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1 Introduction

Instrumental variable (IV) identification of structural vector autoregressions (IV-SVARs)

has become increasingly popular to study dynamic causal effects in empirical macroe-

conomics, including those of monetary policy (Gertler and Karadi, 2015; Caldara and

Herbst, 2019; Jarociński and Karadi, 2020), oil price shocks (Känzig, 2021) or technol-

ogy shocks (Miranda-Agrippino et al., 2024) among many. At the same time, important

refinements to the methodology have been developed, building on the pioneering contri-

butions of Stock (2008), Stock and Watson (2018) and Mertens and Ravn (2013). This

includes the conduct of Bayesian inference (Arias et al., 2021; Giacomini et al., 2022), the

establishment of the connection to local projections and the robustness to noninvertibil-

ity (Plagborg-Møller and Wolf, 2021, 2022; Forni et al., 2023), and, importantly, robust

inference under weak identification (Montiel-Olea et al., 2021). Furthermore, Paul (2020)

introduced the possibility of allowing for time-varying parameters in a Bayesian setting,

while Inoue et al. (2024a,b) leverage the path estimator of Müller and Petalas (2010) for

a similar purpose.

In this paper we contribute to the literature of VARs identified by external instruments,

developing estimators for IV-SVARs with slowly changing parameters aimed at capturing

instabilities salient in macroeconomic relationships (Stock and Watson, 1996). While we

take no stance on what causes the parameter changes, often discussed factors include

institutional modifications, technological developments, economic trends such as global-

ization, or an evolving policy toolkit.

Our paper complements and extends previous work on time-varying IV-SVARs in various

ways. First, instead of assuming a Gaussian process for the model coefficients, we take

a nonparametric approach that relies on persistence and smoothness assumptions on the

pattern of parameter evolution. Formally, we build on classical kernel-based estimators

introduced by Giraitis et al. (2014) and adapted for IV estimation in Giraitis et al. (2021).
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Besides its nonparametric nature, our frequentist inference procedure for the model pa-

rameters and structural impulse response functions (IRFs) is computationally trivial and

scales easily to larger dimensions and sample sizes. Furthermore, unlike the Bayesian al-

ternative, inference can be robustified to account for potentially weak identification and

easily handles very persistent time-series.

Second, we provide results for two estimators that cater to different needs of the re-

searchers, namely, (1) the classical IV-SVAR and (2) the internal instrument VAR esti-

mator proposed by Plagborg-Møller and Wolf (2021). Under shock invertibility of the

model, the IV-SVAR may be a powerful device, as it allows the researcher to back out the

structural shocks up to a known constant. Hence, it is possible to construct time-varying

IRFs that remain comparable over time in response to shocks of constant scale. Shock

invertibility can be tested. If rejected, it is still possible to rely on the internal instrument

estimator, which allows to estimate relative IRFs consistently in the absence of invert-

ibility. However, given that the shock scale remains unknown in the internal instrument

VAR, one cannot set a comparable shock size across time without further assumptions

on the relationship between the shock of interest and the external instrument (see Paul

(2020)).

Our main object of interest are IRFs. In order to conduct inference for the relevant

quantities, we proceed in two steps. First, we derive the asymptotic theory for the corre-

sponding reduced-form parameters that characterize the joint dynamics of the endogenous

time series and the external instrument. We then either rely on an application of the

delta method or follow Montiel-Olea et al. (2021) in constructing confidence sets via an

inversion of the Anderson Rubin test statistic. The latter has the advantage of providing

confidence-set robustness to a situation in which the instrument is only weakly correlated

with the shock of interest, see, for example, Staiger and Stock (1997). This feature can be

particularly important when a smaller bandwidth of the kernel estimator lowers the effec-
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tive sample size considerably, even in larger sample sizes. Both methods are accompanied

by closed-form solutions that allow for computationally efficient implementation.

In order to understand the finite sample properties of the proposed method, we include

a Monte Carlo exercise. Here, we calibrate a data-generating processes based on time-

varying estimates of the global oil market VAR by Kilian (2009). We are able to obtain

satisfactory empirical coverage if the evolution of parameters is sufficiently smooth, par-

ticularly for the weak-IV robust confidence sets. When selecting the bandwidth with

a data-driven method that targets out-of-sample model fit, we document only a small

deterioration in empirical coverage.

We illustrate the methodology revisiting estimates of the transmission of oil supply news

shocks on US industrial production (IP). Building on Känzig (2021), we study a time-

varying IV-SVAR that includes monthly macroeconomic variables for the global crude-oil

market, as well as US mining- and manufacturing IP. For identification, the model relies on

an external instrument that leverages futures price movements around OPEC production

quota announcements. A constant parameter model suggests that these shocks transmit

as a cost-push shock to the US economy, where manufacturing production declines with

increasing real oil prices. However, our methodology reveals strong time-variation in the

estimated impulse response functions, which seems to align with the shale-oil revolution.

US mining output, which includes extraction of oil- and gas, reacts more strongly and

quickly nowadays than in the past. Furthermore, US manufacturing output no longer

declines, challenging that the oil-market specific shock still transmits as cost-push shock

to the US. Our finding complement recent evidence presented in Bjørnland and Skretting

(2024) on the time-varying impact of oil-price shocks. However, in contrast to that paper,

we identify an oil-market specific shock by instrumental variables instead of exclusion

restrictions, and use the proposed kernel based methods instead of Bayesian techniques.
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Related Literature

Our paper builds on the seminal work of Cogley and Sargent (2005) and Primiceri (2005)

who introduced TPV into VARs by letting coefficients evolve according to a random

walk in a Bayesian setting. Paul (2020) extends their framework to achieve identification

of IRFs by external instruments, including the instrument as a regressor. Inoue et al.

(2024a,b) also estimate time-varying IRFs identified by IV, but rely on the frequentist

path estimator of Müller and Petalas (2010). While this allows for less prior dependence,

the underlying implementation still relies on a Gaussian random walk assumption to

obtain point estimates and standard errors.

Our methodological approach is distinct from these papers along various dimensions.

First, we rely on an entirely frequentist, nonparametric approach that leverages kernel

estimators. This approach has several practical advantages. First, it avoids a parametric

choice for the law of motion underlying the SVAR parameters and instead relies on

nonparametric smoothness conditions. Second, it is computationally simple and can

handle very large datasets as well as persistent time series. In such circumstances, existing

methods may struggle as they require to loop trough each observation and potentially

need to deal with non-stationary draws implying explosive IRFs. Third, similar to a

constant parameter VAR, our framework provides very simple formulations for standard

errors. We leverage those to conduct robust inference valid under weak instruments (see

also Inoue et al. (2024a)). Finally, unlike previous papers, we cover both the standard

IV-SVAR model as well as the internal IV estimator (Plagborg-Møller and Wolf, 2021).1

The theory behind the TVP kernel estimators in IV-SVARs largely builds on earlier

work of Giraitis et al. (2014), Giraitis et al. (2018) and Giraitis et al. (2021). However,

our paper provides additional results that are required to accommodate identification

1The estimators by Paul (2020) and Müller and Petalas (2010) are compared with our proposal in
Appendix E, where we find that with simulated data they perform similarly, while with actual data our
method seems better capable of handling very persistent time series.
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via external instruments, including the asymptotic distribution of the covariance matrix

estimator, the construction of confidence sets, and the joint distribution of neighboring

estimators. The joint distribution allows for inference of IRFs that are comparable over

time when studying relative IRFs in the internal instrument VAR.

We note that we are not the first to leverage kernel-based estimators to introduce TVP

into VARs, see e.g. Kapetanios et al. (2019) and Hipp (2020). However, unlike these

papers we focus on external instrument identification. Finally, we would also like to relate

our paper to Amir-Ahmadi et al. (2023) who also allow for a time-varying relationship

between the instrument and the structural shock of interest. Unlike their paper, however,

we allow the IRFs to be time-varying.

Outline

The paper is organized as follows. Section 2 develops the methodology for kernel-based

inference in TVP IV-SVARs. Section 3 presents results of Monte Carlo simulations.

Section 4 studies the transmission of oil supply news shocks on US industrial production,

and section 5 recapitulates. Proofs and additional empirical results are gathered in the

online supplementary material. This also includes a comparison of our methodology to a

Bayesian- and a path estimator.

2 Methodology

In this section, we start revisiting instrumental variable identification of Impulse Response

Functions in a constant-parameter SVARs. We then generalize the model towards time-

varying coefficients, discuss normalization of the shock size across time, and inference of

reduced form quantities via kernel based methods. Finally, we show how the results can

be leveraged to compute confidence sets of IRFs.

6



2.1 Identification of VAR impulse response functions via external
instruments

Consider the n-variate SVAR(p) model given by:

yt = ν + A1yt−1 + A2yt−2 + . . .+ Apyt−p + ut, ut ∼ (0,Σ) (1)

ut = Bεt, εt ∼ (0, I), (2)

where yt = (y1t, . . . , ynt)
′ is a n× 1 vector of endogenous time series, ν is a n× 1 vector

of intercepts, Ai, i = 1, . . . , p are n × n matrices of autoregressive coefficients and the

error terms ut and εt are, for simplicity, assumed to be i.i.d. white noise with covariance

matrix Σt and In respectively. Equation (1) describes the reduced form VAR dynamics

of yt as a function of lagged realizations and a vector of n × 1 error terms ut with full

covariance matrix Σ. Equation (2) relates the prediction errors ut to n × 1 structural

shocks εt whose elements are orthogonal and standardized to unit variance. The n × n

matrix B is the contemporaneous impact matrix and reflects the immediate responses

of the variables yt to the structural shocks εt. For the moment, we assume that the

model is stable, which implies that the SVAR(p) has a MA(∞) representation given

by yt = µy +
∑∞

j=0 Cj(A)Bεt−j = µy +
∑∞

j=0Θjεt−j, where µy = E(yt) and the n × n

coefficient matrices Θj = Cj(A)B, are the structural impulse response functions (IRFs).

The reduced form MA(∞) matrices Cj(A) can be computed recursively from Cj(A) =∑j
i=1Cj−1(A)Ai with C0(A) = In and Ai = 0 for i > p.

The main focus of this paper is the computation of impulse responses to a single shock.

Without loss of generality, let this shock be ordered first in the system (ε1,t) and call it

the target shock. Corresponding IRFs are then given by picking elements in the MA(∞)

matrices:
∂Yi,t+k
∂ε1,t

= λk,i = e′iCk(A)Be1, (3)

where ei denotes the ith column of the identity matrix In. Hence, equation (3) defines
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the IRFs λk,i as the dynamic effect a unit standard deviation shock in ε1t on variable i,

k periods ahead.

It is important to note that, without further assumptions, IRFs are not identified. The

reason is that the same reduced form dynamics of the VAR forecast errors ut = Bεt are

obtained for any alternative structural model B̃ = BQ where Q is an orthogonal rotation

matrix ({Q : Q′Q = In, Q
′ = Q}). To see this, note that both models imply the same

reduced form covariance matrix Σu = BB′ = BQQ′B = B̃B̃′. In this paper, we rely on

an identification strategy that involves an instrumental variable zt for the target shock

(Stock and Watson, 2012; Mertens and Ravn, 2013).

Assumption 1 (External Instrument). Let zt be an instrument for the first shock. The
stochastic process {(εt, zt)}∞t=1 satisfies:

1. E(ztε1,t) = α ̸= 0,

2. E(ztεj,t) = 0 for j ̸= 1.

Assumption 1 allows to identify b1 = Be1 up to scale and sign normalization, since:

Γ = E (utzt) =B

 E[ε1,tzt]

E[ ε2:n,tzt]

 =

[
b1 b2

] α

0

 = αb1,

where ε2:n,t = [ε2t, . . . , εnt]
′. In words, the correlation between the external instrument

and reduced form prediction error is proportional to the first column of the impact matrix

b1.

In order to obtain interpretable magnitudes, there are two popular approaches to normal-

ize IRFs in IV-SVARs. The first is known as the unit shock standardization (Stock and

Watson, 2016) or relative IRFs. Here, the shock variance is re-normalized to yield IRFs

that increase the first variable by unity on impact (say b̃11 = 1). In that case, it holds

that Γ11 = E(ztu1,t) = α, implying that b̃1 = Γ/e′1Γ is the first column of the rescaled

impact matrix measuring the response to a target shock with unidentified standard de-

viation Var(ε̃1t) = b211. Corresponding IRFs as function of reduced form parameter are
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then given by:

λ̃k,i = e′iCk(A)Γ/e
′
1Γ. (4)

The second approach is to normalize the standard deviation of the shock to unit variance

(Var(ε1,t) = 1), yielding absolute IRFs. Here, one is required to incorporate additional

information of the reduced form covariance matrix Σ to recover α and hence b1. Exploiting

invertibility of the model Σ = BB′ yields the following quadratic form:

Γ′Σ−1Γ = (αBe1)
′(BB′−1(αBe1) = α2.

Normalizing α > 0, one can back out b1 = Γ/α = Γ/
√
Γ′Σ−1Γ and define the absolute

IRFs as the following function of reduced form parameters:

λk,i = e′iCk(A)Γ/
√
Γ′Σ−1Γ. (5)

At this point, it is worth discussing a key difference between the two definitions of im-

pulse response functions: λ̃k,i does not rely on invertibility of the model, which is the

assumption that structural shocks can be recovered as a function of the VAR prediction

errors εt = B−1ut. As shown in Plagborg-Møller and Wolf (2021), augmenting the VAR

with the external instrument zt allows for consistent estimation of relative impulse re-

sponse functions λ̃k,i, even if invertibility does not hold. Specifically, for ỹt = [zt, y
′
t]
′, the

resulting internal instrument VAR model reads:

ỹt = Ã1ỹt−1 + Ã2ỹt−2 + . . .+ Ãpỹt−p + ũt, ũt ∼ (0, Σ̃), (6)

and robust relative IRFs are obtained by λ̃k,i = e′1+iCk

(
Ã
)
Γ̃/(e′2Γ̃t) for Γ̃ = e′1chol(Σ̃).

On the other hand, without invertibility it is no longer possible to identify absolute IRFs

(λk,i).2 As we will discuss in the next subsection, the ability to recover the shock up to a

known constant will be an important advantage when it comes to studying time-varying

2See Plagborg-Møller and Wolf (2022) for detailed analysis on how the shock can be set-identified,
however.
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impulse response functions that remain comparable over time.

2.2 Introducing time-varying coefficients

Introducing time-varying coefficients into the SVAR reads:

yt = A1tyt−1 + A2tyt−2 + . . .+ Aptyt−p +Btεt, εt ∼ (0, In) (7)

where Et(εt) = 0, Et(εtε
′
t) = In and Et(utu

′
t) = Σt = BtB

′
t. Also, let Γt = Et(ztut) and

update the IV assumption to the time-varying case:

Assumption 2 (External Instrument). Let zt be an instrument for the first shock. The
stochastic process {(εt, zt)}∞t=1 satisfies:

1. Et(ztε1,t) = αt ̸= 0,

2. Et(ztεj,t) = 0 for j ̸= 1.

At this point, one approach would be to impose a specific parametric assumption about

how time variation is generated, e.g. via a random walk, allowing for likelihood based

inference using the Kalman filter (Primiceri, 2005; Paul, 2020) or quasi likelihood methods

as Müller and Petalas (2010). Instead, in this paper we follow a nonparametric approach

along the lines of Giraitis et al. (2014, 2018), which assumes a bound on the degree of

time variation that can be allowed for in order to conduct valid asymptotic inference via

kernel-based estimators:

Assumption 3. Let βt = vec (At) for At = [A1t, . . . , Apt], σt = vech(Σt), and θt =
[β′
t,Γ

′
t, σ

′
t]
′. Then:

sup
j≤s

||θt − θt+j||2 = O
( s
T

)
, ||θt|| < ∞, for all t.

Assumption 3 states that the model parameters are bounded and that changes to those

parameters are restricted to be small. The rate is assumed to be of the order T−1 but

in previous work (see, e.g. Giraitis et al. (2018)), a relaxation to an order given by

T−γ, 0 < γ ≤ 2, has been shown to be feasible. Such an order is equivalent to a mild

Lipschitz condition on the smoothness of the parameters and is much milder then existing
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conditions in the time-varying literature. Note that, unlike most other existing work, it

is not assumed that parameters are smooth deterministic functions of time but, instead,

we place a restriction on their differences. For simplicity we assume that parameters are

a sequence of deterministic constants, though allowing for smooth stochastic processes

is also feasible. The theory in all existing work (such as, e.g., Giraitis et al. (2018)) has

been developed with a single rate of change for all parameter processes. As a result, we

align with this setting. Extending the analysis to different rates for different parameters is

possible but is outside the scope of the paper. Assumption 3 enables consistency and rate

results as presented in Theorem 1-3. The results are similar in nature to those presented

in, e.g., Giraitis et al. (2018). The assumption requires that the deviation in parameters

is shrinking with T , so the idea behind consistency is close to an infill asymptotic setup.

Under Assumption 3, Giraitis et al. (2018) show that the MA(∞) representation can be

expressed as:

yt =
∞∑
k=0

Ck(At)Btεt−k + o(1). (8)

Equation (8) states that, under assumption 3, the MA(∞) representation of the TVP-

SVAR is asymptotically given by that of a fixed-coefficient model, but replacing A and

B with their time-varying counterparts. Under the instrumental variables assumption 2,

time-varying IRFs to a shock of size one standard deviation are given by:3

λk,i,t = e′iCk(At)b1t = e′iCk(At)Γt/

√
Γ′
tΣ

−1
t Γt, (9)

where b1t = Bte1 is the first column of Bt. For the unit shock normalization, the corre-

sponding time-varying IRFs are:

λ̃k,i,t = e′iCk(At)Γt/e
′
1Γt, (10)

effectively measuring IRFs to a re-normalized target shock ε̃1,t with variance b211,t.

3Alternatively, one might pursue a simulation based approach to obtain a more accurate picture as
advocated in Koop et al. (1996), which is based on the exact MA(∞) representation.
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In a time-varying parameter VAR, the choice of IRF normalization is not just a matter

of preference. To unpack the differences, consider a toy model of supply and demand for

quantities and prices yt = [qt, pt]
′:

supply: qt = αtpt + σ1tε1t

εst

εdt

 ∼ (0, I2),

demand: qt = βtpt + σ2tε2t

where αt and βt are supply- and demand elasticities, respectively, while [σ1t, σ2t] are the

volatilities of the structural shocks. In this case, At =

1 −αt

1 −βt

, and

Bt = A−1
t diag([σ1t, σ2t]

′) =

−σ1tβt/(αt − βt) σ2tαt/(αt − βt)

−σ1t1/(αt − βt) σ2t/(αt − βt)

 .

Assume the availability of an instrument for the supply shocks. Then, the absolute IRFs

λk,i,t leverage estimates of Γt and Σt to identify b1t, the first column of Bt. This IRF is

a function of both, time-varying elasticities and volatilities facilitating interpretation by

holding constant the scale of the shock to unity throughout time. For example, in the

case of a monetary policy shock, this means that estimates of λk,i,t will not only reflect

variation in the elasticities but also shock volatility, which summarizes how successful a

central bank is in steering interest rates. This may be time-varying for many reasons, e.g.

the design of new policies or temporary policy constraints such as the zero lower bound.

Relative IRFs, on the other hand, yield Γt/e
′
1Γt =

(
1 1/βt

)
in our toy-model, and

hence only depend on the structural elasticities. In this case, the IRF corresponds to a

shock with a time-varying scale ε̃1t ∼ (0, σ2
1t (βt/(αt − βt))

2). Depending on the applica-

tion at hand, this might still be a very useful quantity to study. It is also worth noting

that unlike absolute IRFs, relative IRF does not depend on the shock volatilities. Hence,

smoothness as stated in Assumption 3 is not necessary for σt, and our inference proce-

dures for relative IRFs could be adjusted to allow for other forms of heteroskedasticity in
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structural shocks, e.g. as in Gonçalves and Kilian (2004), but we do not consider this in

the current paper.

Following the discussion in section 2.1, the computation of λk,i,t relies on shock invertibil-

ity and hence, may not always be an option for the researcher. However, when invertibility

is a concern, it is still possible to obtain relative IRFs to a fix shock size under stronger

assumption about the relationship between the external instrument and the target shock

(Paul, 2020). Specifically, assuming that E(ztε1t) = α is constant as in Assumption 1, all

the time-variation observed in Γ1,t = αb11,t can be attributed to differences in the scale

of the shock (b11,t). In that case, normalizing the IRFs to increase the first variable by

unity at a fixed time point tb is sufficient to obtain responses to a constant shock size

over time:

λ̃k,i,t,tb = e′iCk(At)Γt/e
′
1Γtb . (11)

Specifically, Γt/e′1Γtb = αb1t/(αb11,tb) = b1t/b11,tb measures the impact effect of the target

shock normalized to have variance b211,tb . Hence, although the shock volatility is still

unidentified, it is constant throughout the sample and hence remains comparable across

time. Note that this is generally not the case if αt itself was subject to time-variation.

Summing up our discussion, once time-variation is introduced into the model, a trade-

off arises. Under invertibility, an IV-SVAR allows to identify the scale of the shock

throughout the sample and study absolute IRFs of a constant shock size (λk,i,t). Whenever

invertibility does not hold, unit shock IRFs based on a internal instrument VAR may be

a useful alternative. While relative IRFs require less assumption on the smoothness of

shock volatilities, they requires stronger assumptions on αt to obtain (relative) IRFs

that remain comparable across time (λ̃k,i,t,tb). In practice, we therefore recommend to

pre-test for shock-invertibility. If there is no evidence against invertibility of the target

shock in a given application, proceeding with the IV-SVAR estimator may be preferable

as it requires minimal assumptions on αt. However, if shock invertibility is rejected,
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informative results under the stronger assumption αt = α may still be obtained based on

the internal instrument VAR. A pre-test for shock invertibility that can be readily applied

in a time-varying set-up is described in Plagborg-Møller and Wolf (2022). Specifically,

the testable prediction is that under invertibility of the shock, zt should not Granger

cause yt in an instrument augmented VAR.

2.3 Joint inference for the reduced form parameters

In order to conduct inference for λk,i,t and λ̃k,i,t,tb we proceed in two steps. We start

deriving the joint asymptotic distribution of kernel-based estimators of the reduced form

parameters At, Γt, Σt and Σtb , both for the IV-SVAR and internal instrument VAR. In

a second step, we construct confidence sets for the impulse responses either by the Delta

method or an inversion of the Anderson and Rubin test statistic.

Starting with the IV-SVAR given in equation (7), let βt = vec(At) and xt = [y′t−1, y
′
t−2, . . . , y

′
t−p].

Then, the kernel estimator is given by:

β̂t =

[
In ⊗

T∑
j=1

wt,j (H)xjx
′
j

]−1 [ T∑
j=1

wt,j (H) vec(xjy
′
j)

]
, (12)

Γ̂t =
1

H

T∑
j=1

wt,j (H) ûjzj, (13)

Σ̂t =
1

H

T∑
j=1

wt,j (H)ûjû
′
j, (14)

where ûj = yj−(In⊗x′
j)β̂t and wt,j (H) = K(|t−j|/H) is a Kernel function to ensure more

distant observations get discounted when forming the estimate at time t. To establish

theoretical properties of the estimator, we make the following two assumptions on the

error term and kernel:

Assumption 4. εt = (ε1t, · · · , εnt)′ is an iid process such that E[ε4i1] < ∞. zt is a
stationary, α-mixing process with exponentially declining mixing coefficients, such that
E[z41 ] < ∞. Further, E[y4i0] < ∞ for i = 1, · · · , n.

Assumption 5. K is a non-negative bounded function with a piecewise bounded deriva-
tive K̇(x) such that

∫
K(x)dx = 1. If K has unbounded support, we assume in addition
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that

K(x) ≤ C exp(−cx2), |K̇(x)| ≤ C(1 + x2)−1, x ≥ 0, for some C > 0, c > 0.

Concerning Assumption 4, two remarks are in order. First, as in previous work on time-

varying regressions using kernel estimators, we assume the errors to be iid processes.

Contemporaneous work by Giraitis et al. (2024a) shows that this can be relaxed to allow

for martingale difference processes. However, a rigorous treatment is technically demand-

ing and we do not think that, for the purposes of our analysis, much would be gained.

Second, Assumption 4 precludes the presence of serial correlation in the error term, and

the associated need for potential heteroskedasticity and autocorrelation robust (HAR)

corrections. We note three things in this context. First, it is reasonable to expect that

the presence of enough lags in the VAR model will soak up serial correlation. Second, one

can test for remaining residual correlation, although recent work by Giraitis et al. (2024b)

notes several problems with such tests, typically associated with over-rejection. Finally,

we are not aware of any rigorous work on HAR procedures for time varying models. Such

work would want to account for time variation in the correction and, while this is a very

interesting topic of research, we consider it beyond the scope of the current paper.

Concerning Assumption 5, one suitable choice that we adapt is the Gaussian kernel

Kj,t(H) ∝ exp
[
−1

2

(
j−t
H

)2], further normalized such that
∑

j wt,j = H. In Appendix A

we show that:

Theorem 1. [joint asymptotic normality of reduced form parameters in the TVP-IV-
SVAR] Under Assumption 3-5 and H = o(T

1
2 ) it holds that:

√
H

 β̂t − βt
Γ̂t − Γt

vech(Σ̂t)− σt

 d→ N (0, Vθt),

for Vθt = StΠww,tS
′
t and

St =

 In ⊗ Π−1
x,t 0 0

−
(
In ⊗ Πxz,tΠ

−1
x,t

)
I 0

0 0 Sσ

 ,
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for Πx,t = plimT→∞
1
H

∑T
j=1 wj,txjx

′
j, Πxz,t = plimT→∞

1
H

∑T
j=1wj,tzjxj,

Πww,t = plimT→∞
1
H

∑T
j=1w

2
j,tξjξ

′
j, ξj = [vec(xjuj)

′, (zjuj − Γ)′ , vec
(
u′
juj − Σt

)′
]′, and Sσ

such that vech(Σt) = Sσ vec(Σt).

It is worth mentioning that the bandwidth H assumed in Theorem 1 is strictly related to

the amount of time-variation permitted in Assumption 3. If a different rate is assumed

in Assumption 3, say T−γ rather than T−1, a different H should be used (the more

time variation, the smaller the optimal H). While our theoretical results imply certain

conditions for the bandwidth (H = o(T
1
2 )), it is reasonable to allow for larger bandwidths

in practice, for smaller sample sizes that are common in fields such as macroeconomics.

From a practical point of view, since γ is not known, a cross validation approach can be

used to select H. Towards the end of this section, we describe a simple procedure that

targets out-of-sample model fit for IV identified impulse response functions.

A second important comment is that, as mentioned, the way we model nonparametric

time variation follows GKY and it is different from the more common approach of as-

suming that the parameters change as a function (with at least a bounded derivative) of

t/T e.g. as in Dahlhaus (1997). Hence, the proof of the results and the conditions on the

optimal bandwidth differ from the usual ones.

Equivalent results can be obtained for the reduced form parameters of the time-varying

internal instrument VAR. For ỹt = [zt, y
′
t]
′, the underlying model reads:

ỹt = Ã1tỹt−1 + Ã2tỹt−2 + . . .+ Ãptỹt−p + ũt, ũt ∼ (0, Σ̃t), (15)

where β̃t = vec
([

Ã1t, . . . , Ãpt

])
and P̃t = chol(Σ̃t) is the Cholesky decomposition such

that P̃tP̃
′
t = Σ̃t. As discussed above, the main object of interest based on the internal

instrument VAR is λ̃k,i,t,tb = e′1+iCk

(
Ãt

)
P̃•1,t/(e

′
2P̃•1,tb), that is the relative IRF stan-

dardized to increase the first variable by unit on date tb. We start with results for the
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following estimator of time t reduced form coefficients:

ˆ̃βt =

[
In+1 ⊗

T∑
j=1

wt,j (H) x̃jx̃
′
j

]−1 [ T∑
j=1

wt,j (H) vec(x̃j ỹ
′
j)

]
(16)

ˆ̃Σt = H−1

T∑
j=1

wt,j(H)ˆ̃uj ˆ̃u
′
j, (17)

where ˆ̃uj = ỹj − (In+1 ⊗ x′
j)
ˆ̃βt. Joint asymptotic normality between the reduced form

parameters are then given as follows:

Theorem 2. [joint asymptotic normality of reduced form parameters in the TVP internal
instrument VAR.] Under Assumption 3-5 and H = o(T

1
2 ): define Π̃x,t = plimT→∞

1
H

∑T
j=1 wj,tx̃jx̃

′
j,

Π̃ww,t = plimT→∞
1
H

∑T
j=1w

2
j,tx̃jx̃

′
j,Πuu,uu,t = plimT→∞

1
H

∑T
j=1wj,t vec(ũjũ

′
j) vec(ũjũ

′
j)

′ ,
σ̃t = vech(Σ̃t) and Ln be the n(n + 1)/2 × n2 elimination matrix such that vech(A) =

Ln vec(A). Then, the estimators ˆ̃βt and ˆ̃σt are jointly asymptotically normal and asymp-
totically independent of each other. Their respective distributions are given by

√
H
(
ˆ̃βt − β̃t

)
d→ N

(
0, Σ̃t ⊗

(
Π̃x,t

)−1

Π̃ww,t

(
Π̃x,t

)−1
)
,

√
H
(
ˆ̃σt − σ̃t

)
d→ N

(
0, Ln+1Πuu,uu,tL

′
n+1 − σ̃tσ̃

′
t

)
.

Under an additional normality assumption for the errors, the asymptotic variance of

ˆ̃σt further reduces to 2D+
n+1

(
Σ̃t ⊗ Π̃uu,t

)
D+′

n+1, where Π̃uu,t = plimT→∞
1
H

∑T
j=1 w

2
j,tũjũ

′
j

and D+
n+1 = (D′

n+1Dn+1)
−1D′

n+1 for Dn+1 the duplication matrix such that vec(Σ̃t) =

Dn+1 vech(Σ̃t).

Given that estimates of λ̃k,i,t,tb are based on reduced form parameters at time t and tb,

the construction of corresponding confidence sets requires an expression for their joint

distribution. This is particularly relevant when tb and t are close, and estimates are

highly correlated by construction. Given that VAR slope and covariance parameters

are asymptotically uncorrelated, and given that only covariance estimates of tb are used

to construct λ̃k,i,t,tb , it’s sufficient to focus on the joint distribution of ˆ̃σt and ˆ̃σtb . The

following Corollary gives their asymptotic joint distribution.

Corollary 3. Let Assumptions 3-5 hold and H = o(T
1
2 ). Define wt(H) = [wt,1(H), . . . , wt,T (H)]′

17



and σ̃t,tb = vech(Σ̃t,tb). Let Πuu,uu,t,tb = plimT→∞
1
H

∑T
j=1 vec(ξ̃wj ξ̃

′
wj) vec(ξ̃wj ξ̃

′
wj)

′ for

ξ̃wj =
[
w

1/2
t,j (H)

(
ỹj − x̃jΘ̃t

)
, w

1/2
tb,j

(H)
(
ỹj − x̃jΘ̃tb

)]
.

Under these definitions, it follows that:
√
H
(
ˆ̃σt,tb − σ̃t,tb

)
d→ N

(
0, L2(n+1)Πuu,uu,t,tbL

′
2(n+1) − σ̃t,tbσ̃

′
t,tb

)
As above, under normality assumption of the errors, the asymptotic variance of ˆ̃σt further

simplifies to 2D+
2(n+1)

(
Σ̃t,tb ⊗ Π̃uu,t,tb

)
D+′

2(n+1), where Π̃uu,t,tb = plimT→∞
1
H

∑T
j=1 Ũ2Ũ

′
2 for

Ũ2 =
[
wt(H)⊗ (Ỹ − X̃Θ̃t), wtb(H)⊗ (Ỹ − X̃Θ̃tb)

]
and D+

2(n+1) = (D′
2(n+1)D2(n+1))

−1D′
2(n+1) for D2(n+1) the duplication matrix such that

vec(Σ̃t,tb) = D2(n+1) vech(Σ̃t,tb).

2.4 Inference for impulse response functions

Based on asymptotic results for the estimators of the reduced form parameters, we can

rely on standard methods to construct confidence sets for the object of interest, that are

the estimates of time-varying structural impulse response functions:

λ̂k,i,t = e′iCk(Ât)Γ̂t/

√
Γ̂′
tΣ̂

−1
t Γ̂t,

ˆ̃λk,i,t,tb = e′1+iCk

(
ˆ̃At

)
ˆ̃P•1,t/(e

′
2
ˆ̃P•1,tb),

where Ât, Γ̂ and Σ̂t are based on the IV-SVAR, while ˆ̃At,
ˆ̃P•1,t and ˆ̃P•1,tb are based on

the internal instrument VAR.

In this paper, we discuss two approaches to construct appropriate confidence sets, either

via the classical Delta method or an inversion of the Anderson Rubin (AR) test statistic

as in Montiel-Olea et al. (2021). The latter fixes α under the null hypothesis and hence

remains valid even under asymptotically weak instruments, that is if α → 0.

Starting with the Delta Method, its application yields that
√
H
(
λ̂k,t − λk,t

)
d→ N (0,Ωk,t),

where Ωk,t = Jk (βt,Γt, σt)VθtJk (βt,Γt, σt)
′. Here, Vθt denotes the joint distribution
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of the IV-SVAR reduced form parameters which we give in Theorem 1. Furthermore,

Jk (βt,Γt, σt) denotes the derivative of λk,t with respect to the reduced form parameters.

Similarly, for relative IRFs it is

√
H
(
ˆ̃λk,t,tb − λ̃k,t,tb

)
d→ N

(
0, Ω̃k,t,tb

)
,

where Ω̃k,t,tb = J̃k

(
β̃t, σ̃t,tb

)
Ṽθt,tb J̃k

(
β̃t, σ̃t,tb

)′
for Ṽθt,tb being elements of the joint asymp-

totic covariance matrix stated in Theorem 2 and Corollary 3, and J̃k() is the gradient

of Ω̃k,t,tb with respect to the reduced form parameters. Analytical formulas for both

gradients are derived in Appendix B.

As documented in Montiel-Olea et al. (2021) for relative IRFs, empirical coverage rates of

the Delta method can deteriorate quickly when the instrument is only weakly correlated

with the target shock. This may be particularly true in TVP models where the effective

sample size is fairly small. Hence, we also cover weak identification robust confidence

sets. Consider the (n+ 1)× 1 vectors L and the (n+ 2)× 1 vector L̃k,t:

Lk,t =

 Ck(At)Γt√
Γ′
tΣ

−1
t Γt

 , L̃k,t,tb =

Ck

(
Ãt

)
P̃•1,t

e′2P̃•1,tb

 ,

for which it holds that λk,i,t = (e′iLk,t)/(e
′
n+1Lk,t) and λ̃k,t,tb = (e′1+iL̃k,t,tb)/(e

′
n+2L̃k,t,tb).

To derive the AR confidence set, first note that an application of the Delta Method

implies that
√
H
(
L̂k,t − Lk,t

)
d→ N (0,ΩL

k,t) where ΩL
k,t depends on the covariance matrix

given in Theorem 1 and the gradient of Lk,t with respect to the reduced form parameters.

Similarly, a statement can be obtained for
√
H
(
˜̃Lk,t,tb − L̃k,t,tb

)
d→ N (0,ΩL̃

k,t,tb
) based on

the reduced form results for the internal VAR estimator.

Without loss of generality, let us focus on the confidence set for λk,i,t. The null hypothesis

λk,i,t = λ0 implies e′iLk,t − λ0e
′
n+1Lk,t = 0, a linear restriction on Lk,t (see also Fieller

(1944)). Following Montiel-Olea et al. (2021), a Wald Test statistic can be set up as

q(λ0) =
H(e′iL̂k,t−λ0e′n+1L̂k,t)

2

ω̂ii−2λ0ω̂i,n+1+λ20ω̂n+1,n+1
where ω̂ij is the ijth element of Ω̂L

k,t. Further inversion
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yields the AR confidence set of coverage 1 − a, given by CSAR{λk,i,t|q(λk,i,t) ≤ χ2
1,1−a}.

The inequality q(λk,i,t) ≤ χ2
1,1−a is quadratic in λk,i,t and can be solved in closed form.

For details, including the gradients necessary to obtain ΩL
k,t, we refer to Appendix B.

A few properties are worth mentioning at this point. First, even in a weak instrument

case where αH = a/
√
H for some fixed a, the AR CS remains valid. The reason is that the

Wald statistic fixes λk,i,t under the null hypothesis and hence does not require consistent

estimates thereof for its validity. Second, in the strong instrument case, Montiel-Olea

et al. (2021) prove that the AR confidence set converges to Delta Method implied con-

fidence intervals. For those reasons, we generally recommend to use the weak-IV robust

confidence intervals.

Third, we note that for relative IRFs λ̃k,t,tb , both the Delta method and AR CS depend

on the choice of tb. Montiel-Olea et al. (2021) show that the 100%(1− a) AR confidence

set is finite only if the Wald test statistic for e′2P̃•1,t is above its corresponding critical

value (χ2
1,1−a). For this reason, we recommend setting tb to a point in the sample where

the Wald-test statistic is very high, which can be done fairly automatic way.

Finally, we note that this paper covers the simplest case of a single instrument identifying

one target shock. However, the reduced form results hold for a more general case of k

instruments. Hence, it is possible to extend the results in this subsection to the case of r

target shocks and r instruments, which requires additional restrictions, e.g. as employed in

Mertens and Montiel Olea (2018). We point the interested reader to the supplementary

appendix of Montiel-Olea et al. (2021), discussing how robust confidence sets can be

constructed in this case.

2.5 Bandwidth selection

To control for the amount of time-variation in any given application, the user is required

to set a bandwidth H prior to estimation. We acknowledge that there are several ways

this can be done. First, similar to a Bayesian approach, one might take on off-model

20



information about how much time-variation is reasonable to see in Impulse Response

Functions over a certain time span, and select a bandwidth accordingly.

In this paper, however, we pursue a purely data-driven approach selecting a bandwidth H

that provides the best out-of-sample model fit. Acknowledging that IRFs are conditional

forecasts, we propose to evaluate the models out-of-sample predictive performance com-

paring data realizations yt+h to conditional forecasts ŷt+h(H) = Et[yt+h|ỹ1, . . . , ỹt, zt+1, . . . , zt+h].

Just like the IRFs identified by IV, this is a function of both the VAR slope parameters Ãt

and covariance matrix Σ̃t in the instrument-augmented VAR (Waggoner and Zha, 2003).4

Based on those forecasts, we propose the following objective function to choose the band-

width:

min
H

n∑
i=1

wi

T−h∑
t=Ts

hm∑
h=1

(yi,t+h − ŷi,t+h(H))2 ,

where Ts is the time in the sample where the pseudo out-of-sample exercise starts, hm

is the maximum forecast horizon to be included in the evaluation, and wi is a variable

specific weight to account for differences in scale. For the latter, we simply use the inverse

variance of AR(1) residuals in each variable.

3 Monte Carlo Simulations

In the following, we study the finite sample properties of the proposed inference procedure

for time-varying impulse response function. As we expect, the performance of confidence

sets will depend on the effective sample size, the speed of time-variation underlying the

SVAR coefficients and the instrument strength. Overall, our findings suggest that the

asymptotic theory provides a reasonable approximation in finite samples.

4Note that to evaluate the conditional expectations based on the information set up to time t, we
rely on modified estimators ˆ̃At|t(H) and ˆ̃Σt|t(H) defined as in equation (16)-(17), but based on truncated
kernels for which we set wt,j(H) = 0, j > t.
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3.1 Data Generating Process

In order to simulate from a practically relevant Data Generating Process (DGP), we

follow Montiel-Olea et al. (2021) and calibrate a time-varying parameter VAR model

based on actual macroeconomic data. Building on the oil market literature (Kilian, 2008,

2009), we fit the TVP VAR kernel estimators to a monthly trivariate dataset of size

T = 377. The dataset includes the change in (log) global crude oil production, an index

for real economic activity and the log of real oil price. A total of three lags are considered,

yielding the following estimated structural VAR model:

yt = Ât(H)xt + chol
(
Σ̂

1/2
t (H)

)
Qεt, εt ∼ N(0, I),

where the bandwidth is set to H = 100 and Q is a rotation matrix set in a way that

b1 ∝ [1, 1,−1]′ resembles a supply shock in a fixed parameter model (H → ∞). Finally,

an instrument zt is generated by the following measurement error equation:

zt = ϕzε1t + σzηt, ηt ∼ N (0, 1),

where we consider θstrong = {ϕz = 0.86, σz = 0.06} and θweak = {ϕz = 0.48, σz = 0.71}

following two parameter constellations proposed in Montiel-Olea et al. (2021) that yield a

strong- and weak instrument for relative IRFs λ̃k,i in the fixed parameter case. However,

as we will document, these parameter constellations do not necessarily translate to strong

and weak instrument dynamics for absolute IRFs λk,i, since it leverages all the information

coming from Γ and Σ exploiting the underlying shock invertibility assumption.

The true impulse response functions for the resulting DGP are given in Figure 1 for three

horizons: h = 0, 10, 20. As visible from the chart, they display substantial time-variation

over the sample period. For example, the impact effect (h = 0) of the supply shock on

the first variable (dprodt) halves over the sample, while at h = 10 and h = 20 the sign

changes at around t = 300. Similar patterns for magnitudes and signs are present in the
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IRFs of the other two variables, although with an increased persistence.

100 200 300
Time

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

IR
F

100 200 300
Time

0.5

1

1.5

2

2.5

3

3.5

4

4.5

IR
F

100 200 300
Time

-4

-3

-2

-1

0

1

2

IR
F

Figure 1: True impulse response functions λh,i,t for horizons h = 0, h = 10 and h = 20.

3.2 Empirical coverage

We proceed simulating a total of 5000 datasets from the DGP, each of sample size T = 377.

Empirical coverage at 95% confidence level is then computed for TVP kernel estimates

of λh,i,t (IV-SVAR) and λ̃h,i,t,tb (internal instrument VAR). For the latter, IRFs are re-

standardized to increase the first variable by one at the fixed time point tb = T/2, and

for ease of readability we drop the subscript in the remainder of this section. While we

assume the lag length to be known during the Monte Carlo exercise, we explore empirical

coverage under both the true bandwidth and the simple data-driven selection method

described in section 2.4. Finally, to keep the discussion simple, we focus on empirical

coverage at two points of time, t = T/2 and t = 3/4T .
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Figure 2: Estimated empirical coverage at 95% confidence level obtained for λh,i,t (red)
and λ̃h,i,t (blue) at t = 1/2T = 189 (first row) and t = 3/4T = 283 (second row).
θstrong = {ϕz = 0.86, σz = 0.06} and H is known. Confidence Sets (CS) based on the
Delta Method (DM) are highlighted by diamonds, while Anderson Rubin confidence sets
(AR) by stars.

Figure 2 shows simulation results under the strong instrument parameters setting and

known bandwidth. Regarding absolute IRFs λh,i,t (red), we document that the Delta

Method (DM) and Anderson Rubin (AR) confidence sets (CS) largely coincide, suggesting

that the instrument remains strong. Empirical coverage for λh,1,t is very close to the

nominal confidence level (95%), while that of λh,2,t and λh,3,t is still reasonable with

values of more than 90% at most horizons. The worst performance we document is for

λh,3,t at t = T/2 = 189 for horizons h = 5 and h = 10, where coverage is about 85%.

With respect to estimates of relative IRFs λ̃h,i,t (blue), we document that the DM- and

AR CS provide somewhat different empirical coverage. This suggests that the instrument

may be weak in the time-varying case. This is not surprising, given that relative to a

constant parameter setup, the kernel estimator is subject to a lower effective sample

size. Given the resulting weak instrument problem, the Delta Method generally provides

worse coverage than the AR CS. For the IRFs of the first variable, λ̃h,1,t, the DM provides
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considerable over-coverage throughout horizons, while the AR confidence sets are close to

the nominal level. On the other hand, for λ̃h,2,t and λ̃h,3,t the DM provides coverage that

is generally too low, whereas coverage by the weak-IV robust confidence sets performs

better and remains at or above 90%.

Figure 3: Estimated empirical coverage at 95% confidence level obtained for λh,i,t (red)
and λ̃h,i,t (blue) at t = 1/2T = 189 (first row) and t = 3/4T = 283 (second row).
θstrong = {ϕz = 0.86, σz = 0.06} and H is estimated. Confidence Sets (CS) based on the
Delta Method (DM) are highlighted by diamonds, while Anderson Rubin confidence sets
(AR) by stars.

Figure 3 shows equivalent simulations when H is chosen by the data-driven method we

describe in 2.5. We document very similar coverage rates with exception of λh,2,289 where

we see some deterioration to levels of about 80%.
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Figure 4: Estimated empirical coverage at 95% confidence level obtained for λh,i,t (red)
and λ̃h,i,t (blue) at t = 1/2T = 189 (first row) and t = 3/4T = 283 (second row).
θweak = {ϕz = 0.48, σz = 0.71}. Confidence Sets (CS) based on the Delta Method (DM)
are highlighted by diamonds, while Anderson Rubin confidence sets (AR) by stars.

For the parameter constellation θweak, results obtained under the known bandwidth are

reported in Figure 4. Starting with λh,i,t (red), we find very similar results than reported

previously in the strong instrument case. Generally, the coverage remains satisfactory

near the nominal value of 95%. The worst coverage is obtained for λh,3,t with rates slightly

above 85%. Interestingly, it is still the case that only marginal differences arise between

the DM- and AR confidence sets, suggesting that the weak instrument problem created

by Montiel-Olea et al. (2021) for relative IRFs does not translate to absolute IRFs, despite

the lower effective sample size in the time-varying case.5

With respect to λ̃h,i,t (blue), the performance of both confidence sets deteriorates as

one would expect when the instruments becomes weaker. Still, the AR confidence sets

perform better than the DM, remaining closer to the nominal 95% level. However, one

starts to observe some over-coverage, particularly for λ̃h,1,t.

5Simulation results available upon request find that for absolute IRFs, a much weaker instrument is
needed to note a difference between the AR and DM confidence sets, e.g. θ = {ϕz = 0.48/4, σz = 0.71}.
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Figure 5: Estimated empirical coverage at 95% confidence level obtained for λh,i,t (red)
and λ̃h,i,t (blue) at t = 1/2T = 189 (first row) and t = 3/4T = 283 (second row).
θweak = {ϕz = 0.48, σz = 0.71}. and H is estimated. Confidence Sets (CS) based on the
Delta Method (DM) are highlighted by diamonds, while Anderson Rubin confidence sets
(AR) by stars.

Similar to the first parameter constellation for the instrument, choosing H by a data-

driven method yields broadly similar results, with only minor deterioration in coverage

rates for some of the IRFs (see Figure 5).

In Appendix C, we provide supplementary Monte Carlo results obtained for larger effec-

tive sample sizes. Here, we interpolate coefficients linearly to obtain an equivalent shape

in the time-varying coefficients, but spread out over a larger sample and hence much

smoother. We choose T = 30×377 = 11310, and let the kernel bandwidth for estimation

increase by H =
√
30× 100 = 547. Our findings suggest that estimated empirical cover-

age rates get very close to the nominal size as one would expect in large effective sample

sizes.
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4 The time-varying effects of oil supply news on US
industrial production

In the following, we illustrate the use of our methodology revisiting the effects of oil supply

news shocks on US industrial production. Our analysis builds on the work of Känzig

(2021) who studies the effects of exogenous changes in oil price expectations caused

by OPEC communications, an intergovernmental organization of major oil-producing

nations. To capture changes in oil prices orthogonal to the business cycle, Känzig (2021)

constructs an external instrument based on quotes of WTI oil price futures in a narrow

window around OPEC production quota announcements. A constant parameter IV-

SVAR estimated over the period from 1974 to 2017 suggest consequences for the US

economy that mimic a typical supply shock; activity falls, as measured by US industrial

production, while both consumer prices and inflation expectations rise.

Figure 6: US petroleum consumption, production, and net imports (1950-2023). Source:
US Energy Information Administration.

Based on our methodology, we extend the analysis to study instabilities over time. A large

body of literature has found that the relationship between oil prices and US macroeco-
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nomic conditions has changed, see for example Baumeister and Peersman (2013), Ramey

and Vine (2011). Kilian (2009) notes that large part of the instability can be explained

by the varying importance of supply- and demand shocks. However, even conditioning

on oil-market specific supply shocks a large degree of time-variation remains (Baumeister

and Peersman, 2013).

A variety of potential drivers have been put forward to explain the variation, including

the time-varying oil intensity of economic activity, improved monetary policy, or changing

importance of certain sectors in the economy (Ramey and Vine, 2011). In recent history,

a plausible explanation may also be the shale oil revolution. A combination of hydraulic

fracturing and horizontal drilling allowed the US to sharply increase its production of

crude oil and natural gas. Over the period 2005-2023, total US petroleum production

more than doubled, from an average of 7.9 to 21.7 million barrels per day, as shown in

Figure 6 (black line).6 This allowed to United States to transition from a large petroleum

net-importer to a petroleum net-exporter in 2020 (blue line, Figure 6).

Indeed, Bjørnland and Skretting (2024) document evidence that the shale oil revolution

aligns well with changes in the transmission of oil-market specific shocks to the US econ-

omy. Within a Bayesian time-varying factor model, the authors identify an oil-market

specific shock by exclusion restrictions, finding that US industrial production and invest-

ment reacts more positive to oil price increases since the the shale-oil revolution, boosted

by activity in oil-intensive regions and industries. Our empirical findings complement

those results, instead relying on kernel estimators and on the identification of oil-supply

news shocks by instrumental variables.

6Petroleum production includes field production of crude oil and natural gas, as well as products
produced from refining crude oil and from processing natural gas plant liquids.
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4.1 Data and identification strategy

As in Känzig (2021), our VAR model includes a measure of real oil prices, world crude oil

production, a proxy of world crude oil stocks, and world industrial production.7 We aug-

ment the model further by two sub-aggregates of the index of US industrial production,

that is manufacturing and mining output.8 All variables are included in log levels. To

identify shocks to oil supply expectations, we rely on an updated surprise series as exter-

nal instrument, made available on the homepage of Diego Kanzig. The estimation sample

includes data from January 1974 to December 2023. To mitigate the effect of Covid out-

liers on our estimates, we use a series of dummies, thereby discounting any signal from

the data between February 2020 and June 2022. We confirm that this is equivalent to

setting the kernel weighting function to zero over that time period. Following the original

paper, we use p = 13 lags.

For the hyperparameter H governing overall time-variation, the cross validation procedure

discussed in section 2.5 suggests a bandwidth of H ≈ 190 when applied to the pre-covid

period.9 We note that the objective function is relatively flat between 110 and 250,

yielding at most 5% deterioration in the MSE relative to H = 190. For this reason, we

choose a slightly lower bandwith of H = 150 allow for more time-variation in the IRFs,

particularly since the shale-oil revolution takes place relatively late in the sample. A

sequence of Granger causality tests presented in Table 1 provide no clear evidence at the

5% significance level that the instrument is Granger causing the endogenous variables in

the model, with the exception of the very end of the sample. A constant parameter model

yields similar conclusions with p-values of 0.8 and 0.85 for the Wald and F-test. Therefore,

7The real price of oil is defined as the WTI price deflated by US CPI, and the proxy of world crude
oil stocks is included in seasonally adjusted log levels. World industrial production is downloaded from
Christiane Baumeisters homepage, see Baumeister and Hamilton (2019).

8The US industrial production index measures the combined real output of the manufacturing, min-
ing, and electric and gas utilities industries. The variability in the latter is mostly driven by weather,
and hence excluded from our analysis.

9Here, the objective function is based on out of sample one-step ahead conditional forecasts computed
over the second half of the sample.

30



we proceed assuming shock invertibility, and study absolute impulse response functions to

a shock of unit standard deviation throughout time (λk,i,t). To assess the sensitivity of the

results to our model choices, Appendix D displays estimates using different bandwidths,

and relative IRFs estimated relying on the internal instrument VAR.10

Table 1: Granger causality test results computed at different points of time for the null
hypothesis that zt does not predict yt in a VAR for ỹt = [zt, y

′
t]
′.

date t July 77 May 86 Feb 95 Dec 03 Sep 12 Jun 21
Wald Statistic 96.32 78.49 74.70 81.32 100.89 137.11
p-value 0.08 0.46 0.59 0.38 0.04 0
F Statistic 1.23 1.01 0.96 1.04 1.29 1.76
p-value 0.20 0.49 0.57 0.44 0.15 0.01

The F-test is based on (n− 1)p = 78 nominator degrees of freedom (dof),
and H − np− 1 = 406 denominator dofs (Lütkepohl, 2005).

10We also test locally for residual autocorrelation and find no evidence thereof, see Appendix D.
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4.2 Results

Figure 7: Time-varying impulse response functions to an oil-supply shock of unit variance.

Figure 7 displays estimates of time-varying IRFs to an oil supply news shock at various

points in time over the sample (blue line) and compares it to the constant parameter

estimates (red line). Shaded areas denote 90% confidence intervals.

As expected, the constant parameter results replicate those of Känzig (2021). A supply
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news shock raises the oil price for up to 5 years. Crude oil production is declining

gradually, while crude stocks are rising reflecting precaution by market participants.

Global economic activity declines, measured by world industrial production, and so does

US manufacturing output. US mining output, which in large part reflects the extraction

of oil and gas, increases slightly but with some lag.11

There is a striking amount of time-variation in the transmission of the shock that aligns

well with the US shale-oil revolution. An oil supply news shock of constant size is es-

timated to have 2/3 of the price effect towards the end of the sample, compared to

estimates from 1977-2003. Furthermore, the price effect is notably less persistent. De-

spite the overall more muted price signal, US mining output is estimated to increase by

larger amounts towards the end of the sample, and react more quickly. Such a quicker

reaction of US mining output aligns well with micro-evidence on larger price elasticity of

shale-oil producers (Aastveit et al., 2022).

Since 2012, world crude oil production is no longer estimated to decline significantly

in reaction to an oil-supply news shock, but instead increases somewhat in the short-

run. This may reflect, in part, that increasing output by non-OPEC oil producers is

able to offset OPEC production declines. The IRF of the world industrial production

(IP) index is no longer estimated to decline but instead increases temporarily. However,

since the world IP index includes mining output it is difficult to disentangle how much

of the response reflects increased oil and gas output by non-OPEC states. Indeed, for

US manufacturing output, the time-varying effects are less pronounced. Still, there is

striking evidence that the oil price shock no longer triggers a significant decline in US

manufacturing output, questioning if it still resembles a cost-push shock for the United

States.

To shed more light on the drivers of the aggregate time-variation documented for US

11Relative importance weights for the US industrial production index suggest that extraction of oil
and natural gas (NAICS 2111) reflects currently about 70% of US mining output.
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minining and manufacturing output, we further study responses for three digit (manu-

facturing) and four digit (mining) industries according to the North American Industry

Classification System (NAICS). The collection of responses are obtained by augment-

ing the model with one industry at the time, while netting out the respective industry

variation of the total manufacturing or mining index included in the baseline VAR.

Figure 8 provides an overview of IRFs for selected industries that display large degrees of

time-variation between 1995 and 2021. For a complete picture of each industry, we refer

to Appendix D.

Figure 8: Estimated impulse response functions to an oil-supply shock of unit variance
for selected industries at three-(manufacturing) and four- (mining) digit NAICS level.
For comparison, the red line shows point estimates from a constant parameter IV-SVAR.

Within US mining output, oil and gas extraction (NAICS 2111) shows the strongest

pattern. For the mid 90’s, our methodology points to a very slow and imprecisely esti-

mated response. However, in recent times, we find a strong and rapid response which is

significant at the 90% confidence interval.

Within manufacturing, the response of Petroleum and Coal Products (NAICS 324) shows

a strong pattern of time-variation. Here, the dominant process is petroleum refining which

is downstream to Oil and Gas extraction. Our estimates for 1995 show a response close

to a constant parameter model, where the industry output declines significantly up to

20 months as the cost of crude increases. Nowadays, our estimates point towards no

significant decline, but instead a slight increase in output after 2-3 years.
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Estimates for two other downstream industries, that is Chemicals and Plastic and Rubber

Products, also have varied significantly, moving from contractionary to insignificant ter-

ritory. Four other industry responses stand out. For Transportation Equipment (NAICS

336), which reflects mostly the production of motor vehicles and aircrafts, oil supply news

shocks tended to be strongly contractionary in line with larger operating costs of the pro-

duced goods. There is no statistical evidence this is still the case, as the industry output

has become insensitive to the oil price increase. Finally, and somewhat surprisingly, the

responses of Primary Metal (NAICS 331) and Fabricated Metal products (NAICS 332)

have switched in sign over the short run. As they currently represent a combined 12% of

manufacturing output in the US, the time-variation in those sectors is likely contributing

strongly to the total manufacturing response.

Summing up, our findings suggest that OPEC oil-supply news shocks transmit differently

in recent times than a constant parameter model would suggest. The oil price effects seem

to have declined and are less persistent, while there is no evidence that global crude oil

production still declines. Within the US, mining output responds more positive and at

a faster pace, while there is no evidence that the shock is still contractionary for the US

manufacturing sector.

5 Conclusion

In this paper, we develop kernel based estimators for time varying impulse response

functions of structural VAR models identified by external instruments. Compared to

prominent Bayesian approaches, our frequentist estimators are particularly simple to

implement, computationally efficient and require no choice for the law of motion and

corresponding priors. The amount of time-variation in a given dataset can be set in an

automatic fashion, e.g. by optimizing out-of-sample model fit. Importantly, inference can

be reliably conducted even if identification is only weak.
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We illustrate the methodology revisiting the influential paper by Känzig (2021) on the

transmission of oil-supply news shocks. We find strong patterns of time-variation, mostly

aligning in time with the shale-oil revolution. While for much of the sample an oil price

increase due to oil-supply news resulted in clear headwinds to US manufacturing output,

this is no longer the case in more recent history.
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Appendix A Proofs

A.1 Proof of Theorem 1

Theorem 1 states that under Assumption 3-5 and H = o(T
1
2 ), it holds that:

√
H


β̂t − βt

Γ̂t − Γt

vech(Σ̂t)− σt

 d→ N (0, Vθt),

for Vθt = StΠww,tS
′
t and

St =


In ⊗ Π−1

x,t 0 0

−
(
In ⊗ Πxz,tΠ

−1
x,t

)
I 0

0 0 Sσ

 ,

for Πx,t = plimT→∞
1
H

∑T
j=1wj,txjx

′
j, Πxz,t = plimT→∞

1
H

∑T
j=1wj,tzjxj,

Πww,t = plimT→∞
1
H

∑T
j=1w

2
j,tξjξ

′
j, ξj = [vec(xjuj)

′, (zjuj − Γ)′ , vec
(
u′
juj − Σt

)′
]′, and Sσ

such that vech(Σt) = Sσ vec(Σt).

For x′
t = [y′t−1, y

′
t−2, . . . , y

′
t−p, 1]

′ a 1× k vector, the model reads

y′t︸︷︷︸
1×n

= x′
t︸︷︷︸

1×k

Θt︸︷︷︸
k×n

+u′
t

yt︸︷︷︸
n×1

= (In ⊗ x′
t)︸ ︷︷ ︸

n×nk

βt︸︷︷︸
nk×1

+ ut︸︷︷︸
n×1

yt = x̃tβt + ut

where x̃t = (In ⊗ x′
t) and βt = vec(Θt). Let zt be a m × 1 random vector that is

correlated with ut. We wish to consider estimating Γt︸︷︷︸
n×m

= E (utz
′
t) allowing for this

quantity to vary over time. To do so we wish to derive the asymptotic distribution of

1√
H

∑
j wt,j (H) (ût,jz

′
j − E

(
ujz

′
j

)
) where wt,j (H2) =

Hw̃t,j(H)∑
j w̃t,j(H)

, ûj = yj − x̃jβ̂t and
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β̂t =

[
In ⊗

T∑
j=1

wt,j (H1)xjx
′
j

]−1 [ T∑
j=1

wt,j (H1) vec(xjy
′
j)

]
where

wt,j (H) = K(|t− j|/H), (18)

where H → ∞, H = o(T ). K(x), x ∈ (0, a) is a non-negative continuous function with

finite or infinite support, such that for some C > 0 and ν > 3,

K(x) ≤ C(1 + xν)−1, |(d/dx)K(x)| ≤ C(1 + xν)−1, x ∈ (0, a). (19)

First, consider
√
T
(
β̂t − βt

)
:

√
H
(
β̂t − βt

)
=

In ⊗( 1

H

T∑
j=1

wt,j (H)xjx
′
j

)−1


︸ ︷︷ ︸
St,xx(H)

1√
H

T∑
j=1

wt,j (H) vec(xju
′
j)

= St,xx(H)
1√
H

T∑
j=1

wt,j (H) vec(xju
′
j)

= St,xx(H)
1√
H

T∑
j=1

wt,j (H) (In ⊗ xj)uj

Next, consider Γ̂t = 1
H

∑T
j=1 wt,j (H) ût,jz

′
j and γ̂t = vec(Γ̂t) =

1
H

∑T
j=1 wt,j (H) (zj ⊗ In) ût,j.

Denote by γt = Et[vec(utz
′
j)] and use that ût = ut − x̃t

(
β̂t − βt

)
:

√
H (γ̂t − γt) =

1√
H

(
T∑
j=1
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′
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)

=
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1

H
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(
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−
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Define St(H) =


St,xx(H) 0 0

−St,zx(H)St,xx(H) I 0

0 0 Sσ

, then it is:

√
H


β̂t − βt

γ̂t − γt

σ̂t − σt

 =


St,xx(H) 0 0

−St,zx(H)St,xx(H) I 0

0 0 Sσ


︸ ︷︷ ︸

St

1√
H

T∑
j=1

wt,j (H)


vec(xju

′
j)

vec(ujz
′
j − Γt)

vec(ujuj − Σt)


︸ ︷︷ ︸

ξj

and therefore the asymptotic covariance is given by Vθt = StΠww,tS
′
t for 1√

H

∑T
j=1wt,jξj →

N (0,Πww,t).

The results of the Theorem follow directly from Theorem 2.2 of Giraitis et al. (2018)

(GKY18) once we account for the presence of the exogenous variable, zt (Extension

1 (E1)) and the introduction of a lag order greater than 1 (Extension 2 (E2)). The

only other difference between the analysis of GKY18 and ours is that GKY18 allow for

stochastic parameter processes. We choose to restrict ourselves to deterministic sequences

for the parameter processes, to simplify the presentation of our asymptotic results.

We consider each extension in turn, starting with E1. There are two matters relating to

proving E1. The first relates to extending Theorem 2.1 of GKY18 to this case (Result

E11, (RE11)), and the second is to establish asymptotic normality as in (2.15) of GKY18

(Result E12, (RE12)). RE11 follows immediately by 3 and (6.2)-(6.3) of GKY18.

RE12 relates to showing normality of term Tn,t;1 (the first term of Tn,t) in page 41 of the

online appendix of GKY18. Normality follows immediately by Lemma 6.2 (ii) of GKY18

using Assumption 4.

Next, consider E2. The result here follows immediately by considering the companion

form given by

ỹt = Ãtỹt−1 + νt, (20)
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where ỹt = (y′t, y
′
t−1, ..., y

′
t−p+1)

′, Ãt =



A1t A1t ... Apt

I 0 ... 0

0 ... ... ...

... ... I 0


, νt =

(
(Btεt)

′ , 0, ..., 0
)′ and

applying Theorem 2.2 of GKY18.

The only result that needs to be proven is the asymptotic independence of β̂t and σ̂t.

We revisit the proof of Theorem 2.2 of GKY18. The asymptotically relevant terms of
√
H
(
β̂t − βt

)
and

√
H (σ̂t − σt) are given by Tn,t;1 and qn,t which are both defined in page

41 of the online appendix of GKY18. The expectation of their cross product involves the

third moments of εt which are zero by the symmetry assumption of Theorem 2 proving the

result. The proof for independence between γ̂t and σ̂t can be established in an equivalent

way.

A.2 Proof of Corollary 2

We discuss the covariance term of the two differently dated estimators in the statement of

the Corollary. To do this we need to extend slightly the work of GKY18. To do so we will

revert to the notation of the proof of their Lemma 6.2. Recall ξtj := K
−1/2
2,t b′εjy

′
j−1V

−1/2
ψ,t0

a

where Kt =
∑T

j=1 wtj, K2,t =
∑T

j=1w
2
tj Vψ,t0 is defined in (2.17) of GKY18 and b, and

a are vectors of constants. Then, following the proof of Lemma 6.2, following (6.28) of

GKY18, it suffices to determine the probability limit of
∑

|t−j|<hwt−1jwtjE[ξtjξt−1j|Fj−1].

We note that

E[ξtjξt−1j|Fj−1] = K
−1/2
2,t K

−1/2
2,t−1E(b′εj)

2a′V
−1/2
ψ,t0

yj−1y
′
j−1V

−1/2
ψ,t0

a

where E(b′εj)
2 = ||b||2. Setting Ṽyyc,t := K−1

(1),t

∑
|t−j|<hwt−1jwtjyj−1y

′
j−1, for K(q),t =∑n

j=1 wt−qjwtj, we obtain

jtn := K̃(1)t||b||2a′V −1/2
ψ,t0

Ṽyyc,tV
−1/2
ψ,t0

a = K̃(1)t||b||2 + rtn,

4



where K̃(q)t = K
−1/2
2,t K

−1/2
2,t−qK(q),t, and rcn = K̃(1)t||b||2a′V −1/2

ψ,t0
(Ṽyyc,t − Vψ,t0)V

−1/2
ψ,t0

. It

remains to show that rtn →p 0 which involves checking that

||Ṽyyc,t − Vψ,t0||sp = op(1).

We need to consider ||K−1
(1),t

∑n
j=1wt−1jwtjyj−1y

′
j−1 − Vψ,t||sp which is op(1) by Lemma

6.1(i) of GKY18. This of course easily generalises to
∑

|t−j|<hwt−qjwtjE[ξtjξt−qj|Fj−1] for

all finite q.

A.3 Proof of Theorem 2

All the results of this Theorem follow directly from the proof of Theorem 1.

Appendix B Inference for structural impulse response
functions

This part of the Appendix gives detailed formulas in order to compute closed form Delta

Method and Anderson Rubin confidence sets for the (time-varying) IV-SVAR estimator

and the internal IV-VAR estimator.

B.1 Absolute Impulse Response Functions (IV-SVAR estimator)

In this paper, we use the IV-SVAR estimator to recover absolute impulse response func-

tions λh,i,t, that is the ith element of the n× 1 vector λk,t. The corresponding function is

given by:

λ̂k,t = Ck(Ât)Γ̂t/

√
Γ̂′
tΣ̂

−1
t Γ̂t

Building on the reduced form results given in theorem 1, we get

√
H


β̂t − βt

Γ̂t − Γt

vech(Σ̂t)− σt

 d→ N (0, Vθt).
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Starting with the Delta Method, as described in section 2.4, we have
√
H
(
λ̂k,t − λk,t

)
d→

N (0,Ωk,t), where Ωk,t = Jk (βt,Γt, σt)VθtJk (βt,Γt, σt)
′ for βt = vec(At), and

Jk(βt,Γt, σt) =

[
∂λk,t
∂βt

:
∂λk,t
∂Γt

:
∂λk,t
∂σt

]
is the n × (n2p+ n+ n(n+ 1)/2) dimensional gradient. The corresponding derivatives

are stated in the following. First, note that Ck (At) = JsA
k
t J

′
s where Js = [In, 0, . . . , 0]

and

At =



A1t A2t . . . Ap−1,t Apt

In 0 . . . 0 0

0 In 0 0

...
... . . . ... 0

0 0 . . . In 0


.

Hence, it is ∂λk,t
∂βt

= 0 for k = 0 while for k > 1:

∂λk,t
∂β′

t

=
(
(Γt/αt)

′ ⊗ In
)
Gk,

where αt =
√

Γ′
tΣ

−1
t Γt and Gk =

∂ vec(Ck(At))
∂β′

t
=

k−1∑
m=0

[
J(A′

t)
k−1−m]⊗ Cm (At) (Lütkepohl,

1993). Next, define ∂[Γt,αt]

∂[Γ′
t,σ

′
t]
′ =

[
∂Γt

∂[Γ′
t,σ

′
t]
′ : ∂αt

∂[Γ′
t,σ

′
t]
′

]
where it holds that:

∂Γt

∂ [Γ′
t, σ

′
t]
′ = [In : 0],

∂αt

∂ [Γ′
t, σ

′
t]
′ =

1

2

(
Γ′
tΣ

−1
t Γt

)−1/2 [
2Γ′

tΣ
−1
t ,−

(
ΓtΣ

−1
t ⊗ Γ′

tΣ
−1
t

)
D
]
,

for D is the duplication matrix such that vec(Σt) = D vech(Σt). Also, it holds that:

∂λk,t

∂ [Γ′
t, α

′
t]
′ = Ck (At)

[
In/αt : Γt/α

2
t

]
.

Combining both results via the Chain rule yields the missing parts of Jk():[
∂λk,t
∂Γt

:
∂λk,t
∂σt

]
=

∂λk,t

∂ [Γ′
t, α

′
t]
′ ×

∂ [Γt, αt]

∂ [Γ′
t, σ

′
t]
′ .

6



With respect to the AR confidence set, the first step is to obtain the asymptotic distri-

bution of the (n+ 1)× 1 vector:

Lk,t =

 Ck(At)Γt√
Γ′
tΣ

−1
t Γt


for which it holds that λi,t = (e′iLk,t)/(e

′
n+1Lk,t). Via the Delta Method we get:

√
H
(
L̂k,t − Lk,t

)
d→

N (0,ΩL
k,t) for ΩL

k,t = J
(2)
k (βt,Γt, σt)VθtJ

(2)
k (βt,Γt, σt)

′ where

J
(2)
k (βt,Γt, σt) =

[
∂Lk,t
∂βt

:
∂Lk,t
∂Γt

:
∂Lk,t
∂σt

]
.

Similar to above, it holds that ∂Lk,t

∂βt
= 0 for k = 0 while for k > 1:

∂Lk,t
∂β′

t

=

(Γ′
t ⊗ In)Gk

0

 .

Finally, the last step is: [
∂Lk,t
∂Γt

:
∂Lk,t
∂σt

]
=

∂Lk,t

∂ [Γ′
t, α

′
t]
′ ×

∂ [Γt, αt]

∂ [Γ′
t, σ

′
t]
′ ,

where ∂[Γt,αt]

∂[Γ′
t,σ

′
t]
′ is as defined above and

∂Lk,t

∂ [Γ′
t, α

′
t]
′ =

Ck(At) 0

0 1

 .

Next, consider the linear test e′iL̂k,t − λ0e
′
n+1L̂k,t = 0 with the corresponding Wald test

statistic q(λ0) =
H(e′iL̂k,t−λ0e′n+1L̂k,t)

2

ω̂ii−2λ0ω̂i,n+1+λ20ω̂n+1,n+1
where ω̂ij is the ijth element of of Ω̂L

k,t. The AR

confidence set of coverage 1 − a is then given by inverting the test statistic, yielding

CSAR{λk,i,t|q(λk,i,t) ≤ χ2
1,1−a}. The inversion can be solved in closed form following, e.g.

footnote 14 in Montiel-Olea et al. (2021).
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B.2 Relative Impulse Response Functions (internal IV VAR es-
timator)

For relative impulse response functions, the corresponding function of reduced form pa-

rameters is given by:

ˆ̃λk,t,tb = Ck

(
ˆ̃At

)
ˆ̃P•1,t/(e

′
2
ˆ̃P•1,tb),

where ˆ̃λk,i,t,tb = e′1+i
ˆ̃λk,t,tb . Here, ˆ̃At,

ˆ̃P•1,t = e′1chol( ˆ̃Σt) and ˆ̃P•1,tb = e′1chol( ˆ̃Σtb) are based

on kernel estimates of the TVP internal instrument VAR.

Starting from the reduced form results of Theorem 2 and Corollary 3, we have:

√
H
(
ˆ̃βt − β̃tb

)
d→ N

0, Σ̃t ⊗
(
Π̃x,t

)−1

Π̃ww,t

(
Π̃x,t

)−1

︸ ︷︷ ︸
V1

 ,

√
H
(
ˆ̃σt,tb − σ̃t,tb

)
d→ N

0, L2(n+1)Πuu,uu,t,tbL
′
2(n+1) − σ̃t,tbσ̃

′
t,tb︸ ︷︷ ︸

V2

 ,

for σ̃t,tb = vech(Σ̃t,tb). To obtain Ω̃k,t,tb in
√
H
(
ˆ̃λk,t,tb − λ̃k,t,tb

)
d→ N

(
0, Ω̃k,t,tb

)
, an

application of the Delta method yields Ωk,t,tb = J̃k

(
β̃t, σ̃t,tb

)
diag(V1, V2)J̃k

(
β̃t, σ̃t,tb

)′
for

J̃k

(
β̃t, σ̃t,tb

)
=

[
∂λ̃k,t

∂β̃′
t

:
∂λ̃k,t
∂σ̃′

t,tb

]
.

The first part of J̃K() is given by ∂λ̃k,t

∂β̃′
t

= 0 for k = 0 while for k > 1:

∂λ̃k,t

∂β̃′
t

=

((
P̃•1,t/

(
e′2P̃•1,tb

))′
⊗ In

)
Gk,

for Gk =
∂ vec(Ck(Ãt))

∂β̃′
t

=
k−1∑
m=0

[
J(A′

t)
k−1−m]⊗Cm

(
Ãt

)
. To obtain ∂λ̃k,t

∂σ̃′
t,tb

we make use of the

Chain rule. First, consider the Gradient ∂[P̃ ′
•1,t,e

′
2P̃•1,tb ]

′

∂σ̃t,tb
. To this end, let Sσt be selection

matrix such that σ̃t = Sσtσ̃t,tb and Sσt a selection matrix such that σ̃tb = Sσtb σ̃t,tb .

Define SP a matrix of 0 and 1’s such that [P̃ ′
•1,t, e

′
2P̃•1,tb ]

′ = SP [vech(P̃t)
′, vech(P̃tb)]

′.

Furthermore, let Ln+1 be the elimination matrix such that vech(Σ̃t) = Ln+1 vec(Σ̃t), and

Kmn be the mn×mn commutation matrix such that vec(A′) = vec(A) for A any m× n
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matrix. Then:

∂[P̃ ′
•1,t, e

′
2P̃•1,tb ]

′

∂σ̃t,tb
= SP


(
Ln+1

(
I(n+1)2 +Kn+1,n+1

) (
P̃t ⊗ In+1

)
L′
n+1

)−1

Sσt(
Ln+1

(
I(n+1)2 +Kn+1,n+1

) (
P̃tb ⊗ In+1

)
L′
n+1

)−1

Sσtb

 .

Finally:

∂λ̃k,t

∂[P̃ ′
•1,t, e

′
2P̃•1,tb ]

= Ck

(
Ãt

)[
In+1/

(
e′2P̃•1,tb

)
: P̃•1,t/

(
e′2P̃•1,tb

)2]
,

and hence the second part of J̃K() is given by:

∂λ̃k,t
∂σ̃′

t,tb

=
∂λ̃k,t

∂[P̃ ′
•1,t, e

′
2P̃•1,tb ]

×
∂[P̃ ′

•1,t, e
′
2P̃•1,tb ]

′

∂σ̃′
t,tb

.

With respect to the AR confidence set, the first step is to obtain the asymptotic distri-

bution of the (n+ 2)× 1 vector:

L̃k,t,tb =

Ck(At)P̃•1,t

e′2P̃•1,tb


for which it holds that λ̃i,t = (e′1+iL̃k,t,tb)/(e

′
n+2L̃k,t,tb). Via the Delta Method we get:

√
H
(
ˆ̃Lk,t,tb − L̃k,t,tb

)
d→ N (0,ΩL̃

k,t,tb
) for ΩL̃

k,t,tb
= J̃

(2)
k

(
β̃t, σ̃t,tb

)
diag(V1, V2)J̃

(2)
k

(
β̃t, σ̃t,tb

)′
where

J̃
(2)
k

(
β̃t, σ̃t,tb

)
=

[
∂L̃k,t

∂β̃t
:
∂L̃k,t
∂σ̃t,tb

]
.

Similar to above, it holds that ∂L̃k,t,tb

∂βt
= 0 for k = 0 while for k > 1:

∂L̃k,t
∂β′

t

=


(
P̃ ′
•1,t ⊗ In

)
Gk

0

 .

Finally:
∂L̃k,t,tb
∂σ̃t,tb

=
∂L̃k,t,tb

∂[P̃ ′
•1,t, e

′
2P̃•1,tb ]

×
∂[P̃ ′

•1,t, e
′
2P̃•1,tb ]

′

∂σ̃′
t,tb

,
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where ∂[P̃ ′
•1,t,e

′
2P̃•1,tb ]

′

∂σ̃′
t,tb

is as above and

∂L̃k,t

∂[P̃ ′
•1,t, e

′
2P̃•1,tb ]

=

Ck(At) 0

0 1

 .

Appendix C Supplementary Monte Carlo Results

This part of the Appendix illustrates the performance of the kernel based confidence sets

in large samples. Specifically, we increase sample size and kernel bandwidth by a factor of

30 and
√
30 respectively, interpolating coefficients from the same data-generating process

described in section 3. Figure C.9 shows the true underlying impulse response functions,

which display the same dynamics just over a larger time frame.

Figure C.9: True impulse response functions λh,i,t.

As reported in Figure C.10, estimated empirical coverage gets very close to the nominal

95% confidence level, in the DGP that considers a strong instrument and H to be known.
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Figure C.10: Estimated empirical coverage at 95% confidence level obtained for λh,i,t
(red) and λ̃h,i,t (blue) at t = 1/2T = 5655 (first row) and t = 3/4T = 8483 (second row).
θstrong = {ϕz = 0.86, σz = 0.06} and H known. Confidence Sets (CS) based on the Delta
Method (DM) are highlighted by diamonds, while Anderson Rubin confidence sets (AR)
by stars.

Appendix D Supplementary empirical results

D.1 Test of residual autocorrelation

In this part of the supplementary material, we test if the iid assumption on the residuals

may be violated during some periods of the sample. To do so, we follow the textbook

treatment in Lütkepohl (2005) leveraging simple multivariate Portmanteau Tests adjusted

for the TVP case. At this point, we warn that we have not verified the asymptotic validity

of the test in the time-varying case, nor studied its finite sample properties. A thorough

analysis thereof is beyond the scope of our paper.

Let the time t sample auto-covariances be Ĉit =
1
H

∑T
j=i+1 wt(H)ûjûj−i, i = 1, . . . , hq <

T and the corresponding sample autocorrelation be R̂it = D̂−1
t ĈitD̂

−1
t where Dt is a

diagonal matrix with elements of Ĉ0t on the diagonal. Then, we aim to test the null

hypothesis that H0 : Rhq ,t = (R1,t, . . . , Rhq ,t) = 0 vs H1 : Rhq ,t ̸= 0. The corresponding

multivariate Portmanteau test statistic and the approximate distribution is given by
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Qhq ,t = H
∑hq

i=1 tr(ĈitĈ−1
0t ĈitĈ

−1
0t ) ≈ χ2(n2(hq − p)) for large sample sizes H and hq.

Table 2 summarizes the results from a sequence of Portmanteau Tests for residual auto-

correlation up to lag hq = 26 in our empirical application. The test points to no statistical

evidence of remaining residual autocorrelation throughout the sample.

Table 2: Portmanteau test results computed at different points of time for the null hy-
pothesis that Rhq ,t = (R1,t, . . . , Rhq ,t) = 0.

date t July 77 May 86 Feb 95 Dec 03 Sep 12 Jun 21
Portmanteau Statistic 332.47 228.76 164.28 141.41 161.57 212.82
p-value 1 1 1 1 1 1

The Portmanteau test is based on n (hq − p) = 468 degrees of freedom (Lütkepohl,
2005).

D.2 Robustness of the main results

In this part of the supplementary material, we briefly study the robustness of our results

with respect to TVP estimates obtained by relative IRFs, and the bandwidth.

Figure D.11: Estimate of αt obtained in the IV-SVAR.

First, Figure D.11 displays point estimates alongside 90% confidence intervals of αt ob-

tained in the IV-SVAR model. Assuming shock invertibility, there is no strong evidence

that αt varies over time. This allows to fix the shock size across time and study the rela-

tive IRF λ̃h,i,t,tb . We choose tb such that we have a reasonable local instrument strength.

In our case this is December 2003, which is when the Wald test statistic for the null hy-

pothesis of e′2P̃•1,t = 0 is the largest, also guaranteeing finite length of the AR confidence

sets.

The top two rows of Figure D.12 show the estimates obtained for relative IRFs λ̃h,i,t,tb

throughout time, standardized to increase the real oil price by 6.2% in December 2003
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(H = 150), hence aligning the shock size with λh,i,t at that month. While uncertainty is

fairly large for our estimates of λ̃h,i,t,tb , the baseline point estimates are mostly included

in the 90% confidence sets. The results are qualitatively similar, in that oil-supply news

shocks are no longer clearly contractionary for the US manufacturing sector, and more

recently lead to a large boost in the US mining output.

The bottom two rows of Figure D.12 show estimates obtained for relative IRFs λh,i,t

obtained under different bandwidths. As expected, for a larger bandwidth (H = 190) the

response of manufacturing IP is less time-varying and remains negative towards the end

of the sample. Estimates obtained with a lower bandwidth H = 110, instead, are more

erratic and turn positive towards the beginning and end of the sample. In any case, the

alternative point estimates remain within the 68% confidence intervals obtained in our

baseline model. Interestingly, IRF estimates of US mining output are less sensitive to the

choice of the bandwidth.
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Figure D.12: Time-varying impulse response functions of US manufacturing- and mining
output to an oil-supply shock. The top two rows contrast baseline estimates obtained
by the IV-SVAR (blue) to estimates of relative IRFs λ̃h,i,t,tb obtained by the internal
instrument VAR (green), standardized to increase the real oil price by 6.2% in December
2003 (H = 150). The bottom two rows contrast the baseline results (blue) obtained under
H = 150 to estimates under different bandwidths (H = 110 and H = 190). Shaded areas
indicate 68% and 90% confidence intervals.

Finally, Figure D.13 shows the entire set of estimates of λ̃h,i,t,tb for all six variables in the

model, and contrasts it to results obtained under the constant parameter case (red). Two

findings are worth highlighting. First, the time-varying IRF estimates of the oil-market

variables are qualitatively similar to those obtained using an IV-SVAR model. Second, the

confidence sets for λ̃h,i,t,tb are broadly comparable to those obtained in the fix parameter

model, and at certain times even narrower. Given the smaller effective sample size for the

TVP estimator, this means that estimates of the asymptotic covariance are substantially

lower.
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Figure D.13: Time-varying relative impulse response functions λ̃h,i,t,tb to an oil-supply
shock. Estimates are obtained using the internal instrument VAR, standardized to in-
crease the real oil price by 6.2% in December 2003 (H = 150). For comparison, the red
thick line indicates relative IRF estimates while dashed lines and the shaded area show
corresponding 90% confidence sets.

D.3 Complementary results: TVP IRF estimates by industry

This part of the appendix includes complementary estimates of time-varying IRFs for vari-

ous industries in the manufacturing and mining sector, sorted by durable goods producing

industries (Figures D.14 and D.15), nondurable goods producing industries (Figures D.16

15



and D.17) and mining (Figure D.18)

Figure D.14: Time-varying impulse response functions to an oil-supply shock of unit
variance. Shaded areas indicate 65% and 90% confidence sets, while the red line indicates
point estimates obtained under fix parameters.
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Figure D.15: Time-varying impulse response functions to an oil-supply shock of unit
variance. Shaded areas indicate 65% and 90% confidence sets, while the red line indicates
point estimates obtained under fix parameters.

Figure D.16: Time-varying impulse response functions to an oil-supply shock of unit
variance. Shaded areas indicate 65% and 90% confidence sets, while the red line indicates
point estimates obtained under fix parameters.
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Figure D.17: Time-varying impulse response functions to an oil-supply shock of unit
variance. Shaded areas indicate 65% and 90% confidence sets, while the red line indicates
point estimates obtained under fix parameters.

Figure D.18: Time-varying impulse response functions to an oil-supply shock of unit
variance. Shaded areas indicate 65% and 90% confidence sets, while the red line indicates
point estimates obtained under fix parameters.
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Appendix E A comparison to alternative time-varying
IRF estimators

A major benefit of the kernel estimator is its simplicity, computational efficiency and

the ability to easily include very persistent time-series into the VAR model. Existing

methods, including the Bayesian VAR-X model of Paul (2020) and path estimators based

on the framework in Müller and Petalas (2010) (see e.g. Inoue et al. (2024b,a)) require

to loop through each time t estimate, and hence are computationally more demanding.

Furthermore, the Bayesian estimator of IRFs may struggle with explosive posterior draws

when persistent time-series are included in the VAR without further transformation.

Finally, the methodology in Müller and Petalas (2010) does not offer a joint distribution

of parameters at time t and tb, hence making it difficult to compute IRFs of the same shock

size based on an internal instrument VAR. We also encountered that estimates based on

the methodology of Müller and Petalas (2010) tend to favor very unstable parameters if

we used the proposed default equal-probability mixture for the random walk weighting

functions.

Since our empirical applications include long, very persistent time-series we weren’t able

to compare our method to alternatives in the empirical application.12 However, in the

following, we offer a simple comparison of IRF estimates in a controlled environment,

generating the time-series and instrumental variable from a bivariate VAR. We find that

all estimator yield fairly similar results.

Our experiment is based on time-series of size T = 500, simulated from a Model where

yt = A1yt−1 + Btεt where εt ∼ N (0, I2), Bt = B1 for t = 1, . . . , T
2

and Bt = B2 for

t = T
2
+ 1, . . . , T . We set A1 =

0.8 −0.05

0.2 0.7

, B1 =

0.1 0.2

1 1

, B2 =

0.5 0.4

−1 1

. The

instrument is simulated from zt = 0.2ε1t + 0.1ηt where ηt = N (0, 1).

12Another challenge we face are the large outliers based on the pandemic, which we simply dummy
out in the kernel-based methods. It’s less clear how to best treat those observations in the alternative
methods.
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We compute estimates of impulse responses at t = [1/8, 2/8, 3/8, 4/8, 5/8, 6/8, 7/8]T ,

comparing the kernel based estimator of an IV-SVAR to two alternative methods: the

path estimator of an IV-SVAR as proposed in Müller and Petalas (2010), and the VAR-

X estimator of Paul (2020). The amount of time-variation is obtained as follows. Our

kernel-based estimator relies on a bandwidth of H = T 0.5, while the path estimator

uses the default equal probability mixture proposed in Müller and Petalas (2010). The

Bayesian VAR-X is based on a series of independent random walks for the intercepts,

the regression coefficients of the instrument, and each of the autoregressive coefficients.

Its variances are treated as random and given a conjugate inverse gamma prior with a

mean of 0.012 and five degrees of freedom. Note that unlike the IV-SVAR estimators,

estimates based on the VAR-X are unable to identify the shock variance. For that reason,

we standardize the IRFs of the VAR-X estimator to increase the first variable by one at

t = 1/4T , hence matching the true effects of a unit variance shock.

Figures E.19, E.20 and E.21 show the results of the exercise for the kernel, path and

Bayesian estimator respectively. All estimators yield fairly similar point estimates and

are able to correctly detect the break at the middle of the sample. Naturally, since

all methods assume that parameters are smooth, they fail around the break-point at

T = 1/2T . However, as they move away from the break estimates get fairly accurate.

The width of the confidence intervals seem close for the kernel and VAR-X estimator.

Considerable wider intervals are obtained for the path estimator, which puts a lot of

weight on very unstable parameters. However, setting up a path estimator with a tighter

specification that favors more stable parameters yields a width of the confidence interval

that is comparable to the kernel and VAR-X estimator.13

13The path estimator suggested in Müller and Petalas (2010) is based on a multivariate Gaussian
random walk with a variance proportional to the inverse Hessian of the likelihood. Their default
method choice is based on minimizing weighted average risk (WAR) relative to an equal-probability
mixture of 11 values for the constant of proportionality c2/T 2, with c ∈ {0, 5, . . . , 50}. When we set
c ∈ {0, 5/10, . . . , 50/10}, we obtain confidence widths that are similar to that of the other two estima-
tors.
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Figure E.19: Kernel based estimator: Point estimates of IRFs alongside 90% confidence
intervals at t = [1/8, 2/8, 3/8, 4/8, 5/8, 6/8, 7/8]T for y1 (first column) and y2 (second
column). The true IRFs are plotted as red lines.
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Figure E.20: Path estimator: Point estimates of IRFs alongside 90% confidence intervals
at t = [1/8, 2/8, 3/8, 4/8, 5/8, 6/8, 7/8]T for y1 (first column) and y2 (second column).
The true IRFs are plotted as red lines.
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Figure E.21: Bayesian VAR-X: Posterior median estimates of IRFs alongside 90% poste-
rior credible intervals at t = [1/8, 2/8, 3/8, 4/8, 5/8, 6/8, 7/8]T for y1 (first column) and
y2 (second column). The true IRFs are plotted as red lines.
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