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1 Introduction

The question of how, if at all, monetary policy should react to asset prices remains controversial. Some

argue that asset price misalignments can pose significant risks to macroeconomic and financial stability,

and that monetary policy should raise interest rates when asset prices are high; others argue that monetary

policy should not pay attention at all to asset prices, or at most in order to improve forecasts of inflation

and economic activity.1

Any answer to this question depends on what is assumed about the sources of asset price fluctuations.

Are financial markets pricing assets efficiently, and if not, what is the nature of price misalignments?

Standard macroeconomic models, including workhorse New-Keynesian models used for monetary policy

analysis, embody the efficient market hypothesis that rules out asset price misalignments by design. Gali

(2014, 2017) has added rational bubbles to these models, arguing for a negative reaction of interest rates to

asset prices because rational bubbles grow more slowly at lower interest rates. Yet rational bubbles are not

the only way through which asset prices can deviate from their “fundamental value”. An alternative narrative

holds that investors’ expectations suffer from extrapolative bias and can suffer from bouts of over- and under-

confidence which affect prices. This narrative can be formalized through models of learning, which are a

plausible explanation for many well-known asset price characteristics (Fuster et al. 2012; Collin-Dufresne

et al. 2013; Adam et al. 2015; Barberis et al. 2015 for stock prices; Adam et al. (2012); Caines (2016);

Glaeser and Nathanson (2017) for house prices). Importantly, these models can explain the systematic

bias in return expectations observed in survey data, which is inconsistent with any rational expectations

model (Greenwood and Shleifer, 2014). However, the effect of asset price learning on the conduct of optimal

monetary policy has not been studied previously.

In this paper, we analytically solve for optimal monetary policy in a model with subjective, extrapolative

beliefs about endogenous asset prices. The model is a simple New-Keynesian model, to which we add a

long-term asset and learning about the equilibrium asset price. The learning process implies extrapolative

expectations and endogenous boom-bust cycles in equilibrium price dynamics. We keep expectations close

to rational by restricting them to be model-consistent conditional on subjective asset price beliefs (Winkler,

forthcoming).2 Agents remain forward-looking and correctly forecast the fundamental state of the economy.
1See, for example, Bernanke and Gertler (2001), Gilchrist and Leahy (2002), Christiano et al. (2010), Filardo and

Rungcharoenkitkul (2016) and Svensson (2017).
2Conditionally model-consistent expectations require that beliefs be consistent with all equilibrium conditions other than

asset market clearing. The concept has also been applied in Caines (2016) and Gandré (2017).
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They also understand the monetary transmission mechanism and the policy strategy followed by the central

bank, except for its effects on asset prices. Despite this restriction, fluctuations in subjective asset price

expectations have real effects because they distort intertemporal choices of consumption and investment:

Optimistic expectations create excess aggregate demand by increasing subjective wealth, and create excess

asset production by increasing subjective returns on investment.

We show that the policy-relevant natural real rate of interest is not simply a function of technology and

preferences, but depends positively on subjective asset price beliefs. The intuition for this result is simple:

When agents expect larger capital gains on the asset, then the return on bonds must also rise for the bond

market to clear, even if the capital gains expectations aren’t rational. Because realized asset prices in our

model are also increasing in subjective beliefs, the model gives rise to a positive relationship between the

level of asset prices and the natural real interest rate. In order to follow this natural rate, the central bank

needs to raise interest rates when asset prices are high.

In terms of target criteria, flexible inflation targeting remains optimal under learning when the asset is

in fixed supply. When we allow for production of the asset, the optimal policy instead “leans against the

wind”: The central bank is willing to tolerate low inflation and output when agents are overly optimistic

about asset prices, so as to mitigate investment distortions arising from subjective belief fluctuations. By

contrast, flexible inflation targeting remains optimal under rational expectations.

Finally, we numerically evaluate simple Taylor-type interest rate rules with a reaction to asset prices. We

find that a positive reaction to capital gains mitigates the distortions from non-rational beliefs and stabilizes

asset price fluctuations. Raising interest rates when subjective beliefs are overly optimistic reduces the price

of our long-term asset, thereby correcting expectations downwards. This finding is in contrast to the rational

bubble literature (Gali, 2014; Dong et al., 2017), where raising rates when bubbles are large makes them

larger still.

Our baseline model assumes a particular process of expectation formation in which agents think that

asset prices are a random walk with a small time-varying drift. This process has been shown to fit the

data well (Adam et al., 2017), but our results are robust to alternative choices. We show how our results

carry over to a more general class of subjective beliefs, including “natural expectations” (Fuster et al., 2012)

and “diagnostic expectations” (Bordalo et al., 2018). Another assumption we make is that expectations are

model-consistent conditionally on asset price beliefs. This restriction greatly reduces the degrees of freedom

for boundedly rational expectations. However, we do not mean to imply that belief distortions or learning
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about other aspects of the economy, such as inflation or even monetary policy itself, do not matter. Rather,

we see this assumption as a modeling device that allows us to isolate the effects of asset price learning from

other such distortions.

When we analyze optimal policy, we assume that the central bank has complete information and max-

imizes welfare under the equilibrium probability distribution of our model, which is distinct from the

subjective distribution of boundedly rational agents. Effectively, the central bank makes its choices given

its own view of the economy, not that of the private sector. In practice, central banks’ views on asset prices

do indeed diverge at least sometimes from those of financial markets, as exemplified in Alan Greenspan’s

“irrational exuberance” comments (Greenspan, 1996). If the central bank instead had the same beliefs as

the private sector, the policy problem in our model would revert to that of a relatively standard, rational

expectations New-Keynesian model, which has been extensively studied in the literature.

In our model, subjective asset price beliefs have real effects because they affect consumption and in-

vestment through changes in subjective wealth and expected returns. We abstract from more complex

transmission channels of asset prices, such as credit constraints and balance sheet effects. The advantage

of this simplification is that we are able to obtain closed form solutions for optimal monetary policy in the

presence of learning.

Previous studies have argued for a monetary policy reaction to asset prices in environments without

rational expectations, for example Dupor (2005) and Mertens (2011). In these studies, beliefs about the

exogenous fundamentals of the economy are distorted, and affect welfare through an investment channel.

To our knowledge, our analysis is the first in which beliefs about the asset price itself—an endogenous

variable—are distorted. We find departures from the optimal policy under rational expectations even when

there is no investment channel.

Our analysis is related to Adam and Woodford (2018), who study “robustly optimal policy” in a New-

Keynesian model with housing quite similar to ours.3 Like the papers previously mentioned, Adam and

Woodford study distortions to beliefs about the exogenous fundamentals of the economy, while our agents

learn about the endogenous asset price. But they also set themselves a different policy problem, in which

the class of possible belief distortions is large and the policymaker does not know which of these distortions
3One important difference is that utility is linear in asset holdings in their model. This effectively implies that wealth does

not enter the model as a state variable. In our learning model, changes in subjective wealth are the key distortion induced by
non-rational asset price expectations, and hence we cannot make the same assumption. Instead, we solve for optimal policy
carrying endogenous state variables.

3



is realized, thus limiting the policymaker’s ability to exploit distorted expectations to its advantage. In our

paper, the central bank is certain of the belief distortions in the private sector. We also limit the degree to

which it can exploit them, by ruling out that the central bank pursues a different policy targeting rule from

what the private sector believes the targeting rule to be. Another difference is that Adam and Woodford

find benefits of leaning against the wind only if the steady state is distorted in a particular direction. In

contrast, our results are obtained around the fully efficient steady state.

We also complement a growing literature studying monetary policy prescriptions in models with learning.

Fully optimal policy has recently been studied in a two-equation model with learning by Molnar and Santoro

(2014) and Eusepi and Preston (2018). Eusepi et al. (2018) introduce drift in long-run expectations to a

New Keynesian model and show that such beliefs introduce a policy tradeoff between stabilizing current

inflation and anchoring long-horizon beliefs. In these papers, asset prices are absent and it is mostly learning

about the inflation process that drives the dynamics of the model.4 Instead, we focus on non-rational asset

price beliefs, while endowing agents with conditionally consistent beliefs about the rest of the economy.

Our analysis shares some common ground with previous studies on asset prices and monetary policy

that stay within the paradigm of rational expectations. Christiano et al. (2010) study the optimal policy

reaction to news shocks about future productivity. Good news raises both asset prices and the natural real

rate of interest, so that monetary policy should optimally respond by raising interest rates. Our natural

real rate is similarly increasing in subjective beliefs, but these beliefs evolve endogenously and do not rely

on exogenous news shocks. Gilchrist and Saito (2009) analyze simple interest rate rules in a credit friction

model in which the private sector has limited information about the trend growth rate of technology. They

find that a reaction to the growth rate of asset prices in the policy rule is beneficial, while a reaction to

the level of asset prices is not. Even though we abstract from credit frictions, the same result obtains

in our model, too. The reason is that a reaction to the growth rate of asset prices approximates return

expectations that enter the natural real rate of interest.

The remainder of this paper is structured as follows. We begin by describing the baseline model in

Section 2, and our notion of a learning equilibrium in Section 3. We characterize the linearized equilibrium

under rational expectations and learning in Section 4. Optimal policy is analyzed in Section 5, while Section

6 discusses how well certain simple interest rate rules approximate the optimal policy. Sections 7 and 8
4Airaudo (2016) augments the standard New Keynesian model with a stock market and infinite-horizon learning as in Pre-

ston (2006) to study conditions under which the rational expectations equilibrium is learnable, but stops short of characterizing
optimal policy.

4



discuss extensions to more general beliefs and asset production, respectively. Section 9 concludes.

2 Model description

Our model is an otherwise standard New-Keynesian model in which the representative household holds a

stock of a long-term asset that yields utility. In the baseline version of the model, the supply of the asset

is fixed. One can think of this asset as a stock of housing, but we will refer to it generically as a long-term

asset.

A representative household supplies labor and owns firms. It can also hold nominal bonds promising a

nominal return it. In addition, the household owns the long-term asset. The household’s problem is

EP
∞∑
t=0

βt

(
C1−γ
t

1− γ
− N1+φ

t

1 + φ
+ χ

H1−θ
t

1− θ

)

s.t. Ct = WtNt + Πt + Tt −Qt (Ht −Ht−1) +Bt −
1 + it−1

1 + πt
Bt−1.

Here, Ct is the household’s utility from consuming final consumption goods, Nt is the household’s labor

supply, and Tt are lump-sum taxes. Πt are the profits received from firms. The quantity of the asset owned

by the household is denoted Ht and trades at the price Qt. Bt are government bonds which are in zero net

supply. The price level is Pt and πt = Pt/Pt−1 − 1 is the inflation rate. The expectational operator EP has

a superscript indicating that agents’ expectations are evaluated under a subjective probability measure P.

The first order conditions are:

Wt = Cγt N
φ
t

1 = βEPt
(

Ct
Ct+1

)γ 1 + it
1 + πt+1

Qt = χ
Cγt
Hθ
t

+ βEPt
(

Ct
Ct+1

)γ
Qt+1.

On the production side, a representative intermediate goods producer transforms household labor into
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intermediate goods using the decreasing returns to scale technology

Yt = AtN
α
t .

It has to hire labor at the real wage rate wt and sells its goods at the real price Mt. Its first-order condition

is

Wt = αMtAtN
α−1
t .

Intermediate goods are bought by wholesale firms indexed by i ∈ [0, 1], who transform them into

differentiated wholesale goods using a one-for-one technology. They face a standard Dixit-Stiglitz demand

function and a Calvo price setting friction. When producer i is able to set a price Pit for its output Yit, it

solves:

max
Pit

EPt
∞∑
s=0

(
s∏

τ=1

ξΛt,t+τ

)
((1 + τt)Pit −Mt+sPt+s)Yit+s

s.t. Yit =

(
Pit
Pt

)−σ
Ỹt,

where σ is the demand elasticity of substitution between varieties, Λt,t+τ = βτCγt C
−γ
+τ is the household

discount factor between times t and t+ τ , and ξ is the probability of not being able to adjust the price in

the future. Any profits are distributed to households. The first-order conditions are standard and give rise

to the New-Keynesian Phillips curve.

The term τt is a government subsidy to revenue. Its steady state value τ̄ = (σ − 1) /σ is set so as to

induce a zero steady-state markup, thus rendering the model’s steady state fully efficient. Time-varying

shocks to the subsidy τt act as cost-push shocks that affect markups and inflation but leave the first-best

allocation unchanged.

A representative retailer buys differentiated wholesale goods at prices (Pit)i∈[0,1] and transforms them

back into a homogeneous final consumption good. The final good sells at price Pt and is produced according

to the technology

Ỹt =

(∫ 1

0
(Yit)

σ−1
σ di

) σ
σ−1

.

The first order condition gives rise to the CES demand function above. The price level can be expressed as

Pt =
∫ 1

0 PitYit/Ỹt.
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The government transfers a lump sum real amount to households

Tt = τt

∫ 1

0
PitYitdi

to finance the subsidies to final goods producers and offset the tax on stock holdings. Profits and government

transfers sum up to Πt + Tt = Yt −WtNt. Finally, the central bank sets the nominal interest rate, to be

specified later.5

Aggregate fluctuations are caused by productivity and, potentially, cost-push shocks, which follow first-

order autoregressive processes:

logAt = (1− ρa) log Ā+ ρa logAt−1 + εat

τt = (1− ρτ ) τ̄t + ρττt−1 + ετt

The innovations are independent white noise with variances σ2
A and σ2

τ .

Market clearing in the final goods market requires Ỹt = Ct. Bonds are in zero net supply and the market

clearing condition is therefore Bt = 0. Finally, the supply of the long-term asset is fixed at unity, so that

asset market clearing requires Ht = 1.

3 Definition of equilibrium

Let us first recall the formal definition of a rational expectations (RE) equilibrium. Let yt ∈ RN denote

the collection of all endogenous model variables—including prices, allocations, and strategies—and by

ut ∈ RM the collection of all exogenous model variables, i.e. the technology and the cost-push shock, which

we call “fundamentals”. Stochastic processes for yt and ut are defined on the spaces Ωy = Π∞t=0RN and

Ωu = Π∞t=0RM , respectively. Further, denote by Ω
(t)
u the set of all possible histories of exogenous variables

up to period t, and its elements by u(t) ∈ Ω
(t)
u . Finally, let Pu denote the true probability measure for the

exogenous variables defined on (Ωu,S (Ωu)), where S (·) is the Borel sigma algebra on a metric space. The

topological support of Pu is denoted by supp (Pu).

Definition 1. A rational expectations equilibrium is a sequence of mappings gt : Ω
(t)
u 3 u(t) 7→ yt ∈ RN , t =

5Throughout the paper, we will assume that the central bank specifies monetary policy to guarantee uniqueness and
determinacy of the equilibrium. We also abstract from the zero lower bound on nominal interest rates.
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0, 1, 2, . . . such that, for all t and u(t) ∈ supp (Pu):

1. the choices contained in yt solve the time-t decision problem of each agent in the economy, conditional

on decision-relevant6 past and current outcomes contained in u(t) and y(t) =
(
g0

(
u(0)

)
, . . . , gt

(
u(t)
))
,

and evaluating the probability of future external decision-relevant outcomes under the probability

measure PRE implied by Pu and the mappings (gt)
∞
t=0;

2. the allocations contained in yt = gt
(
u(t)
)
clear all markets.

Under learning, agents are not endowed with knowledge of the equilibrium asset price process, i.e. the

mapping of a history of fundamentals u(t) to prices Qt. Instead, they use a simple subjective model to

forecast asset prices. s we show in Section 7, this subjective belief system can be made quite general, but

here we confine ourselves to our preferred specification which follows Adam et al. (2017). Agents think that

the asset price is a simple random walk model with a time-varying drift:

∆ logQt = µ̂t−1 + zt (1)

µ̂t = ρµµ̂t−1 + gzt (2)

where µ̂t is the perceived trend price growth, g is the learning gain, and zt is the subjective forecast error.

Under P, zt is normally distributed white noise with variance σ2
z , independent of the other exogenous

shocks. The belief µ̂t is updated in the direction of the last forecast error: When agents see asset prices

rising faster than they expected, they will also expect them to rise by more in the future.7 In order to avoid

complications arising from simultaneity in the determination of outcomes and beliefs, we follow Adam et al.

(2012) and Caines (2016) and assume that in period t agents make choices conditional on µ̂t−1, and update

their beliefs according to (1) at the end of the period.

In order to determine expectations about the remaining variables of the model, we follow Winkler

(forthcoming) in assuming that agents have so-called “conditionally model-consistent expectations”. This is

a restriction on expectations that effectively allows us to isolate the effects of asset price learning from other
6A variable is decision-relevant if it enters the agents’ decision problem, and a decision-relevant variable is external if its

value is taken as given by the agent, while it is internal if the variable is part of the solution of the agents’ decision problem.
For example, wholesalers need to get information on current and future aggregate demand Yt (decision-relevant and external)
to set prices Pit (decision-relevant and internal), while they do not need to forecast wages since their only production input is
the intermediate good.

7The belief system above is equivalent to a belief that asset price growth is the sum of a temporary and a permanent
component, both of which are unobserved. Bayesian updating of this belief leads to the equations above, with the learning
gain g representing the perceived ratio of the standard deviation of the permanent relative to the temporary component.
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potential sources of learning in the economy. Let (Ωz,S (Ωz) ,Pz) be the probability space that defines the

subjective beliefs for zt (i.e., that the zt are iid normally distributed with mean zero and variance σ2
z).

Agents’ subjective beliefs depend on this perceived stochastic forecast error even though in equilibrium,

model outcomes are a function only of fundamentals ut. The subjective probability measure P is defined

by a mapping from fundamentals ut and the subjective forecast error zt to model outcomes yt.

Definition 2. Conditionally model-consistent expectations (CMCE) are a sequence of mappings ht : Ω
(t)
u ×

Ω
(t)
z 3

(
u(t), z(t)

)
7→ yt ∈ RN , t = 0, 1, 2, . . . such that, for all t and

(
u(t), z(t)

)
∈ supp (Pu,z):

1. the choices contained in yt solve the time-t decision problem of each agent in the economy, conditional

on decision-relevant past and current outcomes contained in u(t) and y(t) =
(
h0

(
u(0), z(0)

)
, . . . , ht

(
u(t), z(t)

))
,

and evaluating the probability of future decision-relevant outcomes under the probability measure P

implied by Pu ⊗ Pz and the mappings (ht)
∞
t=0;

2. the allocations contained in yt = ht
(
u(t), z(t)

)
clear all markets except the markets for assets and final

consumption goods;

3. asset prices under P follow the law of motion given by (1)–(2).

The definition of the mappings ht is almost identical to that of a rational expectations equilibrium, except

that asset market equilibrium is not part of the conditions, and instead the price Qt evolves according to

subjective beliefs.8 Conditional model consistency restricts the subjective belief P to have the maximum

degree of consistency with the model given agents’ misspecified beliefs about asset prices. We will call the

mappings ht the subjective or perceived law of motion.

While demand for the long-term asset does not have to be equal to supply under P, the market still

has to clear in equilibrium:

Definition 3. An equilibrium with conditionally model-consistent expectations is a sequence of mappings

rt : Ω
(t)
u 3 u(t) 7→ zt ∈ R and gt : Ω

(t)
u 3 u(t) 7→ y∗t ∈ RN , t = 0, 1, 2, . . . such that, for all t and

u(t) ∈ supp (Pu):

1. g
(
u(t)
)

= h
(
u(t),

(
r0

(
u(0)

)
, . . . , rt

(
u(t)
)))

;

8In order for asset market equilibrium to not enter beliefs, Walras’ law requires that at least two market clearing conditions
be absent from agents’ information set. Consequently, in definition 2 we impose that allocations under conditionally model-
consistent beliefs do not clear the goods market. In Appendix D we discuss alternatives to these assumptions.
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2. the allocations contained in y∗t = gt
(
u(t)
)
clear the asset market.

The probability measure implied by Pu and the mappings (gt)
∞
t=0 is denoted by P.

Market clearing is brought about by finding the right value of the price Qt that clears the asset market.

We will call the mappings gt the equilibrium or actual law of motion. To avoid confusion, we will use

asterisks to denote the equilibrium stochastic processes y∗t defined by the mappings gt, as opposed to the

perceived processes yt defined by the mappings ht. The equilibrium implies a particular path for the

subjective asset price forecast error. In equilibrium, z∗t is a function of the states and the shocks of the

model, while under P, zt is perceived as an additional unforecastable exogenous disturbance. Because of

this discrepancy, the subjective distribution P and the equilibrium distribution P are mutually singular

(P ⊥ P).

Agents endowed with conditionally model-consistent expectations may not know the equilibrium map-

ping from fundamentals to asset prices, but their beliefs about the economy are correct conditional on their

subjective view about the evolution of asset prices. This way of setting up expectations is very tractable

and also allows us to transparently solve a linearized version of the model.

4 Linearized equilibrium

The analysis in this paper will focus entirely on a linearization of the model around its efficient steady-state.

4.1 Rational expectations equilibrium

Under rational expectations, a standard log-linearization of the model yields:

yt = at + αnt (3)

wt = mt + at − (1− α)nt (4)

πt = βEPt πt+1 +
(1− ξ) (1− βξ)

ξ
mt + ηt (5)

wt = γct + φnt (6)

it = γ
(
EPt ct+1 − ct

)
+ EPt πt+1 (7)

qt = γct − (1− β) θht − βγEPt ct+1 + βEPt qt+1 (8)
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ct = yt −
Q̄H̄

Ȳ
∆ht (9)

yt = ct (10)

Here, lower-case variables denote log-linearizations around the (zero-inflation) steady state, except for it

which is the difference of the nominal interest rate from its steady-state level, and ηt = (1−ξ)(1−βξ)
ξ (τ̄ − τt)

is the cost-push shock process. The model still has to be closed with an equation describing monetary

policy. The model is simply the textbook New-Keynesian model with an extra equation for the asset price

qt in (8). However, the asset price is redundant for the model dynamics because the asset is in fixed supply.

An important special case of the model obtains when prices are fully flexible and there are no cost-push

shocks (ξ = 0 and ηt = 0). In this case, the allocation under rational expectations equilibrium is first-best

efficient everywhere regardless of monetary policy. Output and the real interest rate are given by:

yn,REt = κ0at (11)

rn,REt = −γκ0 (1− ρa) at. (12)

where κ0 = (1 + φ) / (1 + φ− α+ αγ). These quantities are called the natural level of output and the

natural real rate, respectively.

The equilibrium with sticky prices can be expressed in terms of the deviation from this efficient equi-

librium. To this end, denote the output gap by ŷt = yt − yn,REt . The sticky price equilibrium can be

summarized with a Phillips curve, an IS curve, a relation between marginal costs and the output gap, and

an asset pricing equation:

πt = βEtπt+1 +
(1− ξ) (1− βξ)

ξ
mt + ηt (13)

mt =
1 + φ− α+ αγ

α
ŷt (14)

Etŷt+1 − ŷt =
1

γ

(
it − Etπt+1 − rn,REt

)
. (15)

4.2 Learning equilibrium

Following Section 3, we compute the learning equilibrium in two steps. First, we solve for agents’ subjective

law of motion given their beliefs P. To do this, we take the system of equations (3)–(10), but replace the
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goods market clearing condition (10) with the subjective law of motion for asset prices from (1)–(2):

∆qt = µ̂t−1 + zt (16)

µ̂t = ρµµ̂t−1 + gzt. (17)

This subjective law of motion is a forward-looking model that is straightforward to solve. However, there

is now an additional shock, the asset price forecast error zt, that is absent under RE. This forecast error

will be predictable in equilibrium, but under P agents believe it to be unforecastable. Just as under RE,

one still needs to add an equation describing monetary policy.

In the second step, we compute the equilibrium. To avoid confusion, we will denote with asterisks the

equilibrium law of motion. We impose market clearing in the asset market:

h∗t = 0.

This equation implicitly defines the equilibrium law of motion of the asset price q∗t , of the forecast error

z∗t , as well as of all other equilibrium outcomes. We solve separately for the flexible- and the sticky-price

equilibrium.

4.2.1 Flexible prices

We first describe the flexible price equilibrium (ξ = 0 and ηt = 0). We first find the subjective law of motion

by solving (3)–(10). The learning model has two additional state variables compared to its RE counterpart,

qt and µ̂t−1. We guess and verify that the asset demand function has the following form:

hnt = kaat + khh
n
t−1 − kqqt + kµµ̂t−1 (18)

where the coefficients satisfy kh ∈ (0, 1), ka, kq, kµ > 0. Exact expressions are in the appendix. As-

set demand under learning is increasing in productivity, decreasing in the asset price, and increasing in

expectations of future capital gains.

We can also solve for the values of output and the real interest rate under flexible prices. We write
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output and the real rate in deviation from their RE counterpart:

ynt = yn,REt +
αγκ1

1 + φ− α
(
kaat − (1− kh)hnt−1 − kqqt + kµµ̂t−1

)
(19)

rnt = rn,REt + γκ1

(
ka (2− ρa − kh) at − (1− kh)2 hnt−1 − kq (1− kh) qt

)
+ γκ1 ((2− ρµ − kh) kµ + kq) µ̂t−1. (20)

where κ1 = 1+φ−α
1+φ−α(1−γ)

Q̄H̄
Ȳ

> 0. The natural rate is increasing in the price growth belief µ̂t−1. Agents’

subjective expectations about output under flexible prices are affected by the choice of asset holdings (which

are not constant in agents’ minds). An increase in expected capital gains will increase asset demand, and

households will increase their labor supply in order to finance their purchase of the asset, thereby increasing

the level of output.

The natural real rate under subjective expectations can be understood by the arbitrage relationship

between the return on the long-term asset and the return on bonds. Combining the two asset pricing

equations (7) and (8), we obtain:

rnt =
1− β
β

(γct − θht − qt) + EPt ∆qt+1

Up to first order, the expected return on the two assets has to be equal. An increase in expected capital

gains EPt ∆qt+1 = µ̂t−1 increases the expected return to the asset, and the real interest rate on bonds

therefore has to rise as well.

To find the flexible-price equilibrium under learning, i.e. the actual law of motion, one has to impose

h∗t = 0. From the asset demand function (18), one can then immediately solve for the equilibrium asset

price and the realization of the subjective forecast error:

q∗t =
kaat + kµµ̂

∗
t−1

kq
. (21)

That is, the equilibrium asset price is increasing in both productivity and capital gains expectations. This

is intuitive. The demand function (18) is downward-sloping, and so an increase in demand due to either

higher productivity (i.e. higher income) or higher expected capital gains has to be met with an increase in

the price to bring about equilibrium in the asset market.
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Substituting the equilibrium price (21) into Equations (19) and (20), we obtain the realized level of

output and the real rate under flexible prices:

y∗t = yn,REt (22)

r∗t = rn,REt + γκ1

(
(1− ρa) kaat + ((1− ρµ) kµ + kq) µ̂

∗
t−1

)
. (23)

Under learning and flexible prices, the equilibrium level of output is the same as under RE. This

coincidence arises because, under flexible prices, output is determined entirely by intratemporal conditions

that are independent of expectations. Nonetheless, the real interest rate does depend on expectations,

and its natural level under learning is therefore different from rational expectations. In particular, it is

increasing in subjectively expected asset price price growth.

4.2.2 Sticky prices

With sticky prices, the subjective law of motion can be expressed in deviation from the flexible price

allocation, just as under rational expectations. We will use tildes to denote “perceived” gaps, e.g. h̃t =

ht − hnt denotes the difference of asset holdings from their flexible price level under P. The sticky price

PLM can be summarized with the equations:

πt = βEPt πt+1 +
(1− ξ) (1− βξ)

ξ
mt + ηt (24)

mt =
1 + φ− α+ αγ

α

(
c̃t + κ1∆h̃t

)
(25)

c̃t = EPt c̃t+1 −
1

γ

(
it − EPt πt+1 − rnt

)
(26)

h̃t =
γ

θ (1− β)

(
c̃t − βEPt c̃t+1

)
. (27)

The first equation is the familiar Phillips curve, and the second equation relates marginal costs to gaps

in consumption c̃t and in asset investment ∆h̃t. The investment gap appears because, for a given level of

consumption, higher asset purchases have to be financed out of additional income from production, and

marginal costs are increasing in the level of production. The third equation is an IS equation written in

terms of the consumption gap (which under subjective expectations does not equal the output gap). The

last equation is the Euler equation for asset demand, rewritten in gap form.
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Notice that the asset price qt itself does not appear in its own Euler equation when it is written in terms

of gaps, because agents perceive qt as an exogenous process, independent of the degree of price stickiness.

The asset price still implicitly enters equation (27) through the natural rate rnt .

To find the actual law of motion under sticky prices, one imposes h∗t = 0 and solves for q∗t . The

equilibrium depends crucially on the conduct of monetary policy, which we have not yet specified.

4.3 Numerical illustration

We illustrate the properties of the learning model using a simple calibration in which we interpret the long-

term asset as housing. We set the labor share in output equal to α = 0.7 and the discount factor β equal

to 0.995. The coefficient of relative risk aversion is set to γ = 1.39 (Gandelman and Hernández-Murillo,

2014) and the inverse Frisch elasticity of labor supply is set to φ = 0.33. The utility scaling parameter χ

is set to 0.01005 in order to achieve a steady state ratio of asset wealth to output of Q̄H̄/Ȳ = 2.01, which

corresponds to the US ratio of real estate holdings over GDP in 2016. The degree of price stickiness is

set to a standard value of ξ = 0.75, implying an average price duration of four quarters. The elasticity of

substitution σ does not affect the first-order dynamics of the model and we set it such that the relative

weight on inflation in the loss function (29) below equals λπ = 1. We follow Billi (2017) and set the

autocorrelation of both the technology and cost-push shocks to 0.8. Finally, we calibrate the remaining

four parameters (σA, στ , θ, g) to jointly match the volatilities of output growth σ (∆yt) = 0.64%, inflation

σ (πt) = 0.82%, house price growth σ (∆qt) = 1.51% and real wage growth σ (∆wt) = 0.10%, under the

assumption that monetary policy follows the commonly used Taylor rule

it = 1.5πt + 0.125
(
yt − yn,REt

)
. (28)

The resulting parameter values are σA = 0.83%, σp = 0.75%, θ = 0.0068 and g = 0.0041.

We first document the effect of learning under flexible prices. Learning has no effect on equilibrium

allocations relative to rational expectations, but manifests itself in the asset price and the natural real

interest rate. Figure 1 plots the response of these two variables to a technology shock under rational

expectations and learning for a range of values of the learning gain g.

The effect of learning on qt is typical for self-referential asset price learning models. Initially, the asset

price rises on impact because higher wage income raises asset demand, as under rational expectations. But
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Figure 1: Effect of learning under flexible prices.
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the initial increase now causes a subsequent revision in beliefs µ̂t through the learning mechanism. The

household believes that the shock has some long-run impact on capital gains and responds by increasing its

asset demand above the RE demand. This response drives a further increase in qt in the next period and

the shock continues to propagate through belief updating thereafter. At some point, expected price growth

has risen so much that it outstrips realized price growth. At this point, beliefs µ̂t decrease, bringing about

a reduction in asset demand and therefore in equilibrium asset prices, so that the process eventually reverts

back to steady state. The strength of these dynamics depends crucially on the learning gain g.

The differing response of the real interest rate between the learning and RE environments directly

shows the effect of expected capital gains on the natural rate of interest. Even though the impulse response

of realized consumption is exactly identical under learning and RE, what matters for the interest rate is

expected consumption growth. Under learning, increases in expected capital gains in the periods following

the shock also increase expected consumption growth and therefore higher real interest rates, as agents

anticipate selling some of their asset holdings in the future to profit from the capital gains. Optimistic

capital gains expectations thus imply a higher real rate of interest than under rational expectations.
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5 Optimal Policy

5.1 Welfare function

We provide second-order approximations to the expected discounted sum of utility in our model. Under

learning, we will assume that the policymaker maximizes welfare under the equilibrium law of motion,

applying the loss function Lt. If, instead, welfare were maximized under the subjective law of motion of

the agents, then the policy problem could be solved as a standard rational expectations problem, which has

been studied extensively in the literature.

Welfare under the equilibrium law of motion is proportional to −
∑∞

t=0 E0Lt up to second order and

terms independent of policy. The period loss function is given by

Lt = λπ (π∗t )
2 + (ŷ∗t )

2 . (29)

where ŷt = yt − yn,REt is the deviation of equilibrium output from its flexible-price level, and λπ > 0 is a

function of the structural model parameters (see the appendix).

This loss function is the same as in the standard, rational expectations New Keynesian model. It

penalizes deviations of inflation from zero as well as deviations of output from its natural level under

rational expectations (11). This natural level of output is first-best efficient.

5.2 Optimal policy without cost-push shocks

We now solve for the optimal monetary policy for the case in which there are no cost-push shocks. For

exposition, we start by reviewing the optimal policy under rational expectations. As the flexible price

equilibrium under RE is first-best efficient, monetary policy is optimal if it manages to replicate the flexible

price allocation in the presence of nominal rigidities. This amounts to closing the output gap and completely

stabilizing inflation at the same time, as can be seen from the loss function (29). Without cost-push shocks,

the “divine coincidence” holds and complete stabilization is achievable: The optimal policy implements

πt = 0 and the Phillips curve (13) then immediately implies ŷt = 0. The optimal policy can be implemented

with the following rule:

it = rn,REt + φππt
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where φπ > 1. The interest rate has to track the natural real rate and react more than one-for-one to

inflation, i.e. satisfy the Taylor principle.

Under learning, we will see that the first-best allocation is also feasible by pursuing strict inflation

targeting, which is therefore the optimal policy.

Proposition 1. It is optimal for monetary policy under learning to implement πt = 0, regardless of whether

welfare is evaluated under the actual or the perceived law of motion. The optimal policy can be implemented

with the rule

it = rn,PLMt + φππt

where φπ > 1.

Proof. See the appendix.

The intuition for this result is relatively simple: When the central bank tracks the appropriate natural

real rate of interest and there are no cost-push shocks, it implements the flexible price allocation. But we

have just seen that the equilibrium under flexible prices is identical to that under RE, and is therefore first-

best. Moreover, the flexible-price allocation is also first-best under the subjective law of motion of agents.

Therefore, for the case without cost-push shocks and a fixed asset supply, there is no tension between the

central bank’s optimal policy and what agents would perceive to be optimal from a subjective perspective.

It might seem at first that the optimal policy prescriptions are unchanged by the presence of learning,

because the prescription of strict inflation targeting is unchanged. But the implementation of this target

requires a different reaction function under learning. The nominal interest rate has to track the subjective

natural real interest rate rnt , which is different from the rn,REt under rational expectations.9 Whereas

rn,REt is a function of productivity at only, rnt depends additionally on beliefs µ̂t, prices qt and the asset

holdings ht−1. In particular, the real rate rises when expected price growth µ̂t increases. In equilibrium,

the asset price qt depends positively on expected price growth, and therefore the central bank has to set

higher interest rates when asset prices, or subjective capital gains expectations, are high. Under rational

expectations, such a reaction is not necessary.
9The process rnt is also different, from the perspective of agents, from the equilibrium realization r∗ in (23). The appendix

contains a discussion of this difference and how it matters for the setting of interest rates.
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5.3 Optimal policy with cost-push shocks

The presence of cost-push shocks breaks the “divine coincidence” under rational expectations, so that the

first-best allocation is not feasible. Under learning, there exists in principle a non-linear policy that, by

exploiting agents’ misperceptions, still achieves the first-best allocation:

Proposition 2. With cost-push shocks and learning, it is possible to close the inflation and the output

gaps (π∗t = ŷ∗t = 0) with the non-linear targeting rule πt = −ηt/ (βρη) + btzt, where bt is a state-dependent

coefficient.

Proof. See the appendix.

This result relies on the manipulation of beliefs by the central bank.10 From the Phillips curve (24), it

is clear that inflation and the output gap can only be zero if expected future inflation and the cost-push

shock offset each other: βEPt πt+1 + ηt = 0. Under rational expectations, this is infeasible because zero

inflation will also imply zero expected inflation. But under learning, this need not be the case. In fact,

the central bank can separately control inflation and inflation expectations, if it is able to make the private

sector believe that part of its actions are random when in fact they are not. This is what the policy in the

proposition above accomplishes: The term bt is set such that agents perceive it as independent from zt, so

that btzt appears as a random, zero-mean shock to inflation to them, while in equilibrium it will be set in

a highly systematic manner so as to set equilibrium inflation to zero.

Because it implements the first-best allocation, this policy is obviously optimal under learning. But it

uses an extreme degree of belief manipulation that is particularly vulnerable to the Lucas critique. Why

should agents continue to forever expect inflation when all they ever observe is complete price stability? It

is plausible that the very fact that the central bank is trying to exploit a certain expectational bias will

change the nature of this bias or even eliminate it. One way out of this problem is to explicitly model

interactions between the nature of agents’ belief distortions and the central bank’s policy, as in Woodford

(2010). Instead, we will stick with the particular belief distortion we study, but limit the degree to which

it can be exploited by the central bank.

We limit the class of policies considered to those in which the amount of the central bank’s manipulation

of beliefs is limited, in the following sense: The target criterion for inflation that the central bank pursues
10The possibility of such an outcome was anticipated by Woodford (2010) who speculated that one “might even conclude

that the optimal policy under learning achieves an outcome better than any possible rational-expectations equilibrium, by
inducing systematic forecasting errors of a kind that happen to serve the central bank’s stabilization objectives”.
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in equilibrium has to be the same as the criterion that agents perceive to be pursued under their subjective

beliefs. Formally, we require that πt be a function only on the fundamental shocks u(t), but not on the

perceived asset price forecast errors z(t); or, equivalently:

πt = π∗t P-almost surely. (30)

This condition means that agents effectively have rational expectations for inflation.11 This condition is

not a restriction on the behavior of agents, who form beliefs under the same learning scheme as before, but

a restriction on the set of policies that the central bank can pursue. Policies for which the private sector’s

beliefs of inflation are not fully model-consistent, i.e. different from the actual inflation target of the central

bank, are ruled out.

The class of policies satisfying condition (30) is large, and includes all possible target criteria under

rational expectations, including the RE-optimal discretionary and commitment criteria. It also includes

target criteria that are made contingent on equilibrium asset price realizations q∗t . However, policies with

a target that depends on outcomes contemplated by agents, but never realized in equilibrium, are not part

of this class. In particular, then, the class excludes the policy described in Proposition 2.

We now solve for the optimal monetary policy within our restricted class of policies. We find that the

best that monetary policy can achieve is to replicate the optimal outcomes under rational expectations:

Proposition 3. Consider the class of policies satisfying condition (30). Within this class:

1. The optimal target criterion under commitment (from the timeless perspective) is given by ζpt = −∆mt

for some ζ > 0, where pt is the price level. The optimal commitment policy achieves the same

equilibrium allocation as the commitment solution under rational expectations.

2. Similarly, the optimal target criterion under discretion is given by ζπt = −mt. The optimal discre-

tionary policy achieves the same equilibrium allocation as the discretionary solution under rational

expectations.

3. In both cases above, optimal policy can be implemented with an interest rule of the form it = rnt +

A (L) ηt + φππt, where A (L) ηt is a lag polynomial in the cost-push shock ηt and φπ > 1.
11Note that by definition of the equilibrium, it is always the case that πt = π∗t a.s. (almost surely) under the equilibrium

measure P, but the subjective measure P is not absolutely continuous with respect to P (see Section 3).
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Proof. See the appendix.

In sum, monetary policy can do no better under learning than under RE, and flexible inflation targeting

remains the optimal policy even when asset price expectations are not rational. However, implementing

flexible inflation targeting requires the central bank to track the subjective natural real rate rnt (as in the

previous case without cost-push shocks), which depends positively on subjective expectations of capital

gains. Therefore, the optimal nominal interest rate has to react positively to asset prices.

Figure 2 compares the optimal policy response in the calibrated model to a cost-push shock under RE and

learning. Comparing either optimal discretionary or commitment policies, the outcomes for inflation and

the output gap under learning and under rational expectations are the same. However, the implementation

of these outcomes requires different paths for the nominal interest rate. In all cases displayed, the cost push

shock reduces asset prices, as lower income reduces asset demand. The drop in asset prices is magnified

under learning as subjective expectations become pessimistic. The natural rate under learning falls with

subjective expectations. As a consequence, the optimal discretionary nominal interest rate is lower than

under rational expectations. The same holds true under commitment after the first two periods, when the

difference of the asset price response becomes sufficiently large.

6 Simple rules

Implementing optimal policy in the learning environment requires knowledge of the natural rate of interest

under learning, which depends on subjective asset price beliefs. This implies that the central bank can

either directly observe these beliefs, or can infer them from the difference between the realized level and the

efficient level of asset prices. Either way, measurement of the relevant quantities is fraught with difficulty,

which is in fact one of the most frequent arguments made against incorporating reactions to asset prices

into monetary policy.

In this section, we consider simple interest rate rules rules with a potential reaction to asset prices.

These rules can be implemented without knowledge of subjective beliefs or asset price gaps, since they only

depend on realized asset prices that are easy to measure and observable with high frequency. We show

that for our calibrated model, incorporating a positive reaction to asset price growth is desirable in terms

of welfare. This is not a straightforward consequence of the optimal policy analysis in the previous section,

because simple rules can be quite far from optimal. Broadly speaking, a rule reaction to asset prices will
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Figure 2: Optimal policy and alternatives after a cost-push shock.
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tend to be beneficial if periods of elevated asset prices coincide with excess aggregate demand under that

particular rule. For our calibrated model and Taylor-type interest rate rules, that turns out to be the case.

We re-compute the model under the assumption that the monetary authority is following a Taylor-type

rule of the form:

it = ρiit−1 + (1− ρi)

(
φππt + φyŷt + φq

∞∑
s=0

ωs∆qt−s

)
. (31)

The rule depends on inflation and the output gap, and has an additional term for asset prices: a moving

average of past price changes, with a weight on past observations that decays at the rate ω̃ ∈ (0, 1). In

what follows, we keep the coefficient on inflation at φπ = 1.5 and find parameter combinations (ρi, φy, φq, ω̃)

that minimize the loss function (29).12 We impose the constraint 0 ≤ ω̃ ≤ 0.999. Table 1 summarizes the
12If one also optimizes over the coefficient and inflation, then the optimal policy under RE is given by φπ → ∞ and
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Table 1: Performance of optimized simple rules.

Rational Expectations σ (πt) σ (ŷt) σ (∆qt) E[L]

(1) Optimal Policy, Discretion 0.436 0.085 1.011 0.962

(2) Optimal Policy, Commitment 0.205 0.192 1.010 0.385

(3) it = 1.5πt + 0.125ŷt 0.349 0.451 0.801 1.583

(4) it = ρ∗i it−1 + (1− ρ∗i )
(
1.5πt + φ∗y · ŷt

)
0.362 0.221 0.776 0.838

{ρ∗i , φ∗y} = {0.681, 1.611}

Learning σ (πt) σ (ŷt) σ (∆qt) E[L]

(5) Optimal Policy, Discretion 0.436 0.085 1.724 0.962

(6) Optimal Policy, Commitment 0.204 0.193 1.724 0.385

(7) it = 1.5πt + 0.125ŷt 0.148 0.428 1.503 1.000

(8) it = ρ∗i it−1 + (1− ρ∗i )
(
1.5πt + φ∗y ŷt

)
0.133 0.428 1.608 0.940

{ρ∗i , φ∗y} = {0.147, 0.106}
(9) it = ρ∗i it−1 + (1− ρ∗i )

(
1.5πt + φ∗y ŷt + φ∗q

∑∞
s=0 ω

∗s∆qt−s
)

0.088 0.418 1.541 0.850

{ρ∗i , φ∗y , φ∗q , ω∗} = {0.302, 0.133, 0.025, 0.999}
(10) FM (2007) w/ asset price

it = ρ∗i it−1 + (1− ρ∗i )
(
1.5πt + φ∗y ŷt + φ∗qqt

)
0.088 0.417 1.540 0.850

{ρ∗i , φ∗y , φ∗q} = {0.301, 0.136, 0.025}
(11) it = ρ∗i it−1 + (1− ρ∗i )1.5πt 0.014 0.541 1.911 1.393

ρ∗i = 0

(12) BG (1999) w/ asset price

it = ρ∗i it−1 + (1− ρ∗i )
(
1.5πt + φ∗qqt−1

)
0.050 0.536 1.842 1.380

{ρ∗i , φ∗q} = {0,−0.005}
(13) BG (2001) w/ asset price

it = ρ∗i it−1 + (1− ρ∗i )
(
rss + 1.5πt + φ∗qqt

)
0.012 0.541 1.911 1.393

{ρ∗i , φ∗q} = {0, 0.001}
(14) it = ρ∗i it−1 + (1− ρ∗i )

(
rss + 1.5πt + φ∗q

∑∞
s=0 ω

∗s∆qt−s
)

0.078 0.518 1.707 1.310

{ρ∗i , φ∗q , ω∗} = {0, 0.024, 0.701}

Note: Losses are evaluated as the unconditional expectation of the loss function L. The welfare weight on inflation is set to λπ = 1 and
the losses are normalized to 1 for row (7).

results.

The first four rows show results under rational expectations. Rows (1) and (2) show the optimal policy

outcomes under discretion and commitment. Row (3) shows our baseline policy rule used to calibrate the

model. Row (4) shows the optimized values of the coefficients on inertia ρi and the output gap φy, holding

constant the inflation coefficient φπ. This rule is more aggressive than the standard Taylor rule and leads to

welfare gains from output gap stabilization. Allowing for a non-zero asset price response in the optimization

leads to an optimal coefficient of φ∗q = 0: There is no benefit from leaning against the wind under rational

φy/φπ → ζ > 0 (Boehm and House, 2014). The outcomes of this limit policy are also attainable under learning with a similar
policy that also responds infinitely strongly to inflation and the output gap. In this section, we rule out infinite rule coefficients
by keeping the inflation coefficient fixed, and focus only on the tradeoff of reacting to the output gap and asset prices.
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expectations.

Under learning, the picture is quite different. Rows (5) and (6) show optimal policy outcomes, which

differ from their RE counterparts only by a higher asset price volatility. Row (7) shows the baseline policy

rule used for the calibration. Row (8) optimizes the output gap and inertia coefficients in rule (31), while

Row (9) also optimizes the asset price reaction parameters φq and ω. The optimal asset price response φ∗q is

positive. The optimal coefficient on the output gap is positive as well, and the optimal ω∗ is set very close

to one. With this value, the moving average of asset prices closely tracks the subjective belief µ̂t, which

itself is a moving average of past price changes. The reaction to the asset price stabilizes both inflation and

the output gap, resulting in a 15 percent reduction in expected losses.

To get a better idea of the effects of monetary policy reactions to asset prices and the output gap

under learning, we compute loss function values as well as the volatilities of inflation, the output gap and

asset prices over a range of parameters for the rule in (31). We fix the moving average weight to ω̃ = 0.9,

the interest rate inertia to ρi = .147 as in Row (8) of Table 1, and vary the magnitude of the response

coefficients φy and φq on the output gap and inflation.13 Figure 3 contains the results as surface plots.

The effect of changes in the output gap coefficient are as expected: They lower the volatility of the

output gap itself, but increase the volatility of inflation. This trade-off arises because the model has cost-

push shocks in it. A reaction to the output gap also lowers asset price volatility in this model.

But the asset price coefficient also plays an important role. The volatility of asset prices is decreasing

in the asset price response φq. The volatility of the output gap is affected little by the asset price response,

but the volatility of inflation is reduced significantly with φq > 0. Therefore, the loss function is minimized

at a strictly interior point at which the central bank reacts to both the output gap and asset price growth.

Importantly, a reaction to asset prices always decreases asset price volatility (regardless of the value of

ω̃). This is in stark contrast to the rational bubbles of Gali (2014, 2017). Rational bubbles grow at the rate

of interest, and so raising rates when a bubble is growing makes it grow even faster, causing more volatility.

By contrast, raising rates in our learning model has the effect of lowering the asset price today: A higher

real rate requires a higher expected asset return. For a given expected capital gain µ̂t, a higher return needs

to be brought about by a lower price today. The reduction in the asset price today then reduces optimism

about future price growth.
13Our results are qualitatively robust to changes in the moving average weight ω. In particular, a positive reaction to asset

prices φq > 0 always reduces asset price volatility.
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Figure 3: Loss values and volatilities for different output gap and asset price coefficients.
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(b) Output gap volatility.
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(c) Asset price volatility.
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(d) Loss function.
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Note: Unconditional standard deviation of inflation π∗t , asset price growth ∆q∗t and output gap ŷ∗t under the equilibrium law of motion,
and loss function L, as a function of φy and φq . The parameter ρi is kept at 0.147 as in Row (8) of Table 1 and ω̃ = 0.9 throughout.
The welfare weight on inflation is set to λπ = 1 λπ = 1 and the losses are normalized as in Table 1. Red lines denote contour lines at the
optimal coefficient φy with φq = 0, i.e. the rule in Row (8) of Table 1 . Black dots denote values attained under the optimal coefficients.

Table 1 also evaluates different forms of asset price reactions that have been proposed in the literature.

In Row (10), we evaluate a rule which reacts to the level of asset prices. Here, too, we obtain a positive

optimal response coefficient on asset prices, in contrast to Faia and Monacelli (2007) who evaluated this type

of rule in a rational expectations model with credit constraints. Rows (11) to (14) evaluate rules without an

output gap reaction. Including a reaction to the level of asset prices, as proposed in Bernanke and Gertler

(1999) and evaluated in Rows (12) and (14), does not enable the central bank to improve outcomes over a

rule without such a reaction in Row (10). However, a positive reaction to a moving average of past asset

price growth in Row (14) yields a small welfare gain.
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7 Extension: General Asset Price Beliefs

We can show that our results derived so far are robust to a wide range of alternative specifications for

agents’ subjective asset price beliefs. We replace the subjective law of motion for asset prices in (1)–(2)

with a general belief of the form:

qt = A (L) zt +B (L)ut.

where A and B are arbitrary lag polynomials. Subjective beliefs can depend in an arbitrary way on the

fundamental shocks ut (i.e. productivity and cost-push shocks) as well as a subjective forecast error zt.

This general form of beliefs encompasses rational expectations (for which A = 0 and B represents the

equilibrium process for asset prices), our baseline belief process (for which B = 0 and A represents the

subjective law of motion 1–2), but also other behavioral expectations, such as the “natural expectations” of

Fuster et al. 2012, the “diagnostic expectations” of Bordalo et al. (2018), general forms of extrapolation or

attenuation bias, and more. The only assumptions we do retain are that i) expectations are conditionally

model-consistent in the sense of Definition 2; and ii) the subjective law of motion for qt is independent of

policy. This second assumption is somewhat limiting, as it would be interesting to study how changes in

policy can change the form of subjective asset price beliefs. However, we conjecture that an environment

in which agents think that monetary policy is more powerful in shaping subjective asset price beliefs will

provide an even stronger rationale for reacting to asset prices than the one we lay out here.

The appendix shows that with this general belief system, Propositions 1 through 3 continue to hold: The

optimal policy under learning replicates the outcomes from the optimal policy under rational expectations,

but has to be implemented by following the perceived natural real interest rate which is increasing in asset

price expectations.

8 Extension: Asset Production

In the baseline model discussed up until now, learning causes distortions solely through wealth effects

affecting aggregate consumption. Here, we extend the model to allow for the long-term asset to be produced

instead of being in fixed supply. In this extension, asset price misalignments also distort investment decisions

in addition to aggregate demand. This complicates the monetary policy tradeoff because learning now causes
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two distortions, one through aggregate demand and one through the misallocation of resources along the

consumption-investment margin. We show that, in this case, the optimal policy target criterion under

learning is no longer the same as under rational expectations. Instead, the optimal policy “leans against the

wind” as defined by Svensson (2017): The central bank should tolerate low inflation at times when current

or future expected asset prices are inefficiently high.

Relative to the baseline model, we now assume that the stock of the asset depreciates at the rate δ.

The representative household owns firms that can produce an amount Xt of the asset from Kt consumption

goods. Their production function has decreasing returns to scale:

Xt = AhK
ω
t .

Production takes place within one period. The profits of the investment firms (which accrue to households)

are:

Πt = QtXt −Kt

and profit maximization leads to the first order condition:

It = Ah (ωQtAh)
ω

1−ω .

The budget constraint of the household now takes into account profits from asset producers and depre-

ciation of the asset:

Ct +Qt (Ht − (1− δ)Ht−1) +
1 + it−1

1 + πt
Bt−1 = WtNt + Πt + Tt +Bt.

Market clearing in the asset market now requires

Ht = (1− δ)Ht−1 +Xt. (32)

The equilibrium is defined analogously to section 3. Agents do not know the market clearing condition

(32), but instead hold subjective beliefs that the asset price follows equations (1)–(2). Beliefs about the

hidden state µt are updated using the Kalman filter as before, and expectations about the remaining

equilibrium objects satisfy conditional model consistency as defined in section 3.
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8.1 Flexible price equilibrium

The linearization of the model as well as the derivation of the flexible-price equilibrium under learning and

RE is very similar to our baseline model, which we relegate to the appendix. The only added complication

is that the model now has one additional endogenous state variable, the asset quantity ht−1.

The allocation under rational expectations and flexible prices is still first-best. In particular, the asset

investment choice xn,REt is efficient. However, the learning equilibrium is not, because subjective asset price

beliefs now distort investment decisions, so that xnt 6= xn,REt . Consumption and output distortions under

flexible prices are functions of the investment distortion:

cnt − c
n,RE
t = −κ1

(
xnt − x

n,RE
t

)
ynt − y

n,RE
t =

αγ

1 + φ− α
κ1

(
xnt − x

n,RE
t

)

where the constant κ1 is now defined as

κ1 =
1 + φ− α

C̄
Ȳ

(1 + φ− α) + αγ

δQ̄H̄

Ȳ
.

The real interest rate under learning and flexible prices can be expressed in deviation from its counterpart

under rational expectations in the form

rnt = rn,REt − bh1h
n
t−1 − bh2

(
hnt−1 − h

n,RE
t−1

)
+ baat − bqqt + bµµ̂t−1, (33)

where bh1, bh2bq, bµ > 0. Closed-form expressions for the coefficients are given in the appendix. Most

important for our analysis is that bµ > 0: The natural real rate of interest continues to be increasing in the

asset price belief µ̂t.

8.2 Welfare function

To evaluate different policies, we derive a quadratic approximation of the welfare function under the equilib-

rium probability measure P. Welfare is proportional (up to second order and terms independent of policy)
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by −
∑∞

t=0 E0Lt, where the period loss function is given by

Lt = λπ (π∗t )
2 + (ĉ∗t + κ1x̂

∗
t )

2 + λh

(
ĥ∗t

)2
+ λx (x̂∗t )

2 , (34)

where λπ, λh, λx > 0 are functions of the structural model parameters (see the appendix), and ĉt =

ct − cn,REt , ĥt = ht − hn,REt , and x̂t = xt − xn,REt . As before, asterisks denote the process for a variable

under the equilibrium law of motion, as opposed to the subjective law of motion under which agents make

their decisions. Compared to the loss function in the baseline model, we now have to take into account

variation in the asset stock ht that the household owns, as well as variations in asset investment xt.

8.3 Optimal policy

As in the baseline model, we can write the perceived law of motion under sticky prices in deviation from

the flexible price PLM:

πt = βEPt πt+1 +
(1− ξ) (1− βξ)

ξ
mt + ηt (35)

mt =
C̄ (1 + φ− α) + Ȳ αγ

Ȳ α
(c̃t + κ1x̃t) (36)

it = γ
(
EPt c̃t+1 − c̃t

)
+ EPt πt+1 + rnt (37)

θ (1− β (1− δ)) h̃t = γc̃t − β (1− δ) γEPt c̃t+1. (38)

Note that the asset price qt does not enter this system save through the dependence of the natural real

rate rnt in the IS curve (37). In fact, the system has the same form as in the baseline model with slightly

different coefficients. However, our results on optimal policy are changed in this version with production,

due to the fact that the flexible-price allocation under learning is no longer efficient.

As before, we restrict ourselves to the class of policies for which the target criterion for inflation is robust

to the Lucas critique, in the sense that beliefs about the inflation objective coincide with the central bank’s

actual inflation objective, πt = π∗t . Again, this class includes the optimal discretionary and commitment

policies under rational expectations.

Within this class, we are able to analyze the policy problem under learning as a recursive linear-

quadratic problem. We find that unlike in the baseline model, the optimal monetary policy under learning

“leans against the wind” in the following sense:
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Proposition 4. Consider the class of policies for which πt = π∗t P-almost surely. Within this class, the

optimal commitment policy takes the form

ζpt = − (mt + ft − (1− δ) ft−1)

ft = khft−1 + c0ĥ
∗
t−1 +

∞∑
s=0

csEtq̂∗t+s

for some ζ > 0, where pt is the price level. If the gain parameter g is sufficiently small, then the coefficients

c−1 and (cs)
∞
s=0 are all strictly positive.

Proof. See the appendix.

The proposition establishes that the optimal commitment14 policy “leans against the wind”: Even when

production is at its efficient level, i.e. the marginal cost deviation mt is zero, and the inherited asset stock

ht−1 is efficient, the welfare-maximizing central bank still wants to set inflation lower than its target if current

or future expected asset prices are inefficiently high. Inefficiently high asset prices imply real distortions

because they lead to over-investment. Low inflation mitigates over-investment because it induces lower

output and higher real interest rates, both of which reduce asset demand.

The proposition comes with the qualification that the learning gain g must be sufficiently small. For

large values of g, we cannot ensure that the central bank always wants to lean against the wind. The

reason is that large values of g lead to oscillatory patterns in the response of asset prices to subjective

return surprises, including those induced by monetary policy. While it will always be the case that tighter

monetary policy will lead to lower asset prices and investment today, the endogenous belief dynamics of the

model can lead to higher asset prices and investment in the future, rendering the effects of policy ambiguous.

However, for low values of the gain g, tighter monetary policy will not increase asset prices at any future

horizon.

8.4 Numerical illustration

We illustrate our optimal policy results with a simple calibration. We take the same parameters as in the

baseline model, and calibrate {θ, g, ω, δ, σA, σp} so as to match the volatilities of output growth, inflation,

house price growth, real wage growth, residential investment, as well as the mean output share of residential
14We can also numerically compute the optimal discretionary policy with the LQ-formulation given in the proof of the

proposition, but the presence of several endogenous state variables prevents us from providing an analytical characterization.
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investment, under the assumption that monetary policy follows the Taylor rule in (28). The resulting

parameter values are θ = 0.081, g = 0.027, ω = 0.547, δ = 0.021, σA = 0.72%, and σp = 0.90%. As in the

baseline model, we set the elasticity of substitution σ such that the welfare weight on inflation in the loss

function L equals λπ = 1.

In Figure 4, we compare the optimal commitment polices under RE and learning, as derived in Propo-

sition 4.15 The figure shows impulse responses to a productivity shock.

Figure 4: Optimal commitment policy with asset production.
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Note: Responses to a unit standard deviation positive technology shock εAt under sticky prices and with asset production. Log percentage

points. In all cases, the elasticity of substitution σ is chosen such that the welfare weight on inflation in the loss function L equals λπ = 1.

For cases labeled “Equal Weights”, all loss function weights are set to λπ = λx = λh = 1.

The optimal policy under rational expectations is simply to fully stabilize inflation with respect to the

technology shock. This policy simultaneously closes all welfare-relevant gaps. Under learning, this outcome

is infeasible because eliminating nominal rigidities does not also eliminate investment distortions from asset

price learning. The impulse responses under learning in Figure 4 illustrate how the central bank leans

against the wind. The extent to which the central bank departs from inflation targeting depends on the

parameters of the model. With our calibration and welfare-theoretic weights in the loss function, inflation

barely deviates from zero in the top left panel of Figure 4. Consumption (top middle panel) is lower, and
15The impulse response functions under discretion are qualitatively similar.
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Table 2: “Leaning against the wind” with asset production, no cost-push shocks.

σ (πt) σ (ŷt) σ
(
ĥt
)

σ(x̂t) σ (∆qt) E[L]

Rational Expectations πt = 0 0.000 0.000 0.000 0.000 0.858 0

Learning, standard weighting πt = 0 0.000 0.052 0.627 3.071 1.609 1.000∗

Opt. Commitment Policy 0.004 0.058 0.621 3.034 1.598 0.993∗

Learning, equal weighting πt = 0 0.000 0.052 0.627 3.071 1.609 1.000†

Opt. Commitment Policy 0.423 0.594 0.087 0.241 0.890 0.062†

∗,† For each learning case (loss function with standard weights and loss function with equal weights), the loss is normalized
to 1 for πt = 0.

investment (top right panel) is higher than under RE because of the strong asset price response (bottom

left panel) caused by subjective optimism. Higher investment also leads to higher output (bottom middle

panel). The optimal nominal rate (bottom right panel) is set somewhat higher under learning than under

RE, but this reaction does not eliminate the investment boom caused by optimistic asset price expectations.

When we change the weights in the loss function to equal weights for inflation, consumption, asset

holdings and investment, then leaning against the wind becomes much more pronounced. Inflation drops

by a sizable amount and opens up a negative consumption gap. The investment gap stays positive but is

much more muted. Likewise, the asset price response gets endogenously dampened by the optimal policy

response. The central bank accepts lower output in exchange for preventing an investment boom. The

real interest rate (not shown) is above the level under RE throughout the time period shown, although the

nominal interest rate initially falls below the level under RE due to the fall in inflation.

In Table 2, we switch off cost-push shocks and compare strict inflation targeting to the optimal com-

mitment policy. Under rational expectations (top panel), strict inflation targeting is optimal and all gaps

are closed. Under learning, this is no longer the case. With standard loss function weights (middle panel),

optimal policy reduces asset price and investment fluctuations somewhat at the expense of price stability,

though the effect is quantitatively small. With equal weights (bottom panel), the central bank is willing to

tolerate a much larger amount of variability in inflation in order to stabilize the economy along the asset

investment margin.

In Table 3, we compare outcomes for optimal policies under RE and learning alongside simple rules.

The first three rows describe the optimal discretionary and commitment policies as well as the standard

Taylor rule used in our calibration. Rows (4) and (5), which describe the corresponding optimal policies

under learning, confirm that the central bank cannot attain the same outcomes, as the values of the loss
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Table 3: Performance of optimized simple rules, with asset production.

Rational Expectations σ (πt) σ (ĉt) σ
(
ĥt
)

σ(x̂t) σ (∆qt) E[L]

(1) Optimal Policy, Discretion 0.528 0.098 0.048 0.163 0.862 1.098

(2) Optimal Policy, Commitment 0.247 0.225 0.154 0.369 0.857 0.432

(3) it = 1.5πt + 0.125ŷt 0.340 0.469 0.226 0.779 0.724 1.316

Learning σ (πt) σ (ĉt) σ
(
ĥt
)

σ(x̂t) σ (∆qt) E[L]

(4) Optimal Policy, Discretion 0.529 0.111 0.630 3.086 1.611 1.126

(5) Optimal Policy, Commitment 0.248 0.221 0.701 3.212 1.598 0.459

(6) it = 1.5πt + 0.125ŷt 0.154 0.472 0.662 3.069 1.515 1.000

(7) it = ρ∗i it−1 + (1− ρ∗i ) · ... 0.156 0.431 0.509 2.456 1.366 0.765(
1.5πt + φ∗y ŷt + φ∗q

∑∞
s=0 ω

∗s∆qt−s
)

{ρ∗i , φ∗y , φ∗q , ω∗} = {0.370, 0.232, 0.036, 0.999}

Note: Losses are evaluated as the unconditional expectation of the loss function L. The welfare weight on inflation is set to λπ = 1 and
the losses are normalized to 1 for row (6).

function are higher than under RE. This stems from the fact that the larger asset price volatility translates

into inefficient investment fluctuations that cannot be undone by monetary policy without hurting inflation

and aggregate demand outcomes at the same time.

We also evaluate simple interest rate rules, as in the baseline model. When we optimize coefficients on

an extended interest rate rule of the form in (31), we find a positive coefficient on asset price growth in

Row (7) of Table 3. All other results from Section 6 also carry over.

9 Conclusion

In this paper, we have characterized optimal monetary policy in a model in which agents are learning

about asset prices. Our model is the standard New-Keynesian model with a long-term asset. Agents form

expectations about asset prices in an extrapolative fashion. However, their expectations remain model-

consistent, conditional on their beliefs about asset prices, which allows us to isolate the effects of learning

about asset prices from the many other ways in which distorted beliefs can affect the economy. Learning

amplifies asset price fluctuations in the model, and leads to perceived wealth effects that create inefficient

fluctuations in consumption, saving, and investment decisions.

We have given an analytical solution to the optimal policy with learning. Our central insight is that

the natural real rate of interest under learning depends positively on asset price expectations and realized

asset prices. In our baseline model, flexible inflation targeting remains the optimal target criterion for
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monetary policy, but it requires a very different implementation: The interest rate has to increase with

asset prices and subjective expectations of future capital gains. When we extend the model to allow for

asset production, it becomes beneficial to “lean against the wind”, i.e. tolerate low inflation when asset

prices are high, in order to mitigate inefficient investment fluctuations. Our results are robust to a wide

range of alternative belief specifications.

Our model is highly stylized, which allows us to derive many results analytically. However, the method

for computing optimal policy that we present here is readily applicable to larger linear models with learning.

Future work could evaluate our findings from a quantitative perspective.
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A Details on the derivations

A.1 Asset demand in the model with fixed asset supply

We reduce the system (3)–(10) to the equations:

qt = γct − (1− β) θht − βγEPt ct+1 + βEPt qt+1

ct =
1 + φ

1 + φ− α
at −

αγ

1 + φ− α
nt −

Q̄H̄

Ȳ
(ht − ht−1)

qt = qt−1 + µ̂t−1 + zt

µ̂t = ρµµ̂t−1 + gzt

and conjecture a solution for ht of the form in (18). Substituting the guess and solving for the coefficients

yields:

kh =
1

2β

1 + β +
θ

γκ1
(1− β)−

√(
1 + β +

θ

γκ1
(1− β)

)2

− 4β

 ∈ (0, 1)

ka =
κ0 (1− βρa)

κ1 + (1− β) θγ + βκ1 (1− kh − ρa)
> 0

kq =
1

γ

1− β
(1− β) θγ + κ1 (1− βkh)

> 0

kµ =
1

γ

β

(1− β) θγ + κ1 (1− βρµ) + κ1β (1− kh)

(1− β) θγ + κ1β (1− kh)

(1− β) θγ + κ1 (1− βkh)
> 0.

A.2 Asset demand with extended beliefs

We reduce the system (3)–(10) to

qt = γct − (1− β) θht − βγEPt ct+1 + βEPt qt+1

ct =
1 + φ

1 + φ− α
at −

αγ

1 + φ− α
nt −

Q̄H̄

Ȳ
(ht − ht−1)
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and directly conjecture a solution for ht of the form in (86). Substituting the guess and solving for the

coefficients yields the same coefficients kh, ka, kq as in the baseline model, and k̃µ reads as follows:

k̃µ =
β/γ

(1− β) θγ + κ1 (1 + β − βkh)

(1− β) θγ + κ1β (1− kh)

(1− β) θγ + κ1 (1− βkh)
> 0.

The natural real rate of interest under P is now given by

rnt − r
n,RE
t

γκ1
= ka (2− ρa − kh) at − (1− kh)2 hnt−1 − kq (1− kh) qt

+
((

2− k̃h
)
k̃µ + kq

)
EPt ∆qt+1 − k̃µ

(
1− β + β (1− kh)2

) ∞∑
s=0

(βkh)s EPt ∆qt+s+2. (39)

A.3 Linearized equilibrium conditions and natural rate in the model with asset pro-

duction

Under RE, the following set of equations describe the linearized equilibrium (up to a monetary policy rule):

yt = at + αnt (40)

wt = mt + at − (1− α)nt (41)

πt = βπt+1 +
(1− ξ) (1− βξ)

ξ
mt + ηt (42)

wt = γct + φnt (43)

Ȳ yt = C̄ct + Q̄H̄δxt (44)

δxt = ht − (1− δ)ht−1 (45)

xt =
ω

1− ω
qt (46)

it = γ (Etct+1 − ct) + Etπt+1 (47)

qt +
(

1− β̃
)
θht = γct + β̃Et (qt+1 − γct+1) . (48)

where β̃ = β (1− δ). The flexible price equilibrium under RE is characterized as:
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hn,REt = kREh hn,REt−1 + kREa at, k
RE
h ∈ (0, 1− δ) , kREa > 0 (49)

xREt = −
1− δ − kREh

δ
hn,REt−1 +

kREa
δ
at (50)

yn,REt =
C̄

Ȳ
κ0at +

αγ

1 + φ− α
κ1xt (51)

cn,REt = κ0at − κ1xt (52)

rn,REt = γ
(κ1

δ

(
1− ρa + 1− δ − kREh

)
kREa − κ0 (1− ρa)

)
at

− γ κ1

δ

(
1− δ − kREh

) (
1− kREh

)
hREt−1 (53)

where the coefficients kREh and kREa are given by:

kREh =
1

2β̃

1 + β̃ (1− δ) +
θ

γ

(
1− β̃

)
δ

κ1 + 1−ω
γω

−

√√√√√1 + β̃ (1− δ) +
θ

γ

(
1− β̃

)
δ

κ1 + 1−ω
γω

2

− 4β̃ (1− δ)


∈ (0, 1− δ)

kREa =
κ0

(
1− β̃ρa

)
(

1− β̃
)
θ
γ + δ−1

(
κ1 + 1−ω

γω

)(
1 + β̃ (1− δ − kh − ρa)

) > 0.

The constant κ0 is given by

κ0 =
1 + φ

C̄
Ȳ

(1 + φ− α) + αγ
.

The sticky-price RE equilibrium is characterized in deviation from the flexible price equilibrium through

the equations:

πt = βEPt πt+1 +
(1− ξ) (1− βξ)

ξ
mt + ηt (54)

mt =
C̄ (1 + φ− α) + Ȳ αγ

Ȳ α
(c̃t + κ1x̃t) (55)

it = γ (Etĉt+1 − ĉt) + Etπt+1 + rnt (56)

θ
(

1− β̃
)
ĥt = β̃Et

(
1− ω
ω

x̂t+1 − γĉt+1

)
−
(

1− ω
ω

x̂t − γĉt
)
. (57)

Under learning, we can do a similar exercise. We first tackle the PLM. All we do is to replace the market
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clearing condition (46) with the subjective law of motion for asset prices:

yt = at + αnt (58)

wt = mt + at − (1− α)nt (59)

πt = βEPt πt+1 +
(1− ξ) (1− βξ)

ξ
mt + ηt (60)

wt = γct + φnt (61)

Ȳ yt = C̄ct + Q̄H̄ (ht − (1− δ)ht−1) (62)

it = γ
(
EPt ct+1 − ct

)
+ EPt πt+1 (63)

qt = γct −
(

1− β̃
)
θht − β̃γEPt ct+1 + β̃EPt qt+1 (64)

qt = qt−1 + µ̂t−1 + zt (65)

µ̂t = ρµµ̂t−1 + gzt. (66)

Under learning and flexible prices, we can boil things down to these two equations to solve for the PLM:

0 = γct +

(
1 + φ− α

α

)(
C̄

Ȳ
ct +

Q̄H̄

Ȳ
h̃t

)
− 1 + φ

α
at (67)

qt = γct −
(

1− β̃
)
θht − β̃γEtct+1 + βδEPt qt+1. (68)

Guess and verify

hnt = kaat + khh
n
t−1 − kqqt + kµµ̂t−1 (69)

where the coefficients are given by:

kh =
1

2β̃

1 + β̃ (1− δ) +
θδ

γκ1

(
1− β̃

)
−

√(
1 + β̃ (1− δ) +

θδ

γκ1

(
1− β̃

))2

− 4β̃ (1− δ)


∈
(
kREh , 1− δ

)
ka = κ0

1− β̃ρa(
1− β̃

)
θ
γ + κ1δ−1

(
1 + β̃ (1− δ − kh − ρa)

) > kREa

kq =
1

γ

1− β̃(
1− β̃

)
θ
γ + κ1δ−1

(
1− β̃kh − β̃δ

) > 0
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kµ =
1

γ

β̃(
1− β̃

)
θ
γ + κ1δ−1

(
1− β̃ρµ + β̃ (1− δ − kh)

)
(

1− β̃
)
θ
γ + κ1δ

−1β̃ (1− δ − kh)(
1− β̃

)
θ
γ + κ1δ−1

(
1− β̃kh − β̃δ

) > 0

We can characterize the flexible-price PLM investment, consumption, output and interest rates:

xnt = xn,REt +
kh − kREh

δ
hnt−1 +

kREh − 1 + δ

δ

(
hnt−1 − h

n,RE
t−1

)
+
ka − kREa

δ
at −

kq
δ
qt +

kµ
δ
µ̂t−1 (70)

cnt = cn,REt − κ1

(
xnt − x

n,RE
t

)
(71)

ynt = yn,REt +
αγ

1 + φ− α
κ1

(
xnt − x

n,RE
t

)
(72)

rnt = rn,REt − γκ1

δ

(
(1− δ − kh) (1− kh)−

(
1− δ − kREh

) (
1− kREh

))
hnt−1

− γκ1

δ

(
1− δ − kREh

) (
1− kREh

) (
hnt−1 − h

n,RE
t−1

)
− γκ1

δ
kq (1− δ − kh) qt

+
γκ1

δ

(
(1− ρa + 1− δ)

(
ka − kREa

)
− khka + kREh kREa

)
at

+
γκ1

δ
(kµ (1− ρµ + 1− δ − kh) + kq) µ̂t−1. (73)

In order to find the ALM under flexible prices, we impose market clearing for the asset and obtain:

ωδ

1− ω
q∗t = kaat + khh

∗
t−1 − kqq∗t + kµµ̂

∗
t−1 − (1− δ)h∗t−1

⇔ q∗t =
1

ω
1−ω δ + kq

(
kaat + kµµ̂

∗
t−1 − (1− δ − kh)h∗t−1

)
. (74)

The equilibrium price is increasing in productivity, increasing in asset price beliefs, and decreasing in the

existing asset stock.

When the equilibrium asset price qt from equation (74) is substituted into the expression for the natural

rate rnt , the natural real rate in the ALM rn∗t is increasing in asset price expectations µ̂∗t−1, just as in the

baseline model. The sign of the other coefficients are ambiguous and depend on the parameterization.

A.4 Welfare approximations

For the model with fixed supply, the approximation of welfare is standard. Following e.g. Woodford, 2003,

welfare is approximated by
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L = σ
ξ

(1− ξ) (1− βξ)
α

1 + φ− α+ αγ
(π∗t )

2 + (ŷ∗t )
2 .

Note that this loss function approximates welfare under the equilibrium law of motion P, which takes

into account that the asset supply is fixed. Welfare under the subjective law of motion P takes on a different

form.

For the model with asset production, we can derive an approximation of the loss function under P as:

Lt = σ
ξ

1− ξ
1

1− βξ
(π∗t )

2 +

(
γ +

1 + φ− α
α

C̄

Ȳ

)
C̄

Ȳ
(ĉt + κ1x̂t)

2

+ (1− β (1− δ)) θ Q̄H̄
Ȳ

ĥ2
t +

Q̄H̄

Ȳ

(
(1− ω) δ2 + γδκ1

)
x̂2
t .

B Proofs

Proof of Proposition 1. Suppose that the central bank implemented πt = 0. The Phillips curve (24) then

reduces to the relationship

ỹt =
γα

1 + φ− α (1− γ)

Q̄H̄

Ȳ
∆h̃t.

Substituting into the asset demand equation (27), we obtain a second-order difference equation of the form

(1− β)
θ

γ
h̃t = −κ1

(
∆h̃t − βEPt ∆h̃t+1

)
.

It is easily verified that the only solution to this equation is h̃t = 0. But this implies that we implement

the flexible price allocation under the subjective law of motion. From the perspective of agents, the flexible

price allocation is first-best efficient, and Lt = 0. Moreover, the actual equilibrium in this economy has

π∗t = πt = 0 and y∗t = yn,REt , as was shown in the last section. This allocation is also first-best efficient

under model-consistent expectations.

To show that the rule it = rn,PLMt + φππt implements πt = 0, we first substitute it into the IS curve

(26)and note that the system (24)–(27) admits the solution πt = 0. We then need to verify that the rule

also ensures determinacy of the equilibrium for φπ > 1. Following e.g. Lubik and Marzo (2007), we express
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the system (24)–(27) in the form

=:B︷ ︸︸ ︷
β 0 κκ1

1 γ 0

0 −βγ −θ (1− β)


t+1

xt+1 +

=:C︷ ︸︸ ︷
−1 κ −κκ1

−φ −γ 0

0 γ 0

xt = 0

where xt =
(
πt, c̃t, h̃t−1

)′
and

κ =
(1− ξ) (1− βξ)

ξ

1 + φ− α+ αγ

α
.

Because we have two terminal and one initial condition (i.e. two forward- and one backward-looking

variable), we then need to verify that the matrix −B−1C has exactly two eigenvalues outside the unit

circle. The characteristic polynomial det
(
B−1C − λI

)
is of the form A3λ

3 +A2λ
2 +A1λ+A0 = 0, where

the coefficients are given by:

A3 = βγ (κκ1 + θ (1− β)) > 0

A2 = −γκκ1 (1 + β + βφ)− (1− β) θ (κ+ γ + γβ) < 0

A1 = γκκ1 (1 + φ+ βφ) + (1− β) θ (γ + κφ) > 0

A0 = −γκκ1φ < 0.

We then verify the following sufficient conditions for two roots outside the unit circle:

A3 +A2 +A1 +A0 > 0

−A3 +A2 −A1 +A0 < 0

A0 (A0 −A2) +A3 (A1 −A3) > 0.

The first inequality follows from A3 + A2 + A1 + A0 = (1− β) θκ (φ− 1), which is positive when φ > 1.

The second inequality follows directly from the signs of the coefficients. To establish the third inequality,

we collect powers of φ to express

A0 (A0 −A2) +A3 (A1 −A3)
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= (γκκ1)2 (1− β)φ2

+ [A3 (1− β) θκ+ γκκ1 ((1 + β) (A3 + (1− β) θγ + κκ1) + (1− β) θκ)]φ

+A2
3

(
1− β
β

)
.

This is a quadratic polynomial in φ for which all coefficients are positive, implying that it takes positive

values for all φ ≥ 0.

Proof of Proposition 2. Substituting the policy πt = − (βρη)
−1 ηt + btzt into the Phillips curve (24), we

obtain:

πt = − (βρη)
−1 ηt + btzt = κ

(
c̃t + κ1∆h̃t

)
with κ defined as in the proof of Proposition 1. We will find bt such that π∗t = 0P-a.s., i.e. under the

equilibrium law of motion. In this case, c̃∗t + κ1∆h̃∗t = y∗t − yREt = 0 under the ALM as well, and the

first-best allocation is attained.

In order to solve for bt, then, we need to compute the equilibrium value of zt, which amounts to solving

for the equilibrium price q∗t . To do this, we first need to derive the demand function for the asset under

the subjective law of motion. Let xt = c̃t + κ1∆h̃t. In analogy to the computations of the flexible-price

equilibrium, we can compute the asset demand function as the solution to the following system of equations:

(1− β) θht = γct − qt − βEPt [γct+1 − qt+1]

(1 + φ− α+ αγ) ct = αxt + (1− α) at − (1 + φ− α)
Q̄H̄

Ȳ
∆ht.

With xt =
(
btzt − (βρη)

−1 ηt

)
/κ, we can solve:

ht = khht−1 + kaat − kqqt + kµµ̂t−1 + kbzbtzt + kηηt.

Here, the coefficients kh, ka, kq and kµ are the same as in the flexible-price demand function (18). The
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coefficients kη and kbz are given by:

kη =− kh
βρηκ

1− βρη
1− khβρη

Ȳ

Q̄H̄

α

1 + φ− α

kz,t =− kh
κ

Ȳ

Q̄H̄

α

1 + φ− α

Now the equilibrium is found by imposing h∗t = 0, and this condition leads to the following expression

for z∗t :

z∗t =
kq

kq − kbzbt

(
1

kq

(
kaat + kµµ̂

∗
t−1 + kηηt

)
− q∗t−1 − µ̂∗t−1

)
Imposing βρηbtz∗t = ηt then leads to:

bt =

(
kbz
kq

+
βρη
kq

(
kaat + kµµ̂

∗
t−1 + kηηt

)
− βρη

(
q∗t−1 + µ̂∗t−1

))−1

ηt.

Proof of Proposition 3. When πt = π∗t P-a.s., we can write EPt πt = Etπt+1 in the Phillips curve (24). The

Phillips curve then implies that mt = m∗t P-a.s. as well. Furthermore, combining the static equilibrium

conditions for labor supply and demand, the production function and the household budget constraint, we

obtain:

1 + φ− α+ αγ

α
yt = mt +

1 + φ

α
at + γ

Q̄H̄

Ȳ
∆ht.

This equation has to hold regardless of expectations. Furthermore, under the equilibrium law of motion we

have ∆h∗t = 0, while under RE and flexible prices, we have ∆hn,REt = 0 and mn,RE
t = 0. Together, these

conditions imply that equilibrium output under learning equals y∗t = yn,REt + α/ (1 + φ− α+ αγ)mt. We

can therefore write the policy problem under learning as follows:

max
∞∑
t=0

βt
(
λπ2

t + (ŷ∗t )
2
)
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s.t. πt = βEtπt+1 +
(1− ξ) (1− βξ)

ξ
mt + ηt

ŷ∗t =
α

1 + φ− α+ αγ
mt.

This problem is identical to the policy problem under rational expectations with standard solutions to the

commitment and discretion policies. This establishes parts (1) and (2) of the proposition.

To prove part (3), we write the IS equation (26) as

it = rnt + EPt πt+1 + γEPt ∆c̃t+1.

Let φπ > 1. The optimality conditions for πt in cases (1) and (2) combined with (24) and (27) imply

that (πt)
∞
t=0 and (c̃t)

∞
t=0 are linear processes of the cost-push shock ηt only. Therefore, we can evaluate

EPt πt+1 + γEPt ∆c̃t+1 − φππt = A (L) ηt for some lag polynomial A (L). The rule satisfies determinacy by

the same argument made in the proof of Proposition 1.

We start by noting from the Phillips curve that ct + κ1xt = α/
(
C̄
Ȳ

(1 + φ− α) + αγ
)
mt and mt = 0

under flexible prices. Therefore, we can rewrite

ĉt + κ1x̂t = α/

(
C̄

Ȳ
(1 + φ− α) + αγ

)
m∗t .

Dividing through the (positive) coefficient on m∗t , we can bring the loss function (34) into the form

Lt = `π (π∗t )
2 + (m∗t )

2 + `x (x̂∗t )
2 + `h

(
ĥ∗t

)2
,

where `π, `x, `h > 0.

Next, we note that πt has the same distribution under the subjective belief measure P as under the

actual belief measure P. We can therefore omit the asterisk notation and simply write π∗t = πt in the

planner’s problem. Equations (35) and (38) then imply that the same holds true for c̃t, h̃t and mt. To

evaluate the asset and investment gaps in the loss function, we note that

ĥ∗t =
(
ht − hn,REt

)∗
= h̃t + hn∗t − h

n,RE
t . (75)
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The first equality is the definition of the asset gap, and the second equality follows from the fact that

h̃t = h̃∗t and hn,REt is independent of the learning process. To find hn∗t , we can make use of the closed-form

expression for hnt derived in (69).

The policymaker’s commitment problem can then be described as follows (Lagrange multipliers to the

constraints are in parentheses):

max
1

2

∞∑
t=0

βt
(
`ππ

2
t +m2

t + `x (x̂∗t )
2 + `h

(
ĥ∗t

)2
)

s.t. πt = βEtπt+1 +
(1− ξ) (1− βξ)

ξ
mt (µt)

θ
(

1− β̃
)
h̃t =

αγ
C̄
Ȳ

(1 + φ− α) + αγ

(
mt − β̃Etmt+1

)
− γκ1

(
x̃t − β̃EPt x̃t+1

)
(χt)

ĥ∗t = h̃t + hn∗t − h
n,RE
t (ψ̂t)

hn∗t = kaat + khh
n∗
t−1 − kqq∗t + kµµ̂

∗
t−1 (ψt)

ω

1− ω
q∗t = xn∗t + x̃t (Ωqt)

µ̂∗t = ρµµ̂
∗
t−1 + g

(
∆q∗t − µ̂∗t−1

)
. (Ωµt)

The first two constraints are the Phillips curve and the asset Euler equation in gap form (where we have

substituted out c̃t), which only involve variables that are measurable under P. Next, the policymaker needs

to evaluate the housing and investment gaps, for which we make use of the identity (75) and the law of

motion (69) for hnt . We impose equilibrium through the market-clearing condition (Ωqt), and finally have

to take into account the effect of prices qt on beliefs µ̂t, for which we can combine equations (65)–(66).

This problem takes the form of a recursive linear-quadratic dynamic programming problem, for which

commitment and discretionary solutions are well understood. The discretionary policy is difficult to evaluate

analytically, but easy to compute numerically (following e.g. REF).

For the commitment solution, the first-order conditions of the planner are:

`ππt = ∆µt (76)

(1− ξ) (1− βξ)
ξ

µt = −mt −
Ȳ α

C̄ (1 + φ− α) + Ȳ αγ
(χt − (1− δ)χt−1) (77)
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θ
(

1− β̃
)
χt = γ

κ1

δ

(
β̃Et (χt+1 − (1− δ)χt)− χt + (1− δ)χt−1

)
(78)

+ ψ̂t +
Ωqt − β̃EtΩqt+1

δ

ψ̂t = `hĥ
∗
t + `x

x̂∗t − β̃Etx̂∗t+1

δ
(79)

ψt = ψ̂t + βkhEtψt+1 +
Ωqt − β̃EtΩqt+1

δ
(80)

ω

1− ω
Ωqt = g (Ωµt − βEtΩµt+1)− kqψt (81)

Ωµt = βkµEtψt+1 + β (ρµ − g)EtΩµt+1 (82)

We can combine optimality conditions (76) and (77) into

`π
(1− ξ) (1− βξ)

ξ
pt = −mt − (ft − (1− δ) ft−1) . (83)

with ft = Ȳ α
C̄(1+φ−α)+Ȳ αγ

χt. We conjecture the solution

χt = khχt−1 +
∞∑
s=0

bsEtψ̂t+s (84)

where 0 < kh < 1− δ, b0 > 0 and bs > β̃bs−1 for all s ≥ 1. This conjecture implies that

∞∑
s=0

bsEtψ̂t+s =

∞∑
s=0

bsEt

(
`hĥ
∗
t+s + `x

x̂∗t+s − β̃Etx̂∗t+s+1

δ

)

=
`x
δ

∞∑
s=0

bsEtx̂∗t+s −
`x
δ
β̃
∞∑
s=0

bsEtx̂∗t+s+1 + `h

∞∑
s=0

bsEtĥ∗t+s

=
`x
δ
b0x̂
∗
t +

`x
δ

∞∑
s=1

(
bs − β̃bs−1

)
Etx̂∗t+s

+ `h

( ∞∑
s=0

bs (1− δ)s+1

)
ĥ∗t−1 + `h

∞∑
s=0

( ∞∑
τ=s

(1− δ)τ bs

)
x̂∗t+s,

so that the coefficients on ĥ∗t−1 and Etx̂∗t+s, s ≥ 0 are all strictly positive. Moreover, we can appeal to the

market clearing condition (46) to write Etx̂∗t+s = ω
1−ωEtq̂

∗
t+s.

What is left is to verify conjecture (84). The equation (78) is a second-order difference equation in χt

when ψ̂t and Ωqt are treated as given. The homogeneous form of this second-order difference equation is

the same as that for the natural level of asset holdings hnt derived earlier. This establishes that kh is indeed
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in (0, 1− δ). Furthermore, equations 80–82 form a linear forward-looking system in (Ωqt,Ωµt, ψt) when ψ̂t

is treated as given. This implies that the solution in (84) will indeed depend only on forward-looking terms

in ψ̂t.

Finally, we need to show that bs > 0 for all s ≥ 0. We prove this property for g = 0 and then make a

continuity argument to extend it to g small enough. When g = 0, equation (81) reduces to Ωqt = −1−ω
ω kqψt.

Substituting into (80), we obtain

ψt = ψ̂t + βkhEtψt+1 −
1− ω
ωδ

kq

(
ψt − β̃Etψt+1

)
=

ψ̂t

1 + 1−ω
ωδ kq

+ β̃
kh

1−δ + 1−ω
ωδ kq

1 + 1−ω
ωδ kq

Etψt+1.

Now, through equation (80) we also have that

ψ̂t +
Ωqt − β̃EtΩqt+1

δ
= ψt − βkhEtψt+1

=

∞∑
t=0

asEtψ̂t+s. (85)

Because kh < 1− δ, we have

β̃
kh

1−δ + 1−ω
ωδ kq

1 + 1−ω
ωδ kq

= βkh
1 + 1−δ

kh
1−ω
ωδ kq

1 + 1−ω
ωδ kq

> βkh

and therefore as > 0 for all s ≥ 0.

We now substitute (85) and (84) into the first-order condition (78) to solve for the coefficients bs. We

obtain:

(
δ

γκ1
θ
(

1− β̃
)

+ 1 + β̃ (1− δ − kh)

)(
khχt−1 +

∞∑
s=0

bsEtψ̂t+s

)

=β̃
∞∑
s=0

bsEtψ̂t+s+1 + (1− δ)χt−1 +
δ

γκ1

∞∑
t=0

asEtψ̂t+s.

Comparing coefficients, we get

s = 0:
(

δ

γκ1
θ
(

1− β̃
)

+ 1 + β̃ (1− δ − kh)

)
b0 =

δ

γκ1
a0
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s ≥ 1:
(

δ

γκ1
θ
(

1− β̃
)

+ 1 + β̃ (1− δ − kh)

)
bs = β̃bs−1 +

δ

γκ1
as.

By an induction argument, these expressions establish that b0 > 0 and bs > β̃bs−1 for all s ≥ 1.

C Extension to general beliefs

As before, we start by considering the flexible-price allocation. The appendix shows that the asset demand

function in the subjective law of motion (i.e. under P), which previously was given by (18), is replaced by:

hnt = kaat + khh
n
t−1 − kqqt + k̃µ

∞∑
s=0

(βkh)s EPt ∆qt+s+1. (86)

Instead of a single state variable representing subjective beliefs, asset demand now depends on the whole

time profile of subjective expected capital gains in the future, but otherwise it has the same form. The

coefficients ka, kh and kq are the same as in the baseline model, and k̃µ > 0.

The expression for the flexible-price real interest rate under the equilibrium measure, previously given

by (23), is replaced by:

r∗t = r,REt + γκ1ka (1− ρa) at

+ γκ1k̃µ

((
1 +

kq

k̃µ

)
EPt ∆qt+1 − (1− βkh)

∞∑
s=0

(βkh)s EPt ∆qt+s+2.

)
(87)

The real interest rate continues to be increasing in expectations of next period’s capital gains ∆qt+1.

The real rate also turns out to be decreasing in expectations of capital gains further in the future

∆qt+s, s ≥ 2. This relationship is most easily understood for the case ∆qt+2 > 0: Here, investors’ desire to

invest in the asset out of consumption is highest in period t+ 1, immediately before the realization of high

expected capital gains in t+ 2. As a result, expected consumption ct+1 is lower than current consumption

ct, lowering the required real interest rate rnt = γEPt ∆ct+1 today. The real rate will still positively depend

on asset price expectations as long as

EPt ∆qt+s ≤
(

1

βkh

)s−1

EPt ∆qt+1 if EPt ∆qt+1 > 0

or EPt ∆qt+s ≥
(

1

βkh

)s−1

EPt ∆qt+1 if EPt ∆qt+1 < 0.

51



As 1/ (βkh) > 1, we only need that capital gains expectations do not increase too much further at future

horizons when they are positive for the immediate future, which is likely satisfied for all but the most

extreme forms of extrapolative bias.

The results on policy we derive in Section 5 continue to hold for the generalized beliefs with the modified

expression for the natural real rate above. Because allocations are determined only by intratemporal labor

demand and supply conditions, the level of output under flexible prices is again unaffected by the presence

of learning (y∗t = yn,REt ). Since the asset price qt remains independent of policy under the PLM, it drops

out of the equations describing the dynamics of the sticky price equilibrium relative to flexible prices, and

so equations (24)–(27) continue to hold. Propositions 1 through 3 continue to hold: The optimal policy

under learning replicates the outcomes from the optimal policy under rational expectations, but has to

be implemented by following the perceived natural real interest rate which is increasing in asset price

expectations.

D CMCE with alternative assumptions

In this appendix we analyze the model with alternate assumptions about the market clearing conditions

that expectations are consistent with under CMCE. As noted in section 3, in order to sustain an equilibrium

with CMCE, Walras’ law requires that two market clearing conditions be absent from agents’ information

set. The first of these is of course the market clearing condition for the asset in question, but the second

one is in principle a free choice. Throughout the paper, we also remove the final goods market clearing

condition. But one could alternatively consider removing either (i) the bond market clearing condition or

(ii) the labor market clearing condition.

To model case (i), we modify the system (3)–(10) defining the subjective law of motion, by replacing

the household budget constraint (9) with

yt = ct

Bt + (1 + r̄)Bt = Q̄H̄∆ht.

The first of these equations is the market clearing condition of final consumption goods, and the second

equation is the modified budget constraint that takes into account that agents do not know the bond market
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clearing condition Bt = 0. It is easy to show that the resulting equilibrium is identical to the RE equilibrium

regardless of price stickiness, up to the asset price qt. Intuitively, agents now think that they can exchange

the asset for bonds. Bonds are useful to agents only insofar as they can be exchanged into physical goods

or labor services; but agents do not expect to be able to do so, because at any time in the future, because

they understand the supply and demand in all goods and labor markets.

To model case (i), we now have to distinguish between labor services produced by agents and labor

demanded by firms in the subjective law of motion, because agents think they can buy additional labor

services by selling their asset holdings and sell those services to firms. Let nt denote the labor used by

firms, and nst the labor produced by agents. We modify the system (3)–(10) defining the subjective law of

motion by replacing the labor supply condition (6) and the budget constraint (9) with

yt = ct

wt = γct + φnst

yt = ct +
Q̄H̄

Ȳ
∆ht + α (nt − nst ) .

The first of these equations is the market clearing condition of final consumption goods, and the second

equation is the modified budget constraint that takes into account that agents think they can buy labor

services freely in a spot market. We can show that with this specification, the natural rate of interest in the

model is still of the form in (18), with different coefficients but still respecting kh ∈ (0, 1), ka, kq, kµ > 0.

All our results from Sections 5 and 6 continue to hold.

As before, under flexible prices the learning model implements the first-best allocation. As a result,

the new informational assumptions only affect the asset price and the natural rate of interest. Figure 5

plots impulse responses under sticky prices, assuming a Taylor-type rule. In this case a positive technology

shock pushes down inflation. This is a consequence of the impact of the changed information assumption

on expected future marginal costs. When agents’ information set does not include the labor market clearing

condition, then firms do not internalize labor supply effects when forecasting marginal costs. More specif-

ically, when firms anticipate an increase in future labor demand following the shock, they fail to account

for the need for future wages to increase so as to clear the labor market. This consequently pushes down

the inflation response relative to baseline case.

Notwithstanding the impact on the inflation process, the learning model retains the dependence of the
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Figure 5: IRFs to a technology shock under sticky prices, alternative CMCE assumptions.
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ŷ

Response of ŷ to ǫa

Learning

Rational Expectations

Note: Response to a one standard deviation positive technology shock εAt. Log percentage points. Model simulated under the assumption
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Table 4: Performance of optimized simple rules, alternative CMCE assumptions.

Rational Expectations σ (πt) σ (ŷt) σ (∆qt) E[L]

(1) Optimal Policy, Discretion 0.436 0.085 1.011 0.526

(2) Optimal Policy, Commitment 0.205 0.192 1.010 0.210

(3) it = 1.5πt + 0.125ŷt 0.349 0.451 0.801 0.866

Learning σ (πt) σ (ŷt) σ (∆qt) E[L]

(4) Optimal Policy, Discretion 0.436 0.085 2.134 0.527

(5) Optimal Policy, Commitment 0.204 0.193 2.135 0.210

(6) it = 1.5πt + 0.125ŷt 0.195 0.580 2.702 1.000

(7) it = ρ∗i it−1 + (1− ρ∗i )
(
1.5πt + φ∗y ŷt + φ∗q

∑∞
s=0 ω

∗s∆qt−s
)

0.093 0.514 2.093 0.713

{ρ∗i , φ∗y , φ∗q , ω∗} = {0.167, 0.019, 0.018, 0.699}

Note: Model simulated under the assumption that agents’ information set does not include asset market clearing or labor market clearing.
Note: Losses are evaluated as the unconditional expectation of the loss function L. The welfare weight on inflation is set to λπ = 1 and
the losses are normalized to 1 for row (6).

natural rate of interest on expected asset prices, regardless of whether the goods market or the labor market

clearing condition is omitted from agents’ information set. Table 4 shows optimized simple rule coefficients

and their performance, as in section 6. Relative to the baseline case, the welfare gains to including asset

prices in the policy reaction function are smaller. However, the optimal simple rule continues to place

react positively with prices. When a weighted average of past price growth observations are included in the

policy rule (Row 8), welfare is increased 1.7 percent, with the optimized coefficients placing a small positive

weight on the asset price term (as was the case with the baseline model in 6).

E Tracking the “right” natural real rate

The equilibrium realization of the nominal rate under the optimal policy is the expression r∗t derived in

(23). However, an instrument rule that prescribes it = r∗t + φππt would fail to implement the optimal

policy. The equilibrium natural rate rn∗t only coincides with rnt when ht = 0. While this must be the case

in equilibrium, agents under P contemplate other possible realizations of the house price for which they

plan on choosing ht 6= 0. These off-equilibrium states of the world enter into agents’ expectations of future

marginal costs. Therefore, the central bank must promise to stabilize inflation even in these off-equilibrium

states. Tracking only the equilibrium natural rate is insufficient: It must track the perceived natural rate.

As an illustration, Figure 6 shows impulse responses for the learning model with three interest rate
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equations:

it = rnt + 1.05πt (88)

it = rn∗t + 1.05πt (89)

it = rss + 1.5πt + 0.125ŷt. (90)

The first equation (88) implements strict inflation targeting as per Proposition 1. The only difference

of the second equation (89) is that the monetary authority reacts to the equilibrium process of the natural

rate instead of the perceived process. Figure 6 shows how using the ALM natural rate of interest in the

the policy rule does not yield a zero inflation outcome. As discussed in the last section, the central bank

must promise to stabilize inflation even in those states that are never reached in equilibrium—that is, when

the housing market doesn’t clear—but contemplated by agents under their subjective expectations. Using

the ALM natural rate in the policy rule fails to do so. Due do their beliefs about the process governing

Qt, agents under the PLM do not account for the effect of the technology shock on future asset price

growth. Consequently, the initial response of consumption is smaller than under rational expectations.

From the standpoint of an agent under the flex price ALM on the other hand, the technology shock has

an anticipated positive impact on the path of Qt due to expected asset demand. As a result, the initial

consumption response and subsequent consumption decline will be greater. The ALM natural rate of

interest declines more upon the impact of the shock than does the PLM natural rate of interest. When a

monetary authority uses the ALM natural rate in its policy rule as in (89), then, the nominal interest does

not increase sufficiently to prevent an inflationary response.

Finally, the third equation is a standard Taylor rule. Figure 6 shows that this rule performs somewhat

better in terms of outcomes, but is still far from the optimal policy. It is worth noting that the nominal

interest rate is more volatile under the Taylor rule than under the optimal rule (88), which reacts to asset

prices. The reason is that the stabilization benefits of reacting to asset prices make equilibrium nominal

rates more stable as well.
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Figure 6: Tracking the “right” natural real rate.
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Note: Response to a unit standard deviation positive technology shock εAt under sticky prices. Log percentage points. The interest rate
rules used are given in Equations (88)–(90).
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