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Abstract

Regulating bank risk-taking is challenging since banks know more than regu-

lators about the risks of their portfolios and can make adjustments to game regu-

lations. To address this problem, I build a tractable model that incorporates this

information asymmetry. The model is flexible enough to encompass many reg-

ulatory tools, although I focus on taxes. These taxes could also be interpreted

as reflecting the shadow costs of other regulations, such as capital requirements. I

show that linear risk-sensitive taxes should not generally be set more conservatively

to address asymmetric information. I further show the efficacy of three regulatory

tools: (1) not disclosing taxes to banks until after portfolio selection, (2) nonlin-

ear taxes that respond to information contained in banks’ portfolio choice, and (3)

taxes on banks’ realized profits that incentivize banks to reduce risk.
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1 Introduction

Modern banking regulation generally aims to be risk sensitive. For example, under the

current Basel III framework, the primary determinants of capital requirements are risk-

based measures that aim to assign higher requirements to riskier portfolios. Risk weights

are a major input into these measures, which reflect regulators’ best guess of the risks of

different exposures within banks’ portfolios.

However, regulators typically know less about risk than banks, which can expose

these frameworks to potential gaming. When regulators underestimate an asset’s risk,

banks can take advantage by overweighting it in their portfolios. Therefore, a common

heuristic among regulators is to be conservative on average, under the theory that such

conservatism will counterbalance this gaming.1 However, it is unclear under which cir-

cumstances this heuristic should work or whether there are better ways of addressing

banks’ information advantage. Furthermore, there has been surprisingly little theoretical

work on this topic, despite its practical importance. In this paper, I build a tractable

model to address the question of how to regulate banks’ portfolio choice in the presence

of asymmetric information, which takes into account that banks will game the regulations

ex-post.

In this model, a bank selects its portfolio among a wide range of assets, which I

interpret as reflecting investments in different granular subsectors (e.g., an asset might

represent all loans to small biotechnology companies), subject to regulatory constraints.

While these constraints can take many forms, for tractability, I focus on a regulator

setting risk-sensitive taxes. These taxes could be interpreted as literal taxes or as shadow

costs from quantity-based regulation, such as capital requirements. Each asset has a

different level of risk, measured as its beta with respect to a single systematic risk factor,

and profitability. Information asymmetry exists because the bank perfectly observes each

asset’s risk and profitability, while the regulator only receives a noisy signal of risk. The

bank and regulator share the objective of increasing profitability and decreasing risk,

but bank risk-taking imposes a social externality that the bank does not internalize.

Therefore, the regulator wants to reduce the riskiness of the bank’s portfolio, but also

recognizes the social costs of the bank forgoing profitable investments.

The major contribution of this paper is to develop a tractable and flexible framework

that researchers can use to model regulation of bank portfolios under asymmetric infor-

mation. The framework is rich enough to serve as a baseline for analyzing a wide range of

regulatory tools and information asymmetries, but is still simple enough that most results

can be solved by hand. I demonstrate how this framework can be used by applying it

1This observation comes from the author’s personal experiences working in banking supervision.
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to analyzing three regulatory tools: (1) not disclosing taxes to banks until after portfolio

selection, (2) nonlinear taxes that respond to information contained in banks’ portfolio

choice, and (3) taxes on banks’ realized profits meant to align the incentives of the bank

and the regulator.

Before analyzing these tools, I begin by considering a familiar baseline: an asset-

specific linear tax, which is similar to the linear risk weights used in most current capital

regulation. Assuming a linear social cost to risk exposure, the regulator’s optimal policy

is to set the tax exactly equal to the expected risk given their signals. Contrary to

common intuition, the bank’s ex-post gaming of regulations does not mean the regulator

should set taxes conservatively (i.e., higher than expected risk). The reason is that,

in this environment, the costs from setting overly high taxes (i.e., dissuading socially

optimal investments) cancel out the costs from setting overly low taxes (i.e., banks taking

more risk than is socially optimal). Therefore, bank strategic behavior is not a rationale

for conservatism by itself: nonlinearity of social costs or underweighting the benefits of

profitable investments are necessary.2 I then consider how the three regulatory tools can

address this asymmetric information problem.

The first tool is strategic nondisclosure. Specifically, I consider a case in which the

regulator sets a linear tax on exposure to each asset but does not reveal the magnitude

of this tax to the bank until after it has selected its portfolio. Thus, the bank must then

select its portfolio based on its best guess of these taxes. If the bank has no information

about the regulator’s signals, then the bank guesses that taxes will be calibrated correctly

on average, which achieves the regulator’s first-best outcome. However, even if the bank

has imperfect information about the likely size of the tax, nondisclosure can still reduce

the bank’s ability to game regulation. In practice, nondisclosure is used in stress tests

since banks do not fully know the regulator’s model. The model supports maintaining

opacity in stress testing since it reduces banks’ ability to take advantage of weaknesses in

the stress testing models, similar to the conclusion in Leitner and Williams (2023). How-

ever, nondisclosure could also be applied more broadly, including limiting the disclosure

of asset-specific risk weights.

The second tool is a nonlinear tax on risk exposures. The bank investing more in

an asset reveals information about its riskiness, which the regulator can incorporate by

conditioning the tax rate on the bank’s investment. Specifically, the regulator optimally

sets the marginal tax equal to the regulator’s estimate of risk, conditional on the bank’s

investment in that asset (along with the regulator’s other information). This policy

naturally leads to a nonlinear tax. Depending on the model’s parameters, this nonlinear

2While this paper takes a Bayesian perspective, accounting for model uncertainty by optimizing with
respect to worst-case scenarios does not necessarily justify conservatism. Worst-case scenarios could
include setting overly high taxes that prevent socially efficient investments.
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tax could be increasing or decreasing. For example, if the bank invests more in riskier

assets on average, then the regulator will optimally raise the marginal tax rate as the

bank invests more. However, in certain cases, the bank might be investing more in an

asset because it has lower risk, in which case a regulator would decrease marginal taxes.

A nonlinear tax may also not be possible to implement if there is a sufficiently large

divergence between the incentives of the bank and the regulator. The most direct policy

implication here is that regulators should respond to banks’ portfolio choices, whether

through formal policies, such as adjusting risk weights based on the concentration of

banks’ investments, or informal ones, such as calibrating shocks in stress tests based on

those same concentrations.3

The third tool is a tax on ex-post profits that aligns the bank’s risk-taking incentives

with the regulator’s incentives. The tax reduces the expected return that banks receive

for taking a given amount of risk, which worsens the bank’s after-tax risk–return tradeoff

and effectively makes the bank more risk averse. If perfectly calibrated, this type of tax

can perfectly align the incentives of the bank and the regulator. A flat tax on profits

is not sufficient: Even though a flat tax reduces banks’ after-tax profits, it also reduces

their after-tax portfolio risk in a similar way and thus does not change the risk–return

tradeoff. One way to alter the risk–return tradeoff is to have a state-dependent tax that

is higher during “good times” (i.e., when the stochastic discount factor (SDF) of banks’

investors is lower). Since banks’ profits are typically higher during booms (which reflect

“good times”), a progressive tax on profits could approximate the outcome of a perfectly

calibrated tax, similar to the progressive tax proposed by John et al. (1991), to align the

incentives of banks’ shareholders. Such a policy could reduce risk-taking incentives at

banks (or other financial institutions), even when regulators have little insight into those

risks.

While this paper is not the first to consider asymmetric information in the context

of banking regulation (for example, see Giammarino et al. (1993), Chan et al. (1992),

Wu and Zhao (2016), Perotti and Suarez (2018), and Leitner and Williams (2023)), the

main high-level difference is its focus on portfolio choice, which considers that banks

can invest in many assets and potentially game regulations by tilting their investments

towards assets whose risks are underestimated by regulators. Therefore, this paper can

address policy questions such as how regulators should specify asset-specific risk weights

that take into account information asymmetries. Additionally, this paper considers a

substantially different set of tools to address this problem.

This paper is structured as follows. Section 2 lays out the model. Section 3 covers

3The informal approach is similar to the proposal in Greenwood et al. (2017) to consider areas of high
growth or profitability for banks when calibrating shocks used in stress tests.

4



regulation based on taxing expected risk exposure, including both linear and nonlinear

taxes. Section 4 covers regulation based on nondisclosed taxes, which are not revealed

to the bank until after it has selected its portfolio. Section 5 covers regulation based on

taxing banks’ profits to reduce their effective risk aversion. Section 6 describes the policy

applications. Section 7 concludes.

1.1 Related literature

This paper relates most strongly to three broad strands of literature, including papers

that study (1) information asymmetries between banks and regulators, (2) the effect of

capital regulation on bank portfolio choice, and (3) the effect of taxes on banks.

The most closely related papers address information asymmetries between banks and

regulators. Perotti and Suarez (2018) consider optimal regulation when bank illiquidity

imposes an externality, similar to how bank risk-taking imposes an externality in this

current paper. They consider the use of both Pigovian taxes as well as quantity-based

regulation, taking into account regulators’ uncertainty with respect to banks’ investment

opportunities and gambling incentives, in the spirit of Weitzman (1974). One recent

strand of literature considers model secrecy in the context of stress tests, including Leitner

and Williams (2023) and Kim et al. (2024). At a high level, these papers address questions

along the lines of how strictly to calibrate stress tests overall and whether to reveal enough

information about the models so that banks can determine whether they are passing on

their own. Giammarino et al. (1993), Chan et al. (1992), and Wu and Zhao (2016) are

other papers that address asymmetric information between banks and regulators across

different contexts. The key differentiating factor of my paper is its focus on calibrating

asset-specific taxes or risk weights, including how to limit banks’ ability to game those

calibrations.

The second strand of related literature addresses optimal capital regulation for banks,

and particularly the impacts on portfolio choice. Kim and Santomero (1988) derive the

optimal risk weights for a regulator with full information on asset riskiness with the goal

of limiting failure probabilities below a certain level. Rochet (1992) similarly derives

optimal regulatory policy, both in terms of asset risk weights for capital requirements

and pricing of deposit insurance, for a regulator with full information. More recently,

Glasserman and Kang (2014) consider the problem of a regulator choosing optimal risk

weights, including a case in which the regulator does not know the mean return of each

asset. The main difference is that this paper focuses on the problem of a regulator with

limited information about the riskiness of individual assets, whereas the regulator in their

paper has full knowledge of each asset’s riskiness. Greenwood et al. (2017) contains a

simple model evaluating how various forms of bank capital regulation affect portfolio
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choice, and the paper discusses how different types of regulations are subject to gaming

by banks. While the broad topic of gaming regulations is closely related to the current

paper, their model does not explicitly incorporate asymmetric information.

The third strand of related literature discusses how tax policy affects bank behavior,

which is particularly related to this paper’s results on taxing banks’ ex-post profits.

John et al. (1991) is the most relevant, in that they propose setting a progressive tax

to mitigate banks’ incentives to tax excessive risks. Shackelford et al. (2010) discuss

various ways in which taxation may be used to address externalities in the financial

sector. They note that information asymmetries make Pigouvian taxation to address

these externalities difficult and broadly discuss how financial transactions taxes, taxes

on bonuses, and levies on banks may partially mitigate those externalities. Empirically,

Celerier et al. (2019) empirically demonstrate the impact of Belgium’s adoption of an

equity subsidy, which allowed banks to deduct an estimate of the cost of equity from

their taxes, on the composition of their portfolio. They show that the equity subsidy led

banks to shift toward holding more loans rather than government bonds. And while not

directly related to banks, this paper relates to a longstanding literature on the impact of

taxation on risk-taking in general, such as in Domar and Musgrave (1944) and Stiglitz

(1969).

2 The general framework

This is a single-period model containing a bank and a regulator. There are many assets

whose riskiness (which is reflected by each asset’s beta with respect to a common risk

factor) and expected returns are drawn from known prior distributions. Although the

framework is general, I think of a single asset in the model as mapping to an investment

in some granular subcategory, such as “loans to small biotechnology companies.” The

bank observes the betas and expected returns, whereas the regulator only receives noisy

signals of each. The regulator can use these signals to establish regulatory constraints,

which in general can take many forms, and then the bank selects its investments subject

to those constraints.

I typically assume that the bank’s starting equity is exogenous, although Section B in

the appendix considers the case in which the bank endogenously selects its desired level of

equity. Without loss of generality, I normalize the bank’s starting equity to one, so that

all quantities can be interpreted as relative to the bank’s total capital. Large quantities

of investments in risky assets correspond to high leverage since banks must issue debt

(whether as deposits or other forms) to fund those positions.

There is a continuum of risky assets indexed by i ∈ [0, 1]. The bank selects qi, its
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quantity of investment in asset i. The overall expected excess return to investing in asset

i is aiqi − c
2
q2i . I assume that c > 0, so that there are diminishing returns to investment.

qi may be negative, which can be interpreted as the bank taking a short position.4

Each asset is exposed to a single systematic factor F with an asset-specific βi loading.5

Without loss of generality, I set E[F ] = 0 and V ar(F ) = 1. Thus, each asset i has a

payoff Xi of the form6

Xi = ai −
c

2
qi + βiF. (1)

The bank’s objective is to maximize its market value, which is given by

EB[M(Π− T )], (2)

where Π =
∫ 1

0
qiXidi is the bank’s pre-tax profit, T represents potential taxes paid to

the regulator, M is the investors’ stochastic discount factor (SDF), and EB denotes an

expectation with respect to the bank’s information set. I assume that the investors’ SDF

is7

M = 1− γF, (3)

which implies that the bank maximizes

EB[(Π− T )]− γCovB((Π− T ), F ) (4)

=

∫ 1

0

(aqi −
c

2
q2i − γβiqi)di− EB[T ]− γCovB(T, F ). (5)

The γ term reflects the price of exposure to the systematic factor F , which the bank’s

investors cannot diversify away. While the γ term could potentially reflect many forces,

it is easiest to think of it as representing investors’ risk aversion. The bank internalizes

4Banks could either literally be taking a short position or achieving similar exposures through other
means. For example, a bank might take a short position on a credit exposure through buying a credit
default swap.

5The portfolio-invariant risk weights in Basel II and III can be justified by the assumption of a single
systematic factor, as discussed in Gordy (2003). However, the assumption of a single factor is not as
important in this paper’s framework. As will be explained in more detail shortly, risk in the context of
this paper is based on covariance with the investors’ SDF rather than the variance of the bank’s portfolio.
Under the SDF-based measure of risk, each asset’s risk contribution does not depend on the rest of the
portfolio even if there are multiple systematic factors.

6For simplicity, I assume that there is no idiosyncratic risk. Since there is a continuum of assets, the
idiosyncratic risk would be diversified away and would therefore not affect the model’s results.

7While the SDF can technically become negative for large values of F , this issue is not a concern for
my application. This SDF results in a price of γ per unit of exposure to the systematic risk factor, which
leads to a more tractable model.
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the price of risk exposure and only increases exposure to the systematic factor if justified

by the profits.

Here, I emphasize that risk is measured based on the bank’s portfolio beta rather than

the variance. A negative beta portfolio is considered less risky than a zero-beta portfolio

because it provides the bank’s investors with insurance by paying out during “bad times”

when the marginal value of wealth is high. This linear price of risk exposure matches the

approach taken by Froot and Stein (1998).

The bank’s risk-taking imposes externalities η > 0 per unit of portfolio beta βp =∫ 1

0
qiβidi. This approach is a reduced-form way of reflecting a wide range of externalities,

including government bailouts and bankruptcy costs. The regulator’s objective is to

maximize social welfare, which is

ER

[
MΠ− η

∫ 1

0

qiβidi

]
(6)

=ER

[∫ 1

0

(aqi −
c

2
q2i − (γ + η)βiqi)di

]
, (7)

where ER denotes an expectation with respect to the regulator’s information set, which

will be specified in greater detail shortly.8 The regulator’s objective is identical to the

bank’s, except with higher effective risk aversion. The regulator is willing to allow the

bank to take more risk if the associated profits are sufficiently high, but is more conser-

vative in this tradeoff compared to the bank.

The timing and information structure is as follows. First, the βi loadings and ai

measures of investment profitability are drawn from a prior distribution known to both

the bank and the regulator. Then, the regulator receives a noisy signal β̂i for each asset.

These signals reflect the regulator’s imperfect information each asset’s riskiness. Next, the

regulator uses this information to determine regulatory constraints on the bank. There are

several types of regulatory constraints, but one example is the regulator selecting a tax ki

that the bank must pay for each unit of exposure to asset i. This cost could be interpreted

as either a direct cost, such as a premium for deposit insurance, or an indirect cost, such

as the cost of higher capital requirements for a position. These payments represent a

private cost to the bank but do not affect social surplus. Finally, the bank optimally

selects its portfolio knowing the true βi and ai parameters, reflecting superior knowledge

of assets’ riskiness, subject to paying any costs or following any constraints imposed by

the regulator.

8In principle, the bank’s investments might also produce positive externalities that the regulator takes
into account. For simplicity, I’ll assume that there are no such externalities, which means that the bank
is capturing all social surplus. However, if positive externalities were included in the model, the regulator
would additionally include a subsidy that reflects these positive externalities.
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In determining optimal regulation, the regulator faces a tradeoff. Since the regulator

has a higher effective risk aversion than the bank, the regulator wants to reduce riskiness.

But regulations meant to reduce riskiness might lead to socially inefficient investments,

which reduce social welfare.

The processes for each asset’s true profitability and beta are

βi = β̄ + ubi (8)

ai = ā+ χ(βi − β̄) + uai , (9)

where uai and ubi are mean-zero independent normal random variables with variances σ2
ua

and σ2
ub, respectively. Therefore, the draws of ai and βi are independent across assets.

χ is an important parameter that determines the strength of the relationship between

each asset’s true risk and its baseline profitability. Since there is typically an equilibrium

relationship between risk and return, it may be tempting to think that ai should be

strongly positively related to βi (i.e., that χ should be large). However, this relationship

is typically between risk and the marginal return. In this model, ai only reflects the

initial marginal return starting from zero investment in an asset, whereas ai− cqi reflects

the equilibrium marginal return. In equilibrium, investment in a highly profitable asset

will drive down that asset’s marginal return until it exactly compensates for the asset’s

risk. There is no similar logic for why the initial marginal return, ai, should inherently

be strongly related to βi. Therefore, I do not restrict the value of χ.

For each asset, the regulator receives a single signal

β̂i = βi + ei, (10)

where ei is a mean-zero normal random variable with variance σ2
e . ei are independent

across assets.

Based on this signal structure, the regulator’s expectation of βi conditional on ob-

serving β̂i is

E[βi|β̂i] = β̄ +
σ2
ub

σ2
ub + σ2

e︸ ︷︷ ︸
θb

(β̂i − β̄) (11)

based on formulas for Bayesian updating with normally-distributed random variables.

This signal structure is a tractable representation of regulators having less information

about asset riskiness than banks. In practice, this information asymmetry could arise for

many reasons. Banks could have better access to data, more staff, and a more specialized

focus on particular products. This asymmetry could also potentially reflect a timing
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effect, since risk weights may not be calibrated to the most recent market data. In that

case, banks would have an information advantage from using more recent data.

Since my focus is on how to address an information asymmetry, I assume that the

signal structure is exogenous. In principle, a regulator might also address this information

asymmetry by gathering additional data. Information acquisition could be modeled by

allowing the regulator to pay a cost to improve the precision of the β̂ signal. However,

since my focus is not on optimal information acquisition and since including it would

greatly complicate the model, I take the information structure as given.

2.1 No regulation

To build intuition for the cases involving regulation that follow, I begin by considering

the bank’s problem when there is no regulation.

In this case, the bank solves

max
{qi}

∫ 1

0

(aqi −
c

2
q2i − γβiqi)di, (12)

which quickly leads to the solution

qi =
1

c
(ai − γβi). (13)

The bank’s investment in an asset increases in ai and decreases in βi. All else being equal,

banks do not like to take risk and will only do so if they are sufficiently compensated for

it. Common intuition is that banks will take advantage of weaknesses in regulation to

increase their risk, but this intuition is only true if that risk is sufficiently compensated.

The ai − γβi term will appear in future results. I call this term the “initial risk-

adjusted return.” In this model, the bank’s marginal return from investing in asset i is

ai−cqi, so ai represents the marginal return prior to making any investment (i.e., when qi

is zero). Since the bank dislikes beta exposure with a cost of γ, the −γβi term represents

a risk adjustment from the bank’s point of view.

Whether banks invest more in high-beta assets depends on the relationship between

each asset’s initial risk-adjusted return and its beta. Specifically, it depends on whether

Cov(qi, βi) = Cov

(
1

c
(ai − γβi), βi

)
(14)

=
1

c
Cov

(
(χ− γ)ubi + uai , u

b
i

)
(15)

=
1

c
(χ− γ)σ2

ub (16)
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is positive or negative. This relationship will be positive when χ > γ, which means that

higher betas are associated with higher initial risk-adjusted returns on average. Since χ

could take on any value, this relationship could, in general, take either sign.

Next, I consider what the portfolio beta and expected return look like in this case.

The portfolio beta is

βp =

∫ 1

0

qiβidi. (17)

Using the fact that draws of ai and βi are independent across assets and applying the

law of large numbers implies that the expected portfolio beta is

E[βp] = E[qiβi] = E[qi]E[βi] + Cov(qi, βi). (18)

This familiar last term will determine how the portfolio beta compares to what would be

expected ignoring the link between risk and portfolio choice. If this term is positive, the

bank will adjust its portfolio to scale up risky investments. If this term is negative, it

will adjust its portfolio to scale down risky investments.

2.2 The first-best solution

Here I consider the first-best outcome, in which the regulator knows the true ai and βi

parameters and directly selects investment quantities qi to maximize social welfare. In

this case, the regulator maximizes

max
{qi}

∫ 1

0

(
aiqi −

c

2
q2i − (γ + η)βiqi

)
di, (19)

where there are no expectations due to the regulator’s perfect knowledge of all parame-

ters. I will focus on understanding the behavior of the unconditional expectations of the

portfolio beta, portfolio return, and social welfare.

Proposition 1. In the first-best case, equilibrium investment in asset i is

qi =
1

c
(ai − (γ + η)βi). (20)

The equilibrium expected portfolio beta is

E[βp] =
1

c

(
E[aiβi]− (γ + η)E[β2

i ]
)
. (21)
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The equilibrium expected portfolio return is

E[µp] =
1

2c

(
E[a2i ]− (γ + η)2E[β2

i ]
)
. (22)

The equilibrium social welfare is

E[µp − (γ + η)βp] =
1

2c
E[(ai − (γ + η)βi)

2]. (23)

Proof. See Section D.1.

The most interesting result is that social welfare depends on the expectation of ai −
(γ + η)βi squared. This term can be interpreted as the initial risk-adjusted return from

the regulator’s point of view. Whenever the initial risk-adjusted return differs from zero,

the bank can make socially efficient investments. As these differences rise, the amount of

socially efficient investments also rise, which increases social welfare. Even investments

with negative initial risk-adjusted returns can create social value since banks can take

short positions.

The socially optimal investment in asset i matches the case without regulation, except

with an effectively higher risk aversion of γ + η instead of γ.

I also introduce a general result that is useful for calculating expected social welfare

under various cases.

Proposition 2. For all given random variables qi representing a bank’s investment

choice, the expected social welfare can be expressed as

c

2

(
E[(qfbi )2]− E[(qi − qfbi )2]

)
, (24)

where the first-best investment is

qfbi =
1

c
(ai − (γ + η)βi) . (25)

Proof. See Section D.2.

Intuitively, social welfare can be decomposed into one piece that depends on welfare

under the first-best case and another piece that depends on deviations away from the

first best. These deviations from the first best reflect the impact of socially inefficient

investments. A particularly useful application of this result is comparing social welfare

between two cases, for which it only becomes necessary to calculate the expected squared

deviations from the first-best case.
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3 Regulation through taxing estimated risk

Here I consider how a regulator might use taxes on banks’ estimated risk to regulate

their risk-taking. In interpreting the results, literal taxes are not required but instead

something that imposes a direct or indirect cost to the bank. For example, risk-sensitive

deposit insurance premiums would be a direct cost, while higher steady-state capital

requirements would be an indirect cost. Section A discusses the relationship between

setting taxes and capital requirements in further detail. Additionally, this section assumes

that the bank’s starting level of equity is exogenous. Section B.1 discusses an extension

in which the bank selects its desired level of equity.

3.1 Linear tax

Here the regulator picks a tax ki that the bank must pay for each unit of asset i. The

proceeds of this tax do not have any social benefit, so they don’t enter the regulator’s

objective function, but the bank optimizes conditional on the tax. The bank solves

max
{qi}

∫ 1

0

(aiqi −
c

2
q2i − γβiqi − kiqi)di, (26)

taking ki as given. The regulator solves

max
{ki}

ER

[∫ 1

0

(aiqi −
c

2
q2i − (γ + η)βiqi)di

]
, (27)

taking into account how the choice of ki affects the bank’s choice of qi as well as infor-

mation contained in the signal β̂i.

Proposition 3. The bank optimally selects

qi =
1

c
(ai − γβi − ki). (28)

The regulator optimally selects

ki = ηER[βi]. (29)

The equilibrium social welfare relative to the first-best is

− 1

2c
η2V ar(βi − ER[βi]). (30)

Proof. See Section D.3.
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The regulator’s optimal policy is to set the tax equal to the expected risk given

signals. At first glance this result may seem straightforward, but it runs counter to

common intuitions. Financial regulation is often calibrated conservatively based on the

argument that banks will take advantage of weaknesses in the regulatory framework. If

the regulator underestimates an asset’s risk, then banks will overinvest in that asset.

Calibrating regulations to be more conservative than the regulator’s expectations is then

argued as necessary to prevent this type of gaming.

This force exists in this model since banks will overinvest in assets if regulators un-

derestimate their risk. But the optimal solution is not conservative because such conser-

vatism is costly. If regulators overestimate the risk of an asset, then banks will underinvest

and, thus, forgo socially-desirable investments. Due to the specification of the risk-taking

externality, ηβp, as a linear function, the costs of overinvestment and underinvestment

are similar and, therefore, the regulator targets their expectation of optimal investment.

Extensions that allow for a convex risk-taking externality, so that the extra costs of

too much risk are substantially more than the benefits of reducing risk, can give rise

to conservatism. Although even in these extensions, idiosyncratic uncertainty about the

risks of individual assets is not sufficient to generate conservatism since idiosyncratic

uncertainty diversifies across the portfolio. Instead, there also needs to be systematic

uncertainty. Section C covers the topic in more detail.

3.1.1 Is a linear tax better than command?

Here I consider whether a linear tax outperforms the command case, in which the regula-

tor directly selects the bank’s investments. Intuitively, it would seem that the linear tax

would always outperform since it controls for the expected externality while still allowing

the bank to make use of its private information. However, for certain parameters, it is

better for a regulator to select investments directly.

In the command case, the regulator optimizes

max
{qi}

ER

[∫ 1

0

(aiqi −
c

2
q2i − γβiqi − kiqi)di

]
, (31)

which leads to the solution

qcomi =
1

c
(ER[ai]− (γ + η)ER[βi]) . (32)

Proposition 4. Social welfare under the command case relative to the first-best is

− 1

2c
V ar(ãi − (γ + η)β̃i). (33)
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Social welfare under the command case is higher than in the linear tax case when

2(γ + η)Cov(ãi, β̃i) > V ar(ãi) + γ(γ + 2η)V ar(β̃i), (34)

where x̃ = x− ER[x] is the expectational error of the regulator.

Proof. See Section D.4.

This expression illustrates that there are some circumstances under which the com-

mand case would be preferred to the linear tax.

A necessary, but not sufficient, condition for command to be preferred to a linear tax

is for Cov(ãi, β̃i) > 0. In that case, when the regulator underestimates the beta, the

regulator also likely underestimates the expected return. The bank would then be more

likely to invest more in assets for which the regulator has underestimated the risk.

3.2 Nonlinear tax

Here the problem is similar to before, except that instead of picking a single linear tax

governed by ki, the regulator sets a nonlinear tax schedule ki(qi). These nonlinear taxes

will implicitly make use of information contained in the bank’s choice of qi. All else being

equal, banks prefer to increase qi when expected returns are high (i.e., ai is high) or risk

is low (i.e., βi is low), so the bank’s choice of qi is a signal of the combination of these

two parameters. Using the nonlinear tax is essentially a way for the regulator to set a

tax conditioned not only on the signal β̂i, but also on qi.

More specifically, the bank observes the choice of ki(q) and then selects its portfolio

taking the tax function as given. The bank therefore maximizes over quantities

max
{qi}

∫ 1

0

(aiqi −
c

2
q2i − γβiqi − ki(qi))di, (35)

while the regulator maximizes over taxes

max
{ki(qi)}

E

[∫ 1

0

(aiqi −
c

2
q2i − (γ + η)βiqi)di

]
, (36)

taking as given the bank’s optimal choice of qi. Since adding a constant to taxes has no

effect on the bank’s choice, I select tax schedules that charge banks zero if they make no

investments (i.e., ki(0) = 0).

Proposition 5. The bank’s optimal choice of qi satisfies

qi =
1

c
(ai − γβi − k′i(qi)), (37)
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and the regulator’s optimal tax ki(qi) satisfies

k′i(qi) = ηE[βi|qi, β̂i] (38)

= ηE[βi|ai − γβi, β̂i] (39)

= η

(
β̄ + ω1(β̂i − β̄) + ω2

(
(ai − γβi)− ā+ γβ̄

χ− γ

))
(40)

= x+ y(ai − γβi), (41)

where

ω1 =
1/σ2

e

1/σ2
ub + 1/σ2

e + (χ− γ)2/σ2
ua

(42)

ω2 =
(χ− γ)2/σ2

ua

1/σ2
ub + 1/σ2

e + (χ− γ)2/σ2
ua

(43)

are the updating weights placed on the signals β̂i and ai − γβi respectively and

x = η

(
β̄ + ω1(β̂i − β̄) + ω2

(
−ā+ γβ̄

χ− γ

))
(44)

y =
η

χ− γ
ω2. (45)

A nonlinear equilibrium only exists for y < 1, which can be characterized by χ−γ < 0

or χ− γ > ηω2. In this equilibrium, the bank optimally invests

qi =
1

c
((1− y)(ai − γβi)− x) (46)

and the regulator optimally sets a quadratic tax of the form

ki(qi) =
x

1− y
qi +

c

2

(
y

1− y

)
q2i . (47)

Otherwise, the regulator sets a linear tax.

Proof. See Section D.6.

In the case of a linear tax, the regulator sets the tax equal to their best guess of

the beta. In the case of a nonlinear tax, the regulator sets the marginal tax equal to

their best guess of the beta, taking into account the information contained in qi. In this

environment, the regulator’s expectation of beta is linear in qi, so the marginal tax is also

linear in qi and the level of the tax is quadratic in qi.

The regulator observing qi is equivalent to observing the risk-adjusted return ai−γβi.
This equivalence holds because the risk-adjusted return is the only part of the bank’s
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choice of qi that the regulator does not know. Furthermore, the risk-adjusted return is a

noisy signal of βi, which then affects the regulator’s desired marginal tax.

The nonlinear equilibrium only exists for χ− γ < 0 or χ− γ > ηω2. Since ω2 ∈ [0, 1],

χ−γ > η is a sufficient condition. These parameter restrictions correspond to the case in

which equilibrium investment qi increases as the risk-adjusted return ai − γβi increases.

Otherwise, the regulator would want the bank’s investment to fall as the risk-adjusted

return rises, which cannot be implemented with a nonlinear tax due to the divergence

between the incentives of the bank and the regulator.

When χ−γ < 0, assets with higher betas have lower risk-adjusted returns, on average,

so banks invest less in riskier assets on average. Since the regulator prefers the bank to

invest less in riskier assets as well, they are directionally aligned (although the bank and

regulator differ on their desired investment magnitudes). In that case, the bank investing

more indicates that an asset is less risky, so the regulator reduces the marginal tax rate

as the bank invests more.

For the other case, consider the sufficient condition χ − γ > η. In that case, assets

with higher betas have such higher risk-adjusted returns, on average, that the regulator

prefers the bank to invest more in risky assets. Since the bank prefers to invest more in

risky assets as well, they are also directionally aligned. In that case, the bank investing

more indicates that an asset is riskier, so the regulator raises the marginal tax rate as

the bank invests more.

The takeaway is that nonlinear taxes can allow the regulator to take advantage of

additional information from the bank’s investment decisions, but only when both of their

incentives are sufficiently aligned. Otherwise, there is not an equilibrium in which the

bank reveals its information.

For a straightforward extension of the model in which the prior distributions of ai and

βi vary across assets, such as by allowing asset-specific χ parameters, the regulator might

implement a nonlinear tax for specifically for those assets where incentives are sufficiently

aligned and a linear tax for the rest.

4 Effects of nondisclosure

Here I consider the policy of specifying taxes, similar to Section 3, but with the added

twist that the regulator does not reveal these taxes to the bank until after they have

made their portfolio choice.
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4.1 Fully undisclosed linear tax

In this case, the regulator specifies a linear tax, but the bank does not know the value of

this tax until after it has selected its portfolio. One interpretation is that this scenario

is similar to a stress test in which the bank does not know the regulator’s model. While

not implemented in practice, another interpretation is that the bank selects its portfolio

and the regulator only reveals the associated risk weights after the fact.

In this situation, the bank solves

max
{qi}

∫ 1

0

(aiqi −
c

2
q2i − γβiqi − EB[ki]qi)di, (48)

where the bank’s information set does not include the regulator’s signals. Meanwhile, the

regulator solves

max
{ki}

ER

[∫ 1

0

(aiqi −
c

2
q2i − (γ + η)βiqi)di

]
, (49)

taking into account the bank’s choice function. I solve for the set of solutions {qi} and

{ki} that jointly solve each optimization problem.

Proposition 6. One solution is for the bank to select

qi =
1

c
(ai − (γ + η)βi) (50)

and the regulator to select

ki = ηβ̂i. (51)

This solution achieves the first-best outcome for the regulator.

Proof. See Section D.7.

To understand why this approach achieves the first-best outcome, note that the bank’s

expectation of the tax is

EB[ki] = ηEB[β̂i] = ηEB[βi + ei] = ηβi. (52)

Intuitively, the bank expects that the regulator will set the tax correctly on average.

Therefore, the bank invests as though the regulator had set all of the taxes correctly.

Recall that β̂i 6= ER[βi], so the regulator is not setting the tax equal to their best

guess of the true beta. The rationale is that the regulator wants the tax to respond
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one-for-one to changes in the true underlying beta. The regulator’s best guess of the true

beta, ER[βi], includes some regularization toward β̄ that typically results in a response

that is less than one-for-one.

For practical application, the lesson here is that when regulators are not sharing

ex-ante details about taxes, they should respond very strongly to any information they

receive about an asset’s riskiness. Otherwise, banks will assume that regulators will not

adjust taxes sufficiently in response to information.

4.2 Partially disclosed linear tax

In practice, banks may have some sense of deficiencies in regulators’ models, even if

they may not have full knowledge of those models. For example, banks may learn about

some features of regulators’ stress testing models. In a dynamic setting, a bank may

have learned some information from regulators’ prior actions. I model banks’ partial

knowledge of regulators’ models by giving banks noisy signals of the regulator’s signals,

which banks can use to guess the likely level of tax that regulators will specify.

The set-up is exactly the same as before, except now banks receive a noisy signal of

the regulator’s signal of the form

si = β̂i + wi, (53)

where wi are independent across assets and are normally distributed with mean zero and

variance σ2
w.

Proposition 7. If the bank receives noisy signals of the regulator’s signals, then a regu-

lator’s choice of the optimal ki must satisfy

ER[EB[ki]] = ηER[βi]. (54)

One solution satisfying this condition is for the regulator to set

ki = η

(
β̄ +

θb
θb + θw(1− θb)

(β̂i − β̄)

)
, (55)

where

θb =
σ2
ub

σ2
ub + σ2

e

(56)

θw =
σ2
w

σ2
e + σ2

w

. (57)
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θb is the weight that the regulator places on the signal β̂i, and θw is the weight that the

bank places on the signal si.

Proof. See Section D.8.

Intuitively, the condition for the optimality of ki is that the regulator’s best guess of

the bank’s best guess of the regulator’s tax equals the regulator’s best guess of the risk

externality imposed by the portfolio. Put another way, the regulator wants to calibrate

the tax to give the bank the correct incentives on average.

Existing results emerge as special cases of this framework. First, if the bank has a

perfect signal of the regulator’s information, then σw = 0. This case is equivalent to when

the regulator pre-announces the loadings, in which case the result is ki = ηER[βi]. Second,

if the bank has no idea of the regulator’s information, which is modeled as σw →∞, then

θw → 0, which matches the earlier result of the regulator setting ki = ηβ̂i.

In the intermediate case, as the bank’s signal of the regulator’s signal becomes noisier

(i.e., the variance of wi rises), the regulator places greater weight on β̂i than they would

in the case of optimal Bayesian updating, but does not place full weight on it as they

would in the case of a fully undisclosed tax.

4.3 Nondisclosure with an aversion to idiosyncratic volatility

A potential concern with nondisclosure of taxes is that it exposes banks to additional

uncertainty over their future cash flows. In the baseline framework, banks are only averse

to systematic risk, so this additional uncertainty does not pose any cost. But, in practice,

factors such as capital market imperfections may make banks averse even to idiosyncratic

volatility (Froot and Stein, 1998). Therefore, nondisclosure can pose costs to banks that

the baseline framework does not capture.

To incorporate these costs, I add a γI term reflecting banks’ aversion to idiosyncratic

volatility resulting from the uncertain taxes. One important question is whether the

regulator considers idiosyncratic risk as imposing a social cost or not. To capture a wide

range of possibilities, I assume that the regulator recognizes a social cost ηI associated

with the bank bearing idiosyncratic volatility. Since the regulator already recognizes

indirect effects of volatility affecting banks’ portfolio choice, the ηI term reflects only

the direct costs of the bank bearing idiosyncratic volatility, even controlling for portfolio

choice.

For tractability reasons, I focus on the simpler case in which there is only one asset.

In this case, the idiosyncratic risk only comes from the tax on the single asset. In the

case with multiple assets, idiosyncratic risk will depend on the volatility of taxes across
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many assets, in which case the correlation of the errors becomes important. To avoid

introducing those complexities, I focus on one asset.

Proposition 8. Suppose that banks are averse to the volatility of tax payments such that

they maximize

max
q

(a− γβ)q − c

2
q2 − EB[kq]− γIσB(kq), (58)

where σB(kq) is the standard deviation of the taxes paid with respect to the bank’s infor-

mation set.

Additionally, suppose that the regulator recognizes a social cost of ηI from the volatility

of tax payments, so that the regulator’s objective is to select a tax k to maximize

ER[(a− γβ)q − c

2
q2 − ηβq − ηIσB(kq)]. (59)

The regulator can achieve the first-best outcome by setting

k = ηβ̂ + (ηI − γI) ησe︸︷︷︸
σB(k)

sgn(q), (60)

which results in overall taxes paid of

kq = ηβ̂q + (ηI − γI)ησe|q|. (61)

Proof. See Section D.9.

The first piece of this expression, ηβ̂, is the same as in the baseline case without an

aversion to idiosyncratic volatility. As before, the bank’s best guess of β̂ is the true β,

so nondisclosure by regulators forces the bank to use their information based on the true

state of the world.

The second piece of this expression relates to the idiosyncratic volatility. If the private

and social costs of idiosyncratic volatility differ (i.e., to the extent that γI and ηI differ),

the regulator should adjust the taxes to align the bank’s incentives. For example, if

γI = ηI , so that the two are already aligned, there is no need to take action.

But consider the case in which γI > 0 and ηI = 0, so that there is only a private cost

to volatility. For positive q, the regulator should optimally reduce the size of the tax.

The reason is that the volatility is already dissuading the bank from investing, so the

tax does not need to be as high to achieve the optimal level of investment. In this case,

the regulator can compensate for the costs imposed by higher uncertainty in the tax by

reducing the average size of the tax. The idea generalizes: The regulator can compensate
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for the costs imposed by higher regulatory uncertainty by reducing the average tightness

of regulations.

5 Taxes on profits

This section explores the potential of using taxes on ex-post bank profits to effectively

reduce their risk aversion and, thus, influence their portfolio choice. The broad idea is

that the regulator can calibrate a stochastic tax that the bank perceives as having a

present value related to the riskiness of the bank’s investments. The regulator can then

use taxes of this type to align the bank’s incentives with the regulator’s, even without

any knowledge of risk or profitability of individual assets.

5.1 Achieving first best through a tax on expected profits

In the generally infeasible case in which the regulator has perfect knowledge of the bank’s

expected profits, it’s possible for the regulator to achieve a first-best outcome through

an appropriately calibrated tax on them. The intuition is that reducing expected profits

also reduces the profit per unit of risk the bank takes, which incentivizes the bank to

reduce its risk and has an identical effect as reducing the bank’s risk aversion.

Proposition 9. The regulator can achieve the first-best outcome by taxing a fraction η
γ+η

of the bank’s expected profits.

Proof. In this case, the regulator imposes a tax of

T =
η

γ + η
EB[Π] =

∫ 1

0

η

γ + η
(aiqi −

c

2
q2i )di. (62)

The bank’s objective is now to maximize

max
{qi}

EB[M(Π− T )] = max
{qi}

∫ 1

0

(
γ

η + γ

(
aiqi −

c

2
q2i

)
− γβiqi

)
di. (63)

Multiplying by (γ+η)/γ does not change the optimal solution and yields the maximization

problem

max
{qi}

∫ 1

0

(aiqi −
c

2
q2i − (γ + η)βiqi)di, (64)

which exactly matches the regulator’s objective function and therefore leads to a first-best

outcome.
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I again emphasize that this outcome is generally not feasible since it relies on the

regulator having perfect knowledge of ai. However, it suggests that feasible strategies

that approximate a tax on expected returns might be a fruitful course of action. So I

next examine feasible approaches that are in the same spirit.

5.2 Achieving the first best through a tax on ex-post profits

It is possible to achieve the first best through an appropriately-calibrated tax on ex-post

profits whose present value, from the bank’s point of view, equals a fraction of expected

returns.

Proposition 10. If the regulator sets an ex-post tax of

T =
1

M

η

η + γ
Π, (65)

then portfolio choice will match the first-best case. In this equation, M and Π are random

variables, while η and γ are constants.

Proof. From Proposition 9, a tax that is set to be a fraction η/(η + γ) of the bank’s

expectation of profits achieves the first best. The regulator can set an ex-post tax T with

a present value equal to this tax by selecting T to satisfy

EB[MT ] =
η

η + γ
EB[Π]. (66)

Setting T as proposed leads to

EB

M η

η + γ

Π

M︸ ︷︷ ︸
T

 =
η

η + γ
EB[Π], (67)

so that the present value of the tax to the bank equals a tax on expected profits.

From before, the regulator would ideally want to tax the bank’s expected returns.

Unfortunately, a direct tax is infeasible because the regulator does not know asset-specific

expected returns. However, the regulator can set a stochastic tax whose present value,

from the bank’s perspective, equals some fraction of the portfolio’s expected return.

State-dependent tax rates are required to achieve this result. Since M is high in “bad”

times and low in “good” times, the taxes should be lower in “bad” times than in “good.”

In practice, the taxes may not necessarily have to explicitly be state-dependent. For

example, since bank profits are likely higher during good times than bad, setting a pro-

gressive tax rate on profits might achieve a similar outcome. Even a binary approach,
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such as imposing an extra tax on profits above a particular threshold, may achieve an

approximately similar outcome.

If the aim is to tax a constant fraction of expected profits, it may be unclear why it

isn’t sufficient to tax a constant fraction of realized profits. While this simpler flat tax

reduces expected profits, it also reduces risk by the same amount. The overall risk–return

tradeoff remains unchanged along with the bank’s portfolio choice. The more complicated

tax is necessary to alter the expected return without altering the risk.

6 Policy applications

The model yields several broad insights for designing financial regulation that takes into

account the information asymmetry between the regulator and the regulated. While the

model focuses on specifying optimal taxes, these taxes could be interpreted as reflecting

the shadow costs of capital requirements. Since capital requirements are a more common

regulatory tool, I will focus on the model’s implications for setting risk weights as part

of capital regulation.

A first insight is that regulators can benefit by not disclosing information about risk

weights to banks. Intuitively, if a bank does not know the regulator’s risk weights ahead

of time, they will need to choose their investments based on their best guess of the risk

weights. If a bank thinks that the regulator will set risk weights correctly, on average,

then that bank will invest as though the regulator had set the risk weights correctly.

Even if the bank has some information on the regulator’s likely risk weights, there is

still benefit in disclosing as little information as possible to reduce possibilities to take

advantage of misspecification.

A potential concern is that not disclosing risk weights may create regulatory uncer-

tainty that would dissuade socially valuable investment. However, reducing the average

level of risk weights could counteract disincentive effects from uncertainty.

The broad approach of not disclosing information to banks is already reflected in the

spirit of current stress tests, in which banks provide information on their portfolios and

do not know the full details of how regulators will calculate capital requirements. The

model supports limiting disclosure of stress test models to limit banks from gaming those

models.

Furthermore, similar types of nondisclosure could apply to other parts of the regula-

tory framework. For example, in the Basel III capital framework, regulators publish pre-

specified risk weights for each asset. An alternative would be for regulators to ask banks

to report data on exposures and then only tell them their aggregate capital requirements,

without revealing any asset-specific risk weights. To limit learning, regulators could also
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recalibrate risk weights more frequently. This approach would limit banks’ ability to take

advantage of misspecified risk weights.

A second insight is that regulators can account for information contained in the bank’s

portfolio choice. The most direct application would be nonlinear risk weights that auto-

matically change as banks concentrate investment in particular sectors. While the model

is too stylized for the formulas to directly apply to policy settings, regulators can consider

what information is revealed when a bank invests more in a particular type of asset. In

some cases, concentration in an asset may indicate that the regulator has underestimated

risk, and using a tool similar to a nonlinear risk weight may be a way of leaning back

against that underestimation.9 But, in some cases, higher concentration may not be asso-

ciated with higher risk. One approach to addressing this problem is to calibrate nonlinear

risk weights based on the empirical relationship between concentration in particular types

of assets and ex-post measures of risk, such as default rates on loans. However, this rela-

tionship would change if risk weights change, so multiple recalibrations may be required

before converging to an equilibrium (if it exists at all).

Practical application of such nonlinear formulas should also account for bank special-

ization. Some banks may specialize in particular lines of business and would therefore

naturally have higher concentrations. Penalizing specialized banks is likely socially un-

desirable. For practical implementation, it would likely be preferable to use measures of

concentration for the aggregate banking system rather than individual banks. An addi-

tional benefit of using measures based on the aggregate banking system is that individual

banks may not internalize how their investments would change risk weights, which could

reveal more information to regulators about the risks of individual assets.

While formal rules, such as formulas for risk weights, could automatically respond

to portfolio choice, a more informal supervisory process could also lead to a similar

result. Supervisors could investigate the areas in which banks are investing much more

(or less) than expected and consider adjusting risk weights for those areas. Risk weight

adjustments could be direct, such as changing Basel III calibrations, or indirect, such

as changing the shocks used in stress testing models as proposed by Greenwood et al.

(2017).

A third insight is that regulators could implement taxes on ex-post profits. Since the

model assumes that banks have an exogenous amount of equity equal to one, the empirical

counterpart would be a tax whose rate depends on a bank’s return on equity. The intuition

is that banks take risk to generate higher returns. Reducing expected returns through

a tax thus reduces the bank’s incentives to take risk, which can effectively make them

9Sector-specific countercyclical capital buffers can provide a similar outcome if adjusted appropriately.
But if there are any difficulties in activating such buffers, an automatic nonlinear rule may be able to
adjust more quickly.
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more risk averse while still using their private information. However, it is important to

take into account that taxes on ex-post profits affect both the after-tax risk and expected

return, so a flat tax on profits would not be sufficient.

In theory, an optimal solution is a state-dependent tax that is higher during “good

times” (i.e., when investors’ SDF is lower). The level of this tax would rise with the

magnitude of the externality that the bank’s risk-taking imposes. An explicitly state-

dependent tax could be calibrated based on measures of economic performance, such as

unemployment or GDP growth. However, since bank profitability is likely to be highly

correlated with economic performance, a progressive tax might also approximate the

ideal outcome. For example, a higher marginal tax rate for banks with a return on equity

above some predetermined threshold might discourage banks from excessive risk-taking

by reducing the after-tax payoff of doing so. Additionally, a tax whose rate rises with

a bank’s return on equity would incentivize banks to fund themselves with more equity

since higher equity would mechanically reduce the return on equity.

Empirically, Meiselman et al. (2018) show that high profitability for banks predicts

higher tail risk for both the 2007-08 financial crisis as well as the 1980s savings and

loan crisis. Given the empirical link between profits and risk, a well-calibrated tax on

profits can effectively be viewed as a tax on risk, without requiring any knowledge on the

regulator’s part of the riskiness of the bank’s portfolio.

One benefit of a tax on ex-post profits is that it could be quickly applied to the shadow

banking sector, even if regulators know little about its business model. In contrast, the

regulatory framework for traditional banks may not be entirely appropriate for certain

shadow banks, and it would likely take time to design a framework that appropriately

reflects their activities. Even if the ultimate goal were to apply a more traditional reg-

ulatory framework to such institutions, a tax on profits could be useful as an interim

measure while regulators prepare the longer-term framework.

7 Conclusion

In this paper, I address the problem of how to regulate bank portfolio choice taking

into account the asymmetry of information between banks and regulators. I construct

a tractable model that explicitly accounts for this asymmetry. The model is flexible

enough to allow for the consideration of a wide range of regulatory tools and information

asymmetries, while also being simple enough to be easily solved by hand. Because of

its flexibility and simplicity, this model can be adapted by researchers exploring related

topics, both within the context of banking and elsewhere.

I then use this model to explore the efficacy of several common regulatory tools and
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to propose three less common tools: (1) not disclosing taxes to banks until after portfolio

selection, (2) nonlinear taxes that respond to information contained in banks’ portfolio

choice, and (3) state-dependent taxes on banks’ realized profits.

While the model is intentionally stylized to aid in communicating intuitions, the

broad takeaways could be applied in practice. Regulators could consciously not disclose

information from banks to prevent them from gaming regulation, similar to how they

already do so for stress tests. Nonlinear taxes (or risk weights) could automatically

respond to banks concentrating their investments in a particular sector. And taxes on

ex-post profits could incentivize banks to behave more risk averse, even if regulators know

little about banks’ risks.

Future work can extend the model along several dimensions. One extension is to focus

on dynamic interactions, particularly in the case of information nondisclosure. Since

banks can learn information about regulators’ models over time by observing outcomes,

regulators may need to adjust their models or intentionally introduce noise to keep banks

from learning too much. Another extension is to ease the single-factor assumption. While

a single factor is an implicit assumption underlying much regulation (for example, Gordy

(2003) discusses the importance of a single-factor assumption within capital regulation

of the banking book), market risk must account for many correlated factors and hedges.

Addressing this problem would further aid in regulating bank portfolio choice in the

important, but more complicated, setting of banks’ trading books.
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A Relationship between taxes and capital require-

ments

The aim of this section is to demonstrate how approaches based on taxes and capital re-

quirements compare with each other. The exact relationship depends on the assumptions

about capital.

In several cases, there is an exact equivalence. In the most straightforward case, the

supply of capital is elastic with constant cost relative to other funding sources of rc. In

that case, a capital requirement of mi per quantity held of asset i has the same effect on

the bank’s portfolio choice as an asset-specific tax of ki = mi · rc.
There is also an exact equivalence between the two approaches when the quantity of

capital is exogenous and shocks to ai and βi are idiosyncratic (i.e., independent across

assets). In that case, setting a capital requirement on a specific asset has the same effect

on the bank’s portfolio choice as setting a tax equal to the shadow cost of the capital

requirement.

Proposition 11. Suppose that capital is exogenously set to 1 and the regulator sets a

capital requirement of the form ∫ 1

0

miqidi ≤ 1, (68)

where mi indicates the capital requirement for asset i. If there are no aggregate shocks

to ai and βi (i.e., ai and βi are drawn independently across assets), then the Lagrange

multiplier on the capital requirement λ is deterministic. The regulator can induce identical

portfolio choice by the bank through setting a linear tax ki according to

ki = λmi. (69)

Proof. See Section D.10.

However, the two approaches are not equivalent with systematic shocks. In that case,

the Lagrange multiplier λ will be stochastic. The difference between capital requirements

and taxes will essentially be a choice of price-based versus quantity-based regulation, the

considerations of which are discussed most notably by Weitzman (1974). In the baseline
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case in which there is a known linear social cost to bank risk-taking, a tax is likely the

better solution. But for particular forms of nonlinear social cost functions, quantity-based

regulation may be preferable.

B Endogenous capital structure

B.1 Linear taxes with endogenous capital structure

The earlier analysis considers the case of linear taxes with an exogenous capital structure

(i.e., banks begin with an exogenous amount of capital). I now consider the optimal

policy when endogenizing banks’ choice of capital structure.

The bank now selects the amount of equity with which it will fund itself. More equity

reduces the social cost of bank risk taking for a given level of risk exposure. However,

equity may potentially have both social and private costs relative to other sources of

funding. Without delving into exactly why these costs exists, I suppose that the social

cost of equity is rs > 0 and the private cost of equity is rp ≥ rs > 0.10 These reflect the

change in the overall cost of capital from funding with an additional unit of equity, not

the per-unit cost of equity.

For example, if the Modigliani-Miller capital structure irrelevance theorem were to

hold, then rs = rp = 0. I focus on the cases in which both rs and rp are positive

since these reflect the interesting cases; if equity were socially costless, then the solution

would be to hold sufficient equity such that there is no longer any social cost from bank

risk-taking.

The social cost of risk exposure is

η

∫ 1

0
βiqidi

e
. (70)

This social cost is exactly the same as before, except now the portfolio risk is scaled by

the amount of equity e.

I consider a case in which the regulator uses two tools. First, the regulator sets a tax

that takes the form ∫ 1

0
kiqidi

e
, (71)

10If rs = 0, so that there is no social cost of equity, then the solution is for the bank to fund itself
with as much equity as possible. For reasons of tractability, this model allows for potentially unlimited
losses on the portfolio, including losses that are larger than the initial investment. Therefore to cover
any potential loss would require equity levels approaching infinity. In a model that incorporated limited
liability on investments, costless equity would imply that the bank should fund itself with 100% equity.
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where ki sets the magnitude of the asset-specific tax on asset i, but now it is also scaled

by the level of equity e since the social cost of risk also depends on the bank’s leverage.

For this piece, the regulator solves for the optimal ki.

Second, the regulator could also potentially subsidize equity at a linear rate of s. So

the regulator solves for the optimal s as well.

Proposition 12. If the bank solves

max
{qi},e

∫ 1

0

(
(ai − γβi)qi −

c

2
q2i −

kiqi
e

)
di− (rp − s)e (72)

and the regulator solves

max
{ki},s

ER

[∫ 1

0

(
(ai − γβi)qi −

c

2
q2i − η

βiqi
e

)
di− rse

]
, (73)

taking into account the bank’s optimal choices of qi and e, then the regulator optimally

sets

ki = ηER[βi] (74)

and

s = rp − rs. (75)

Proof. See Section D.11.

The first part of this result – that the regulator sets the asset-specific tax ki based

on the asset’s expected risk – is intuitively the same as the case with exogenous equity.

The second part – that the regulator should set an equity subsidy – is new. Setting the

subsidy like this reduces the bank’s marginal cost of equity from rp to rs, which aligns it

with the social cost.

The key difference when introducing endogenous capital structure is that tax policy

also affects the bank’s incentives to fund itself with equity. When the regulator can

align the private and social costs of equity, then the regulator only needs to worry about

aligning asset-specific taxes with expected risks.

However, the situation becomes more complicated when the regulator cannot intro-

duce an equity subsidy and there are differences in the social and private costs of equity.

In that case, asset-specific taxes can be used to influence the bank’s overall selected level

of equity. For example, in typical specifications, setting ki uniformly higher than ηER[βi]

can serve as a crude tax on leverage that encourages banks to fund themselves with more
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equity.

B.2 Tax on profits with endogenous capital structure

Here I consider the regulator taxing ex-post profits, but allowing for the bank to select

its level of equity endogenously. This section generalizes Section B.1 by allowing for a

general function η(e) to characterize how equity affects the social cost of bank risk-taking

instead of assuming that it takes the form η(e) = η/e.

In the case with endogenous equity, the social objective is∫ 1

0

(
aiqi −

c

2
q2i − (γ + η(e))βiqi

)
di− rse, (76)

where η(e) is the regulator’s additional risk aversion, which now depends on the level of

equity, and rs is the social cost of equity funding. η(e) is decreasing in e, reflecting that

the social cost of bank risk taking declines as the bank becomes better capitalized since

the bank is better able to absorb losses.

The regulator can impose a tax T on the bank. Taking this tax into account, the

bank solves

max
e,{qi}

∫ 1

0

(
aiqi −

c

2
q2i − γβiqi

)
di− rpe− EB[MT ], (77)

subject to e ≥ 0, where rp is the bank’s private cost of equity funding.

Proposition 13. The regulator will perfectly align the bank’s incentives with its own by

setting

T =
η(e)

γ

(
1

M
− 1

)
Π− (rp − rs)e. (78)

Proof. See Section D.12.

The present value of the first term ultimately simplifies to η(e)
∫ 1

0
βiqidi, so the bank

perceives it as a tax on risk. The second term is a subsidy for equity financing to align

the private and social costs of equity.

Since η(e) is decreasing in e, the magnitude of the tax on profits is also decreasing as

e rises. The intuition is that better-capitalized banks will impose fewer externalities, so

the magnitude of taxes on ex-post profits required to align their incentives is lower.
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C Generalized social cost function with a linear tax

My focus has been on a known linear social cost function of the form ηβp. However, there

may be nonlinearities in practice. For example, risk may have a small marginal social

cost at low levels if banks are very unlikely to default. But at higher levels of risk, and

with higher probabilities of defaulting, the marginal social cost may rise dramatically.

Additionally, there may be uncertainty as to the magnitude of the social costs, even for

a known level of risk.

To address these concerns, I consider a generalized social cost function that allows for

both nonlinearities and uncertainty over costs.

Proposition 14. Suppose that the social cost to bank risk-taking is a function S(βp, η)

that is twice-differentiable, increasing in both arguments, and satisfies ∂2S
∂β2

p
(βp, η) ≥ 0.

βp =
∫ 1

0
qiβidi is the bank’s portfolio beta and η is an exogenous random variable. Then

the regulator’s optimal linear tax is

ki = ER

[
∂S

∂βp
(βp, η)βi

]
(79)

= ER

[
∂S

∂βp
(βp, η)

]
ER [βi] + CovR

(
∂S

∂βp
(βp, η), βi

)
. (80)

Proof. See Section D.5.

One immediate observation is that if the βi are independent across assets, then the

covariance term will be zero. In that case, the regulator’s solution is the same as in the

case of the known linear social cost, except replacing the marginal social cost of risk with

the expected marginal social cost, which is ER[ ∂S
∂βp

(βp, η)].

If there is a systematic shock to βi, then the regulator should additionally consider

the covariance term. Assets whose riskiness is higher when the social cost of risk is high

should receive a higher tax.

D Additional details on proofs

D.1 The first-best solution

The first-order condition for equilibrium qi is

ai − cqi − (γ + η)βi = 0

=⇒ qi =
1

c
(ai − (γ + η)βi)

(81)
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as desired. The second derivative, −c, is negative, indicating that this solution is a

maximum.

The expected portfolio beta is

E[βp] = E

[∫ 1

0

qiβidi

]
= E[qiβi]

=
1

c

(
E[aiβi]− (γ + η)E[β2

i ]
)
.

(82)

The expected portfolio return is

E[µp] =E

[∫ 1

0

(aiqi −
c

2
q2i )di

]
=E[aiqi]−

c

2
E[q2i ]

=
1

c
(E[a2i ]− (γ + η)E[aiβi])−

c

2

1

c2
(E[a2i ]− 2(γ + η)E[aiβi] + (γ + η)2E[β2

i ])

=
1

2c

(
E[a2i ]− (γ + η)2E[β2

i ]
)
.

(83)

Social welfare, represented by the regulator’s objective function, is

E[µp − (γ + η)βp] =
1

2c

(
E[a2i ]− (γ + η)2E[β2

i ]
)
− 1

c
(γ + η)

(
E[aiβi]− (γ + η)E[β2

i ]
)

=
1

c

(
1

2
E[a2i ] +

1

2
(γ + η)2E[β2

i ]− (γ + η)E[aiβi]

)
=

1

2c
E[(ai − (γ + η)βi)

2].

(84)

D.2 Expression of social welfare

By definition, the regulator’s expected social welfare conditional on their information set

is

ER[aiqi −
c

2
q2i − (γ + η)βiqi]

=ER[(ai − (γ + η)β)qi]−
c

2
ER[q2i ].

(85)
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Using the fact that qfbi = 1
c
(ai − (γ + η)βi) and expanding qi = qfbi + (qi − f fbi ) leads to

cER[qfbi qi]−
c

2
ER[(qfbi + (qi − qfbi ))2]

=cER[qfbi qi]−
c

2
ER[(qfbi )2 + 2qfbi (qi − qfbi ) + (qi − qfbi )2]

=cER[qfbi qi]−
c

2
ER[(qfbi )2]− cER[qfbi qi] + cER[(qfbi )2]− c

2
ER[(qi − qfbi )2]

=
c

2
(ER[(qfbi )2]− ER[(qi − qfbi )2]).

(86)

Taking unconditional expectations leads to the desired result.

D.3 Linear tax

The first-order condition for the bank with respect to qi is

ai − cqi − γβi − ki = 0 (87)

=⇒ qi =
1

c
(ai − γβi − ki) (88)

and this qi is a maximum since the second derivative, −c, is negative.

The first-order condition for the regulator with respect to ki, taking as given the

bank’s choice of qi, is

ER

[
(ai − cqi − (γ + η])βi)

∂qi
∂ki

]
= 0 (89)

ER

[
(ki − ηβi)(−

1

c
)

]
= 0 (90)

ki = ηER[βi]. (91)

Using the result from Proposition 2, the difference in social welfare compared to the

first-best is

c

2
E[(qi − qfbi )2] (92)

=
c

2

(η
c

)2
E[(−ER[βi] + βi)

2]. (93)

I define β̃i = βi − ER[βi], which reflects the regulator’s expectational error. I can then

rewrite the expression as

=
1

2c
η2V ar(β̃i). (94)
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D.4 Command vs. linear tax

Using the result from Proposition 2, the social welfare relative to the first-best is

− c

2
E[(qcomi − qfbi )2] (95)

=− c

2

1

c2
E[(ãi − (γ + η)β̃i)

2] (96)

=− 1

2c
V ar(ãi − (γ + η)β̃i) (97)

Using results on the social welfare in the linear tax case from Proposition 3, the

difference in social welfare between the command and the linear tax case is

− 1

2c

(
V ar(ãi − (γ + η)β̃i)− η2V ar(β̃i)

)
. (98)

This quantity is positive (indicating that the command solution provides higher social

welfare) when

η2V ar(β̃i) > V ar(ãi − (γ + η)β̃i) (99)

=⇒ η2V ar(β̃i) > V ar(ãi) + (γ + η)2V ar(β̃i)− 2(γ + η)Cov(ãi, β̃i) (100)

=⇒ 2(γ + η)Cov(ãi, β̃i) > V ar(ãi) + γ(γ + 2η)V ar(β̃i) (101)

D.5 Generalized social cost function and a linear tax

The regulator’s goal is to maximize social welfare, which is given by

ER

[∫ 1

0

(
aqi −

c

2
q2i − γβiqi

)
di− S(βp, η)

]
, (102)

where βp =
∫ 1

0
qiβidi is the portfolio beta. The regulator sets constraints subject to the

bank’s choice of qi.

First, consider the case in which a regulator sets an asset-specific linear tax ki. Given

a linear tax, the bank maximizes

max
{qi}

aqi −
c

2
q2i − γβiqi − kiqi, (103)

which leads to the familiar optimal solution

qi =
1

c
(ai − γβi − ki). (104)

Next, turn to the regulator’s problem of selecting optimal ki taking the bank’s behavior
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as given. The regulator solves

max
{ki}

ER

[∫ 1

0

(
aqi −

c

2
q2i − γβiqi

)
di− S(βp, η)

]
, (105)

taking into account the effect on the bank’s choice of qi. The regulator’s first-order

condition for ki is

ER

[(
ai − γβi − cqi −

∂S

∂βp
βi

)
∂qi
∂ki

]
= 0, (106)

which leads to an optimal choice of

ki = ER

[
∂S

∂βp
βi

]
. (107)

The tax should be set to the expected product of the asset beta multiplied by the marginal

social cost. This term can be expanded to include a covariance as

ki = ER

[
∂S

∂βp

]
ER [βi] + Cov

(
∂S

∂βp
, βi

)
. (108)

I then verify that the second-order condition holds with respect to ki. The first derivative

with respect to ki can be written as

ER

[(
ki −

∂S

∂βp
(βp, η)βi

)(
−1

c

)]
, (109)

which leads to an expression for the second derivative as

ER

[(
1 +

1

c

∂2S

∂β2
p

(βp, η)β2
i

)(
−1

c

)]
, (110)

which is negative since ∂2S
∂β2

p
(βp, η) ≥ 0.

D.6 Nonlinear tax

From the regulator’s point of view, observing qi carries the same information as observing

ai − γβi. The reason is that the bank’s first-order condition for selecting qi, taking as

given the tax function ki(qi), is

cqi + k′i(qi) = ai − γβi. (111)
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Since qi is sufficient for the regulator to pin down the left-hand side, then it is sufficient

to pin down the right-hand side.

To simplify the problem, I take a mechanism design approach where the bank truth-

fully reports ri = ai − γβi to the regulator (the “r” stands for “risk-adjusted return”).

The regulator then specifies the quantity qi(ri) and the tax ki(qi(ri)) to maximize social

welfare subject to the bank’s incentive compatibility constraints. Collapsing the multidi-

mensional types of ai and βi into a single ai−γβi type is similar in spirit to the approach

taken in Beshears et al. (2020). Since in this context the problem is separable across each

asset i, for ease of readability I drop the i subscript in the rest of this section.

Let r denote the true r and r′ the reported one. The change in the bank’s objective

from modifying its report r′ is

d

dr′
[rq(r′)− c

2
q(r′)2 − k(q(r′))] = rq′(r′)− cq(r′)q′(r′)− k′(q(r′))q′(r′). (112)

The bank does not have an incentive to deviate when this derivative is zero at r′ = r,

which is when

(r − cq(r)− k′(q(r))q′(r) = 0. (113)

The bank will optimally want to change its quantity invested as the risk-adjusted return

r = a− γβ changes, so I expect that q′(r) 6= 0 in this equilibrium. Therefore, I focus on

satisfying the condition

cq(r) + k′(q(r)) = r. (114)

Meanwhile, the regulator maximizes

E[(a− γβ − ηβ)q(r)− c

2
q(r)2|β̂, r] (115)

=(r − ηE[β|β̂, r])q(r)− c

2
q(r)2 (116)

subject to the bank’s incentive compatibility constraint. I first substitute

q(r) =
1

c
(r − k′(q(r))) (117)

to obtain the regulator’s objective solely in terms of k′(q(r)) as

(r − ηE[β|β̂, r])1

c
(r − k′(q(r)))− c

2

(
1

c
(r − k′(q(r)))

)2

. (118)
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I characterize the regulator’s solution in terms of k′(q(r)) directly. Differentiating by

k′(q(r)) and rearranging yields the first-order condition

k′(q(r)) = ηE[β|β̂, r]. (119)

Substituting back into the bank’s incentive compatibility condition yields

q(r) =
1

c

(
r − ηE[β|β̂, r]

)
. (120)

Next, I explicitly characterize E[β|β̂, r]. Note that

r = a− γβ = ā+ χub + ua − γ(β̄ + ub) (121)

= ā− γβ̄ + (χ− γ)ub + ua (122)

so that r = a− γβ can be transformed to obtain a noisy signal of ub as follows.

r − ā+ γβ̄

χ− γ
= ub +

ua
χ− γ

. (123)

The noise term is ua
χ−γ and it is independent of e, so that the error terms in this signal

and β̂i are independent. Given the assumptions of normality, the expectation is

E[β|β̂, r] = β̄ + ω1(β̂ − β̄) + ω2

(
r − ā+ γβ̄

χ− γ

)
, (124)

where

ω1 =
1/σ2

e

1/σ2
ub + 1/σ2

e + (χ− γ)2/σ2
ua

(125)

ω2 =
(χ− γ)2/σ2

ua

1/σ2
ub + 1/σ2

e + (χ− γ)2/σ2
ua

. (126)

For notational simplicity, I will define x and y such that

ηE[β|β̂, r] = x+ yr, (127)

where

x = η

(
β̄ + ω1(β̂i − β̄) + ω2

(
−ā+ γβ̄

χ− γ

))
(128)

y =
η

χ− γ
ω2. (129)
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Using this notation, straightforward algebra leads to an explicit expression of q(r) as

q(r) =
1

c
((1− y)r − x) . (130)

I then solve for the k(q) function explicitly. I first solve for r in terms of q(r). Return

to the first-order conditions for the bank and the regulator of

k′(q(r)) = r − cq(r) (131)

k′(q(r)) = ηE[β|β̂, r] = x+ yr. (132)

Setting the right-hand sides of each equation equal to each other yields

r − cq(r) = x+ yr (133)

=⇒ r =
x+ cq(r)

1− y
(134)

and then substitute in to the first equation to get

k′(q(r)) =
x+ cq(r)

1− y
− cq(r) (135)

=
x

1− y
+ c

(
y

1− y

)
q(r). (136)

Taking the antiderivative with respect to q(r) obtains

k(q(r)) =
x

1− y
q(r) +

c

2

(
y

1− y

)
q(r)2, (137)

where I omit the constant since k(0) = 0 by assumption.

Now, I check the second-order conditions. The second derivative for the regulator’s

objective function is −(1/c), so the regulator’s choice is a maximum. The second-order

conditions for the bank are more complicated. First, I note that

k′′(q(r)) = c

(
y

1− y

)
. (138)
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The bank’s second-order condition is satisfied when

k′′(q(r)) + c > 0 (139)

⇐⇒ c

(
y

1− y
+ 1

)
> 0 (140)

⇐⇒ y < 1. (141)

Then, plugging in the value of y from earlier, I have

η

χ− γ
ω2 < 1, (142)

which is equivalent to

χ− γ < 0 or χ− γ > ηω2. (143)

Note that ω2 is implicitly a function of χ−γ, but since ω2 ∈ [0, 1], χ−γ > η is a sufficient

condition. Therefore, for this range of parameters, the bank’s solution is a maximum.

D.7 Fully undisclosed linear tax

To verify that these pair of choices are a solution, I first suppose that the regulator sets

ki = ηβ̂i. The bank’s first-order condition for qi leads to

qi =
1

c
(ai − γβi − ηEB[β̂i]) (144)

=
1

c
(ai − γβi − ηE[β̄ + ubi + ebi |ubi ]) (145)

=
1

c
(ai − γβi − η (β̄ + ubi)︸ ︷︷ ︸

βi

) (146)

which is the desired solution. Since this quantity matches the first-best quantity from

Proposition 1, it also maximizes the regulator’s objective function.

Note that this solution is not unique. For all random variables xi satisfying EB[xi] =

βi, the regulator will achieve first-best by setting ki = ηxi. While β̂i is an obvious

candidate, β̂i with added noise or the fitted value from regressing βi on âi are other

possibilities.
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D.8 Partially disclosed linear tax

First, I’ll establish the optimality condition for ki. Starting with the bank’s problem, the

bank maximizes given knowledge over the distribution of ki. The bank solves

max
{qi}

∫ 1

0

(aiqi −
c

2
q2i − γβiqi − EB[ki]qi)di, (147)

which leads to the first-order condition

qi =
1

c
(ai − γβi − EB[ki]). (148)

The second-order condition is satisfied since −c < 0, which ensures that the solution is a

maximum.

Given this choice of qi for the bank, the regulator solves

max
{ki}

ER

[∫ 1

0

(aiqi −
c

2
q2i − (γ + η)βiqi)di

]
, (149)

which leads to a first-order condition of

ER

(ai − cqi − (γ + η)βi)
∂qi
∂ki︸︷︷︸

=−(1/c)

 = 0 (150)

=⇒ ER[EB[ki]] = ηER[βi] (151)

as desired.

Next, I show that the proposed solution satisfies this condition. I conjecture that the

regulator sets a linear tax according to

ki = η(β̄ + y(β̂i − β̄)), (152)

where y is an unknown constant. I then solve for the y that satisfies the previous first-

order condition.

First, I begin by computing the left-hand side of the first-order condition, ER[EB[ki]].

Start by taking the expectation of the tax with respect to the bank’s information set as

EB[ki] = η(β̄ + yEB[β̂i − β̄]) (153)

= η(β̄ + y(ui + EB[ei])). (154)
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Recall that the bank receives a noisy signal si = β̂i+wi. Since the bank perfectly observes

βi, then si− βi = ei +wi is a noisy signal of ei. Applying standard formulas for Bayesian

updating with normally distributed variables yields

EB[ei] =
σ2
e

σ2
e + σ2

w

(si − βi) (155)

=
σ2
e

σ2
e + σ2

w︸ ︷︷ ︸
θw

(ei + wi). (156)

Thus, the bank’s expectation of the tax is

EB[ki] = η(β̄ + y(ui + θw(ei + wi))). (157)

Now take the regulator’s expectation of this quantity. ER[wi] = 0, so the key pieces are

ER[ei] and ER[ui]. Using the relationship

β̂i = βi + ei (158)

=⇒ β̂i = ER[βi] + ER[ei] (159)

and recalling that ER[βi] = β̄ + θb(β̂i − β̄) yields the relationships

ER[ei] = (1− θb)(β̂i − β̄) (160)

ER[ui] = θb(β̂i − β̄i). (161)

Substituting these leads to the expression

ER[EB[ki]] = η(β̄ + y(ER[ui] + θwER[ei])) (162)

= η(β̄ + y(θb + θw(1− θb))(β̂i − β̄)). (163)

Now I solve for a value of y that satisfies ER[EB[ki]] = ηER[βi]. y must ensure that

η(β̄ + y(θb + θw(1− θb))(β̂i − β̄)) = η(β̄ + θb(β̂i − β̄)) (164)

=⇒ y(θb + θw(1− θb)) = θb, (165)

which leads to

y =
θb

θb + θw(1− θb)
(166)

as desired.
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D.9 Nondisclosure with an aversion to idiosyncratic volatility

If the regulator sets the tax in this manner, then the bank’s objective function transforms

into the regulator’s, which immediately leads to the first best. Setting the two objectives

equal, the bank and regulator have perfectly-aligned incentives when

EB[k]q + γIσB(k)|q| = ηβq + ηIσB(k)|q| (167)

⇐⇒ EB[k] + γIσB(k)sgn(q) = ηβ + ηIσB(k)sgn(q). (168)

Recall that β̂ = β + e and that the bank knows β, but has no information about e.

Therefore EB[β̂] = β and σB(β̂) = σe. Using this fact yields

EB[k] = (ηI − γI)ησesgn(q) + ηβ (169)

σB(k) = ησe. (170)

Therefore it follows that the equation

EB[k] + γIσB(k)sgn(q) = ηβ + ηIσB(k)sgn(q) (171)

(ηI − γI)ησesgn(q) + ηβ + γIησesgn(q) = ηβ + ηIησesgn(q) (172)

ηIησesgn(q) + ηβ = ηIησesgn(q) + ηβ (173)

is satisfied and thus the incentives of the regulator and the bank are aligned.

D.10 Equivalence between taxes and capital requirements with

exogenous capital and idiosyncratic shocks

If the regulator has set a capital requirement, then the bank solves

max
{qi}

∫ 1

0

(aiqi −
c

2
q2i − γβiqi)di (174)

subject to the constraint that ∫ 1

0

miqidi ≤ 1. (175)

Setting up the Lagrangian, the problem becomes

max
{qi}

∫ 1

0

(aiqi −
c

2
q2i − γβiqi)di− λ

(∫ 1

0

miqidi− 1

)
, (176)
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which leads to the first-order condition for qi of

ai − cqi − γβi − λmi = 0 (177)

=⇒ qi =
1

c
(ai − γβi − λmi). (178)

Compare this first-order condition to the case in which the regulator sets an asset-specific

tax ki, in which case the bank selects

qi =
1

c
(ai − γβi − ki). (179)

The regulator can replicate the outcome from the capital requirement by setting a tax

ki = λmi. However, this replication is possible in this case because λ is deterministic,

which I will show next.

If the capital requirement is not binding, then λ = 0. Otherwise, multiplying the

first-order condition for qi by mi and then integrating over i yields∫ 1

0

miqidi =
1

c

∫ 1

0

(mi(ai − γβi)− λm2
i )di = 1 (180)

In the case in which there is only idiosyncratic uncertainty in ai and βi, the integral

almost certainly equals the expectation, so that

1

c
(E[mi(ai − γβi)]− λE[m2

i ]) = 1 (181)

=⇒ λ =
E[mi(ai − γβi)]− c

E[m2
i ]

, (182)

which is deterministic. Intuitively, the idiosyncratic shocks to ai and βi diversify away

in the aggregate so that the regulator understands how tightly the capital requirements

will bind overall.

D.11 Linear taxes with endogenous capital structure

I will show that the proposed solution of s = rp − rs and ki = ηER[βi] satisfies the

conditions for optimal s and ki.

I start with the bank’s problem, taking s and ki as given. The bank solves

max
{qi},e

∫ 1

0

(
(ai − γβi)qi −

c

2
q2i −

kiqi
e

)
di− (rp − s)e. (183)
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The first-order conditions yield

qi =
1

c

(
ai − γβi −

ki
e

)
(184)

e =

√
kp

rp − s
. (185)

The second derivatives are

Second of qi : −c (186)

Second of e : −2
kp
e3
. (187)

At e =
√

kp
rp−s and s = rp − rs, the second derivative with respect to e is

e = −2
kp
e2

1

e
= −2

rs
e
, (188)

which is negative since both rs > 0 and e > 0. Thus, the second-order conditions for a

maximum are satisfied.

Next, switch to the regulator’s problem. The regulator solves

max
{ki},s

ER

[∫ 1

0

(
(ai − γβi)qi −

c

2
q2i − η

βiqi
e

)
di− rse

]
, (189)

where qi and e follow the bank’s strategy from before. The first-order conditions with

respect to ki and s yield

ER

[∫ 1

0

(
ai − γβi − cqi − η

βi
e

)
∂qi
∂ki

di+

(
η

∫ 1

0
βiqidi

e2
− rs

)
∂e

∂ki

]
= 0. (190)

Substitute the expressions for cqi and for e2 to obtain

ER

[∫ 1

0

(
ki − ηβi

e

)
∂qi
∂ki

di+

(
η

∫ 1

0
βiqidi∫ 1

0
kiqidi

(rp − s)− rs

)
∂e

∂ki

]
= 0. (191)

To verify that this first-order condition is satisfied for s = rp − rs and ki = ηER[βi],

substitute in these values and apply the law of iterated expectations to obtain

ER

[
E

[∫ 1

0

(
ηER[βi]− ηβi

e

)
∂qi
∂ki

di+
rs∫ 1

0
kiqidi

∫ 1

0

(ηβi − ηER[βi]) qi
∂e

∂ki
di

∣∣∣∣∣e, {qi}, {β̂i}, {âi}
]]

= 0,

(192)
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which follows since ER[βi − ER[β]] = 0. Showing that the first-order condition with

respect to s is satisfied is identical, except that ∂qi
∂ki

and ∂e
∂ki

are replaced with ∂qi
∂s

and ∂e
∂s

.

D.12 Taxes on profits with endogenous capital structure

Social welfare equals the bank’s objective function when∫ 1

0

(
aiqi −

c

2
q2i − (γ + η(e))βiqi

)
di− rse =

∫ 1

0

(
aiqi −

c

2
q2i − γβiqi

)
di− rpe− EB[MT ],

(193)

which simplifies to

EB[MT ] = η(e)

∫ 1

0

βiqidi− (rp − rs)e. (194)

The next step verifies that the specified T leads to this expression for EB[MT ]. Recall

that M = 1 − γF , where F is normalized such that E[F ] = 0 and V ar(F ) = 1. The

EB[MT ] term becomes

E[MT ] =
η(e)

γ
(EB[Π]− EB[MΠ])− EB[M(rp − rs)e] (195)

= −η(e)

γ
CovB(M,Π)− (rp − rs)e (196)

= −η(e)

γ
CovB

(
1− γF,

∫ 1

0

βiqiF

)
− (rp − rs)e (197)

=
η(e)

γ
γ

∫ 1

0

βiqidi− (rp − rs)e (198)

= η(e)

∫ 1

0

βiqidi− (rp − rs)e, (199)

as desired. This algebra uses the decomposition E[MΠ] = E[M ]E[Π] + Cov(M,Π).
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