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Abstract

Analysis of market liquidity often focuses on measures of the current cost

of trading. However, investors and policy-makers also care about what would

happen to liquidity in the event of an adverse shock. If liquidity were to deteri-

orate rapidly at times when investors were seeking to rebalance portfolios, this

could amplify the effects of shocks to the financial system even if liquidity is

high most of the time. We examine the potential for such fragility of liquidity

in the Treasury market. We show that a reduction in the availability of rest-

ing orders to trade (“market depth”) increases liquidity fragility, likely because

lower depth increases the dependence of low trading costs on prompt replen-

ishment of resting orders. Our results apply to all major benchmark Treasury

securities individually, which enables us to establish analogous conclusions for

market-wide liquidity fragility.
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1 Introduction

This paper is concerned with fragility of Treasury market liquidity—that is, the

possibility that while liquidity is generally good it could deteriorate in the face of

shocks. Understanding the drivers of Treasury market liquidity is important to

market participants and policymakers alike. In normal circumstances, the market is

highly liquid, meaning that investors can trade easily and cheaply in large volumes.

However, investors are not only concerned with the current liquidity of the market;

what also matters is how liquid the market would be at times when they need to ad-

just positions. For example, if liquidity would deteriorate at precisely the time when

an investor would need to sell a security, potentially amplifying movements in its

price, that security may carry a liquidity premium even if the market is liquid most

of the time. Investors therefore need to understand the fragility of liquidity. Po-

tentially fragile liquidity in response to shocks may also present a financial stability

concern if it could cause the financial system to amplify the effects of shocks.

In this paper, we show that while a reduction in the volume of quotes posted to

electronic trading platforms (commonly known as “market depth”) does not neces-

sarily mean that trading costs increase in normal circumstances, it does mean that

the fragility of liquidity—the probability of a sudden increase in trading costs—

increases. In recent years market depth has declined. This trend does not necessarily

mean that the market is less liquid in normal times; in fact, the market can support

higher volume of trading at low execution cost with a lower level of depth than in

the past as a consequence of two things. First, market participants now employ

more sophisticated execution algorithms, splitting large orders into multiple smaller

orders over time to reduce their price impact. Second, high-speed liquidity providers

can more quickly replenish quotes on the order book in response to incoming orders.

In this environment, the continued ability and willingness of market makers to re-

plenish orders at the best prices, rather than the level of quotes posted to the order

book at any one time, has become the key to the cost of trading remaining low.

The microstructure of the Treasury market is key to understanding what drives
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its liquidity because the microstructure defines how market participants interact

and trade terms are established. We study on-the-run Treasuries traded electroni-

cally via inter-dealer brokers (IDB)—a sector capturing a large proportion of traded

volumes in the most liquid, benchmark securities. Specifically, we consider trades

and quotes from the IDB with the largest market share, the BrokerTec Alternative

Trading System (ATS). BrokerTec matches orders following a central limit order

book (CLOB) protocol: Market participants can provide liquidity by submitting

buy and sell limit orders with associated prices and quantities that cannot be im-

mediately matched (e.g., a limit buy order with an associated price below the best

ask) and are posted to the CLOB. Market participants can also consume liquidity

by submitting “marketable” limit orders that can be immediately matched (e.g., a

limit buy order with an associated price at or above the best ask), thereby reducing

the amount of liquidity remaining on the book. Market depth at the best prices

is the sum of posted volumes over all orders at the best bid and ask prices in the

CLOB. The greater the market depth, the larger the transaction size that can be

executed without immediate mechanical impact on the price.

Market makers provide liquidity by posting both buy and sell orders at various

levels of the CLOB, seeking to profit from a bid-ask spread. To reduce their exposure

to informed traders, modern market makers prefer to post modest order sizes and

then have the option to replenish the order book. In turn, market participants avoid

submitting large orders that would fully exhaust the limit orders available at the

best prices, with the expectation that market makers will respond by replenishing

the order book, allowing execution of further small marketable orders at preferable

prices.

An increase in uncertainty about future prices causes market makers’ risk of

trading against informed traders to increase. Market makers will therefore respond

by decreasing the amount of orders they post to the order book and potentially

by being more cautious about replenishing orders. Such a reduction in depth does

not necessarily mean that the cost of trading increases, providing the speed with

which they replenish quotes remains sufficient to meet incoming order flow without
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large price moves. However, we show that it does increase the risk of trading costs

increasing, presumably because there is a greater chance that quote replenishment

will be inadequate to meet incoming order flow.

A key challenge when modeling liquidity is its latent nature. While liquidity

may appear observable in a CLOB-based market (because market participants ob-

serve how much is available to instantaneously trade at various price levels), the

willingness of market makers to replenish quotes at the best prices is unobserved.

We use the natural framework of a Hidden Markov model (HMM) to capture this

latent nature of liquidity. In our HMM, we capture the fragility of liquidity as the

endogenous probability of a transition to a bad liquidity state. A worse liquidity

state is defined by price impact being more sensitive to certain conditioning factors,

signifying lower willingness of market makers to replenish quotes given the same

degree of adverse changes to those factors. Most importantly, we allow price impact

to be inversely related to interest rate volatility, as explored by Bouchaud et al.

(2009) among others. As mentioned above, the intuition is that at times of high

volatility, the risks to market makers associated with adverse price movements are

high, so market makers will tend to provide less liquidity and charge more for the

liquidity they provide. We extend the set of variables driving price impact to en-

compass uncertainty about volatility, since this adds to tail risk, also increasing the

cost of market making. We also consider volatility persistence, as this factor may

increase inventory management costs for traditional dealers. Finally, we allow the

transition probabilities between liquidity states to depend on market depth, which

is fundamental for explaining liquidity fragility.

Our paper extends the existing literature in a number of directions. First, we

consider our contributions to the financial stability literature. While the level of

liquidity metrics is commonly seen as a financial stability indicator (see Board of

Governors of the Federal Reserve System (2020) and O’Hara (2004) among others),

we take a more forward-looking approach and treat the probability of a sudden

liquidity deterioration as the more relevant indicator, since it is arguably more rel-

evant to how much the financial system amplifies shocks. Our approach is related
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to Cespa and Vives (2017), who study liquidity fragility within a theoretical frame-

work that allows for endogenous dynamics leading to liquidity fragility. Cespa and

Foucault (2014) and Raman et al. (2020) explore the fragility that arises from illiq-

uidity spillovers between assets. In contrast, we seek for a predictor of liquidity

fragility that is observable and not a spillover from another market. Our finding

that low market depth raises the probability of a liquidity deterioration has an in-

tuitive interpretation because the lower depth is, the more rapidly the order book

must be replenished to support a given flow of marketable orders without moving

prices substantially.

Next we consider our contributions to the econometric modeling of liquidity,

specifically, in how our HMM addresses the latent nature of liquidity and the non-

linear relationship between price impact and factors driving the cost of liquidity

provision. First, our approach is related to that of Flood et al. (2016), who link

liquidity states identified using an HMM to observed economic variables. However,

our framework integrates explanatory variables directly into the HMM, both in ob-

servation and state transition equations. Second, Duffie et al. (2023) explore the

non-linear relationship between liquidity and volatility via quantile regression analy-

sis. Our HMM framework allows for a non-linear relationship between price impact

and volatility through different conditional price impact distributions in endoge-

nously determined latent liquidity states, whereas a quantile regression may be seen

as requiring states to correspond to the quantiles of liquidity measures. Thus, an

HMM allows for endogenous state dynamics with the introduction of covariates into

the state transition specification, which proves particularly beneficial for studying

liquidity fragility. Third, our study is related to Hautsch and Huang (2012a), who

show a link between price impact and depth in that the price impact of a limit order

depends on how deep in the central limit order book (CLOB) it rests; the results of

Nguyen et al. (2020) and Aronovich et al. (2021) similarly point to a rich dependence

structure between liquidity, volume, and depth. Fourth, our study complements the

results of Nguyen et al. (2020), who develop a model for the interaction of liquidity

and volatility at high-frequencies. They find that market depth and trading volume
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significantly affect intraday volatility. We show that at a trading-day time scale

lower market depth leads to future states characterized by higher price impacts of

trade flows and, thus, all else equal, greater volatility. Finally, Fraenkle et al. (2011)

allow the slope and intercept in price impact regressions to depend on explanatory

variables such as trading volume and volatility, which highlights how other liquidity

measures can directly affect price impact, but they do not consider market depth.

The remainder of this paper proceeds as follows. In Section 2, we motivate

our econometric framework with exploratory analysis of the non-linear association

between price impact and volatility, as well as the relationship between price impact

and depth.1 In Section 3, we introduce our liquidity modeling framework and apply

it to the 10-year benchmark Treasury security. In Section 4, we first reaffirm our

results for other benchmark Treasury securities through HMMs with security-specific

latent liquidity states. Then, we extend our results to market-wide liquidity fragility

in the framework of an HMM with latent liquidity states that are shared across

Treasury securities. In Section 5, we offer some concluding remarks.

2 Motivating an HMM

In this section, we extend the literature relating liquidity to volatility and establish

the rationale for modeling the relationship using a nonlinear HMM framework. In

Section 2.1, we show that the effect of a given change in volatility on price impact

increases with the level of volatility. This finding justifies a nonlinear relationship

between price impact and volatility, which can be accommodated within the HMM

framework, where the effect of volatility on price impact can vary between the latent

liquidity states. In Section 2.2, we provide intuition for why market depth can serve

as an indicator of the fragility of liquidity, which motivates the inclusion of market

depth as a variable that can affect the probability of transitioning between different

liquidity states in the HMM.

1In Appendix A, we set out our model for estimating price impact.
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2.1 Price Impact and Volatility

Liquidity is generally worse at times of high volatility, as noted by Chordia et al.

(2005), among others. Intuitively, market intermediaries are less willing to provide

liquidity when the risk of large price moves is relatively high. However, the precise

form of the relationship has not been explored in detail. We show that each unit of

volatility affects liquidity more when volatility is high. Specifically, we consider a

smooth threshold regression specification

θt = β1Vt + (β2 − β1)G (Vt,κ1)Vt + (β3 − β2)G (Vt,κ2)Vt + εi,t, (1)

Here, θt is price impact on day t. On the right-hand side of Equation (1), Vt is a

measure of the swaption-implied volatility; G (Vt,κi) := 1

1+exp−(Vt−κi)
is the first-

order logistic smooth transition function, with κ1 and κ2 being threshold levels of

volatility. A two-threshold model is statistically preferred to a linear specification

and is sufficient for the purpose of establishing the non-linearity of price impact in

volatility to motivate the introduction of an HMM in Section 3.

We estimate Equation (1) using our estimate of price impact for the 10-year

Treasury Note. Specifically, it is the incremental price move associated with pur-

chasing $500 million of the security using marketable orders spread over the trading

day split across 1-minute periods in proportion to the total volumes in each of those

periods. This estimate of price impact is conventional in that it comes from a re-

gression of price changes on trade and order flows, estimated separately for each

day using intraday data. However, we introduce the novelty of allowing for non-

linearity in trade and order flows. Appendix A provides further details on how we

estimate price impact.2 As the measure of volatility corresponding to the 10-year

Treasury Note, we use the annualized basis point implied volatility obtained from

end-of-day observations of the 1-month-ahead option contract on the 10-year swap,

2Appendix A also shows that price impacts associated with alternative execution strategies
are strongly positively correlated over time, suggesting that we would obtain qualitatively robust
inferences about the overall dynamics of market liquidity by focusing on our baseline execution
strategy.
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obtained from TP ICAP. The sample period runs from April 1, 2014 to December

31, 2023. We omit days with shortened trading hours, leaving a total of 2,374 days.

Table 1 reports βi (i = 1, 2, 3) estimates for the optimal volatility thresholds. The

estimated thresholds are at 94 and 147 basis points. The slope coefficients are all

positive and statistically significant, and are significantly greater for higher levels

of volatility than for lower levels. We conclude that this result suggests that any

model relating volatility to price impact should allow for a nonlinear relationship in

which the sensitivity is greater as volatility increases.

Table 1: Threshold regression of price impact on volatility

The table reports estimates of the threshold regression model of Equation (1). Numbers in brackets
indicate standard errors. *** indicates two-sided p-values of less than 0.001.

Model 1
β1 0.097∗∗∗

(0.001)
β2 0.137∗∗∗

(0.001)
β3 0.196∗∗∗

(0.004)
κ1 93.882∗∗∗

(0.744)
κ2 146.806∗∗∗

(0.749)
R2 0.897

Sources: Repo Inter Dealer Broker Community; TP ICAP, Swaptions and Interest Rate Caps and
Floors Data; authors’ calculations.

2.2 Price Impact and Market Depth

Figure 1 shows daily time series of price impact and market depth. We compute

depth as the time-weighted mean of the total posted quantities at the best bid and

ask prices between 7 a.m. and 4.45 p.m. (with weights determined by the lengths

of time between consecutive market events – trades or cancellations). The upper

two panels both show price impact but using different vertical axis scales, while the

lower panel shows market depth. The sample correlation between price impact and

market depth is fairly negative, at -0.75, which is intuitive because falling depth and

rising price impact are both associated with a deterioration in liquidity conditions.

The period following the onset of the COVID-19 pandemic in March 2020 stands

out as seeing by far the highest values of price impact, as well as the largest decline
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in depth. There were also notable spikes in price impact coinciding with other days

of local troughs in depth identified by Aronovich et al. (2021), as indicated by the

vertical dashed lines: the Treasury market “flash crash” of October 15, 2014, where

prices moved sharply before reversing quickly; the U.K. “Brexit” referendum on June

24, 2016; the sharp spike in the VIX index of equity market volatility on February 6,

2018; the onset of concerns among financial market investors about the global growth

outlook on August 2, 2019; a sharp worsening in the market strains associated with

the COVID-19 pandemic on March 9, 2021; and the flash event of February 25, 2021.

In addition, we pick out the Monday following the closure of Silicon Valley Bank,

that is, March 13, 2023. There were also less sharp increases in price impact and

declines in depth around early 2015 and late 2016, which were likely associated with

spillovers from stresses in European sovereign debt markets and the notable increase

in yields following U.S. elections, respectively. And depth has declined and price

impact has risen notably since late 2021, which market commentary has linked to

high interest rate volatility associated with uncertainty about the economic outlook.

Although peaks in price impact tend to coincide with troughs in depth, price

impact and depth appear to have substantially different time-series dynamics. For

example, the sample autocorrelation functions in Figure 2 show that depth is sub-

stantially more persistent than price impact. We also observe substantial differ-

ences between the dynamics of market depth and price impact following the onset

of episodes of market stress. Figure 3 shows depth and price impact from 10 days

before to 15 days after the seven events highlighted in Figure 1. To facilitate com-

parison across episodes, we normalize all variables to have the value of unity at

the beginning of the event window. Depth recovered relative quickly following the

Brexit referendum on June 24, 2016, and the VIX spike on February 6, 2018, al-

though it still took 2 or 3 weeks before depth had retraced the large majority of the

initial decline. In comparison, the recoveries following the flash crash of October

15, 2014, the August 2, 2019 global growth concerns, the February 25, 2021 flash

event, and onset of the March 2023 banking-sector stresses were slower. And the

recovery following the most severe episode of market dysfunction, the onset of the
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Figure 1: Price Impact and Market Depth

The charts show times series of price impact (upper and center panels) and market depth (lower

panel) for the 10-year Treasury Note. The upper and center panels plot the same estimates but

using different y-axis scales. The vertical dashed lines correspond to: (a) October 15, 2014; (b)

June 24, 2016; (c) February 6, 2018; (d) August 2, 2019; (e) March 9, 2020; (f) February 25, 2021;

and (g) March 10, 2023.

Sources: Repo Inter Dealer Broker Community; authors’ calculations.

10



COVID-19 pandemic in March 2020 took substantially longer still. Price impact

rose immediately at the onset of all episodes. In some episodes, price impact fell

back relatively rapidly compared with the slower recovery of depth; this observation

is consistent with Aronovich et al. (2021), who show that bid-ask spreads tend to

recover substantially faster than market depth following these episodes. A plausible

explanation for this is that market participants rapidly adjusted to lower depth by

trading in smaller sizes to allow quotes on the order book to be replenished. In

other cases—most notably March 2020 and March 2023—the peak of price impact

did not come until several days after the trough in depth, suggesting that the low

level of depth may increase the risk of a spike in price impact.

Figure 2: Autocorrelation Functions of Price Impact and Market Depth

The bars show the sample autocorrelations of market depth and our baseline estimate of price

impact from March 1, 2014 to March 31, 2023 at various lags.

Sources: Repo Inter Dealer Broker Community; authors’ calculations.

These observations raise questions of how market depth and price impact are

related, and whether it matters that depth remains low after a stress event even

though price impact has returned to more normal levels. Given market participants’

unwillingness to trade through multiple levels of the book, as noted in Hautsch and

Huang (2012a), a decrease in top-of-the-book depth causes optimal execution to

prescribe splitting the parent order into smaller child orders. Hypothetically, market
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Figure 3: Price Impact and Market Depth following Episodes of Known
Liquidity Strains

The charts show market depth and price impact from 10 days before until 15 days after various

episodes of known liquidity strains. All series are normalized to have value one 10 days before the

event.

Sources: Repo Inter Dealer Broker Community; authors’ calculations.
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makers may replenish the order book sufficiently rapidly to result in either no or

moderate increase in the price impact of execution; the point that prompt order-

book replenishment matters for the cost of trading has been made previously by

Dobrev and Meldrum (2020) and Aronovich et al. (2021). The immediate reduction

in depth following a market stress event is often associated with a pull-back in

high-speed liquidity provision, but this liquidity provision returns faster than the

willingness of market participants to quote in large size; hence, depth remains low

but price impact falls back.

One tempting interpretation of these results is that depth is not a meaningful

indicator of liquidity conditions, because high-speed liquidity replenishment means

that trading costs can be kept low even though most of the willingness of market

participants’ to provide liquidity remains hidden. However, a conjecture broadly in

line with Raman et al. (2014) and Board of Governors of the Federal Reserve System

(2020) is that greater dependence on sophisticated quoting and execution algorithms

in such circumstances may nevertheless make liquidity more fragile, meaning that

low depth makes it more likely that price impact could increase again if there is a

further pull-back in high-speed liquidity provision—perhaps because high-frequency

trading firms may be inclined to scale back their activity if some other stress event

hits or because elevated trading volumes will overwhelm the speed of quote replen-

ishment. Indeed, as mentioned above, some of the spikes in price impact following

the events discussed above did not come until after sometime following the initial

trough in depth. Our HMM is natural framework for studying more systematically

whether the low level of depth is associated with liquidity becoming more fragile,

meaning an elevated risk of price impact rising.

3 Hidden Markov Model for Latent Liquidity States

Having provided intuition for the appropriateness of the Hidden Markov Model

(HMM) framework, we apply it to modeling the liquidity of the 10-year Treasury

Note. In Section 3.1, we set out the observation equation component of the general
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HMM framework. In Section 3.2, we consider an HMM with constant probabili-

ties of transitioning between the latent liquidity states. This model demonstrates

how the sensitivity of price impact to volatility—as well as some other potential

explanatory variables—varies over different liquidity states. Our results show that

the sensitivities of price impact to volatility, the surprise component of uncertainty

about volatility, as well as the surprise component of volatility persistence, all vary

over time with the liquidity state. In Section, 3.3, we extend the HMM to allow

the transition probabilities to vary over time as a function of market depth. Our

results provide clear evidence that the fragility of liquidity decreases with market

depth, that is, greater market depth reduces the probabilities of transitions to worse

liquidity states.

3.1 Hidden Markov Model: Observation Equation

Our HMM explains price impact, θ, via a state-dependent linear function of covari-

ates Xt:

θt = βiXt + εi,t, (2)

where εi,t ∼ N (0,σ2i ) for three latent liquidity states i = 1, 2, 3.3

We estimate various versions of the HMM with different vectors of covariates

Xt. However, we always include a measure of interest rate volatility. This choice is

motivated by the analysis in Section 2.1, which demonstrates that price impact is

positively related to interest rate volatility and that price impact may become more

sensitive to volatility as volatility increases. We label the states such that the slope

coefficients with respect to interest rate volatility decrease with the state index in

the measurement equation, Equation (2); thus, state 1 is a “low-liquidity” state in

which price impact is most sensitive to volatility, state 2 is a “medium-liquidity”

state, and state 3 is a “high-liquidity” state.

The characterization of hidden liquidity states based on factor sensitivities cor-

responds well to interpreting latent liquidity in terms of the willingness of market

3In the models we consider, Bayesian and Akaike information criteria favor models with three
states to models with two states.
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makers to replenish the order book. Specifically, price impact is more sensitive to

volatility exactly when market makers reduce their replenishment speed more per

unit increase of volatility. The price impact of trade flow is by its very definition a

measure of the market participants’ willingness to replenish the order book – mar-

ket price changes in response to trades when the queues at the best prices are not

replenished or resting orders are cancelled.4 Thus, price impact is both a measure

of execution costs and the market makers’ willingness to replenish the order book.

3.2 Hidden Markov Model: Constant Transition Probabilities

Matrix

We start our investigation with an HMM characterized by constant probabilities of

transitioning between the states:

pi,j,t = pi,j , (3)

where pi,j,t denotes the trading day-t probability that st+1 = j conditional on st = i,

and is a fixed model parameter. We estimate this model (and others considered in

this paper) by maximum likelihood, using the method of Visser and Speekenbrink

(2010).

Table 3 reports the resulting parameter estimates. We first consider the obser-

vation equation parameter estimates in the four considered specifications, labeled

Models I through IV. The observation equation of Model I includes only the volatil-

ity of rates as an explanatory variable. Here, implied volatility from a tenor-matched

(that is, 10-year) swaption contract with 1-month expiration is our measure of inter-

est rate volatility. The slope coefficients, βVi on volatility are all positive and highly

significant, meaning that higher volatility is associated with greater price impact

in all states. Moreover, the differences between volatility coefficients among states

are also large and significant, in line with the hypothesis that price impact is more

sensitive to volatility when liquidity is low.

4Most trades do not take more liquidity than is available at the best price.
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Table 2: HMM with Fixed Transition Probabilities Matrix: Parameter
Estimates

The table reports parameter estimates for the HMMs described by Equation (2) and fixed transition
probability matrix that explains the 10-year Treasury Note liquidity. The sample period is from
April 1, 2014 to December 31, 2023. βV coefficients corresponds to the effect of swaption implied
volatility, βV V – to the effect of the surprise component of the volatility of swaption implied
volatility, and βCS – to the effect of surprise component of volatility persistence. Sub-indices
correspond to states, i = 1, 2, 3, ranked from lowest to highest liquidity. Panel B contains estimates
of the transition equation parameters: pi,j is the probability of transitioning from latent liquidity
state i to state j. Numbers in brackets indicate standard errors based on the Hessian. A ., *, or **
indicates two-sided p-values of less than 0.1, 0.05, and 0.01, respectively.

Model I Model II Model III Model IV

Panel A. Observation equation
βV
1 0.191** 0.163** 0.185** 0.163**

(0.007) (0.003) (0.005) (0.003)
βVV
1 1.92** 1.829**

(0.123) (0.131)
βCS
1 -0.715** -0.096

(0.092) (0.069)
σ1 9.317** 5.575** 7.804** 5.607**

(0.547) (0.259) (0.453) (0.264)
βV
2 0.12** 0.115** 0.12** 0.117**

(0.001) (0.001) (0.001) (0.001)
βVV
2 0.633** 0.697**

(0.067) (0.057)
βCS
2 0.011 0.057**

(0.017) (0.018)
σ2 1.886** 1.631** 1.883** 1.639**

(0.061) (0.05) (0.059) (0.054)
βV
3 0.084** 0.081** 0.084** 0.083**

(0.001) (0.001) (0.001) (0.001)
βVV
3 0.194** 0.285**

(0.048) (0.044)
βCS
3 0.102** 0.106**

(0.01) (0.01)
σ3 1.029** 0.918** 1.003** 0.924**

(0.027) (0.029) (0.027) (0.034)

Panel B. Transition equation
p1,1 0.841** 0.926** 0.844** 0.923**

(0.037) (0.02) (0.036) (0.021)
p1,2 0.155** 0.071** 0.152** 0.073**

(0.036) (0.02) (0.035) (0.021)
p1,3 0.004 0.004 0.004 0.004

(0.007) (0.004) (0.007) (0.004)
p2,1 0.026** 0.018** 0.028** 0.018**

(0.006) (0.005) (0.007) (0.006)
p2,2 0.935** 0.936** 0.933** 0.93**

(0.01) (0.01) (0.011) (0.011)
p2,3 0.039** 0.045** 0.039** 0.052**

(0.008) (0.008) (0.008) (0.009)
p3,1 0.001 0.003 0.001 0.004

(0.002) (0.002) (0.001) (0.002)
p3,2 0.029** 0.043** 0.028** 0.039**

(0.006) (0.008) (0.006) (0.008)
p3,3 0.97** 0.955** 0.971** 0.957**

(0.006) (0.008) (0.006) (0.008)

Sources: Repo Inter Dealer Broker Community; TP ICAP, Swaptions and Interest Rate Caps and
Floors Data; authors’ calculations.
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Looking beyond volatility as a potential explanatory variable for price impact,

we hypothesize that market makers’ risk considerations beyond volatility – heavy-

tails of the rate distribution – affect supply of liquidity. Volatility of volatility

induces heavy-tails of the rate distribution. Since volatility tends to be volatile

when its level is high, we isolate the surprise component from this relationship to

measure the incremental impact of heavy tails. Specifically, we estimate the surprise

component of the volatility of volatility in two steps. First, we obtain the filtered

dynamic conditional volatilities from a AR(1)-GARCH(1,1) model with Student-

t innovations applied to swaption volatilities. Second, we regress this time series

on swaption volatilities to obtain the residuals; these residuals are an estimate of

the surprise component of the volatility of volatility. In Model II, we extend the

set of explanatory variables to include the surprise component of the volatility of

swaption-implied volatility. The effects of the surprise component of the volatility

of volatility, βV Vi , are highly significant and positive in all liquidity states. The

surprise component of volatility of volatility has larger effects in lower liquidity

states: βV Vi > βV Vj for i < j. Since, heavy tails and volatility are both risks to

market makers, we can extend the definition of low liquidity states to states where

liquidity is sensitive to rate risks, in general.

Shocks to volatility persistence affect liquidity supply through the balance sheet

channel – the risk of maintaining an inventory of securities over multiple trad-

ing days. This channel is relevant for traditional dealers, but not principal trading

firms (PTFs) – traditional dealers often carry considerable positions overnight, while

PTFs tend to avoid such exposures. Model III includes volatility and the surprise

component of volatility persistence as explanatory variables. Again, the rationale

for retaining only the surprise component is to allow for the typical relationship be-

tween volatility and its persistence. We estimate the surprise component of volatility

persistence in two steps. First, we calculate the difference between the 3-month and

1-month swaption volatilities – the volatility calendar spread. Second, we obtain

residuals from a regression of the volatility calendar spread on the 1-month swap-

tion volatility – these residuals are our surprise component of volatility persistence
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estimates.

We hypothesize that the surprise component of volatility persistence increases

price impact through the balance sheet channel. However, there is also the confound-

ing effect that we are likely to encounter during periods of extreme but brief market

stress—when 1-month volatility spikes due to localized episodes of market dysfunc-

tion, 3-month volatility will not change in accordance with the typical relationship—

the surprise component of volatility persistence would then be negative and large in

magnitude.5 Under such circumstances, a negative surprise component of volatility

persistence reflects the severity of a localized market dysfunction. Such dysfunc-

tions are either transitory by nature, as in the case of flash events, or are unlikely

to last due to the critical role of the Treasury market and the resultant response of

regulators.

In summary, the coefficient estimates βCS in Model III validate our intuition:

βCS is positive in the high and moderate liquidity states, i = 2, 3, and negative in

the lowest liquidity state, i = 1. In moderate-to-good liquidity states, when market

dysfunction is near impossible, the balance sheet channel dominates. In contrast, the

worst liquidity state coincides with some periods of potential market dysfunction,

and the above described confounding effect dominates.

Finally, Model IV contains the full set of considered covariates: volatility, the

surprise component of the volatility of volatility, and the surprise component of

volatility persistence. All observation equation parameter estimates are significant

with the exception of βCS1 .

We conclude this section with the description of the estimated time-invariant

transition probability matrix. The observations are robust across the four model

specifications. Irrespective of the current state, the probability of remaining in the

same state in the next period is high (above 0.92 in Model IV), suggesting notable

persistence of liquidity states. The probability of remaining in the same state in

the next period is greater for the higher liquidity states. Overall, transitioning

to a higher liquidity state has a higher probability than transitioning to a lower

5A flash event is a prime example of a localized market dysfunction.
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liquidity state. Transitioning between adjacent liquidity states is more probable

than migrating directly between worst and best liquidity states.

3.3 Hidden Markov Model with Endogenous Transition

Probabilities Matrix

We conjecture that low depth presents a vulnerability of market liquidity to a future

shock to the willingness of market participants to replenish the order book. Extend-

ing the model to allow for endogenous transition probabilities permits us to explore

the role of market depth in transitioning between latent liquidity states. In this case,

we model the transition probabilities using the multinomial logistic specification of

Visser and Speekenbrink (2010) and Zucchini and MacDonald (2009). Specifically,

let sd denote the liquidity state on day d. Then, the time-varying probability of

transitioning between states is

pi,j,t =
exp (δi,j + γi,jzt)

1 +
∑

k=2,3 exp (δi,k + γi,kzt)
, (4)

where pi,j,t, with j 6= 1, denotes the trading day-t probability that st+1 = j condi-

tional on st = i, and zt is average market depth on day t. To ensure that probabilities

add up (over j) to one, the probabilities of transitions to “lowest-liquidity” state 1

must be parameterized as

pi,1,t =
1

1 +
∑

k=2,3 exp (δi,k + γi,kzt)
. (5)

As a consequence of this normalization, there are no parameter estimates for δi,1

and γi,1.

Table 3 reports parameter estimates for the HMM with an endogenous transi-

tion probabilities matrix. Considering first the measurement equation of the mod-

els reported in Panel A, the main results for the measurement equations of the

model, which we discussed in Section 3.2, are robust to allowing for this form of

time-variation in the transition probabilities. We therefore focus on the transition
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equations of the models, reported in Panel B.

The estimates of γ parameters, capturing the effect of market depth, are statis-

tically significant at the 1 percent level, with the exception of γ1,3 in Models I and II

and γ3,2 in all models. For all specifications, depth effects in the low and moderate

liquidity states, γi,j (i = 1, 2, j = 2, 3), are positive: greater market depth increases

the probability of a transition to a better liquidity state and reduces the probability

of a transition to the low-liquidity state. γ1,3 are estimated with greater uncertainty

because there are few transitions from the low to the high-liquidity state, bypassing

the moderate liquidity state. In the high-liquidity state 3, γ3,3 are positive for all

specifications indicating that higher market depth increases the probability of re-

maining in the high-liquidity state. In Models II and IV, γ3,2 are negative suggesting

that higher market depth reduces the probability of a transition to a moderate liq-

uidity state. In Models I and III, γ3,2 are positive, albeit insignificant. However,

positive γ3,2 can also be seen as higher market depth causing a further reduction in

the probability of transitioning to the low liquidity state. Comparing Models I and

III against Models II and IV, we see that accounting for the surprise component of

the volatility of swaption-implied volatility in the observation equation moderates

the magnitudes the effects of depth on transition probabilities. Comparison of the

effects of depth on the transition probabilities suggests their greater strength when

liquidity is lower, since γi,j > γi+1,j for i = 1, 2, 3 and j = 2, 3.

To further illustrate the effect of depth on the transition probabilities, Figure 4

shows the transition probabilities conditional on various levels of depth, as implied

by Model IV. As depth decreases, the probability of transitioning to a worse liq-

uidity state increases. For example, when depth is $10 million, the probability of

transitioning from moderate liquidity, state 2, to low liquidity, state 1, is about nine

in ten; and, in contrast, when depth is $120 million, this probability decreases to

essentially zero.

Figure 5 shows the estimated smoothed probabilities of being in a given latent

liquidity state at each point in time, as implied by Model IV, and computed using

an algorithm from Visser and Speekenbrink (2010). The lower panel plots price
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Table 3: HMM with Endogenous Transition Probabilities Matrix: Pa-
rameter Estimates

The table reports parameter estimates for the HMMs in Equations 2 and 4 using data on price
impact, volatility, and market depth for the period from April 1, 2014 to December 31, 2023.
βV coefficients corresponds to the effect of swaption implied volatility, βV V – to the effect of the
surprise component of the volatility of swaption implied volatility, and βCS – to the effect of surprise
component of volatility persistence. Sub-indices correspond to states, i = 1, 2, 3, ranked from lowest
to highest liquidity. Panel B contains estimates of the transition equation parameters, following
the notation of Equation (4). Numbers in brackets indicate standard errors based on the Hessian.
A ., *, or ** indicates two-sided p-values of less than 0.1, 0.05, and 0.01, respectively.

Model I Model II Model III Model IV

Panel A. Observation equation
βV
1 0.190** 0.165** 0.185** 0.167**

(0.007) (0.004) (0.006) (0.004)
βVV
1 1.675** 1.512**

(0.108) (0.132)
βCS
1 -0.675** -0.162*

(0.092) (0.073)
σ1 8.949** 5.712** 7.825** 5.776**

(0.525) (0.27) (0.468) (0.299)
βV
2 0.119** 0.115** 0.12** 0.116**

(0.001) (0.001) (0.001) (0.001)
βVV
2 0.427** 0.463**

(0.056) (0.065)
βCS
2 0.026 0.044*

(0.017) (0.018)
σ2 1.729** 1.509** 1.762** 1.555**

(0.061) (0.053) (0.064) (0.063)
βV
3 0.083** 0.081** 0.084** 0.083**

(0.001) (0.001) (0.001) (0.001)
βVV
3 0.157** 0.236**

(0.044) (0.045)
βCS
3 0.095** 0.096**

(0.01) (0.01)
σ3 0.974** 0.917** 0.958** 0.910**

(0.033) (0.028) (0.029) (0.028)

Panel B. Transition equation
δ1,2 -9.893** -8.286** -10.000** -8.988**

(2.501) (1.955) (2.656) (2.701)
δ1,3 -107.188 -200.496 -22.938** -284.616**

(144.634) (132.53) (7.075) (91.647)
γ1,2 0.292** 0.200** 0.300** 0.230**

(0.079) (0.056) (0.088) (0.082)
γ1,3 1.892 3.338 0.528** 4.696**

(2.321) (2.142) (0.148) (1.482)
δ2,2 -3.999** -3.023** -4.277** -3.117**

(1.137) (0.935) (1.276) (1.002)
δ2,3 -8.317** -7.562** -8.889** -7.467**

(1.379) (1.52) (1.515) (1.474)
γ2,2 0.135** 0.100** 0.144** 0.104**

(0.027) (0.018) (0.031) (0.02)
γ2,3 0.16** 0.122** 0.174** 0.126**

(0.029) (0.023) (0.033) (0.025)
δ3,2 -2.564 3.586* -5.417 3.366.

(3.357) (1.588) (3.474) (1.968)
δ3,3 -5.428. -0.042 -7.287* 0.294

(2.957) (0.429) (3.128) (1.123)
γ3,2 0.058 -0.032 0.094. -0.029

(0.046) (0.02) (0.05) (0.024)
γ3,3 0.118** 0.039** 0.144** 0.036**

(0.041) (0.005) (0.046) (0.012)

Sources: Repo Inter Dealer Broker Community; TP ICAP, Swaptions and Interest Rate Caps and
Floors Data; authors’ calculations.
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Figure 4: HMM Transition Matrix

The figure shows the transition probability matrices from the HMM conditional on various levels

of market depth, as implied by Model IV. The levels of market depth are $10 million, $30 million,

$60 million, and $120 million. In each case, the matrix shows the probabilities of transitioning

from the states on the vertical axis to the states on the horizontal axis. Darker shading highlights

higher probabilities.
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Floors Data; authors’ calculations.
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impact. The estimated state probabilities make intuitive sense, with higher proba-

bilities of residing in a low-liquidity state generally being higher at times of spikes

in price impact. Until around late 2019 or early 2020, the probability of being in

the high-liquidity state 3 was generally very high, with just a handful of episodes of

being in the medium-liquidity state. These episodes generally coincided with mod-

erate increases in price impact. Since 2020, however, the medium-liquidity state

has shifted to being the predominant state, with the high-liquidity state becoming

relatively rare and the low-liquidity state becoming much more common. The two

most notable periods of low-liquidity in the sample appear to be associated with

the COVID-related market turmoil in early 2020 and the low liquidity as economic

uncertainty rose toward the end of the sample.

Figure 5: HMM-Implied Probabilities of Being in Each State

The upper panel shows the estimated probabilities of being in each state, as implied by Model

IV. The blue, grey, and red areas indicate the probabilities of being in the high-, medium, and

low-liquidity states, respectively. The lower panel shows a time series of price impact. The vertical

dashed lines in the lower panel correspond to: (a) October 15, 2014; (b) June 24, 2016; (c)

February 6, 2018; (d) August 2, 2019; (e) March 9, 2020; (f) February 25, 2021; and (g) March 13,

2023.

Sources: Repo Inter Dealer Broker Community; TP ICAP, Swaptions and Interest Rate Caps and

Floors Data; authors’ calculations.
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The bottom panel of Figure 1 suggests that post the event of August 2, 2019,

market depth appears to have been persistently lower than before. In Appendix

B, we establish the robustness of our results to this potential structural break in

liquidity conditions.

4 Market-Wide Liquidity Fragility

In Section 4.2 we first confirm our results for all major benchmark Treasury secu-

rities by fitting HMMs with security-specific latent liquidity states. The validity

of our analysis across multiple securities suggests the feasibility of extending our

approach to modeling market-wide liquidity fragility. Consequently, in Section 4.1,

we introduce an HMM with common latent liquidity states to assess market-wide

liquidity fragility.

4.1 General Validity of Results Across Benchmark Securities

In this section, we estimate HMMs separately for each considered benchmark Trea-

sury security. This approach allows latent liquidity states to be security-specific

rather than market-wide. Then, we consider market-wide states in Section 4.2.

Table 4 reports HMM estimates for the 2-, 5-, 10-, and 30-year on-the-run Trea-

sury securities.6 Reported parameter estimates support the universal applicability

of our Section 3 results to on-the-run Treasury securities. First, there is strong

evidence of state-dependent sensitivities of price impact to considered uncertainty-

related factors. There is a common pattern of how sensitivities vary with liquidity

states, which was described in detail for the case of the 10-year benchmark security

in Section 3.1. Second, market depth contributes to explaining transitions between

liquidity states – this evidence establishes depth as a universal driver of liquidity

fragility for all considered benchmark securities. Once again, the pattern of how the

6Since a bond’s interest rate sensitivity depends on maturity and price impact depends on the
amount of risk transfer, we re-scale price impacts for 2-, 5-, and 30-year Treasuries in order for them
to correspond to roughly the same amount of risk transfer as in the case of the 10-year Treasury
Note trade of them same notional amount. We omit the 20-year Treasury Bond due to the shorter
sample of available data since the reintroduction of the security in 2020.
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effect of depth changes with liquidity state is generally shared by all securities.

4.2 Market-Wide Liquidity Fragility

In this section, we explore whether our results extend to market-wide liquidity

fragility. To this end, we turn the HMM in Equations (2) and (4) into a multivari-

ate model with common liquidity states for the 2-, 5-, 10-, and 30-year on-the-run

Treasury securities. Reinterpreting Θt as a vector consisting of price impacts of each

security on day t, the observation equation becomes:

Θt = BiVt + εi,t, (6)

where i indexes the latent liquidity state; Bi is a diagonal matrix

Bi = diag (βi,2y,βi,5y,βi,10y,βi,30y)

with the diagonal built from security-specific state i sensitivity parameters; Vt is a

vector of 1-month swaption volatilities of tenors corresponding to securities’ original

maturities; and εi,t ∼ N (0, Σi) is an observation error vector for latent liquidity

state i.7 Each Σi is diagonal, thereby forcing the common states to encapsulate all

cross-sectional dependence.

Since liquidity states are now common for all securities, we consider a larger

4-state model, with the implications discussed below. In order to identify drivers

of liquidity fragility, we make the transition probability matrix endogenous – the

time-varying probability of transitioning between states is

pi,j,t =
exp

(
δi,j + γi,jPC1

t

)
1 +

∑
k=2,3,4 exp

(
δi,k + γi,kPC1

t

) , (7)

where pi,j,t, with j 6= 1, denotes the trading day-t probability that st+1 = j condi-

tional on st = i. In contrast to the transition equation for the univariate HMM in

7Due to a large parameter space, we restrict attention to the model with swaption volatilities as
covariates in the observation equation.
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Table 4: HMM with Endogenous Transition Probabilities Matrix: Pa-
rameter Estimates

The table reports parameter estimates for the HMMs in Equations 2 and 4 using data on price
impact, volatility, and market depth for the period from April 1, 2014 to December 31, 2023.
βV coefficients corresponds to the effect of swaption implied volatility, βV V – to the effect of the
surprise component of the volatility of swaption implied volatility, and βCS – to the effect of surprise
component of volatility persistence. Sub-indices correspond to states, i = 1, 2, 3, ranked from lowest
to highest liquidity. Panel B contains estimates of the transition equation parameters, following
the notation of Equation (4). Numbers in brackets indicate standard errors based on the Hessian.
A ., *, or ** indicates two-sided p-values of less than 0.1, 0.05, and 0.01, respectively.

2-y Note 5-y Note 10-y Note 30-y Bond

Panel A. Observation equation
βV
1 0.209** 0.162** 0.167** 0.471**

(0.003) (0.002) (0.004) (0.004)
βVV
1 1.079** 1.038** 1.512** 3.335**

(0.138) (0.092) (0.132) (0.121)
βCS
1 -0.066 0.033 -0.162* 0.009

(0.054) (0.041) (0.073) (0.022)
σ1 8.66** 5.37** 5.776** 7.378**

(0.296) (0.177) (0.299) (0.203)
βV
2 0.13** 0.105** 0.116** 0.35**

(0.002) (0.001) (0.001) (0.002)
βVV
2 0.468** 0.827** 0.463** 1.308**

(0.078) (0.046) (0.065) (0.164)
βCS
2 0.033. 0.024 0.044* 0.273**

(0.017) (0.016) (0.018) (0.039)
σ2 1.408** 1.227** 1.555** 3.471**

(0.049) (0.042) (0.063) (0.11)
βV
3 0.079** 0.072** 0.083** 0.254**

(0.001) (0) (0.001) (0.002)
βVV
3 0.144** 0.302** 0.236** 0.114

(0.043) (0.026) (0.045) (0.183)
βCS
3 0.048** 0.027** 0.096** 0.133*

(0.009) (0.009) (0.01) (0.052)
σ3 1.027** 0.805** 0.91** 2.389**

(0.026) (0.022) (0.028) (0.099)

Panel B. Transition equation
δ1,2 -7.803** -7.19** -8.988** -6.077*

(2.108) (1.081) (2.701) (2.723)
δ1,3 -91.645 -17.984** -284.616** -21.571

(242.266) (4.745) (91.647) (83.307)
γ1,2 0.153** 0.129** 0.23** 0.46

(0.051) (0.028) (0.082) (0.386)
γ1,3 0.868 0.279** 4.696** 0.935

(2.114) (0.07) (1.482) (1.465)
δ2,2 -3.616** -2.44** -3.117** -4.201.

(1.289) (0.924) (1.002) (2.181)
δ2,3 -6.323** -5.933** -7.467** -11.508**

(1.339) (1.32) (1.474) (3.031)
γ2,2 0.078** 0.075** 0.104** 0.919**

(0.021) (0.015) (0.02) (0.292)
γ2,3 0.074** 0.077** 0.126** 1.226**

(0.021) (0.017) (0.025) (0.354)
δ3,2 1.285 -0.607 3.366. 1.873

(1.114) (3.965) (1.968) (1.54)
δ3,3 2.741** 0.738 0.294 0.41

(0.79) (2.131) (1.123) (0.348)
γ3,2 -0.003 0.005 -0.029 0.103

(0.004) (0.031) (0.024) (0.23)
γ3,3 0.004* 0.024 0.036** 0.498**

(0.002) (0.017) (0.012) (0.189)

Sources: Repo Inter Dealer Broker Community; TP ICAP, Swaptions and Interest Rate Caps and
Floors Data; authors’ calculations.
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Equation (4), now the first principal component of market depths of all considered

securities, PC1
t , explains the latent liquidity state dynamics. Similar to Equation

(5), to ensure that probabilities add up (over j) to one, the probabilities of transi-

tions to “lowest-liquidity” state 1 must be parameterized as

pi,1,t =
1

1 +
∑

k=2,3,4 exp
(
δi,k + γi,kPC1

t

) . (8)

Once again. as a consequence of this normalization, there are no parameter estimates

for δi,1 and γi,1.

Table 5 reports the model parameter estimates, with Panels A and B dedicated

to the observation and transition equations, respectively. We label the states from

lowest to highest liquidity. The distinction between States 2 and 3 is the notably

worse liquidity of the 2- and 5-year Treasury Notes in state 2 relative to state 3.

Since all significant γi,j coefficient estimates are positive for transitions to states

with no less liquidity (j ≥ i), we obtain evidence that greater overall market depth

reduces market-wide liquidity fragility. Interpretation of a positive, albeit insignif-

icant, γ3,2 is more nuanced, as it not only increases the probability of a transition

to state 2 but also diminishes the probability of a transition to an even worse state

1, through increasing the denominator in Equation (8). Moreover, the magnitudes

of γ3,3 and γ3,4 are notably greater than that of γ3,2. Reaffirming the results for

individual securities, we once again find the effect of depth to be stronger and more

significant in the three lower liquidity states. In the worst liquidity state, the effect

of depth is significant for the probability of escaping to the better liquidity state 2,

as such transitions to an adjacent state are sufficiently common. In contrast, direct

transitions from state 1 to either state 3 or 4 are relatively rare, making the stan-

dard errors for γ1,j (j = 3, 4) large. However, we can also interpret the combination

of positive γ1,j (j = 3, 4) as greater depth decreasing the probability of remaining

in the worst liquidity state 1. Insignificant estimates of {γ4,j} (j = 2, 3, 4) suggest

that depth plays a lesser role when liquidity is highest—market makers replenish

the central limit order book promptly and, thus, depth plays a diminished role.
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That said, γ4,4 > γ4,j (j = 2, 3) and has the greatest significance among all depth

sensitivities in the highest liquidity state 4. In summary, our results on the pivotal

role of depth carry over to market-wide liquidity fragility.

5 Conclusion

In this paper, we have drawn attention to liquidity fragility—the likelihood of a

deterioration in liquidity—in the benchmark Treasury market. We showed that

market depth significantly affects liquidity fragility in all maturity sectors of the

Treasury market – times of low market depth are associated with an increased

probability of low liquidity states in the future. This could reflect a more severe

degree of liquidity fragility associated with greater reliance on high-speed quote

replenishment when depth is relatively low. The universal validity of our results for

benchmark securities enables us to analyze market-wide liquidity fragility through

a model with common liquidity states for all benchmark Treasury securities. Our

results remained valid when considering the fragility of liquidity for all benchmark

Treasury securities, as it is significantly affected by a measure of aggregate market

depth.

We contributed to the literature on the econometric modeling of latent liquidity—

our Hidden Markov Model (HMM) relates price impact to features of volatility, con-

ditional on latent liquidity states. Unlike in previous studies using such models to

analyze liquidity, we allowed observable variables to affect transition probabilities.

As a result, our HMM captured the non-linear dependence of price impact on the

key uncertainty-related economic factors affecting market makers. In addition, our

analysis benefitted from a novel framework for quantifying price impact that allows

trade flow imbalance and non-marketable order flow imbalance to have different and

nonlinear effects on prices.

We also considered uncertainty-related factors that affect market makers. There

may be other systemic factors that explain additional variation in liquidity, like

balance sheet constraints explored in Duffie et al. (2023), among others. We leave
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Table 5: HMM with Endogenous Transition Probabilities Matrix: Pa-
rameter Estimates

The table reports parameter estimates for a multivariate HMM, Equations (6 - 8), with four common
liquidity states for the 2-, 5-, 10-, and 30-year Treasury securities, using data on price impact,
volatility, and market depth for the period from April 1, 2014 to December 31, 2023. Panel A
contains parameter estimates for the observation equation. Sub-indices correspond to states, i =
1, 2, 3, 4, ranked from lowest to highest liquidity. Panel B contains estimates of the transition
equation parameters. The notation corresponds to Equation (7); the parameters are arranged so
that rows correspond to departure states, while columns correspond to arrival states. Numbers in
brackets indicate standard errors based on the Hessian. A ., *, or ** indicates two-sided p-values
of less than 0.1, 0.05, and 0.01, respectively.

State 1 State 2 State 3 State 4

Panel A. Observation equation
βi ,2−y 0.313** 0.187** 0.110** 0.076**

(0.012) (0.002) (0.002) (0.001)
βi ,5−y 0.238** 0.149** 0.099** 0.069**

(0.008) (0.002) (0.001) (0.000)
βi ,10−y 0.235** 0.130** 0.109** 0.080**

(0.012) (0.001) (0.001) (0.000)
βi ,30−y 0.610** 0.419** 0.408** 0.319**

(0.025) (0.005) (0.004) (0.002)

Panel B. Transition equation
To state: State 2 State 3 State 4

From state:

δ1,. State 1 32.335** 177.251 69.348
(10.096) (170.449) (196.023)

γ1,. 10.923** 85.766 34.718
(3.384) (87.117) (114.256)

δ2,. State 2 9.86** 12.796** 8.801*
(2.25) (2.467) (3.568)

γ2,. 3.083** 5.593** 4.984**
(0.898) (1.026) (1.63)

δ3,. State 3 11.529* 15.968** 14.503**
(4.915) (4.94) (4.942)

γ3,. 4.841* 7.078** 7.727**
(2.274) (2.298) (2.302)

δ4,. State 4 8.725 10.703 12.131
(7.544) (7.556) (7.553)

γ4,. 1.075 1.495 2.033
(1.578) (1.573) (1.568)

Sources: Repo Inter Dealer Broker Community; TP ICAP, Swaptions and Interest Rate Caps and
Floors Data; authors’ calculations.
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the integration of such systemic factors into a richer HMM for future research. A

related question is the extent to which non-linearity in the relationship between

price impact and uncertainty may be due to balance sheet constraints and other

systemic factors. Finally, another strand of future research could verify whether

the statistical regularities that we uncovered in the Treasury market hold in other

CLOB-driven markers and, if not, then what specific aspects of the Treasury market

microstructure drive our conclusions.
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Appendix A Estimating Price Impact

We rely on price impact as our measure of price impact – price impact is the effect on

market price of trading a given economically significant order size over a set horizon.

Given the small commissions, it is the effect of trading on price that constitutes the

bulk of trading costs, and price impact is designed to directly assess this effect. The

less liquid the market, the more trades and orders will move the price. Price impact

is not observed directly but must be estimated using an econometric model. In this

section, we explain our novel approach to estimating price impact.

Our approach to estimating price impact is carefully designed to account for

several important dimensions of liquidity on inter-dealer broker platforms that use

the central limit order book (CLOB) protocol. Trading on such platforms accounts

for a large share of dealer-to-dealer transactions in on-the-run Treasury securities.
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A CLOB consists of bid and ask queues of “limit orders” (that is, quotes) to re-

spectively buy or sell specified quantities of securities, with the best bid price being

below the best ask price. An important aspect of CLOB-based trading is that only

a small fraction of desired transaction volume is typically immediately available at

the best price. Therefore, market participants wishing to execute a large position

change, or “parent order,” will typically split the parent order into smaller “child

orders” in accordance with some execution algorithm. The first choice when de-

signing an execution algorithm is whether (i) to consume liquidity on the CLOB

by submitting marketable orders that cross the spread and are immediately exe-

cutable, or (ii) to execute trades by providing liquidity by posting additional limit

orders with prices such that they cannot be immediately matched, in the anticipa-

tion that the orders will be matched to marketable orders placed by other market

participants later. Executing a trade using “non-marketable” limit orders may be

cheaper than using marketable orders because it avoids paying the bid-ask spread

but comes at the risk that the order will not be matched quickly or that the price

may move in an unfavorable direction such that the limit order will not be matched

at all (meaning that the order may need to be canceled and a new order placed

at a less favorable price). In practice, a sophisticated execution strategy may use

a mixture of marketable and non-marketable orders (see, for example, Moro et al.

(2009)). The second dimension of an execution strategy that matters for the price

impact of a large parent order is how the market participant splits it into smaller

child orders over time, in order to lower the overall price impact.

Our measure of price impact is based on a model relating returns to net trade

and non-marketable order flows. The model takes the form:

rt−1,t = βmsign (TF t−1,t) |TF t−1,t|γm

+ βnsign (NMOF t−1,t) |NMOF t−1,t|γn + εt.

(9)

where t = 0, . . . ,T are the boundaries of one-minute intraday periods, which to-

gether form a partition of the studied trading day; TF t−1,t is the trade flow imbal-
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ance, measured as the difference between buyer- and seller-initiated trade volumes

between t− 1 and t; NMOF t−1,t is the non-marketable order flow imbalance, mea-

sured as order flow imbalance as calculated in Cont et al. (2014) between t−1 and t,

less the effect of trades, which are accounted for in trade flow;8 and rt−1,t = Pt−Pt−1

Pt−1

is the simple return based on changes in mid-quoted prices between t−1 and t (Pt−1

and Pt, respectively). The inclusion of both trade flow and non-marketable order

flow as explanatory variables, with different impacts on prices, is motivated by the

results of Brogaard et al. (2019), who show that in equity markets marketable or-

ders individually have greater price impact than limit orders, but that limit orders

contribute more to price discovery overall. The feature that the effects of trade flow

and non-marketable order flow are nonlinear is motivated by the review in Bouchaud

et al. (2009), and, in particular, the asymmetric liquidity hypothesis of Lillo and

Farmer (2004) and Farmer et al. (2006). These studies reconcile the fact that the

direction of order flow imbalances displays long memory with market efficiency: an

order has a smaller price impact when following another order in the same direction.

We estimate the model in equation (9) for the 2-, 5-, 10-, and 30-year on-the-

run nominal Treasury securities using nonlinear least squares separately for each day

between April 1, 2014 and December 31, 2023. We omit days with shortened trading

hours, leaving a total of 2,374 days. We consider only the most active trading hours,

between 7 a.m. and 4.45 p.m., giving a maximum of 585 one-minute observations

per trading day. For model estimation purposes we retain only intraday periods with

at least one trade. We also constrain the values of γm to be below 1.8, which avoids

extreme estimates of this parameter on a small proportion (less than 1 percent) of

days.

In a framework that allows trade and non-marketable order imbalances to have

different and nonlinear effects on prices, there is not a single measure of price impact

8Specifically, NMOF t−1,t = OFIt−1,t − TF t−1,t, where OFIt−1,t =∑N(t)

n=N(t−1)+1

[
qbnI

(
P bn ≥ P bn−1

)
− qbn−1I

(
P bn ≤ P bn−1

)
− qsnI (P sn ≤ P sn−1) + qsn−1I (P sn ≥ P sn−1)

]
;

N (t) is the index of the last order book event—a limit order or cancellation—of the period between
t − 1 and t; qbn and qsn are the sizes of the queue at the best bid price, P bn, and ask price, P sn,
respectively, at event n; and I (.) is an indicator function taking the value 1 when the argument is
true and 0 otherwise.
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for the execution of a large parent order, since it depends on the time horizon for

execution, how the parent order is split over time into child orders, and to what

extent it is executed aggressively using marketable orders or passively using non-

marketable orders. In our analysis, we consider a benchmark execution strategy

under which a parent order is executed using marketable orders spread across the

course of a single trading day using a “volume-weighted average price” (VWAP)

strategy—that is, the parent order is spread in proportion to aggregate trade volume

in each 1-minute time interval. This benchmark seems reasonable for two reasons.

First, Fraenkle et al. (2011) demonstrate the optimality of VWAP execution, while

Frei and Westray (2015) argue that market participants consider it to be a fair

execution benchmark, and Moro et al. (2009) provide evidence from equity markets

that parent orders appear to be split across time in line with the overall market

activity.9 Using this baseline strategy, we reaffirm previous results that price impact

is positively related to interest rate volatility (see, for example, Cont and Bouchaud

(2000), Farmer et al. (2004) and Chordia et al. (2005)). And second, Pham et al.

(2020) demonstrate that spreading large parent orders over time yields considerable

savings in terms of price impact.

More specifically, our baseline strategy considers the price impact of a purchase

of $500 million—equivalent to about 1.5 percent of median daily trade volumes

over the period—executed using marketable orders spread across one-minute periods

through the day, in proportion to the volume traded within each minute. In this

baseline case, we have xt−1,t = ξ
Vt−1,t

Vd
and yt−1,t = 0, where Vt−1,t and Vd are

the existing trading volumes between times t − 1 and t, and in aggregate for day

d, respectively.10 This splitting in child orders corresponds to an ideal VWAP

algorithm, named so because it targets the volume-weighted average price over its

execution horizon. While a market participant would not in practice be able to

forecast trading volumes perfectly, as discussed above, we can nevertheless think

9While it is not straightforward to achieve VWAP execution because it requires an accurate
forecast of the share of each intraday period in aggregate trading volume, Bia lkowski et al. (2008)
suggest such a model.

10To simplify calculations, we do not account for the contribution of the marginal trades to
volumes, which is a reasonable approximation due to their relatively small size.
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of the resulting measure of price impact as being representative of the impact of

aggregate trading, as well as corresponding to a recognized execution benchmark.

Of course the choice of the $500 million parent order over the period of one trading

day is somewhat arbitrary, in that we picked a range of sizes that are not outsized

relative to aggregate daily volume. A feature of a nonlinear model is that the scaling

of price impact with trade size may be different on each day. Thus, there may be

a concern that the results we discuss below are not robust to varying the trade

size. However, in preliminary analysis (unreported here but available upon request)

shows that the scaling becomes close to linear as the execution horizon lengthens to

cover the active hours of the entire trading day. This result means that our main

conclusions are likely to be robust to varying the size of the parent order.

We conclude this section with an discussion of how price impact improves on

other common measures of liquidity. A significant portion of the literature, repre-

sented Chordia et al. (2001) to name one of the most seminal papers in the area,

associates liquidity with measures of bid-ask spreads and market depth, defined as

the total amount of quotes at the best prices resting on the order book.11 Bid-ask

spread has limited variability in the benchmark Treasury market due to the rela-

tively large tick size: bid-ask spread is often a single tick. Moreover, Dobrev and

Meldrum (2020) notices that market participants may not execute during periods

of temporarily wide bid-ask spreads, making common measures of bid-ask spread

biased. An even greater disadvantage of the bid-ask spread is that it captures only

an instantaneous effect of trading a small order and neglects any informational con-

sequences of trading a large order. In principle, market depth at the top of the book

captures the volume of marketable orders that can be executed instantaneously

without moving prices, so intuitively should be related to price impact. However,

market depth has only limited value as a proxy for price impact because the large

majority of willingness to post quotes is unobserved. When market participants

wish to execute a large parent order, rather than exhausting all available quotes at

11Aggregate measures of liquidity may also be constructed, as in Duffie et al. (2023) who proxy
liquidity with the first principal component of six measures associated with liquidity.
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the best prices, they will typically split it into a number of smaller child orders, each

of which are matched with a portion of the posted quotes, which are then quickly

replenished (see, for example, Moro et al. (2009)). And because market participants

adapt to changing market environments, a deterioration in depth may not translate

perfectly and immediately into higher price impact. Specifically, in response to lower

depth, market participants may reduce the size of their child orders to avoid trading

through multiple levels of the book.12 In an analogous manner, if quotes at the

best prices are temporarily exhausted, market participants tend to avoid executing

at relatively unattractive prices and instead wait for quotes at better prices to be

replenished, as shown by Dobrev and Meldrum (2020). Thus temporarily widening

bid-ask spreads have less effect on price impact through the adaptation of market

participants. While price impact and depth are negatively correlated, price impact

tends to recover faster following an increase in volatility, suggesting that trading

patterns quickly adapt to a lower level of depth. Given our study of the relationship

between price impact and market depth, our paper is related to those that examine

the signals from multiple measures of liquidity. While one strand of the related liter-

ature has shown that various liquidity measures contain much common information

(e.g. Chordia et al. (2000), Chordia et al. (2003)), Næs et al. (2008), and Korajczyk

and Sadka (2008)), several other studies have focused more on the different signals

from different liquidity measures, as we do. In particular, Chollete et al. (2007)

argue that there can be major disagreements between liquidity measures, especially

during stress events. In summary, depth and bid-ask spread do not have the direct

link to price impact, as opposed to our usage of price impact.

Furthermore, we permit trade flow imbalances and non-marketable order flow

imbalances to have different effects on prices and to affect prices non-linearly, un-

like in the majority of previous studies. The regression-based approach was first

established by Kyle (1985), although our specific implementation is close in spirit

to Adrian et al. (2023), in that we estimate price impact separately on a day-by-day

12Hautsch and Huang (2012a) and Hautsch and Huang (2012b), among others, show that orders
potentially trading through multiple levels of the book tend to be shunned by market participants.
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basis based on higher-frequency observations. Inclusion of non-marketable order

flow imbalance is important because of previous evidence that order flow imbalance

is superior to trade flow imbalance in explaining price changes (see, for example,

Cont et al. (2014)).13

Appendix B Robustness to Starting the Sample in

August 2019

One potential concern with analysis in Section 3 is that there may have been a

structural break in liquidity conditions in recent years. Since the event of August

2, 2019, market depth does appear to have been persistently lower than before that

event, as shown in the lower panel of Figure 1. That could reflect a secular shift

toward a market structure that relies more on fast quote replenishment, rather than a

large standing volume of quotes. If were the case, a model that allowed for switching

back to states that applied in the early part of the sample may be inefficient. To

provide some assurance that such a structural break is not driving the results for

recent years, we also consider our preferred HMM, Model IV, estimated using a

sample starting after the event of August 2, 2019. Figure B.1 shows the estimated

probabilities of being in each state and Table B.1 reports the parameter estimates.

The results are mostly similar to the ones obtained with the model estimated for

the full sample. Most of the time, there is a high probability of being in a relatively

high-liquidity state in which the sensitivity of price impact to volatility is relatively

low. During the market stress of March 2020 and for much of the period since 2022,

however, there was a relatively high probability of being in a relatively low-liquidity

state with higher sensitivity of price impact to volatility. The positive coefficients

on depth in the transition equation imply that a reduction in depth increases the

probability of transitioning to the low-liquidity state. Finally, we obtain further

evidence of the greater impact of depth on transition probabilities when liquidity is

13The results of Cont et al. (2014) were subsequently extended by Xu et al. (2018) and Cont
et al. (2021) to incorporate order flow imbalance at multiple levels of the CLOB.
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low relative to when liquidity is high, since γ1,i > γ2,i > γ3,i for i = 2, 3. Thus, we

conclude that the main insights from our full-sample model are robust to estimating

an HMM only using more recent data.

Figure B.1: HMM-Implied Probabilities of Being in Each State: Sample
Starting in August 2019

The upper panel shows the estimated probabilities of being in each state, as implied by Model IV

estimated using data starting in August 2019. The red, grey and blue areas indicate the probabilities

of being in the low-, medium- and high-liquidity states, respectively. The lower panel shows a time

series of price impact. The vertical dashed lines in the lower panel correspond to: (d) August 2,

2019; (e) March 9, 2020; (f) February 25, 2021; and (g) March 13, 2023.

Sources: Repo Inter Dealer Broker Community; TP ICAP, Swaptions and Interest Rate Caps and

Floors Data; authors’ calculations.
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Table B.1: HMM Parameter Estimates: Sample Starting in August 2019

The table reports parameter estimates for the HMM in Equations 2 and 4 using data on price
impact, volatility, and market depth for the period from August 3, 2019 to December 31, 2023.
Numbers in brackets indicate standard errors based on the Hessian. A ., *, or ** indicates two-
sided p-values of less than 0.1, 0.05, and 0.01, respectively.

Panel A. Observation equation Panel B. Transition equation

βV
1 0.176** δ1,2 -11.728*

(0.006) (5.178)
betaVV

1 1.348** δ1,3 -148.014
(0.184) (193.629)

βCS
1 -0.262* γ1,2 0.396*

(0.111) (0.176)
σ1 7.245** γ1,3 3.474

(0.471) (4.372)
βV
2 0.131** δ2,2 -6.316**

(0.001) (2.423)

βVV
2 0.464** δ2,3 -8.549**

(0.074) (2.464)
βCS
2 0.119** γ2,2 0.203**

(0.023) (0.066)
σ2 1.661** γ2,3 0.213**

(0.084) (0.067)
βV
3 0.099** δ3,2 -4.543.

(0.001) (2.438)
βVV
3 0.223** δ3,3 -7.125**

(0.083) (2.302)

βCS
3 0.111** γ3,2 0.104*

(0.013) (0.047)
σ3 1.067** γ3,3 0.164**

(0.051) (0.045)

Sources: Repo Inter Dealer Broker Community; TP ICAP, Swaptions and Interest Rate Caps and
Floors Data; authors’ calculations.
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