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ABSTRACT

A cointegration test statistic based upon estimation of an error cor-
rection model can be approximately normally distributed when no coin-
tegration is present. By contrast, the equivalent Dickey-Fuller statistic
applied to residuals from a static relationship has a non-standard asymp-
totic distribution. When cointegration exists, the error-correction test
generally is more powerful than the Dickey-Fuller test. These differences
arise because the latter imposes a possibly invalid common factor restric-
tion. The issue is general and has ramifications for system-based cointe-
gration tests. Monte Carlo analysis and an empirical study of U.K. money
demand demonstrate the differences in power.

Key words and phrases: cointegration, Dickey-Fuller statistic, econo-
metrics, error correction, power, statistical inference, unit roots.



The Power of Cointegration Tests
Jeroen J.M. Kremers, Neil R. Ericsson, and Juan J. Dolado!

1 Introduction

Contrasting inferences about the presence of cointegration often appear in empirical
investigations. For example, in applying the commonly used “two-step” procedure
proposed by Engle and Granger (1987), the Dickey-Fuller unit-root test may only
marginally reject the null hypothesis of no cointegration, if it rejects at all. By
contrast, the coefficient on the error-correction term in the corresponding dynamic
model of the same data may be “highly statistically significant”, strongly supporting
cointegration; cf. Kremers (1989), Hendry and Ericsson (1991a), and Campos and
Ericsson (1988). Both procedures are tests of cointegration, so why should there
be such a contrast? A plausible explanation centers on an implicit common factor
restriction imposed when using the Dickey-Fuller statistic to test for cointegration. If
that restriction is invalid, the Dickey-Fuller test remains consistent, but loses power
relative to cointegration tests that do not impose a common factor restriction, such
as those based upon the estimated error-correction coefficient.

This paper examines the asymptotic and finite sample properties of the two pro-
cedures for a simple, single-lag, bivariate process. Even with more lags and more
variables, the reason for the low power of the Dickey-Fuller test remains. The error-
correction-based test is preferable because it uses available information more effi-
ciently than the Dickey-Fuller test.

Section 2 describes the process of interest and derives the relationship between the
error-correction mechanism and the equation from which the Dickey-Fuller statistic

!Forthcoming in a special issue of the Ozford Bulletin of Economics and Statistics entitled Testing
Integration and Cointegration, Anindya Banerjee and David F. Hendry (eds.), Vol. 54, No. 3, August
1992. The authors of this paper are staff economists in the Ministry of Finance, The Hague, The
Netherlands; the International Finance Division, Federal Reserve Board, Washington, D.C., U.S.A ;
and the Research Department, Bank of Spain, Madrid, Spain, respectively. The first author is also
a visiting professor at Erasmus University, Rotterdam (OCFEB). This paper represents the views of
the authors and should not be interpreted as reflecting those of the Dutch Ministry of Finance, the
Board of Governors of the Federal Reserve System, the Bank of Spain, or other members of their
staff. This paper was prepared in part while the second and third authors were visiting INSEE and
CEPREMAP, who we thank for generous hospitality. We are grateful to Javier Andrés, Anindya
Banerjee, Julia Campos, Christian Gourieroux, David Hendry, Sgren Johansen, Augustin Maravall,
Alain Monfort, Mark Salmon, Jim Stock, and Hong-Anh Tran for helpful discussions, and to Lisa
Barrow and Rafael Domenech for research assistance. All numerical results were obtained using
PC-NAIVE and PC-GIVE Version 6.01; cf. Hendry and Neale (1990) and Hendry (1989).



is calculated. Section 3 presents the asymptotic distribution of each test statistic
under the null hypothesis of no cointegration, while Section 4 gives the corresponding
asymptotic distributions under the alternative hypothesis of cointegration, using fixed
and “near non-cointegrated” alternatives. Section 5 generalizes the results for testing
in multivariate, multiple-lag systems. Section 6 interprets some Monte Carlo finite
sample evidence in light of the asymptotic formulae. Section 7 empirically illustrates
the two testing procedures with Hendry and Ericsson’s (1991b) quarterly data on
U.K. narrow money demand. Derivations of all new results appear in the Appendix.

2 A Simple Bivariate Process

Using a simple dynamic bivariate process, this paper focuses on the relative merits
of the two-step Engle-Granger and single-step dynamic-model procedures for testing
for the existence of cointegration. See Engle and Granger (1987) on the former and
Banerjee, Dolado, Hendry, and Smith (1986) inter alia on the latter. The former is
characterized by a Dickey-Fuller (DF) statistic used to test for the existence of a unit
root in the residuals of a static cointegrating regression. The latter is based upon the
t-ratio of the coefficient on the error-correction term in a dynamic model reparam-
eterized as an error-correction mechanism (ECM), noting that cointegration implies
and is implied by an ECM. This t-ratio is denoted the ECM statistic. This section
describes the data generation process (DGP) and derives the analytical relationship
between the ECM and the equation for the DF statistic.

The bivariate process considered is one of the simplest imaginable, and has been
used elsewhere for expository purposes; cf. Davidson, Hendry, Srba, and Yeo (1978)
and Banerjee, Dolado, Hendry, and Smith (1986). It is a linear first-order vector au-
toregression with normal disturbances, at least one unit root, and Granger-causality
in only one direction. For expositional convenience, this DGP is written as a condi-
tional ECM (1) and a marginal unit-root process (2):

(1) Ay: = alz + by — 2)i-1 + &
(2) Az =y,
where

& 0 0'2 0 |
~IN € =1,..
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and where A is the first-difference operator 1 — L, L is the lag operator, and T is the
sample size. The variables y, and z; are integrated of order one [denoted I(1)] and
are possibly cointegrated. For y = InY and z = In Z, a is the short-run elasticity
of Y with respect to Z. The parameter b is the error-correction coefficient in the



conditional model of y;, given lagged y and current and lagged z; and ¢; and u, are the
disturbances in this conditional/marginal factorization. Without loss of generality,
the cointegrating vector for (y: z;)’ is (1 — 1) if y; and 2, are cointegrated.

For simplicity, the (hypothesized) cointegrating vector is assumed known. Such
a priori knowledge of the cointegrating vector arises frequently in economic models
of long-run behavior, as in modeling (logs of) consumers’ expenditure and disposable
income, wages and prices, money and income, or the exchange rate and foreign and
domestic price levels.? Also, z; is assumed weakly exogenous for the parameters in the
conditional model (1); see Engle, Hendry, and Richard (1983) and Johansen (1992a).

As Section 5 shows, the logical issues arising from common factor restrictions apply
to processes more general than (1)-(2). Specifically, the cointegrating vector or vectors
may be estimated and may enter more than one equation (e.g., no weak exogeneity);
and a constant term, seasonal dummies, additional variables, and additional lags may
be included. However, some statistics’ distributions are more complicated with such
generalizations, so we focus on this bivariate case.

The parameter space is restricted to {0 < a < 1,—1 < b < 0}. In many empirical
studies, a & 0.5 and b ~ —0.1, with 02 > ¢2. That is, the short-run elasticity (a) is
smaller than the long-run elasticity (unity), adjustment to remaining disequilibria is
slow, and the innovation error variance for the regressor process is larger than that
of the conditional ECM.

The variables y; and 2, are cointegrated or not, depending upon whether < 0
or b = 0. Thus, tests of cointegration rely upon some estimate of b. In the ECM
approach, equation (1) itself is estimated by OLS (denoted by a circumflex * ):

3) Ay; = aAz + bwey + €t
where the putative disequilibrium is:
(4) Wy = Yt — 2¢.

The t-ratio based upon b is the ECM statistic, denoted tgcopr. It is used to test the

null hypothesis that b = 0, i.e., that y and z are not cointegrated with a cointegrating
vector (1 —1).

The DF statistic derives from a different regression, so it is helpful to establish the

relationship between the DF regression equation and the ECM in (1). Specifically,
subtract Az, from both sides of (1) and re-arrange:

(5) Ay — 2)e = by — 2)e-1 + [(a — 1) Az + 4.
Noting (4), equation (5) may be rewritten as:

(6) Aw; = bwy—y + ey,

2See Davidson, Hendry, Srba, and  Yeo (1978), Hendry, Muellbauer, and Murphy (1990), Sargan

(1964), Nymoen (1992), Hendry and Ericsson (1991a, 1991b), and Johansen and Juselius (1990a,
1990b) inter alia.



where the disturbance e; is:

(7) €t — (a - 1)A2t + €.
OLS estimation of (6) (denoted by a tilde ) generates:
(8) Awt = Bwt_l + ét.

The t-ratio based upon bis the DF statistic, denoted tpr here [# in Dickey and Fuller
(1979)]. This t-ratio is also used to test whether or not y; and z; are cointegrated
with cointegrating vector (1 —1). See Dickey and Fuller (1979, 1981) and Engle and
Granger (1987).

In contrast to the estimated ECM in (3), the estimated DF equation (8) ignores
potential information contained in Az;. Equivalently, (6) imposes the restriction that
a equals unity. That is, the short-run elasticity (a) equals the long-run elasticity
(unity). More generally, (6) imposes a common factor, as follows from rewriting (4)

and (6):

(9) Yt = 2+ Wy wr = (14 dwiq + e
(10) [1—(1+b)Lly:=[1—(1+4b)L]z + e,

where [1 — (1 + b)L] is the factor common to y; and z; in (10).3

The transformation of (1) to (6), (9), and (10) provides several insights. First,
(1), (6), (9), and (10) are equivalent representations, given the relationship between
the errors €, and e; in (7); but the two errors are not equal unless a = 1 or Az; = 0.

Second, and relatedly, the common factor restriction in (10) [and so in (6) and (9)]
is invalid unless a = 1, noting that:

(11) [1 =1 +8)Lly: = [a—(a+b)L]z + &,

from (1). Interestingly, even if the common factor restriction is invalid, e; remains
white noise for this DGP. Nonetheless, ¢; is not an innovation with respect to current
and lagged z and lagged y; cf. Granger (1983) and Hendry and Richard (1982) on
the distinction between white noise and innovations. Since empirically estimated
short- and long-run elasticities often differ markedly (as noted above), imposing their
equality in the DF statistic is rather arbitrary. Third, (9) motivates the use of unit-
root statistics in testing for cointegration. If w; has a unit root, then w; is non-
stationary, b = 0, and y, and z; are not cointegrated with the cointegrating vector
(1 —1). Conversely, if w; has its root inside the unit circle, then w; is stationary,
b < 0, and y; and 2z, are cointegrated.

3See Hendry and Mizon (1978) and Sargan (1964, 1980) on common factors.



3 Distribution of the Statistics under the Null
Hypothesis (No Cointegration)

The null hypothesis is no cointegration: that is, b = 0 in (1)-(2). Because w;_;
[in (3) and (8)] is not stationary under this hypothesis, distributional results from
“standard” asymptotic theory do not apply. This section describes the asymptotic
distributions of the DF and ECM statistics under that null hypothesis, and obtains
a normal approximation to the distribution of the ECM ¢-ratio when a # 1.

For expositional convenience, we adopt certain notational conventions concern-
ing Brownian motion (or Wiener) processes. Consider a normal, independently and
identically distributed variable n;,t = 1,...,T: that is, ; ~ IN(0,02). In this paper,
n¢ 1s usually either e, €, or u;. Define Br,(r) as the partial sum ZETT] ne/\/Tok,
where r lies in [0,1], and [T'r] is the integer part of Tr. As discussed in Phillips
(1987b), Br(r) converges weakly to a standardized Wiener process, denoted B,(r).
Frequently, the argument r is suppressed, as is the range of integration over r, when
that range is [0,1]. Thus, integrals such as [y By(r)?dr are written as [ B2. The
symbol “ = ” denotes weak convergence of the associated probability measures as
the sample size ' — oo. See Banerjee, Dolado, Galbraith, and Hendry (1992) for a
detailed discussion of Wiener processes.

The DF statistic [from (8)] is:

(12) tpr = bjese(b)
= (Twi) (S wadw)]//62 - (Twiy)
(S wiy) 5 (E wi-rer) /6,
where ese(-) is the estimated standard error of its argument, 2 is the estimated

residual variance in (8), and all summations 3 are from 1 to T unless otherwise
noted. Dickey and Fuller (1979) show that:

[ B.dB,

VAR:E

under the null hypothesis. Dickey [in Fuller (1976, p. 373)] tabulates by Monte Carlo

the finite sample distribution for ¢pp, from which critical values may be taken for
constructing a unit-root test.

(13) tpr =

The DF statistic has several important properties. First, its distribution is skewed
to the left, and it has a negative median. In part because of these characteristics, the
use of (negative) one-sided normal critical values may result in over-rejection under
the null hypothesis. Second, the distribution of the DF statistic is invariant to o,
oe, and a, even in finite samples; cf. (12).

Banerjee, Dolado, Hendry, and Smith (1986, Theorem 4) derive the asymptotic
distribution of the ¢-ratio on b in the ECM (3). Our Appendix corrects their formula



and obtains a simpler normal approximation for @ # 1. Since ¥ Azw;—y is Oy(T)
and E(u;) =0, the ECM t-ratio is:

(14) teen = bjese(d)
(zw?—l)_%(zwt—let/&E) + O,,(T'%),

where &2 is the estimated residual variance in (3), and Mann and Wald’s (1943) order
notation is used. Ignoring the term of O,(T~%), (14) is identical to the DF statistic in
(12), except that €; appears rather than e;. Using properties of independent Brownian
motion, the limiting distribution of tgcar is:

(15) [ BedB.

tecMm =
\/J B?

(a—1) [ BudB. + s~ [ B.dB.
V(a—1)2 B2 +2(a—1)s~1 [ B,B, + s=2 [ BY’

where s is the ratio o, /0. (assumed strictly positive).
As will be discussed below, the distribution of tgoar depends on the relative impor-

tance of the two terms comprising e; in (7), which are (e — 1)Az; and €;. Specifically,
it is useful to define a “signal-to-noise” ratio:

(16) qg=—(a—1)s,

where ¢? is the variance of (a — 1) Az, relative to that of ;. Equally, ¢% is R%/(1—R?),
where R? is the population R? with b = 0 for Aw; regressed on w;_; and Az, as in

(28) below.

The asymptotic distribution of the ECM statistic has several unusual properties.
First, because Az, is observed and is conditioned upon in estimating (3), ¢ measures
the amount of information present on the invalidity of the common factor restriction
(for a given T'). Second, and relatedly, when a = 1 (and so ¢ = 0), (15) simplifies to
the DF distribution (13), noting that e; = ¢; (and hence B, = B,) for a = 1. Third,
for a # 1, (15) can be reparameterized in terms of ¢ exclusively, rather than a and s
separately: _

(17) tECM = fBudBe —q ! fBedBe )
VI B2=2¢=' [B.B. +q~* [ B?
The asymptotic distribution of tgcas is sensitive to a and s only insofar as they enter
q.
Fourth, for large ¢, (17) is approximately a standardized normal distribution:

(18) teem = N(0,1) + Op(g7").




This second approximation is “small-6” in nature or, equivalently, assumes the signal-
to-noise ratio for (3) to be large; cf. Kadane (1970, 1971)4 As g varies from small
to large, the asymptotic distribution of tgca shifts from the DF distribution to the
normal distribution. To obtain (18), note that (17) is:

J Bu.dB.

(19) tecm = _\/f_?,é_ + Op(g7).

Since B, and B, are independent Brownian motions, the ratio in (19) is normally
distributed; see Phillips and Park (1988).

Thus, when the common factor restriction in (9) is invalid and Az, contributes
substantively to the determination of Ay, the t-ratio on the error-correction term in
(3) is approximately normal, even when the error-correction coefficient is zero and so
y: and z; are not cointegrated. That simplifies conducting inference with tgcp; when
q is large.® The distribution of tpr is independent of a, 0, and o, (and thus of s and
q), even in finite samples, so no parallel approximation exists for tpF.

To summarize, in so far as distributions under the null are concerned, tgoar has
a distinct advantage over tpr when ¢ is known to be large because of the former’s
approximate normality under that condition. The next section considers distributions
under the alternative hypothesis of cointegration, and so the issue of power.

4 Distribution of the Statistics under the Alter-
native Hypothesis (Cointegration)

The alternative hypothesis is cointegration: namely, b < 0 in (1)-(2). This section ex-
amines the asymptotic distributions of the DF and ECM statistics under both fixed
and local alternatives. A priori, the distributions derived under either alternative
could approximate the underlying finite sample distributions well, so both alterna-
tives are of interest. Under a fixed alternative, w,_; in (3) and (8) is stationary, so
distributional results follow from conventional central limit theorems. Under a local

alternative, the non-conventional asymptotic theory developed by Phillips (1988) for
near-integrated series can be applied.

4Complementary interpretations exist. From (1) and (2) with & = 0 and a # 0, y: and z; are
virtually identical series for large ¢ (a constant term and factor of proportionality aside) because the
variance of aAz, is large relative to that of €:. Thus, y: and z, appear cointegrated, giving rise to
“standard” inferential procedures for b. This reasoning does not apply to the DF statistic because
it is invariant to the variance of e,.

SIf no information is available on the magnitude of ¢, then it appears advisable to use the DF
critical values for the ECM statistic because they are larger in absolute value than the critical values
for the normal. This choice follows from the definition of statistical size involving the supremum
over the appropriate parameter space, here, being over the range of a and s.



Section 4.1 compares the asymptotic distributions of the DF and ECM statistics
under a fixed alternative; Section 4.2 compares them under a local alternative. When
a = 1, the two statistics are asymptotically equivalent. When a # 1, the ECM test
can be arbitrarily more powerful than the DF test.

4.1 Distributions under a Fixed Alternative

Under a fixed alternative, this subsection analyzes the components of the DF and
ECM statistics, from which the properties of the statistics themselves can be com-
pared.

For the DF statistic, the numerator is:

(20) b = (Cw? ) N w1 Awy)
= b+ (T wi ) M wirer),

from which it follows that:

(21) T - (b—b) = N(0,02/02),
where 0% = 02/[1 — (1 + b)?]. The denominator of the DF statistic is:
(22) ese(B) = T"%0./0, + O,(T7Y).
For the ECM statistic, the numerator is:
(23) b= b+ (L i) (L wee) + 0,(T7),
which implies:
(24) T% - (b—b) = N(0,0%/02).
The denominator of the ECM statistic is:
(25) ese(b) = T"%0, /0, + O,(T7Y).

Combining these results obtains a relationship between the two statistics:

(26) tEcMm {7/686(13)

tor b/ese(b)

_1
= 0c/0. + Op(T™2).

That is, the ECM statistic is approximately 0e/0, times the DF statistic. That factor
of proportionality is at least unity, and in general is greater than unity, noting that:
(27) offo? = [(a—1)%0} +02)/c?

= (I+¢) =21
from (7). The degree of inequality depends upon ¢. Relative power is likewise affected,
as illustrated in Section 6 via Monte Carlo.



Intuition for the differences between the statistics is as follows. The ECM regres-
sion conditions on both Az, and w;_;, whereas the DF regression conditions on only

w;—1, thereby losing potentially valuable information from Az, Rewriting (5) helps
clarify:

(28) Awt = bwt_l + (a - I)Azt + Et,

where, as an extreme example, €; & 0, a # 1, and Var(Az;) is “substantial” (and so ¢
is large). The ECM (28) has a near perfect fit, a and b are estimated with near exact
precision, and the ECM t-ratio for b is (arbitrarily) large. However, the DF statistic
Is invariant to the variance of e; (and so to the values of a and s), and the distribution
of the DF statistic depends upon only b and T. For a suitably small (but nonzero)
value of b and a given T', the DF statistic has little power (e.g., approximating its
size) while the ECM statistic has power close to unity. This arises because the DF
statistic ignores valuable information about Az, that is present in e,. Nevertheless,

both statistics are O,(T'%) under a fixed alternative, so motivating a local alternative
to obtain distributions of Op(1).

4.2 Distributions under a Local Alternative

To formalize the previous intuition, we apply Phillips’s (1988) noncentral distribution
theory to analyze the local asymptotic properties of the test statistics. The DGP is
(1)-(2) with the local alternative:

(29) b=eT-1 = ¢/T,

where ¢ is a negative fixed scalar. The local alternative (29) parallels the usual
Pitman-type local alternative, except that, in order to obtain statistics of O,(1), (29)
differs from the null by O,(T~!), rather than by O,(T-%).

To proceed, we follow Phillips (1987b) and use the diffusion process:

(30) Ky(r) =[5 et=9dB,(j)
= By(r) +c [5 el°B,(j)dj,
where I, (r) is an implicit function of ¢. If ¢ = 0, then K, (r) is By(r). As with B,,

the argument 7 and the limits of integration are dropped if no ambiguity arises from
doing so.

Under the local alternative (29), the DF statistic is distributed as:
JK.dB.

VIK2'

see Phillips (1987b, p. 541; 1988, (26)). As shown in the Appendix, the ECM statistic
is distributed as:

(31) tor = ¢ K?)F +



(32) teom = c(l+¢?)5(J K2)}

(a—1)fK,dB.+ s™! [ K.dB,
V0a—12 [ K2 +2(a = 1)s7' [ K K, + s=2 [ K?

Properties of the asymptotic distributions in (31) and (32) are closely related to
results under the null hypothesis. First, when ¢ = 0, (32) simplifies to the distribution
under the null, (17). Likewise, the asymptotic distribution (31) for the DF statistic
reduces to (13) under the null. Second, when a = 1, (32) simplifies to the DF

distribution (31). Third, for a # 1, (32) can be reparameterized in terms of ¢ and ¢
exclusively:

[ K.dB. — ¢! [ K.dB,
VIK2—2¢71 [ K K. +q2 [ K2
Fourth, for large ¢, (33) is approximately a standardized normal distribution:
(34) - teom = N (c(1+ @RS K2)5,1) + Oy(¢7Y),

conditional on the process for u;. Fifth, the unconditional mean of tgcp can be
approximated as:

(35) E(tecm) = v/V2,
where vy = ¢(1 + ¢?)%.

The powers of the DF and ECM statistics can be summarized, as follows. For
a given pair of values for ¢ and T, the DF statistic has an associated asymptotic
power, derivable from (31) and its critical value. For the same (¢, T') pair and some
comparable critical value, ¢ can be arbitrarily large, in which case the ECM statistic
is conditionally approximately normally distributed with unit variance. Further, its
unconditional mean is negative and arbitrarily large, so its power can be arbitrarily
close to unity. Thus, the ECM test has greater power than the DF test when ¢ is
sufficiently large, and the two tests have the same power when ¢ = 0.

(33)  tgem = c(1+¢®)3(J K35 +

5 (Generalizations

The common factor “problem” of the DF statistic remains when (1) includes ad-
ditional variables, additional lags of variables, a constant term, seasonal dummies,
and/or a more complicated cointegrating vector. Furthermore, augmented versions of
the DF statistic [such as Dickey and Fuller’s (1981) ADF statistic] and non-parametric
corrections [such as in Phillips (1987a) and Phillips and Perron (1988)] do not resolve
this problem. This section examines the common factor problem for a more general
structure. It then shows how common factors can appear in systems procedures, as

illustrated by Stock and Watson’s (1988) test for common trends and avoided by
Johansen’s (1988) procedure.

10



Consider three generalizations of (1): lagged as well as current values of Ay, and
Az; may appear, z is a vector rather than a scalar, and the cointegrating vector is
(1 = X), being normalized on y but being otherwise unrestricted. Letting d(L) and
a(L) be suitable scalar and vector polynomials in the lag operator L, (1) becomes:

(36) d(L)Ayt = a(L),AZt + b(y - A’Z)t—l + &;.
Subtracting d(L)\' Az, from both sides (rather than Az, as in Section 2) obtains:
(1) dL)AW = X2 = by - Ne)eo + {[a(L) — d(L)V]Az 4 &)

or

(38) d(L)Aw, = bw,_y + e,
where |

(39) w =y — Nz

and

(40) et = [a(L) — d(L)N)Az +&,.

Equations (38), (39), and (40) generalize (6), (4), and (7). When e, is not white noise,
(38) is not a regression equation, and below we comment on that case.

The ADF statistic is based upon (38), and so imposes the common factor restric-
tion:

(41) a(L) = d(L)A.

If invalid, that restriction implies a loss of information (and so a loss of power)
for the ADF test relative to the ECM test from (36). The caveat about common
factors applies to other single-equation unit-root-type cointegration tests constructed
from a static relationship between Y: and z, including Phillips’s (1987a) Z, and
Zy statistics, Phillips and Perron’s (1988) generalizations thereon, and Sargan and
Bhargava’s (1983) statistic. The problem is not with the unit root tests per se: they
may be quite useful for determining an individual series’s order of integration. Rather,
the difficulty arises from testing for cointegration via testing for a unit root (or the
lack thereof) in the purported disequilibrium measure Ye — Nz,

The ADF tests applied to (38) may encounter an additional difficulty. Whereas
€; is white noise in the simple example (6), it need not be in (38); cf. (7) and (40).
If not, then, in order to generate white noise errors, the ADF regression would need
a lag length longer than that required in the ECM. Conversely, choosing too short a
lag length for the ADF statistic can create misleading inferences; <f. Kremers (1988).

System analysis of cointegration faces similar problems. In a system notation
following Johansen (1988), let z; denote the entire vector of I(1) variables under
study, of dimension p x 1. One interesting and commonly used representation for Ty
is the Gaussian, finite-order vector autoregressive process:

11



(42) " w(L)ze = v ve ~ IN(0,9,)
or A
(43) v A.’L’t = TT¢-1 + F(L)Axt—l + Vi,

where 7 (L) is the £th order, p x p matrix polynomial i mLi, T(L) is a related
p X p matrix polynomial, and = = 7(1). But for the normalization 7o = I, m(L)
is unrestricted; so m and I'(L) are also unrestricted. Cointegration of variables in z;
implies that 7 is of reduced rank (r, say), so 7 can be factorized as:

(44) T = aﬂ',

where a and 8 are full-rank p x r matrices. The rows of ' are cointegrating vectors,
and the coefficients in « are the weights on the cointegrating vectors in each equation.
Some “systems” procedures focus on the roots of Az, rather than on the properties

of z, itself. Such procedures impose “system common factors”, as can be seen by pre-
multiplying (43) by §":

(45) BAz, = (Ba)B'zi1+ BT(L)Aziy + B'vy

or

(46) (I = G(L)L]Aw, = (B'a)wer + ¥,

where w; is now the vector 8'z;, G(L) is an 7 X r matrix polynomial in L, and 1, is:
(47) Y. = [BT(L) — G(L)F')Azi1 + B'vs.

Equations (46)-(47) parallel (38) and (40) for a single equation.

The disturbance v; may contain valuable, predictable information for two reasons.
First, unless the restriction G(L)3' = B'T(L) holds, lags of Az, enter 3. Second, if 2; .
is weakly exogenous, then 8'v; may be explained in part by current z [as in (1)]. Both
reasons imply a loss of information from analyzing w; rather than z; when testing for
cointegration.

As an example, Stock and Watson’s (1988) test for common trends imposes com-
mon factors, except when the maintained hypothesis is p common trends (i.e., no
cointegration). Stock and Watson’s statistic is derived from a vector autoregression
in the hypothesized common trends f' z: [their equation (3.1)], which is an autore-
gression “complementing” (46). Unless 3, is square, their autoregression omits lags
in Bz, and so ignores potentially valuable information.

Johansen (1988, 1991) and Johansen and Juselius (1990a) derive a likelihood-
based method for testing the rank of 7 and, conditional upon a given rank, conducting
inference about a and 3. Because (43) is the basis for inference, this method avoids
common factor problems. All short-run dynamics in I'(L) are unrestricted, and so
are “structural” rather than “error” dynamics: the Johansen procedure parallels the
ECM procedure, but with the system complete. Conversely, the ECM procedure is
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a special case of Johansen’s for a system in which the cointegrating vectors appear
in only the equation of interest. Under that condition, it is valid to analyze only the
equation of interest, as a conditional equation; cf. Dolado, Ericsson, and Kremers
(1989) and Johansen (1992a).

6 Finite Sample Evidence

To analyze the size and power of the DF and ECM tests, a set of Monte Carlo
experiments were conducted with (1) and (2) as the DGP. Without loss of generality,
02 = 1. That leaves the parameters (s,a,b) and the sample size T as experimental
design variables, noting that s now is 0. This Monte Carlo study is solely meant to

illustrate the common factor issue, so we chose a full factorial design of:

(48) (a,s) = [(1.0,1),(0.5,6), (0.5, 16)]
b = (0.0 [no cointegration], —0.05 [cointegration])
T = 2,

resulting in six experiments. The number of replications per experiment was N —
10,000, the first twenty observations of each replication were discarded in order to
attenuate the effect of initial values, and new z’s were generated for each replication.

The parameter values were chosen with the following in mind. For a = 1.0 (and
so g =0),onlys=1is considered, since the analytical results in Sections 3 and 4
imply exact or asymptotic invariance of the statistics to s when the common factor
restriction is valid. For a = 0.5, the values s = 6§ and s = 16 imply ¢ = 3 and qg=238
respectively, with the latter very “strongly” violating the common factor restriction.
The two values of 5, 0.0 and —0.05, imply lack of and existence of cointegration
respectively, although, in the latter case, the stationary root of the system is still
large: 0.95. Finally, the sample size is small by most econometric standards, and
implies a low power of the DF statistic for the nonzero value of b.

Table 1 lists rejection frequencies of the DF and ECM statistics under the hypothe-
ses of no cointegration and cointegration. These rejection frequencies correspond to
size and power, provided the correct critical values are used. Panels A and B of the
table report rejection frequencies for one-sided tests at two nominal sizes, 5% and
1%. For each, three critical values are examined: those from Dickey in Fuller (1976,
Table 8.5.2, p. 373) for T = 25, those of the normal distribution, and (for power)
those estimated from our Monte Carlo with b = 0. The values of b and g appear at
the top of the table: they define the experiments, and g in particular is important for
the ECM statistic.

In Panel A (5% critical values) under “no cointegration”, rejection frequencies for
tpF are virtually unchanged as ¢ varies, in line with the invariance result. With the
Dickey-Fuller critical value, the rejection frequency for tecm matches that of {5 for
¢ = 0, and shrinks to well below the nominal rejection frequency for large ¢ (e.g.,3.5%
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Tabl’e 1. Rejection Frequencies and Estimated Means of the Statistics

no cointegration: b = 0.0 cointegration: b = —0.05
Critical Value q q
and Statistic 0 3 8 0 3 8

A. Rejection Frequency at the 5% critical value (in per cent)

Dickey-Fuller (—1.95)

DF 5.4 5.6 5.4 9.6 10.3 10.1

ECM 5.4 4.1 3.5 9.9 50.2 91.6
Gaussian (—1.645)

DF 9.4 9.5 9.7 17.3 18.1 17.4

ECM 9.5 7.2 6.4 17.3 60.6 94.3
Estimated!

DF [2.01] [~2.03] [~2.02] 82 89 88

ECM [2.02] [~1.88] [~1.80] 86 524 929

B. Rejection Frequency at the 1% critical value (in per cent)

Dickey-Fuller (—2.66)

DF 1.1 1.3 1.2 2.1 2.1 2.3

ECM , 1.3 1.2 0.9 2.3 30.2 82.8
Gaussian (—2.326) :

DF 2.5 2.7 2.4 4.5 4.7 4.6

ECM 2.6 2.1 1.7 4.5 39.2 873
Estimated!

DF . [~2.76] [~2.80] [~2.77] 16 16 17

ECM [~2.80] [~2.76] [—2.62] 17 279 834

C. Estimated Means of the Statistics?

mean(tpr) —0.34 —0.38 —0.37 —-0.95 —0.96 —0.95
mean(tgca) —0.3¢ —0.13 —0.04 ~0.93 —2.09 —5.08
v/ /2 00 00 00 —~0.71 —2.24 —5.70

'Under the null of no cointegration, Monte Carlo estimates of the critical values are
reported, in square brackets. Under the alternative,rejection frequencies are reported.
The estimated critical values used for the DF statistic are the averages of those
obtained under the null: -2.02 for 5% and -2.78 for 1%. The estimated critical values
used for the ECM statistic are those obtained under the null, and they vary with q.

2Monte Carlo standard errors on the estimated means are approximately 0.01.
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for ¢ = 8). With the Gaussian critical value, the rejection frequency for tgca is 9.5%
for ¢ = 0, approximately double the nominal value, and tends toward the nominal
value for large q. Such over-rejection limits the use of Gaussian critical values in
practice.

In Panel A under “cointegration”, the power of the DF statistic is approximately
10%, whether with Dickey-Fuller or estimated critical values. As expected, its power
is insensitive to ¢ and to the choice of critical value. The power of the ECM statistic
for ¢ = 0 is virtually identical that of the DF statistic. However, as ¢ increases, so
does the power of the ECM statistic. At ¢ = 8, its power is over 90%. The com-
mon factor restriction is disastrous for the Dickey-Fuller procedure in such instances.
Conversely, the ECM procedure can gain markedly in power because it allows more
flexible dynamics than the DF procedure. Panel B reports similar results at the 1%
critical value.

Panel C lists the estimated means of ¢tpr and tgcar across experiments, and the
approximate asymptotic mean of tgcar, which is v/+/2. The estimated mean of the
DF statistic appears invariant to ¢, as implied by Sections 3 and 4. Its estimated
mean is more negative with cointegration than without cointegration, reflecting inter
alia the negative noncentrality ¢(f K2)7 in (31). The estimated mean of tgzcas is
not invariant to ¢. Under the null of no cointegration, it tends to zero as q increases.
With cointegration, the estimated mean of ¢ g is approximately v/+/2, and becomes
large and negative as g increases. In these experiments, ¢ = 3 and ¢ = 8 appear quite
“large” for the mean of tgca, but not for tail properties. That suggests using the

Dickey-Fuller or related critical values for tgops rather than Gaussian critical values,
in order to control size.

7 Empirical Evidence

This section tests for cointegration in Hendry and Ericsson’s (1991b) quarterly data
on U.K. money demand to show how the DF and ECM statistics can differ empir-
ically. The data are nominal M; (M), 1985 price total final expenditure (Y), the
corresponding deflator (P), the three-month local authority interest rate (R3), and
the (learning-adjusted) retail sight deposit interest rate (Rra). Below, lower case de-
notes logarithms. Hendry and Ericsson (1991b) describe the data in their appendix.
Johansen (1992b) finds that m and p appear 1(2), and are cointegrated as m — p,
which is I(1). Thus, to avoid possible inferential complexities with I(2) variables, we
consider whether or not m — p, y, Ap, R3, and Rra are cointegrated.
The static regression of these variables obtains:

(49) (m—p). = —0.07y, + 0.94Ap, — 2.1R3; + 6.9Rra, + 11.8

T =100 [1964(3) — 1989(2)] & = 9.646% dw = 0.18.
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While direct statistical inference on the estimated coefficients in (49) is difficult, note
that the income elasticity is negative, not positive; and the inflation elasticity is posi-
tive, not negative. Neither property is “economically sensible”. Additionally, the two
interest rate semi-elasticities are numerically quite different in absolute magnitude, so
an interest rate differential does not seem plausible as a measure of the opportunity
cost.

The augmented Dickey-Fuller regression ADF(4) for the residuals w, from (49) is:

(50) Aw, = ~ 0182wy + Y4, d:Aw,_;
(0.053)

T =95[1965(4) — 1989(2)] & =3.690% tipr = —3.41.
Here and in equations below, ¢; denotes a generic coefficient, and standard errors are
in parentheses. MacKinnon’s (1991) 10% critical value for the DF statistic is —4.25
for T = 95, so the variables do not appear cointegrated by this measure. Even so, the
coefficient on w;_; is negative and large numerically, implying a root of approximately
0.8.

In the error-correction framework, the long-run relationship between the variables
may be obtained by estimating an autoregressive distributed lag in the variables and
solving numerically for that long-run solution. Estimating the fifth-order autoregres-
sive distributed lag for m — p, y, Ap, R3, and Rra obtains this long-run solution:

B m—p)e = ((l)ﬁég)yt B (ZI%)AP t (Iﬁg)m’ * (gﬁg)Rmt - (gﬁg)

T =100 [1964(3) — 1989(2)].
The long-run income elasticity is near unity, and inflation has a strong negative
long-run effect. Further, the interest-rate coeflicients are nearly equal in magnitude,
opposite in sign, so in the long run, interest rates appear to matter only through the -
net interest rate (R3 — Rra, denoted R*).

Re-estimating the autoregressive distributed lag as an error-correction model ob-
tains:

(52) A(m=p)e=— 0.149 wey + T4 diA(m — p)ys
t (0.023) t—1 2i=1 BiA( p)t

+ Tho 8 (A, A’pei, AR3,_;, ARra,_,)

T =100 [1964(3) — 1989(2)] & = 1.320% tecm = —6.39,
where the lagged residual from (51) is now w;_y, the error-correction term. Even in
this highly over-parameterized model, the ECM statistic exceeds MacKinnon’s (1991)
DF 1% critical value of —5.18. The equation standard error in (52) is far smaller than

that in (50), implying that the common factor restriction in (50) is invalid [COMFAC
X%(20) = 64.6].
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The contrast between the DF and ECM statistics is robust to the choice of lag
length and to whether or not long-run price homogeneity is imposed. Further, re-
sults from system analysis match the ECM results above. For a corresponding
vector autoregression, Ericsson, Campos, and Tran (1991) test and strongly reject
the null of no cointegration in favor of one cointegrating vector, using Johansen’s
(1988, 1991) procedure. The system estimate of the first cointegrating vector is
(1 —0.77 5.67 5.82 — 7.72), close to that in (51), noting that signs on unnor-
malized coefficients reverse. The first column in the estimated weighting matrix &
is (—0.22 0.00 0.04 0.07 0.01), consistent with weak exogeneity of Ap, y, B3, and
Rra in the money equation for the cointegrating vector. That exogeneity permits
valid conditional inference in the money equation, such as with the autoregressive
distributed lag above.

The ECM statistic in (52) contains an estimated cointegrating vector, so the
appropriateness of MacKinnon’s tables for this tgcar is as yet a conjecture, albeit a
natural one. As an alternative, consider Hendry and Ericsson’s (1991b) equation (6)

— a constant, parsimonious, simplification of an autoregressive distributed lag in the
money demand variables:

(53) A(m—p)=—069 Ap, — 0.17T A(m—p—1y)e1 — 0.630 R}

(0.13) (0.06) (0.060)
R

T =100 [1964(3) — 1989(2)] & =1.313% tgom = —10.87.

This equation imposes the long-run coeflicients on prices and income, thus mirroring
the analysis in Sections 2-4. While the error correction coefficient is somewhat smaller
than before, the ECM statistic is even more highly significant than in (52). Prices
and income have short-run elasticities of 0.31 and zero respectively, which contrast
with their unit long-run elasticities and imply substantial violation of the common

factor restriction in (50). Hendry and Ericsson (1991b, Section 4) further discuss the
economic and statistical merits of (53).

8 Summary

Over the last several years, testing for cointegration has become an important facet of
the empirical analysis of economic time series, and various tests have been proposed
and widely applied. This paper illustrates how a statistic based upon the estimation of
an ECM can be approximately normally distributed when no cointegration is present,
even though the equivalent DF statistic has a non-normal asymptotic distribution.
With cointegration, the ECM statistic can generate more powerful tests than those
based upon the DF statistic applied to the residuals of a static cointegrating rela-
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tionship. These differences arise because the DF statistic ignores potentially valuable
information — specifically, it imposes a possibly invalid common factor restriction.
Phrased somewhat differently, a loss of information can occur from assuming error
dynamics rather than structural dynamics. Both empirical and Monte Carlo finite
sample evidence support these analytical results.



Appendix: Asymptotic Distributions

This appendix is divided into Parts I, 11, and III, which respectively derive dis-
tributions under the null hypothesis of no cointegration, distributions under a fixed
alternative of cointegration, and distributions under a local alternative of cointegra-
tion. Subsections A and B within each part concern the distributions of the DF and
ECM statistics respectively. Proofs for the distributions of the DF statistic already
exist in the literature. However, because the proofs are similar for the ECM statistic,
both statistics are examined below. In brief, the proofs proceed by rescaling summa-
tions to be Oy(1), applying the functional limit results in Table A.1, and dropping
terms of o,(1).

The notation for Brownian motion is used throughout; see Section 3. As a conve-
nient reference for the building blocks of the proofs, Table A.1 lists correspondences
between sample moments and limiting distributions. See Billingsley (1968, Chapters
2 and 4), White (1984), Phillips (1986, Appendix; 1987a; 1987b; 1988), Phillips and
Durlauf (1986), Phillips and Park (1988), Banerjee, Dolado, Hendry, and Smith (1986,

Appendix), and Banerjee, Dolado, Galbraith, and Hendry (1992) for derivation of the
results in the table.

I Distributions under the Null Hypothesis (No
Cointegration)

In Part I, the DGP is (1)-(2) under the null hypothesis that b = 0.

I.A° The DF Statistic
The DF statistic is:

(A1) tor = (Zwl,)F - (TwiAw/s,)

= (T2 wa_l/ag)“;' (11 L wirer/ol) + Op(T—%)

= ([ BedB.)/\/(f B?).
This is the “Dickey-Fuller” distribution. See Dickey and Fuller (1979) and Phillips
(1987a) for details. Different values of a, 0y, and o, affect only the variance of e, (62),

and so only the scaling of w;. From (A1), the (exact) distribution of tprF 1s invariant
to the scaling of w;, and so to the choice of a, o, and o,.
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Table A.1. Asymptotic Distributions of Sample Moments

Under the Null Hypothesis of No Cointegration

Sample Brownian Motion Alternative
Moment Representation Representation
Basic Relationships

T2 5 (y;)? ol [ B -

T2y 2} ol [ B; =

T-2Y zy; o.0, [ B.B, -
T'Tyi.ee o[ B.dB (02/2)[B:(1)* - 1]

TSz 4w o2 B,dB, (02/2)[B.(1)2 = 1]

T 'S wiye o? [ B.dB, (62/2)[B.(1)? — 1]

TSyl u 0.0, [ B.dB, -

T-1'Y z 16 0.0, [ B,dB. -

T-: Y Az_1e; 0.0, [ dB,dB. N(0,0%02)

Implied Auxiliary Relationships

T wiq6, 0e0e [ B.dB, or (a—1)o.0, [ B,dB. + o2 [ B.dB.
T2y w? ol [ B? or (a—1)*02 [ B? +2(a—1)o.0, [ B B, + o2 [ B?
Notes:

1. The variable y; is defined as: y; = !, &;.

2. Because u; and ¢, are independent and e, = (a—1)u;+¢y, it follows that o, B, =
(a—1)oy,B,+0.B. and ¢.dB, = (¢a—1)o,dB,+0.dB.. Likewise, under the local
alternative, 6. I{. = (¢ — 1)0,K, + 0. K, and 0.dK, = (a — 1o dK, + 0.dK..

3. Under the local alternative, three of the formulae in the table change:
T'Y w16, = 02 [ K.dB.,
T'Y w16 = 0.0, [ K.dB,, and
T2y w? = o2 [ K2,

with corresponding adjustments for their decompositions.
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I.LB The ECM Statistic
The OLS estimator (& ) in (3) is:

(A2) al [ T(A%)? ¥ Azawe, ]‘1[ T Az Ay, ]
b~ Y wi1Az Z’w?_l L wi—1Ay, )

Substituting the definition of Ay, into (A2) and pre-multiplying by the matrix diag(T%, T)
obtains:

T}(a — q) [ T1Y(Az)? T2Y Azwe, |7 [ T35 Aze
A3 | pi | =

T(b I T3y w1 Az T72Y w?_, T-' wyyey
(o2 0 ] 0.0, [ dB.dB,
“ | o o2fB? (a — 1)0.0, f BudB. + o2 [ B.dB.
=

(0e/0u) [ dB.dB, ]
| {(a = 1)o.0, [ B,dB. + ¢% [ B.dB.}/{c? [ B?} |’

The rates of convergence for & and b imply that:
(A4) 60 = L&/T-2)
’ = o2 + 0,(T"%).

By partitioned inversion of the matrices involved in calculating t gcar, and applying
the limit results in Table A.1, the ECM statistic is:

-1
2

(AS) trom = (Twh, — [T waAz[T(Az)2] YL Az,w,_l])
. (Z w1 Ay — [Z wt—lAzt] [E(Azt)2]"l[2 AztAyt]) /&e
= (T‘2 Ywi =TT 'Y Azpw4|[T1 Y(Az) TS Aztwt_l])_%
(T Cwemrer = THT T Az, )T~ £(Az)2) T3 5 eAz)) /6.

= (T2 L wl ) (T Cwier) /0. + O,(T~%),
where all summations after the second equality sign are scaled to be O,(1). From
Table A.1, it follows that:
/ B.dB,
VIB:

(a—1)f B,dB. + s [ B.dB.

V(@—1)2[B2+2(a—1)s! [ B,B, + s~ [ B?
noting the relation between e;, u;, and ¢; (and so between B,, B, and B.).

When a = 1, (A6) simplifies to the Dickey-Fuller distribution. When a # 1, (A6)

can be reparameterized in terms of ¢ rather than a and s:

(Aﬁ) teem =

=
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[ BudB. — ¢~ [ B.dB.

AT tecm = .
( ) \/fBz—Qq“lfBuBe-{—q—szz

For large ¢, (A7) simplifies to:
[ B.dB:.

tecem = \/f_B—g

where the leading term is standardized normal; see Phillips and Park (1988). Thus,
tgonm is itself approximately distributed as a standardized normal variate:

(A9) teem = N(0,1) + Op(¢7Y).

Equations (A3) and (A6) correct Banerjee, Dolado, Hendry, and Smith (1986, Theo-
rem 4).

(A8) + Op(q—l),

II Distributions under a Fixed Alternative Hy-
pothesis (Cointegration)

The DGP is (1)-(2) with b fixed, and such that —1 < b < 0. Asymptotic distributions
follow directly from standard proofs with stationary variables, so details are omitted.

II.LA The DF Statistic
For the DF statistic, the numerator is:

(A10) b= (Twl,) (CwrAw)
b+ (T wi ) ' (Z were:).
From (A10), it follows that:

(A1) T%-(b—b) = N(0,0%/02),
where 02 = ¢2/[1 — (1 + b)?]. The denominator of the DF statistic is:
(A12) ese(b) = T %0./o, + O,(T).

II.B The ECM Statistic
The OLS estimator (& b)’ is (A2), and E(Azuw;1) = 0, so:

. -2
Al3 /i B D I I 2 0w O
(h13 (HRHIERICER A
The denominator of the ECM statistic is:

(A14) ese(b) = T™%0./0, + O,(T7Y),
paralleling (A12) but with o, appearing in place of o,.

[S%]
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By substitution:

(A15) tfgf = [8/8]/[ese(b)/ese(B)]

= [1+0)(T=5)]/loc/0e + Op(T~%)]
= o./o. + O,(T-%).

IIT Distributions under a Local Alternative Hy-
pothesis (Cointegration)

The DGP is (1)-(2) under the local alternative hypothesis that b = e*/T — 1, following
(e.g.) Phillips (1987b) and Johansen (1989).

III.A The DF Statistic
The DF statistic is:
(A16) tor = (T w;z—l)—% (T wim1Awy/5)

= (T2 uwl,/o?)}
+ (T2 wi,/o?) % (T C wiyei/0?) + OP(T"%)

= of K2)? + (f K.dB.)/\/(f K?).

See Phillips (1987b) for details. As under the null hypothesis, the distribution of {pp
is invariant to the choice of a, o,, and o..

III.B The ECM Statistic

The OLS estimator (& b)’ is still (A2). From the first equality in (A3), the rates of
convergence for & and b are the same under the local alternative as under the null
hypothesis. Thus:

(A17) 62 = ol 4+ 0,(T2).

Substituting (1) as a local alternative into the first equality of (A5) and applying the
limit results from Table A.1, the ECM statistic is:
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1
Th (T2 L w,y — T TV T Azaw, [T D(Az)Y [T T Azawey])* /6.

+ (T2 L wl, — T T Az [T D(Az) T T Azawiy])
(T S wemrer = THTVE Azawe [T 2(A2)%) YT Teelrzl) /5.

=

= ¢(0e/o)(T 2L wi /02t + (T2 T wl ) 3(T w16/ o)
+ 0,(T-2).

It follows that:
[ K.dB.

JIK?

(A19) teem = c(1+¢»)2(J K27 +
= c(1+¢)5(J K}

(a—1)f KydB. + s7' [ K.dB.

+ :
V0@ =12 [ K2 +2(a—1)s71 [ K K, + 572 [ K?

noting the definition of ¢.

When a = 1, (A19) simplifies to distribution (A16) for the Dickey-Fuller statistic.
When a # 1, (A19) can be reparameterized in terms of ¢ and ¢:

(AQO) tEcr =

o(1+¢2)F (I3/(1+ ¢*)] S K2 = 2[a/ (1 + ¢} J KuKe + (1 + 7))~ [ K2)?

JK,dB. — ¢! [ K.dB.
VIK2 =207 [K K. +q2 [ K2
noting that (1+¢%)K? = ¢?K2—2qK,K.+ K?2. In order to obtain a “large-¢” approx-

imation without having tgcar — —oo, we hold ¢(1 + qz)';' constant while expanding
in ¢q. Thus, we define a new parameter v, which is:

(A21) v = (1 +¢%)32.
For large ¢ and constant v, (A20) simplifies to:

o\ 1 J K.dB. ;)
(A22) teem = Y[ KD + —— + O,(¢7").

JIi?

Derivation of the distribution of (A22) parallels Phillips and Park (1988, p. 114,
Proof of Theorem 2.3). The bivariate Brownian motion (B, K, )" is defined on a
probability space, denoted (2, F, P). Let F, denote the sub o-field of F' generated
by K,. Then the second term on the right-hand side of (A22) is a standardized
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normal distribution, conditional on F, (and also unconditionally). Thus, tgcam is
itself approximately conditionally distributed as a standardized normal variate:

(A23) teomlr, = N (v(J K2)3,1) + Op(g7).

In essence, (A23) is conditional on {u.}, and so on {z:}.

Comparison of the unconditional distributions of tgcamr and tpr requires several
steps. First, note that the distribution of ¢tpr in (A16) is invariant to q. Thus, for
given values of T, c, and its critical value, tpr has a given power, p* (say). Second,
(f Kﬁ)% in (A23) is non-negative; and, for any 6 (1 > 8 > 0), there exists a k > 0
such that: -

(A24) Prob[(f K2): > k] > 1-0.

Third, note that c is negative; and v in (A23) is ¢(1 + ¢2)2, which is O(q). Now,
consider a critical value for t gopr equivalent to that for tpp. For some ¢ large enough,
~(J K2)7 [and so t o itself] is more negative than that critical value with probability
arbitrarily close to unity. Thus, for large ¢, tests using tgcar have greater power than
those using tpr.

An approximation to the unconditional mean of tgoas helps in analyzing the Monte
Carlo simulations:

(A25) E(tecm) = EN([K2)i] ~ 1[E(JKD)]F =~ v/v/2.

The two approximations arriving at y[E(f K2)]z are standard. The derivation of
E(f K2) proceeds as follows.

The integral [ K2 can be generated as the large-T limit of T2 ¢2/02 for the

process:

(A26) ft = Pft—l + ug Uy ~ IN(0,0'Z), t= 1,...,T,
where p = /T, ¢ < 0, and & = 0. Without loss of generality, 62 = 1. For any ¢t > 0,
(A27) E() = (1-p)/1-p%

— (1 _ e?ct/T)/(l _ e20/T)
by repeated substitution of (A26). Thus, it follows that:

T-1 -1 1’
(A28) E(T™*Y¢) = 1= o2e/T [1 — 62C/T] e2/T[1 — 2.
Applying L’Hopital’s rule (as T' — o), the large-sample limit of (A28) is:
(A29) lim B(T-2Y ) = (% - 1 - 20)/(4¢).
Applying L’Hopital’s rule again (this time as ¢ — oo and so as ¢ — 0) obtains:
(A30) lim lim E(T™*) ¢ = lime®*/2 = 1/2.
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