at each time t over β but given a value of κ. The third

strategy that we denote as (β = 1, Optimal) minimizes the mean squared forecast errors over

values of κ, given a value of β = 1, effectively producing optimal forecast strategy for each

filter without RMDX enhancement. Given optimal strategies, we formulate out-of-sample

forecasts at each time t for each model, filter and horizon using only information available

up to time t.

In Table 3 we present the MSFEs calculated for each model, filter and optimal strategy

for setting β and/or κ. It is evident that the standard KF filter performs worst across all

models and horizons and is closely followed by the RobKF and MD-RobKF filters (β = 1).

In general, RMDX-augmented filters produce significant improvements irrespective of the

model and strategy used to choose the (β, κ) pair. As shown by the underlined MSFE values

that denote the minimum MSFEs for each model and horizon, the RMDX-MD-RobKF filter

is the best performing for the ARMF and AR models for the (Optimal, Optimal) strategy

or κ1 = 5.67, a significant size of the Huber threshold.
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It is also worth noting that the ARMF model performs best across all forecast horizons.

Since the mean of inflation is difficult to be estimated due to high persistence and short

sample, fixing it may be more advantageous in providing model flexibility in comparison

to the UC model. On the other hand, the AR model requires an estimation of the mean

that translates into worse out-of-sample performance. Nevertheless, the RMDX-MD-RobKF

filter contributes to the biggest relative improvements for the AR model, when compared

to other filters, resulting in performance not far from the ARMF model. The performance

gains from applying our RMDX method with randomized missing data substitution as well as

our MD-RobKF filter with supervised missing data substitution increase with longer forecast

horizons, as they depend more on the robust estimation of parameters and dynamics of the

system.

For comparison, we consider also two existing benchmark models from the prior

literature. The first approach, which we denote as UC-T, follows Harvey and Luati (2014)

in replacing the Gaussian measurement in equation (12) with a scaled t−distribution.

The second approach is the unobserved components model with stochastic volatility and

outlier-adjustment (UCSVO) proposed by Stock and Watson (2016). The UCSVO model also

minimizes the detrimental impact of outliers by subjecting them to particular distributional

assumptions while also allowing for stochastic volatility. We report the performance of these

models in the bottom two rows of Table 3. Our findings indicate that both the ARMF and AR

models estimated with the preferred RMDX-MD-RobKF filter produce lower MSFEs than

the UC-T model for all forecast horizons. The models also perform significantly better than

the UCSVO model at the longer 8 and 12 quarter horizons, and the ARMF model performs

comparably to the UCSVO benchmark for the shortest forecast horizon of 4 quarters also

when using the RMDX-MD-RobKF filter.9

9 It is important to note that the MSFE results for the UCSVO model reflect informative priors on the
parameters governing the distribution of outliers, possibly affecting filtering and forecasting performance.
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Table 3: MSFE comparison for different considered state space models for extracting inflation trends
estimated and filtered with KF, RobKF and MD-RobKF filters either without RMDX (β = 1), or augmented
with RMDX using β optimized (optimal) recursively to different forecasting horizons and using Huber
threshold either preset (κ) or optimized (optimal). The considered forecast horizons are: four-quarter (Q4),
eight-quarter (Q8) and twelve-quarter (Q12). The underlined values denote the minimum MSFE for each
column. The last two rows report the MSFEs for the UC-T and UCSVO benchamrks described in the text.

Filter Specifications 4-Quarter 8-Quarter 12-Quarter

Type RMDX κ UC ARMF AR UC ARMF AR UC ARMF AR

KF β = 1 - 1.651 1.515 1.658 1.257 1.011 1.345 1.163 0.831 1.366

KF Optimal - 1.398 1.240 1.559 1.024 0.733 1.350 0.866 0.509 1.364

RobKF β = 1 Optimal 1.651 1.515 1.658 1.257 1.011 1.345 1.163 0.831 1.366

RobKF Optimal κ1 1.364 1.210 1.550 0.990 0.679 1.294 0.842 0.488 1.356

RobKF Optimal κ2 1.382 1.238 1.575 0.997 0.702 1.346 0.868 0.498 1.370

RobKF Optimal κ3 1.403 1.239 1.560 1.029 0.732 1.323 0.865 0.489 1.359

RobKF Optimal Optimal 1.367 1.231 1.569 0.991 0.677 1.316 0.858 0.488 1.357

MD-RobKF β = 1 Optimal 1.607 1.484 1.602 1.178 0.961 1.272 1.088 0.787 1.294

MD-RobKF Optimal κ1 1.337 1.131 1.175 0.959 0.526 0.647 1.203 0.404 0.480

MD-RobKF Optimal κ2 1.315 1.177 1.451 0.924 0.653 1.081 0.798 0.446 1.169

MD-RobKF Optimal κ3 1.392 1.200 1.536 1.014 0.699 1.343 0.850 0.500 1.363

MD-RobKF Optimal Optimal 1.319 1.131 1.175 0.925 0.526 0.647 1.199 0.404 0.480

Benchmarks 4-Quarter 8-Quarter 12-Quarter

UC-T (β = 1) 1.41 1.13 1.01

UCSVO (β = 1) 1.09 0.81 0.69
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5. Summary and Conclusions

In this paper we propose two complementary methods for enhanced robust filtering and

forecasting: supervised missing data substitution (MD) upon exceeding a Huber threshold,

and unsupervised missing data substitution via exogenous randomization (RMDX). We show

that both missing data substitution methods improve outlier-robust filtering and foreacasting

in state-space models, especially in empirically relevant cases where the optimality of existing

robust filters may not hold due to violating assumptions on the outlier structure.

On the theory side, we design our supervised method, MD, to improve performance of

existing Huber-based linear filters known to lose optimality when outliers of the same sign

are clustered in time rather than arriving independently. The unsupervised method, RMDX,

further aims to suppress smaller outliers whose size may fall below the Huber detection

threshold. To this end, RMDX averages filtered or forecasted targets based on measurement

series with randomly induced subsets of missing data at an exogenously set randomization

rate. This leads to regularization and bias-variance trade-off as a function of the missing data

randomization rate, which can be set optimally using standard cross-validation techniques.

In terms of empirical validation, we show that the proposed methods for missing

data substitution are easy to implement and most effective when combined together, as

documented by consistently favorable performance of our combined RMDX-MD-RobKF filter

in controlled Monte Carlo experiments and a real-world application to extracting inflation

trends known to suffer from the presence of clustered measurement outliers.

Looking forward, missing data substitution for enhanced robust filtering offers

promising avenues for further exploration on both the theory and empirical side. Particularly

intriguing in this regard is that it offers a time-series extension of bagging in the spirit of

Breiman (1996) and extends also the rational inattention ideas of Sims (2003) and Sims

(2011) based on purely statistical loss instead of economic loss underpinnings.
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Appendix A Proof of Proposition 1

Proof. The indices of i = 1, 2, ...,
(
t
k

)
of all indicator paths {Ci

t ∈ {0, 1}t : |{s : cis = 1}| = k}

can be partitioned into two disjoint subsets I0 = {i : cis = 0 for all s ∈ M} and I1 = {i : cis =

1 for some s ∈ M} based respectively on whether the retained k observations by Ci
t contain

outliers or not. Observe that |I0| =
(
t−r
k

)
and |I1| =

(
t
k

)
−
(
t−r
k

)
. For brevity of notation, all

F-filtered states and parameters estimated for indicator path Ci
t , (XF

T , θ
F |Yt, C

i
t), are denoted

as (X i
T , θ

i). This leads to the following expression for the bias of the RMDX filtered and

forecasted states:

Eth̄(XT , θ|β) − Eth(XT , θ) =
1(
t
k

)∑
i

Eth(X i
T , θ

i) − Eth(XT , θ)

=
1(
t
k

)∑
i∈I0

Eth(X i
T , θ

i) +
1(
t
k

)∑
i∈I1

Eth(X i
T , θ

i) − Eth(XT , θ)

=

(
1(
t
k

)∑
i∈I0

Eth(X i
T , θ

i)︸ ︷︷ ︸
No bias:

(t−r
k

)
terms

−
(
t−r
k

)(
t
k

) Eth(XT , θ)

)

+

(
1(
t
k

)∑
i∈I1

Eth(X i
T , θ

i)︸ ︷︷ ︸
Bias:

(t
k

)
−

(t−r
k

)
terms

−
(
t
k

)
−
(
t−r
k

)(
t
k

) Eth(XT , θ)

)

The expression in the first bracket containing the no-bias terms would thus equal zero

by construction. From this it follows:
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∣∣Eth̄(XT , θ|β) − Eth(XT , θ)
∣∣ =

∣∣∣∣ 1(
t
k

)∑
i∈I1

Eth(X i
T , θ

i) −
(
t
k

)
−
(
t−r
k

)(
t
k

) Eth(XT , θ)

∣∣∣∣
=

1(
t
k

) ∣∣∣∣∑
i∈I1

(
Eth(X i

T , θ
i) − Eth(XT , θ)

)
︸ ︷︷ ︸(t

k

)
−

(t−r
k

)
terms

∣∣∣∣

≤
(
t
k

)
−
(
t−r
k

)(
t
k

) ·B

=

(
1 −

(
t−r
k

)(
t
k

) ) ·B −→ 0 as β =
k

t
→ 0 with t → ∞ ,

where the convergence to zero follows from

(
t−r
k

)(
t
k

) =
(t− r)(t− r − 1)...(t− r − k + 1)

t(t− 1)...(t− k + 1)
−→ 1 as r = o(t) with t → ∞

Remark. Similar reasoning implies that a degree of bias reduction can be attained also when

r = O(t) without anymore being able to guarantee that the bias would vanish asymptotically

even if it can still be reduced.
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Appendix B Proof of Proposition 2

Proof. The result follows directly from the following standard decomposition:

Et

(
h̄(XT , θ|β) − h(XT , θ)

)2
= Et

( (
h̄(XT , θ|β) − Eth̄(XT , θ|β)

)
+

+
(
Eth̄(XT , θ|β) − Eth(XT , θ)

)
+
(
Eth(XT , θ) − h(XT , θ)

) )2
= Et

(
h̄(XT , θ|β) − Eth̄(XT , θ)

)2
+

+
(
Et

(
h̄(XT , θ|β)

)
− Eth(XT , θ)

)2
+

+ Et

(
Eth(XT , θ) − h(XT , θ)

)2
The first term reflects the reducible variance of RMDX predictions by increasing β towards

its upper limit of 1 corresponding to full-sample inference. The second term reflects the

reducible bias of RMDX predictions by decreasing β as established by Proposition 1. The

last term reflects the DGP-implied irreducible variance of latent state predictions.
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