Finance and Economics Discussion Series: 2009-08 Screen Reader version
♣
Modeling Earnings Dynamics
Joseph G. Altonji, Anthony A. Smith, and Ivan Vidangos
Figure 1: Decomposing the Experience Profile of Wages
| E(v_j(t)|t) | E(lnwage|t) | E(Value of Tenure|t) | hc(t) |
t=0 | -0.000723 | 0 | 0 | 0.000723 |
t=1 | 0.0106417 | 0.0727354 | 0.0175314 | 0.0445623 |
t=2 | 0.0212761 | 0.140777 | 0.0304545 | 0.0890464 |
t=3 | 0.0309891 | 0.2042916 | 0.0398911 | 0.1334114 |
t=4 | 0.0393305 | 0.263446 | 0.0470724 | 0.177043 |
t=5 | 0.0469673 | 0.318407 | 0.0525763 | 0.2188634 |
t=6 | 0.0548061 | 0.3693414 | 0.0570785 | 0.2574568 |
t=7 | 0.0613715 | 0.416416 | 0.0608569 | 0.2941877 |
t=8 | 0.0658475 | 0.4597976 | 0.0639856 | 0.3299645 |
t=9 | 0.0707971 | 0.499653 | 0.066537 | 0.3623188 |
t=10 | 0.07574 | 0.536149 | 0.0689327 | 0.3914763 |
t=11 | 0.080621 | 0.5694524 | 0.0709717 | 0.4178597 |
t=12 | 0.0850258 | 0.59973 | 0.0724846 | 0.4422196 |
t=13 | 0.0884614 | 0.6271486 | 0.0741257 | 0.4645615 |
t=14 | 0.0921014 | 0.651875 | 0.0754429 | 0.4843308 |
t=15 | 0.0959058 | 0.674076 | 0.0767067 | 0.5014635 |
t=16 | 0.0983978 | 0.6939184 | 0.078059 | 0.5174617 |
t=17 | 0.1012991 | 0.711569 | 0.0792546 | 0.5310153 |
t=18 | 0.1037449 | 0.7271946 | 0.0807312 | 0.5427185 |
t=19 | 0.1050557 | 0.740962 | 0.0822982 | 0.5536081 |
t=20 | 0.1076943 | 0.753038 | 0.0839408 | 0.5614028 |
t=21 | 0.1103133 | 0.7635894 | 0.0859381 | 0.567338 |
t=22 | 0.1123607 | 0.772783 | 0.0881813 | 0.5722409 |
t=23 | 0.113441 | 0.7807856 | 0.0906591 | 0.5766855 |
t=24 | 0.1153345 | 0.787764 | 0.0932302 | 0.5791993 |
t=25 | 0.1166956 | 0.793885 | 0.0963713 | 0.5808181 |
t=26 | 0.1190427 | 0.7993154 | 0.0997728 | 0.5804998 |
t=27 | 0.1197435 | 0.804222 | 0.1032218 | 0.5812567 |
t=28 | 0.1207331 | 0.8087716 | 0.1071375 | 0.580901 |
t=29 | 0.1222072 | 0.813131 | 0.1110593 | 0.5798646 |
t=30 | 0.1238681 | 0.817467 | 0.1154757 | 0.5781232 |
t=31 | 0.1248369 | 0.8219464 | 0.1200774 | 0.5770321 |
t=32 | 0.1252288 | 0.826736 | 0.1246778 | 0.5768294 |
t=33 | 0.1265531 | 0.8320026 | 0.1294194 | 0.5760301 |
t=34 | 0.1273765 | 0.837913 | 0.134145 | 0.5763915 |
t=35 | 0.1284124 | 0.844634 | 0.138958 | 0.5772635 |
t=36 | 0.1295812 | 0.8523324 | 0.1436635 | 0.5790877 |
t=37 | 0.1305422 | 0.861175 | 0.148081 | 0.5825518 |
t=38 | 0.1316416 | 0.8713286 | 0.1522518 | 0.5874352 |
t=39 | 0.1325513 | 0.88296 | 0.1559526 | 0.5944561 |
Note: This figure decomposes the experience profile of wages E(lnwage|t) into three components: the contributions of general human capital hc(t), job mobility E(v_j(t)|t), and accumulated job seniority E(Value of Tenure|t). The decomposition is based on the estimates of model A.3.
Figure 2: Comparisons of PSID and Simulated Data
| PSID | SIM_lb | SIM_ub |
St Dev of Log Earnings: t= 5 | 0.5022 | 0.5526108 | 0.556026 |
St Dev of Log Earnings: t= 10 | 0.6017 | 0.5731555 | 0.5759817 |
St Dev of Log Earnings: t= 15 | 0.5363 | 0.5870864 | 0.5898852 |
St Dev of Log Earnings: t= 20 | 0.5559 | 0.5917328 | 0.5948295 |
St Dev of Log Earnings: t= 25 | 0.5497 | 0.5896956 | 0.5930288 |
St Dev of Log Earnings: t= 30 | 0.5533 | 0.5848011 | 0.5886921 |
St Dev of Log Earnings: t= 35 | 0.5705 | 0.5785969 | 0.5833659 |
St Dev of Log Earnings: t= 40 | 0.6599 | 0.5686405 | 0.5738982 |
St Dev of Log Hours: t= 5 | 0.2767 | 0.2924455 | 0.2937269 |
St Dev of Log Hours: t= 10 | 0.3031 | 0.2955929 | 0.2968687 |
St Dev of Log Hours: t= 15 | 0.273 | 0.2976496 | 0.2987694 |
St Dev of Log Hours: t= 20 | 0.2731 | 0.2960505 | 0.2972099 |
St Dev of Log Hours: t= 25 | 0.2745 | 0.2936345 | 0.2949899 |
St Dev of Log Hours: t= 30 | 0.2722 | 0.2890809 | 0.2904337 |
St Dev of Log Hours: t= 35 | 0.2914 | 0.283908 | 0.2853703 |
St Dev of Log Hours: t= 40 | 0.3443 | 0.2804374 | 0.2828709 |
St Dev of Log Wage: t= 5 | 0.3458 | 0.3913952 | 0.3941773 |
St Dev of Log Wage: t= 10 | 0.3718 | 0.4036461 | 0.4060657 |
St Dev of Log Wage: t= 15 | 0.3754 | 0.4086018 | 0.4111244 |
St Dev of Log Wage: t= 20 | 0.4008 | 0.4118679 | 0.4143326 |
St Dev of Log Wage: t= 25 | 0.3936 | 0.4161862 | 0.4189014 |
St Dev of Log Wage: t= 30 | 0.403 | 0.4203228 | 0.4233746 |
St Dev of Log Wage: t= 35 | 0.4006 | 0.4216497 | 0.4254503 |
St Dev of Log Wage: t= 40 | 0.4077 | 0.4222963 | 0.4260939 |
Note: This figure compares the actual standard deviations of log earnings, log hours, and log wage in the PSID to the 95 percent confidence interval estimates of the standard deviations based on data simulated from Model A.3. The standard error bands in the figure reflect both sampling error in the estimated "structural" parameters and sampling error due to randomness in the careers of the individuals in a particular sample.
Figure 3: Comparisons of PSID and Simulated Data
| PSID | SIM_lb | SIM_ub |
Employment: t=5 | 0.946 | 0.9630923 | 0.9656246 |
Employment: t=10 | 0.9569 | 0.9542401 | 0.955923 |
Employment: t=15 | 0.9651 | 0.9481215 | 0.9495604 |
Employment: t=20 | 0.9723 | 0.9522114 | 0.9536533 |
Employment: t=25 | 0.9756 | 0.9603201 | 0.9621077 |
Employment: t=30 | 0.9864 | 0.9717414 | 0.9732811 |
Employment: t=35 | 0.9767 | 0.9830482 | 0.9851229 |
Employment: t=40 | 0.971 | 0.9910225 | 0.9930044 |
Job Change if Employed: t=5 | 0.1958 | 0.1708974 | 0.1769542 |
Job Change if Employed: t=10 | 0.1403 | 0.1422344 | 0.1444736 |
Job Change if Employed: t=15 | 0.08374 | 0.1123752 | 0.1141136 |
Job Change if Employed: t=20 | 0.06506 | 0.0839352 | 0.086095 |
Job Change if Employed: t=25 | 0.05571 | 0.0645707 | 0.0664879 |
Job Change if Employed: t=30 | 0.04809 | 0.047348 | 0.0500157 |
Job Change if Employed: t=35 | 0.03642 | 0.0324679 | 0.0355944 |
Job Change if Employed: t=40 | 0.03497 | 0.020546 | 0.0253311 |
Employment-Employment Transition: t=5 | 0.9822 | 0.9733456 | 0.9748966 |
Employment-Employment Transition: t=10 | 0.9712 | 0.9670836 | 0.9680116 |
Employment-Employment Transition: t=15 | 0.9782 | 0.9645285 | 0.9655212 |
Employment-Employment Transition: t=20 | 0.9782 | 0.9678894 | 0.9688025 |
Employment-Employment Transition: t=25 | 0.9784 | 0.9745918 | 0.9756245 |
Employment-Employment Transition: t=30 | 0.99 | 0.9809164 | 0.9820269 |
Employment-Employment Transition: t=35 | 0.9834 | 0.9879265 | 0.9889302 |
Employment-Employment Transition: t=40 | 0.9804 | 0.9918139 | 0.9933871 |
Unemployment-Employment Transition: t=5 | 0.5625 | 0.8654709 | 0.8888147 |
Unemployment-Employment Transition: t=10 | 0.728 | 0.7057273 | 0.7209492 |
Unemployment-Employment Transition: t=15 | 0.6522 | 0.6489489 | 0.6601535 |
Unemployment-Employment Transition: t=20 | 0.8587 | 0.65492 | 0.6659011 |
Unemployment-Employment Transition: t=25 | 0.8723 | 0.6589276 | 0.6754397 |
Unemployment-Employment Transition: t=30 | 0.8261 | 0.7011194 | 0.7222919 |
Unemployment-Employment Transition: t=35 | 0.6786 | 0.7230669 | 0.7726837 |
Unemployment-Employment Transition: t=40 | 0.6154 | 0.8923615 | 0.9325233 |
Note: This figure compares the PSID sample means and the 95 percent confidence interval estimates of the simulated means for employment, job changes, and employment transitions based on data simulated from Model A.3. The upper left panel shows employment Et; the lower left panel shows job changes JCt conditional on Et = 1 and Et-1 = 1; the upper right panel reports the EE transitions; and the lower right panel displays the UE transitions.
Figure 4: Comparisons of PSID and Simulated Data
| PSID | SIM_lb | SIM_ub |
Employment Duration: t=5 | 4.226 | 5.051776 | 5.074306 |
Employment Duration: t=10 | 6.641 | 8.772431 | 8.81734 |
Employment Duration: t=15 | 9.684 | 12.45054 | 12.50348 |
Employment Duration: t=20 | 12.62 | 15.91484 | 15.97899 |
Employment Duration: t=25 | 15.77 | 19.11671 | 19.19547 |
Employment Duration: t=30 | 17.42 | 22.36735 | 22.48027 |
Employment Duration: t=35 | 19.57 | 25.56078 | 25.75193 |
Employment Duration: t=40 | 21.39 | 28.35865 | 28.62372 |
Tenure: t= 5 | 3.021 | 2.611605 | 2.645699 |
Tenure: t= 10 | 4.8 | 4.643457 | 4.686145 |
Tenure: t= 15 | 7.311 | 6.982478 | 7.032105 |
Tenure: t= 20 | 9.941 | 9.63081 | 9.701004 |
Tenure: t= 25 | 12.76 | 12.35442 | 12.46287 |
Tenure: t= 30 | 15.05 | 15.34586 | 15.49532 |
Tenure: t= 35 | 17.57 | 18.29121 | 18.48699 |
Tenure: t= 40 | 19.34 | 21.10426 | 21.41497 |
Unemployment Duration: t=5 | 1.604 | 1.202208 | 1.245411 |
Unemployment Duration: t=10 | 1.539 | 1.52336 | 1.598305 |
Unemployment Duration: t=15 | 1.624 | 1.809824 | 1.897379 |
Unemployment Duration: t=20 | 1.419 | 1.978691 | 2.110605 |
Unemployment Duration: t=25 | 1.303 | 2.169302 | 2.305253 |
Unemployment Duration: t=30 | 1.167 | 2.123029 | 2.377656 |
Unemployment Duration: t=35 | 1.394 | 1.997938 | 2.610629 |
Unemployment Duration: t=40 | 1.348 | 1.363047 | 1.721163 |
Note: This figure compares the PSID sample means (by potential experience) and the 95 percent confidence interval estimates of the means (by potential experience) based on data simulated from Model A.3, for employment duration, tenure, and unemployment duration.
Figure 5a: Mean Response of Log Earnings to Various Shocks at t=10
| unemployment shock | 1SD 'w' shock | job change shock | job change + 1SD 'v' shock | job change + 1SD 'xi' shock |
t=1 | 0 | 0 | 0 | 0 | 0 |
t=2 | 0 | 0 | 0 | 0 | 0 |
t=3 | 0 | 0 | 0 | 0 | 0 |
t=4 | 0 | 0 | 0 | 0 | 0 |
t=5 | 0 | 0 | 0 | 0 | 0 |
t=6 | 0 | 0 | 0 | 0 | 0 |
t=7 | 0 | 0 | 0 | 0 | 0 |
t=8 | 0 | 0 | 0 | 0 | 0 |
t=9 | 0 | 0 | 0 | 0 | 0 |
t=10 | -0.6241579 | 0.0875552 | -0.0867085 | 0.1498458 | 0.0628459 |
t=11 | -0.2059433 | 0.0805449 | -0.0671065 | 0.1532135 | 0.0489173 |
t=12 | -0.1642206 | 0.0741756 | -0.0530698 | 0.1524069 | 0.0433919 |
t=13 | -0.1401582 | 0.0681 | -0.0425224 | 0.1505611 | 0.0418787 |
t=14 | -0.1219451 | 0.0625908 | -0.0337658 | 0.1484833 | 0.0418644 |
t=15 | -0.1073909 | 0.0575328 | -0.0269384 | 0.1466455 | 0.0421469 |
t=16 | -0.0954871 | 0.0528495 | -0.0217609 | 0.1440151 | 0.0426507 |
t=17 | -0.0843849 | 0.0485947 | -0.0171895 | 0.1419063 | 0.0436583 |
t=18 | -0.075218 | 0.0445988 | -0.013809 | 0.1392682 | 0.0441902 |
t=19 | -0.0671473 | 0.0410047 | -0.011256 | 0.1369779 | 0.0446129 |
t=20 | -0.0599961 | 0.0376179 | -0.0092754 | 0.1337175 | 0.0448732 |
t=21 | -0.0547636 | 0.0345755 | -0.0078785 | 0.1312864 | 0.0447907 |
t=22 | -0.049309 | 0.031743 | -0.0067601 | 0.1290057 | 0.0448205 |
t=23 | -0.0448015 | 0.0291336 | -0.0058846 | 0.1268308 | 0.0448005 |
t=24 | -0.0410113 | 0.0268223 | -0.0051403 | 0.1245832 | 0.0447993 |
t=25 | -0.0377159 | 0.0246482 | -0.0040953 | 0.1228547 | 0.0452244 |
t=26 | -0.0345724 | 0.0226734 | -0.0035095 | 0.1212234 | 0.0453093 |
t=27 | -0.0314443 | 0.0209091 | -0.0025897 | 0.1204083 | 0.0457089 |
t=28 | -0.0288031 | 0.0192256 | -0.0018587 | 0.1195352 | 0.0461571 |
t=29 | -0.0262952 | 0.0176022 | -0.0010157 | 0.1190722 | 0.0467184 |
t=30 | -0.0239475 | 0.0162449 | -9.89e-05 | 0.1191015 | 0.0473819 |
t=31 | -0.0212955 | 0.0149436 | 0.0002525 | 0.118511 | 0.0476 |
t=32 | -0.019557 | 0.0137234 | 0.0005853 | 0.1181614 | 0.0477622 |
t=33 | -0.0180743 | 0.0126412 | 0.0008404 | 0.1175933 | 0.04793 |
t=34 | -0.0166221 | 0.0116913 | 0.0011358 | 0.1174033 | 0.0480945 |
t=35 | -0.0154271 | 0.0107467 | 0.001276 | 0.1169312 | 0.0481482 |
t=36 | -0.0144432 | 0.009887 | 0.0013134 | 0.1166143 | 0.0481281 |
t=37 | -0.0134773 | 0.0090916 | 0.0014782 | 0.1164706 | 0.0482366 |
t=38 | -0.0124149 | 0.0083477 | 0.0016954 | 0.1163204 | 0.0484269 |
t=39 | -0.01162 | 0.0076771 | 0.0017662 | 0.1162126 | 0.0484817 |
t=40 | -0.0109043 | 0.007066 | 0.001749 | 0.1160247 | 0.0484474 |
Note: This figure shows the impulse response of log earnings to various shocks that occur when t =10. The diamond line reports the response of the mean of log earnings to a one-standard-deviation shock to the error term in the autoregressive component of wages, while the line with circles shows the effect of becoming unemployed. The remaining three lines report the response of log earnings to an exogenous job change: The line marked with "x" shows the average response. The line with triangles is the effect of an exogenous job change accompanied by a value of the job-specific wage component that is one standard deviation above its mean, or .269. The line with squares shows the effect of an exogenous job change that is accompanied by a one-standard-deviation increase of .157 in the job-specific hours component.
Figure 5b: Mean Response of Log Wage to Various Shocks at t=10
| unemployment shock | 1SD 'w' shock | job change shock | job change + 1SD 'v' shock |
t=1 | 0 | 0 | 0 | 0 |
t=2 | 0 | 0 | 0 | 0 |
t=3 | 0 | 0 | 0 | 0 |
t=4 | 0 | 0 | 0 | 0 |
t=5 | 0 | 0 | 0 | 0 |
t=6 | 0 | 0 | 0 | 0 |
t=7 | 0 | 0 | 0 | 0 |
t=8 | 0 | 0 | 0 | 0 |
t=9 | 0 | 0 | 0 | 0 |
t=10 | -0.2488575 | 0.0942552 | -0.0924389 | 0.1617074 |
t=11 | -0.18397 | 0.0866506 | -0.0717115 | 0.1651797 |
t=12 | -0.1587875 | 0.0797272 | -0.0565507 | 0.1643269 |
t=13 | -0.1388094 | 0.0733094 | -0.0448272 | 0.1628308 |
t=14 | -0.1221836 | 0.0673645 | -0.0355947 | 0.1605587 |
t=15 | -0.1085722 | 0.0619738 | -0.0284162 | 0.1582069 |
t=16 | -0.0968797 | 0.0569642 | -0.0226562 | 0.1554065 |
t=17 | -0.0869589 | 0.052336 | -0.0181651 | 0.152622 |
t=18 | -0.0780873 | 0.0480721 | -0.014534 | 0.1498435 |
t=19 | -0.0703793 | 0.0441744 | -0.0119534 | 0.147119 |
t=20 | -0.0633833 | 0.0405653 | -0.009824 | 0.1439421 |
t=21 | -0.0579765 | 0.03725 | -0.0084875 | 0.1410437 |
t=22 | -0.052613 | 0.0342307 | -0.0072272 | 0.1385994 |
t=23 | -0.0478272 | 0.0314362 | -0.0061991 | 0.1364093 |
t=24 | -0.0437007 | 0.0289114 | -0.0053535 | 0.1341331 |
t=25 | -0.0401192 | 0.0265601 | -0.0044165 | 0.1321871 |
t=26 | -0.0369446 | 0.0244029 | -0.0037663 | 0.1304607 |
t=27 | -0.0337799 | 0.0224874 | -0.0029256 | 0.1293199 |
t=28 | -0.0307803 | 0.0206928 | -0.0020921 | 0.1285651 |
t=29 | -0.0281253 | 0.0189655 | -0.0011561 | 0.1281726 |
t=30 | -0.0255265 | 0.0174766 | 2.81e-05 | 0.1282775 |
t=31 | -0.0228224 | 0.0160761 | 0.0003574 | 0.12767 |
t=32 | -0.0209088 | 0.0147698 | 0.0006769 | 0.1271698 |
t=33 | -0.0191705 | 0.0135822 | 0.0010779 | 0.126708 |
t=34 | -0.0175838 | 0.0125041 | 0.0013423 | 0.1263008 |
t=35 | -0.0162489 | 0.0115125 | 0.0016084 | 0.1258912 |
t=36 | -0.0151556 | 0.0105948 | 0.0017438 | 0.1255403 |
t=37 | -0.0140109 | 0.0097356 | 0.0019236 | 0.1253304 |
t=38 | -0.0128796 | 0.0089426 | 0.002049 | 0.1251631 |
t=39 | -0.0120568 | 0.0082214 | 0.002136 | 0.1250098 |
t=40 | -0.0112386 | 0.0075648 | 0.0021653 | 0.1248651 |
Note: This figure shows the impulse response of log wage to various shocks that occur when t =10. The diamond line reports the response of the mean of log wage to a one-standard-deviation shock to the error term in the autoregressive component of wages. The line with circles shows the effect of becoming unemployed. The line marked with "x" shows the average response to an exogenous job change. The line with triangles is the effect of an exogenous job change accompanied by a value of the job-specific wage component that is one standard deviation above its mean, or .269.
Figure 5c: Mean Response of Log Hours to Various Shocks at t=10
| unemployment shock | 1SD 'w' shock | job change shock | job change + 1SD 'v' shock | job change + 1SD 'xi' shock |
t=1 | 0 | 0 | 0 | 0 | 0 |
t=2 | 0 | 0 | 0 | 0 | 0 |
t=3 | 0 | 0 | 0 | 0 | 0 |
t=4 | 0 | 0 | 0 | 0 | 0 |
t=5 | 0 | 0 | 0 | 0 | 0 |
t=6 | 0 | 0 | 0 | 0 | 0 |
t=7 | 0 | 0 | 0 | 0 | 0 |
t=8 | 0 | 0 | 0 | 0 | 0 |
t=9 | 0 | 0 | 0 | 0 | 0 |
t=10 | -0.3753004 | -0.0067 | 0.0057302 | -0.0118618 | 0.1552844 |
t=11 | -0.0219736 | -0.0061059 | 0.0046048 | -0.0119662 | 0.1206288 |
t=12 | -0.0054331 | -0.0055513 | 0.0034804 | -0.01192 | 0.0999422 |
t=13 | -0.001349 | -0.0052094 | 0.0023046 | -0.01227 | 0.0867057 |
t=14 | 0.0002384 | -0.0047731 | 0.0018291 | -0.0120749 | 0.0774593 |
t=15 | 0.0011811 | -0.0044413 | 0.0014772 | -0.0115619 | 0.0705628 |
t=16 | 0.0013928 | -0.0041142 | 0.0008955 | -0.0113912 | 0.0653071 |
t=17 | 0.002574 | -0.0037413 | 0.0009756 | -0.010716 | 0.0618234 |
t=18 | 0.0028696 | -0.0034733 | 0.0007248 | -0.0105753 | 0.0587239 |
t=19 | 0.003232 | -0.0031695 | 0.0006976 | -0.0101409 | 0.0565662 |
t=20 | 0.003387 | -0.0029478 | 0.0005484 | -0.0102253 | 0.054697 |
t=21 | 0.0032129 | -0.0026741 | 0.0006089 | -0.009757 | 0.0532784 |
t=22 | 0.003304 | -0.0024872 | 0.0004673 | -0.0095935 | 0.0520477 |
t=23 | 0.0030255 | -0.0023026 | 0.0003142 | -0.0095782 | 0.0509996 |
t=24 | 0.0026894 | -0.002089 | 0.0002131 | -0.0095501 | 0.0501528 |
t=25 | 0.0024033 | -0.0019121 | 0.0003209 | -0.0093327 | 0.0496407 |
t=26 | 0.0023723 | -0.0017295 | 0.0002565 | -0.0092368 | 0.0490756 |
t=27 | 0.0023355 | -0.0015783 | 0.0003357 | -0.0089116 | 0.0486345 |
t=28 | 0.0019774 | -0.0014672 | 0.0002337 | -0.0090294 | 0.0482497 |
t=29 | 0.0018301 | -0.0013628 | 0.0001407 | -0.0091004 | 0.0478749 |
t=30 | 0.0015788 | -0.0012321 | -0.0001273 | -0.0091763 | 0.0473537 |
t=31 | 0.0015268 | -0.0011325 | -0.0001049 | -0.0091591 | 0.0472426 |
t=32 | 0.0013518 | -0.0010467 | -9.16e-05 | -0.0090084 | 0.0470853 |
t=33 | 0.0010962 | -0.0009408 | -0.0002375 | -0.0091147 | 0.0468521 |
t=34 | 0.0009618 | -0.000813 | -0.0002069 | -0.0088978 | 0.046752 |
t=35 | 0.0008216 | -0.0007658 | -0.0003324 | -0.0089602 | 0.0465398 |
t=36 | 0.0007124 | -0.0007076 | -0.0004301 | -0.0089259 | 0.0463843 |
t=37 | 0.0005336 | -0.0006442 | -0.0004454 | -0.0088596 | 0.0463133 |
t=38 | 0.0004649 | -0.0005946 | -0.0003533 | -0.0088425 | 0.0463781 |
t=39 | 0.0004373 | -0.0005441 | -0.0003695 | -0.0087972 | 0.0463462 |
t=40 | 0.0003343 | -0.0004988 | -0.0004168 | -0.0088406 | 0.0462818 |
Note: This figure shows the impulse response of log hours to various shocks that occur when t =10. The diamond line reports the response of the mean of log hours to a one-standard-deviation shock to the error term in the autoregressive component of wages. The line with circles shows the effect of becoming unemployed. The line marked with "x" shows the average response to an exogenous job change. The line with triangles is the effect of an exogenous job change accompanied by a value of the job-specific wage component that is one standard deviation above its mean, or .269. The line with squares shows the effect of an exogenous job change accompanied by a one-standard-deviation increase of .157 in the job-specific hours component.
Figure 6a: Response of Cross-Sectional Variance of the First Difference of Log Earnings to Various Shocks at t=10
| unemployment shock | 1SD 'w' shock | job change shock |
t=2 | 1 | 1 | 1 |
t=3 | 1 | 1 | 1 |
t=4 | 1 | 1 | 1 |
t=5 | 1 | 1 | 1 |
t=6 | 1 | 1 | 1 |
t=7 | 1 | 1 | 1 |
t=8 | 1 | 1 | 1 |
t=9 | 1 | 1 | 1 |
t=10 | 0.9930112 | 0.9526839 | 1.580719 |
t=11 | 1.471174 | 1.000726 | 1.023217 |
t=12 | 1.147958 | 1.00071 | 1.015855 |
t=13 | 1.10246 | 1.00125 | 1.023076 |
t=14 | 1.081245 | 1.000794 | 1.01757 |
t=15 | 1.06565 | 1.001348 | 1.010627 |
t=16 | 1.0614 | 1.000528 | 1.012339 |
t=17 | 1.039841 | 1.000998 | 1.011357 |
t=18 | 1.029171 | 1.000237 | 1.008473 |
t=19 | 1.027104 | 1.000835 | 1.006844 |
t=20 | 1.013011 | 1.000775 | 1.006914 |
t=21 | 1.011947 | 0.9999406 | 1.006622 |
t=22 | 1.012813 | 1.000653 | 1.006553 |
t=23 | 1.00546 | 1.000344 | 1.003622 |
t=24 | 1.008244 | 0.999823 | 1.004843 |
t=25 | 1.005819 | 1.00035 | 1.002245 |
t=26 | 1.005068 | 1.000388 | 1.002555 |
t=27 | 1.003797 | 1.00063 | 1.002876 |
t=28 | 1.001529 | 1.000776 | 0.9995847 |
t=29 | 1.003936 | 1.000466 | 1.00373 |
t=30 | 1.002191 | 1.00074 | 1.00103 |
t=31 | 1.000641 | 0.9998961 | 1.000371 |
t=32 | 1.003684 | 0.9999172 | 1.002782 |
t=33 | 1.004348 | 1.000591 | 1.002675 |
t=34 | 1.000053 | 1.000474 | 0.9990577 |
t=35 | 1.001643 | 0.9999005 | 1.00149 |
t=36 | 1.001157 | 1.000044 | 1.001778 |
t=37 | 1.001146 | 1.00005 | 1.001137 |
t=38 | 1.001428 | 1.000131 | 1.000556 |
t=39 | 0.9993528 | 0.9999992 | 0.9996244 |
t=40 | 1.00086 | 0.9999898 | 1.000159 |
Note: This figure shows the behavior of the ratio of var(earnit - earni,t-1) following an exogenous shock at t = 10 to the baseline variance for the model. The diamond line reports the response of the ratio to a one-standard-deviation shock to the error term in the autoregressive component of wages. The line with circles shows the effect of becoming unemployed. The line marked with "x" shows the average response to an exogenous job change.
Figure 6b: Response of Cross-Sectional Variance of Log Earnings to Various Shocks at t=10
| unemployment shock | 1SD 'w' shock | job change shock |
t=1 | 1 | 1 | 1 |
t=2 | 1 | 1 | 1 |
t=3 | 1 | 1 | 1 |
t=4 | 1 | 1 | 1 |
t=5 | 1 | 1 | 1 |
t=6 | 1 | 1 | 1 |
t=7 | 1 | 1 | 1 |
t=8 | 1 | 1 | 1 |
t=9 | 1 | 1 | 1 |
t=10 | 0.8243826 | 0.9844208 | 0.9960754 |
t=11 | 1.08472 | 0.986682 | 1.003498 |
t=12 | 1.060538 | 0.9892476 | 1.014076 |
t=13 | 1.051613 | 0.9907091 | 1.016014 |
t=14 | 1.050452 | 0.9932399 | 1.020489 |
t=15 | 1.048867 | 0.9947613 | 1.023576 |
t=16 | 1.049225 | 0.9956948 | 1.02623 |
t=17 | 1.047093 | 0.9966399 | 1.024773 |
t=18 | 1.046751 | 0.997723 | 1.027369 |
t=19 | 1.042997 | 0.9980478 | 1.029351 |
t=20 | 1.04237 | 0.9986187 | 1.030203 |
t=21 | 1.041435 | 0.9988884 | 1.029973 |
t=22 | 1.036909 | 0.9997324 | 1.026438 |
t=23 | 1.037405 | 0.9997149 | 1.026878 |
t=24 | 1.037084 | 0.9997832 | 1.027895 |
t=25 | 1.035498 | 0.999734 | 1.028851 |
t=26 | 1.033296 | 0.9998894 | 1.027019 |
t=27 | 1.030757 | 1.000265 | 1.026287 |
t=28 | 1.031165 | 1.000357 | 1.030057 |
t=29 | 1.032262 | 1.000813 | 1.029752 |
t=30 | 1.030435 | 1.000167 | 1.029761 |
t=31 | 1.030754 | 1.000269 | 1.0309 |
t=32 | 1.030033 | 1.000452 | 1.030975 |
t=33 | 1.031665 | 1.000413 | 1.033239 |
t=34 | 1.028535 | 1.000364 | 1.028963 |
t=35 | 1.029817 | 1.000506 | 1.031705 |
t=36 | 1.031163 | 1.00041 | 1.030989 |
t=37 | 1.033989 | 1.000369 | 1.030167 |
t=38 | 1.033158 | 1.000356 | 1.030645 |
t=39 | 1.03274 | 1.000466 | 1.031595 |
t=40 | 1.030566 | 1.000526 | 1.029576 |
Note: This figure shows the behavior of the ratio of the cross-sectional variance of log earnings following an exogenous shock at t = 10 to the baseline variance for the model. The diamond line reports the response of the ratio to a one-standard-deviation shock to the error term in the autoregressive component of wages. The line with circles shows the effect of becoming unemployed. The line marked with "x" shows the average response to an exogenous job change.
Figure 7a: Mean Response of Log Earnings to Various Shocks at t=10 SRC Sample
| unemployment shock | 1SD 'w' shock | job change shock | job change + 1SD 'v' shock | job change + 1SD 'xi' shock |
t=1 | 0 | 0 | 0 | 0 | 0 |
t=2 | 0 | 0 | 0 | 0 | 0 |
t=3 | 0 | 0 | 0 | 0 | 0 |
t=4 | 0 | 0 | 0 | 0 | 0 |
t=5 | 0 | 0 | 0 | 0 | 0 |
t=6 | 0 | 0 | 0 | 0 | 0 |
t=7 | 0 | 0 | 0 | 0 | 0 |
t=8 | 0 | 0 | 0 | 0 | 0 |
t=9 | 0 | 0 | 0 | 0 | 0 |
t=10 | -0.6133108 | 0.0836022 | -0.0899301 | 0.1477582 | 0.0671427 |
t=11 | -0.2001429 | 0.0768261 | -0.0692019 | 0.1508126 | 0.0549686 |
t=12 | -0.1596603 | 0.0705781 | -0.0539317 | 0.1510367 | 0.0505419 |
t=13 | -0.1395395 | 0.0649002 | -0.0436909 | 0.1487889 | 0.0485017 |
t=14 | -0.1235251 | 0.0596228 | -0.0349612 | 0.1467078 | 0.0478799 |
t=15 | -0.1113768 | 0.0547121 | -0.0278041 | 0.1440828 | 0.0474274 |
t=16 | -0.0991406 | 0.0501621 | -0.0223308 | 0.14183 | 0.04778 |
t=17 | -0.0874763 | 0.0460355 | -0.0176616 | 0.1397409 | 0.0480118 |
t=18 | -0.0792503 | 0.0424423 | -0.0147312 | 0.1370103 | 0.04774 |
t=19 | -0.0709939 | 0.0390205 | -0.0123084 | 0.1348436 | 0.0478222 |
t=20 | -0.0624785 | 0.0359223 | -0.0101633 | 0.1327488 | 0.0480573 |
t=21 | -0.0567145 | 0.0330389 | -0.0089884 | 0.1299725 | 0.0478194 |
t=22 | -0.0515771 | 0.0304461 | -0.0078418 | 0.128006 | 0.0477641 |
t=23 | -0.0472367 | 0.0279429 | -0.0071208 | 0.1259942 | 0.0474093 |
t=24 | -0.0433037 | 0.0256178 | -0.0062203 | 0.1242402 | 0.0475907 |
t=25 | -0.0398147 | 0.0236263 | -0.0054564 | 0.1229427 | 0.0477593 |
t=26 | -0.0367775 | 0.0217962 | -0.0044839 | 0.1217275 | 0.0481706 |
t=27 | -0.0339582 | 0.0199764 | -0.0036485 | 0.1208589 | 0.0485337 |
t=28 | -0.0309882 | 0.0183535 | -0.0029242 | 0.1206057 | 0.0488687 |
t=29 | -0.0283024 | 0.016912 | -0.0021217 | 0.1203997 | 0.049401 |
t=30 | -0.0260143 | 0.0155282 | -0.0010521 | 0.1204045 | 0.0502369 |
t=31 | -0.0238225 | 0.0142624 | -0.0009046 | 0.1198337 | 0.0502434 |
t=32 | -0.0220406 | 0.0131249 | -0.0004783 | 0.1195097 | 0.0505316 |
t=33 | -0.0205793 | 0.0120354 | -0.0004878 | 0.1191285 | 0.0504899 |
t=34 | -0.0192049 | 0.0110648 | -0.00036 | 0.1188402 | 0.0505378 |
t=35 | -0.0180161 | 0.0101829 | -6.68E-06 | 0.1188304 | 0.0508568 |
t=36 | -0.0169492 | 0.0093732 | 0.0001457 | 0.1185684 | 0.0509748 |
t=37 | -0.0159535 | 0.0085964 | 0.0001855 | 0.1184051 | 0.0509586 |
t=38 | -0.0149813 | 0.0078952 | 0.0002255 | 0.1183169 | 0.0509765 |
t=39 | -0.0143251 | 0.0072384 | 0.000247 | 0.118232 | 0.0509908 |
t=40 | -0.013669 | 0.0066471 | 0.0002098 | 0.11812 | 0.0509529 |
Note: This figure shows the impulse response of log earnings to various shocks that occur when t = 10 using the SRC sample only. The diamond line reports the response of the mean of log earnings to a one-standard-deviation shock to the error term in the autoregressive component of wages, while the line with circles shows the effect of becoming unemployed. The remaining three lines report the response of log earnings to an exogenous job change: The line marked with "x" shows the average response. The line with triangles is the effect of an exogenous job change accompanied by a value of the job-specific wage component that is one standard deviation above its mean. The line with squares shows the effect of an exogenous job change that is accompanied by a one-standard-deviation increase in the job-specific hours component.
Figure 7b: Mean Response of Log Earnings to Various Shocks at t=10 SRC White, Low Education Sample
| unemployment shock | 1SD 'w' shock | job change shock | job change + 1SD 'v' shock | job change + 1SD 'xi' shock |
t=1 | 0 | 0 | 0 | 0 | 0 |
t=2 | 0 | 0 | 0 | 0 | 0 |
t=3 | 0 | 0 | 0 | 0 | 0 |
t=4 | 0 | 0 | 0 | 0 | 0 |
t=5 | 0 | 0 | 0 | 0 | 0 |
t=6 | 0 | 0 | 0 | 0 | 0 |
t=7 | 0 | 0 | 0 | 0 | 0 |
t=8 | 0 | 0 | 0 | 0 | 0 |
t=9 | 0 | 0 | 0 | 0 | 0 |
t=10 | -0.6101625 | 0.0625346 | -0.0605958 | 0.1536591 | 0.074435 |
t=11 | -0.2497869 | 0.0554991 | -0.0452397 | 0.1436267 | 0.0506532 |
t=12 | -0.182128 | 0.0497208 | -0.0364494 | 0.1347959 | 0.0388181 |
t=13 | -0.1546211 | 0.0445704 | -0.0285304 | 0.1272528 | 0.0355322 |
t=14 | -0.135607 | 0.0396399 | -0.0230553 | 0.1209986 | 0.0328228 |
t=15 | -0.1230013 | 0.035238 | -0.0172806 | 0.1174896 | 0.032815 |
t=16 | -0.1109216 | 0.0324011 | -0.0149016 | 0.112649 | 0.0306084 |
t=17 | -0.0962644 | 0.0283077 | -0.0111992 | 0.1095622 | 0.0317833 |
t=18 | -0.0861163 | 0.0257862 | -0.0099277 | 0.1061261 | 0.0312116 |
t=19 | -0.0770674 | 0.0228634 | -0.0072131 | 0.1034381 | 0.0323806 |
t=20 | -0.0679753 | 0.0204556 | -0.0052838 | 0.1018047 | 0.0331695 |
t=21 | -0.0599248 | 0.0185044 | -0.0041502 | 0.0998836 | 0.033473 |
t=22 | -0.0524573 | 0.0167608 | -0.0034573 | 0.098789 | 0.0334899 |
t=23 | -0.0471783 | 0.0148757 | -0.0030129 | 0.0965314 | 0.0334184 |
t=24 | -0.0426278 | 0.0127158 | -0.0029716 | 0.0938215 | 0.0329263 |
t=25 | -0.0375106 | 0.0115306 | -0.0019877 | 0.093184 | 0.033603 |
t=26 | -0.0332043 | 0.0104442 | -0.000833 | 0.0936115 | 0.0343785 |
t=27 | -0.0290613 | 0.0094135 | 0.0002003 | 0.0932827 | 0.0349903 |
t=28 | -0.0276918 | 0.0085552 | -0.0008104 | 0.0918653 | 0.0338452 |
t=29 | -0.0253954 | 0.0074818 | -0.0005751 | 0.0922213 | 0.0339088 |
t=30 | -0.0222859 | 0.0068798 | 0.0009053 | 0.0926313 | 0.0352705 |
t=31 | -0.0189614 | 0.0061233 | 0.001456 | 0.0928113 | 0.0356588 |
t=32 | -0.0172963 | 0.0053964 | 0.0015862 | 0.0926926 | 0.0356104 |
t=33 | -0.0155413 | 0.0048962 | 0.0017204 | 0.0922923 | 0.0356116 |
t=34 | -0.0136569 | 0.0044487 | 0.0018778 | 0.0923033 | 0.0356257 |
t=35 | -0.0119963 | 0.0039344 | 0.0024858 | 0.0924478 | 0.0361645 |
t=36 | -0.0110228 | 0.0034907 | 0.0022895 | 0.0921791 | 0.0359001 |
t=37 | -0.0103929 | 0.003072 | 0.0021155 | 0.0918298 | 0.0356669 |
t=38 | -0.0093279 | 0.0027914 | 0.0024188 | 0.0919344 | 0.0359523 |
t=39 | -0.0086875 | 0.0024951 | 0.0025249 | 0.092108 | 0.0360453 |
t=40 | -0.0077927 | 0.0022271 | 0.0026886 | 0.0922675 | 0.0362089 |
Note: This figure shows the impulse response of the mean of log earnings to various shocks that occur when t = 10 using the SRC White, Low Education sample only. The diamond line reports the response to a one-standard-deviation shock to the error term in the autoregressive component of wages. The line with circles shows the effect of becoming unemployed. The remaining three lines report the response to an exogenous job change: The line marked with "x" shows the average response. The line with triangles is the effect of an exogenous job change accompanied by a value of the job-specific wage component that is one standard deviation above its mean. The line with squares shows the effect of an exogenous job change that is accompanied by a one-standard-deviation increase in the job-specific hours component.
Figure 7c: Mean Response of Log Earnings to Various Shocks at t=10 SRC White, High Education Sample
| unemployment shock | 1SD 'w' shock | job change shock | job change + 1SD 'v' shock | job change + 1SD 'xi' shock |
t=1 | 0 | 0 | 0 | 0 | 0 |
t=2 | 0 | 0 | 0 | 0 | 0 |
t=3 | 0 | 0 | 0 | 0 | 0 |
t=4 | 0 | 0 | 0 | 0 | 0 |
t=5 | 0 | 0 | 0 | 0 | 0 |
t=6 | 0 | 0 | 0 | 0 | 0 |
t=7 | 0 | 0 | 0 | 0 | 0 |
t=8 | 0 | 0 | 0 | 0 | 0 |
t=9 | 0 | 0 | 0 | 0 | 0 |
t=10 | -0.6786697 | 0.0879624 | -0.0895762 | 0.1631482 | 0.092761 |
t=11 | -0.2056956 | 0.0786157 | -0.0680852 | 0.1688573 | 0.0801177 |
t=12 | -0.1901617 | 0.0710459 | -0.0525036 | 0.1702309 | 0.0723119 |
t=13 | -0.1664026 | 0.0634413 | -0.0416274 | 0.1684895 | 0.0679877 |
t=14 | -0.1492813 | 0.056514 | -0.0323405 | 0.1665335 | 0.0641997 |
t=15 | -0.135596 | 0.0505385 | -0.0247455 | 0.1645992 | 0.061363 |
t=16 | -0.1202798 | 0.0453048 | -0.0177081 | 0.1616542 | 0.0599685 |
t=17 | -0.1047773 | 0.0403612 | -0.0123181 | 0.1587474 | 0.0597329 |
t=18 | -0.0939507 | 0.0365591 | -0.0087066 | 0.1558323 | 0.0583591 |
t=19 | -0.0836256 | 0.0328622 | -0.0059733 | 0.1526098 | 0.0576229 |
t=20 | -0.0721564 | 0.0294654 | -0.0038733 | 0.1501312 | 0.0566423 |
t=21 | -0.0634913 | 0.0267868 | -0.0019023 | 0.1473727 | 0.0562816 |
t=22 | -0.0565236 | 0.0242333 | -0.0010149 | 0.1449161 | 0.0552635 |
t=23 | -0.0493746 | 0.0213501 | -0.0003195 | 0.1431458 | 0.0544279 |
t=24 | -0.0427029 | 0.019208 | 0.0008178 | 0.1420622 | 0.0545244 |
t=25 | -0.0384481 | 0.0172863 | 0.0017076 | 0.1406021 | 0.0547895 |
t=26 | -0.0348971 | 0.0155597 | 0.0034707 | 0.1401157 | 0.0558085 |
t=27 | -0.0303853 | 0.0141127 | 0.0049112 | 0.1401565 | 0.0566342 |
t=28 | -0.0267527 | 0.0126271 | 0.0054412 | 0.1397071 | 0.0569334 |
t=29 | -0.0238602 | 0.0113859 | 0.0064893 | 0.1399117 | 0.057754 |
t=30 | -0.0210242 | 0.0103889 | 0.0074053 | 0.1404824 | 0.0584307 |
t=31 | -0.0181246 | 0.0093694 | 0.0077486 | 0.1404967 | 0.058671 |
t=32 | -0.0162263 | 0.0084991 | 0.0081601 | 0.1405196 | 0.0589685 |
t=33 | -0.0146413 | 0.0075269 | 0.0085115 | 0.1405358 | 0.0592732 |
t=34 | -0.0131302 | 0.0068192 | 0.0089808 | 0.140986 | 0.0597219 |
t=35 | -0.0116057 | 0.0061436 | 0.0092964 | 0.1409502 | 0.0600376 |
t=36 | -0.0102692 | 0.0055389 | 0.0094862 | 0.141212 | 0.0602269 |
t=37 | -0.009234 | 0.0049815 | 0.0095458 | 0.1414814 | 0.0602427 |
t=38 | -0.0084147 | 0.004488 | 0.0096049 | 0.1415095 | 0.0603018 |
t=39 | -0.0076222 | 0.0040445 | 0.0096984 | 0.1416812 | 0.0603952 |
t=40 | -0.006887 | 0.0036449 | 0.0097609 | 0.1418371 | 0.0604577 |
Note: This figure shows the impulse response of the mean of log earnings to various shocks that occur when t = 10 using the SRC White, High Education sample only. The diamond line reports the response to a one-standard-deviation shock to the error term in the autoregressive component of wages. The line with circles shows the effect of becoming unemployed. The remaining three lines report the response to an exogenous job change: The line marked with "x" shows the average response. The line with triangles is the effect of an exogenous job change accompanied by a value of the job-specific wage component that is one standard deviation above its mean. The line with squares shows the effect of an exogenous job change that is accompanied by a one-standard-deviation increase in the job-specific hours component.
Figure A1: Comparisons of PSID and Simulated Data - Model B.1
| PSID | SIM_lower | SIM_upper |
St Dev of Log Earnings: t=5 | 0.5022 | 0.5613655 | 0.5648203 |
St Dev of Log Earnings: t=10 | 0.6017 | 0.5756183 | 0.5787853 |
St Dev of Log Earnings: t=15 | 0.5363 | 0.5855305 | 0.5886414 |
St Dev of Log Earnings: t=20 | 0.5559 | 0.5893239 | 0.5923414 |
St Dev of Log Earnings: t=25 | 0.5497 | 0.5888035 | 0.5922367 |
St Dev of Log Earnings: t=30 | 0.5533 | 0.5862343 | 0.5908136 |
St Dev of Log Earnings: t=35 | 0.5705 | 0.5724972 | 0.5788923 |
St Dev of Log Earnings: t=40 | 0.6599 | 0.5625976 | 0.5686387 |
St Dev of Log Hours: t=5 | 0.2767 | 0.2845417 | 0.2864617 |
St Dev of Log Hours: t=10 | 0.3031 | 0.2868929 | 0.2881751 |
St Dev of Log Hours: t=15 | 0.273 | 0.2913459 | 0.2924092 |
St Dev of Log Hours: t=20 | 0.2731 | 0.2891721 | 0.2903469 |
St Dev of Log Hours: t=25 | 0.2745 | 0.2867436 | 0.2877411 |
St Dev of Log Hours: t=30 | 0.2722 | 0.2814888 | 0.2829584 |
St Dev of Log Hours: t=35 | 0.2914 | 0.2738366 | 0.2752563 |
St Dev of Log Hours: t=40 | 0.3443 | 0.2712559 | 0.2727995 |
St Dev of Log Wage: t=5 | 0.3458 | 0.3947636 | 0.3962691 |
St Dev of Log Wage: t=10 | 0.3718 | 0.4026172 | 0.4043089 |
St Dev of Log Wage: t=15 | 0.3754 | 0.4041475 | 0.4062315 |
St Dev of Log Wage: t=20 | 0.4008 | 0.4017406 | 0.4036967 |
St Dev of Log Wage: t=25 | 0.3936 | 0.3990079 | 0.4012962 |
St Dev of Log Wage: t=30 | 0.403 | 0.4013103 | 0.4040518 |
St Dev of Log Wage: t=35 | 0.4006 | 0.4002648 | 0.4034482 |
St Dev of Log Wage: t=40 | 0.4077 | 0.3973821 | 0.4015679 |
Note: This figure compares the actual standard deviations of log earnings, log hours, and log wage in the PSID to the 95 percent confidence interval estimates of the standard deviations based on data simulated from Model B.1. The standard error bands in the figure reflect both sampling error in the estimated "structural" parameters and sampling error due to randomness in the careers of the individuals in a particular sample.
Figure A2: Comparisons of PSID and Simulated Data - Model B.1
| PSID | SIM_lower | SIM_upper |
Employment: t=5 | 0.946 | 0.962387 | 0.9661263 |
Employment: t=10 | 0.9569 | 0.9568272 | 0.958657 |
Employment: t=15 | 0.9651 | 0.9495772 | 0.9510498 |
Employment: t=20 | 0.9723 | 0.9517217 | 0.9534572 |
Employment: t=25 | 0.9756 | 0.95785 | 0.9593471 |
Employment: t=30 | 0.9864 | 0.969511 | 0.9718164 |
Employment: t=35 | 0.9767 | 0.9835376 | 0.9854798 |
Employment: t=40 | 0.971 | 0.9924629 | 0.9943383 |
Job Change if Employed: t=5 | 0.1958 | 0.175668 | 0.1823893 |
Job Change if Employed: t=10 | 0.1403 | 0.1449082 | 0.1474672 |
Job Change if Employed: t=15 | 0.08374 | 0.1104751 | 0.1122465 |
Job Change if Employed: t=20 | 0.06506 | 0.0825399 | 0.0847843 |
Job Change if Employed: t=25 | 0.05571 | 0.0630165 | 0.0648987 |
Job Change if Employed: t=30 | 0.04809 | 0.0466332 | 0.0491164 |
Job Change if Employed: t=35 | 0.03642 | 0.0345349 | 0.0380318 |
Job Change if Employed: t=40 | 0.03497 | 0.024282 | 0.0309988 |
Employment-Employment Transition: t=5 | 0.9822 | 0.9728044 | 0.9746206 |
Employment-Employment Transition: t=10 | 0.9712 | 0.9690137 | 0.9700847 |
Employment-Employment Transition: t=15 | 0.9782 | 0.9642355 | 0.9651163 |
Employment-Employment Transition: t=20 | 0.9782 | 0.96628 | 0.9672067 |
Employment-Employment Transition: t=25 | 0.9784 | 0.9717988 | 0.9728947 |
Employment-Employment Transition: t=30 | 0.99 | 0.9804069 | 0.9819301 |
Employment-Employment Transition: t=35 | 0.9834 | 0.9897851 | 0.9910215 |
Employment-Employment Transition: t=40 | 0.9804 | 0.9952089 | 0.9961014 |
Unemployment-Employment Transition: t=5 | 0.5625 | 0.8177418 | 0.8461238 |
Unemployment-Employment Transition: t=10 | 0.728 | 0.7104341 | 0.7265991 |
Unemployment-Employment Transition: t=15 | 0.6522 | 0.6786252 | 0.6924052 |
Unemployment-Employment Transition: t=20 | 0.8587 | 0.6811439 | 0.695017 |
Unemployment-Employment Transition: t=25 | 0.8723 | 0.6675604 | 0.6784198 |
Unemployment-Employment Transition: t=30 | 0.8261 | 0.6684856 | 0.6924537 |
Unemployment-Employment Transition: t=35 | 0.6786 | 0.6343018 | 0.6789165 |
Unemployment-Employment Transition: t=40 | 0.6154 | 0.710461 | 0.782222 |
Note: This figure compares the PSID sample means and the 95 percent confidence interval estimates of the simulated means for employment, job changes, and employment transitions based on data simulated from Model B.1. The upper left panel shows employment Et; the lower left panel shows job changes JCt conditional on Et = 1 and Et-1 = 1; the upper right panel reports the EE transitions; and the lower right panel displays the UE transitions.
Figure A3: Comparisons of PSID and Simulated Data - Model B.1
| PSID | SIM_lower | SIM_upper |
Employment Duration: t=5 | 4.226 | 5.050192 | 5.074073 |
Employment Duration: t=10 | 6.641 | 8.797948 | 8.851859 |
Employment Duration: t=15 | 9.684 | 12.48961 | 12.54436 |
Employment Duration: t=20 | 12.62 | 15.84176 | 15.8951 |
Employment Duration: t=25 | 15.77 | 18.92628 | 19.00567 |
Employment Duration: t=30 | 17.42 | 21.97568 | 22.09273 |
Employment Duration: t=35 | 19.57 | 25.31553 | 25.48235 |
Employment Duration: t=40 | 21.39 | 28.2464 | 28.46955 |
Tenure: t=5 | 3.021 | 2.523354 | 2.563984 |
Tenure: t=10 | 4.8 | 4.578267 | 4.630015 |
Tenure: t=15 | 7.311 | 6.931039 | 6.984604 |
Tenure: t=20 | 9.941 | 9.545419 | 9.604796 |
Tenure: t=25 | 12.76 | 12.2711 | 12.34938 |
Tenure: t=30 | 15.05 | 15.07961 | 15.19695 |
Tenure: t=35 | 17.57 | 18.20168 | 18.39052 |
Tenure: t=40 | 19.34 | 20.95991 | 21.30506 |
Unemployment Duration: t=5 | 1.604 | 1.297545 | 1.340631 |
Unemployment Duration: t=10 | 1.539 | 1.522835 | 1.595713 |
Unemployment Duration: t=15 | 1.624 | 1.729937 | 1.798991 |
Unemployment Duration: t=20 | 1.419 | 1.867242 | 1.961393 |
Unemployment Duration: t=25 | 1.303 | 2.04938 | 2.184828 |
Unemployment Duration: t=30 | 1.167 | 2.44053 | 2.753558 |
Unemployment Duration: t=35 | 1.394 | 2.42824 | 3.225781 |
Unemployment Duration: t=40 | 1.348 | 3.006294 | 3.452305 |
Note: This figure compares the PSID sample means (by potential experience) and the 95 percent confidence interval estimates of the means (by potential experience) based on data simulated from Model B.1, for employment duration, tenure, and unemployment duration.
Figure A4: Mean Response of Log Earnings to Various Shocks at t=10 Model B.1
| unemployment shock | 1SD 'w' shock | job change shock |
t=1 | 0 | 0 | 0 |
t=2 | 0 | 0 | 0 |
t=3 | 0 | 0 | 0 |
t=4 | 0 | 0 | 0 |
t=5 | 0 | 0 | 0 |
t=6 | 0 | 0 | 0 |
t=7 | 0 | 0 | 0 |
t=8 | 0 | 0 | 0 |
t=9 | 0 | 0 | 0 |
t=10 | -0.5601966 | 0.1145189 | 0.0226731 |
t=11 | -0.1391454 | 0.1044419 | 0.022388 |
t=12 | -0.1138699 | 0.0954049 | 0.0216584 |
t=13 | -0.0998693 | 0.0876222 | 0.0209229 |
t=14 | -0.0910668 | 0.0806999 | 0.0201952 |
t=15 | -0.0833967 | 0.0746157 | 0.0196214 |
t=16 | -0.0759153 | 0.0691569 | 0.0188987 |
t=17 | -0.0693319 | 0.0642371 | 0.0180626 |
t=18 | -0.0631006 | 0.0597968 | 0.0174544 |
t=19 | -0.0565355 | 0.0558224 | 0.0166559 |
t=20 | -0.0515292 | 0.0521317 | 0.0160069 |
t=21 | -0.0471053 | 0.0488605 | 0.0151694 |
t=22 | -0.0439868 | 0.0457985 | 0.0143435 |
t=23 | -0.0405412 | 0.0430295 | 0.013768 |
t=24 | -0.0374782 | 0.0405185 | 0.0131149 |
t=25 | -0.0349619 | 0.0382142 | 0.012481 |
t=26 | -0.0326939 | 0.0360641 | 0.012023 |
t=27 | -0.0304921 | 0.0341103 | 0.0114644 |
t=28 | -0.0285902 | 0.0323136 | 0.0109348 |
t=29 | -0.0268891 | 0.0306246 | 0.0104599 |
t=30 | -0.0253346 | 0.0290596 | 0.0100012 |
t=31 | -0.0239525 | 0.0276041 | 0.0095503 |
t=32 | -0.0226436 | 0.0262554 | 0.0091605 |
t=33 | -0.0214634 | 0.0249953 | 0.0087655 |
t=34 | -0.020396 | 0.0238085 | 0.0083804 |
t=35 | -0.0193467 | 0.0227017 | 0.0080445 |
t=36 | -0.0184753 | 0.021657 | 0.0076702 |
t=37 | -0.0176051 | 0.0206759 | 0.0073345 |
t=38 | -0.0167916 | 0.0197477 | 0.0070071 |
t=39 | -0.0159883 | 0.0188692 | 0.0067134 |
t=40 | -0.015255 | 0.0180418 | 0.0064106 |
Note: This figure shows the impulse response of the mean of log earnings to various shocks that occur when t =10 for Model B.1. The diamond line reports the response to a one-standard-deviation shock to the error term in the autoregressive component of wages. The line with circles shows the effect of becoming unemployed. The line with triangles is the effect of an exogenous job change.
Figure A5: Mean Response of Log Wage to Various Shocks at t=10 Model B.1
| unemployment shock | 1SD 'w' shock | job change shock |
t=1 | 0 | 0 | 0 |
t=2 | 0 | 0 | 0 |
t=3 | 0 | 0 | 0 |
t=4 | 0 | 0 | 0 |
t=5 | 0 | 0 | 0 |
t=6 | 0 | 0 | 0 |
t=7 | 0 | 0 | 0 |
t=8 | 0 | 0 | 0 |
t=9 | 0 | 0 | 0 |
t=10 | -0.182241 | 0.1262453 | 0.0249946 |
t=11 | -0.1054051 | 0.1151366 | 0.0246809 |
t=12 | -0.0967863 | 0.1051741 | 0.0238762 |
t=13 | -0.0898218 | 0.0965946 | 0.0230653 |
t=14 | -0.0840266 | 0.0889633 | 0.0222631 |
t=15 | -0.0783908 | 0.0822561 | 0.0216303 |
t=16 | -0.0728245 | 0.0762386 | 0.0208342 |
t=17 | -0.0679021 | 0.0708151 | 0.0199122 |
t=18 | -0.0630314 | 0.0659199 | 0.0192418 |
t=19 | -0.0580797 | 0.0615385 | 0.0183616 |
t=20 | -0.0538473 | 0.0574698 | 0.0176458 |
t=21 | -0.0500884 | 0.0538638 | 0.0167227 |
t=22 | -0.0468087 | 0.0504882 | 0.0158124 |
t=23 | -0.0436041 | 0.0474355 | 0.0151777 |
t=24 | -0.0405047 | 0.0446672 | 0.0144577 |
t=25 | -0.0379782 | 0.0421274 | 0.0137591 |
t=26 | -0.0355172 | 0.039757 | 0.0132542 |
t=27 | -0.0333672 | 0.0376029 | 0.0126381 |
t=28 | -0.0313692 | 0.0356224 | 0.0120547 |
t=29 | -0.0295138 | 0.0337605 | 0.0115309 |
t=30 | -0.0278695 | 0.0320354 | 0.0110254 |
t=31 | -0.0263557 | 0.0304308 | 0.0105281 |
t=32 | -0.0249028 | 0.0289438 | 0.0100985 |
t=33 | -0.0236316 | 0.027555 | 0.0096631 |
t=34 | -0.0224745 | 0.0262463 | 0.0092385 |
t=35 | -0.0213375 | 0.0250261 | 0.0088682 |
t=36 | -0.0203671 | 0.0238745 | 0.0084555 |
t=37 | -0.019408 | 0.0227931 | 0.0080855 |
t=38 | -0.0185108 | 0.0217698 | 0.0077248 |
t=39 | -0.0176353 | 0.0208015 | 0.007401 |
t=40 | -0.0168171 | 0.0198891 | 0.007067 |
Note: This figure shows the impulse response of the mean of log wage to various shocks that occur when t =10 for Model B.1. The diamond line reports the response to a one-standard-deviation shock to the error term in the autoregressive component of wages. The line with circles shows the effect of becoming unemployed. The line with triangles is the effect of an exogenous job change.
Figure A6: Mean Response of Log Hours to Various Shocks at t=10 Model B.1
| unemployment shock | 1SD 'w' shock | job change shock |
t=1 | 0 | 0 | 0 |
t=2 | 0 | 0 | 0 |
t=3 | 0 | 0 | 0 |
t=4 | 0 | 0 | 0 |
t=5 | 0 | 0 | 0 |
t=6 | 0 | 0 | 0 |
t=7 | 0 | 0 | 0 |
t=8 | 0 | 0 | 0 |
t=9 | 0 | 0 | 0 |
t=10 | -0.3779559 | -0.0117264 | -0.0023217 |
t=11 | -0.0337405 | -0.010695 | -0.0022926 |
t=12 | -0.0170836 | -0.009769 | -0.0022178 |
t=13 | -0.0100474 | -0.0089722 | -0.0021424 |
t=14 | -0.0070405 | -0.0082636 | -0.002068 |
t=15 | -0.0050058 | -0.0076404 | -0.0020089 |
t=16 | -0.0030909 | -0.0070815 | -0.0019355 |
t=17 | -0.0014296 | -0.006578 | -0.0018497 |
t=18 | -6.91e-05 | -0.0061231 | -0.0017877 |
t=19 | 0.0015445 | -0.0057163 | -0.0017056 |
t=20 | 0.0023179 | -0.0053382 | -0.0016394 |
t=21 | 0.0029831 | -0.005003 | -0.0015531 |
t=22 | 0.0028224 | -0.0046892 | -0.0014687 |
t=23 | 0.0030632 | -0.004406 | -0.0014095 |
t=24 | 0.0030265 | -0.004149 | -0.0013428 |
t=25 | 0.003016 | -0.0039129 | -0.0012779 |
t=26 | 0.0028234 | -0.0036931 | -0.0012312 |
t=27 | 0.0028749 | -0.0034928 | -0.001174 |
t=28 | 0.002779 | -0.0033088 | -0.0011196 |
t=29 | 0.002625 | -0.0031357 | -0.001071 |
t=30 | 0.0025349 | -0.0029759 | -0.0010242 |
t=31 | 0.0024033 | -0.0028262 | -0.0009775 |
t=32 | 0.0022593 | -0.0026889 | -0.0009384 |
t=33 | 0.0021682 | -0.0025597 | -0.0008979 |
t=34 | 0.0020785 | -0.0024376 | -0.0008578 |
t=35 | 0.0019908 | -0.0023246 | -0.000824 |
t=36 | 0.0018916 | -0.0022178 | -0.0007854 |
t=37 | 0.0018024 | -0.0021172 | -0.000751 |
t=38 | 0.0017195 | -0.0020223 | -0.0007176 |
t=39 | 0.001647 | -0.0019321 | -0.0006871 |
t=40 | 0.0015621 | -0.0018477 | -0.0006566 |
Note: This figure shows the impulse response of the mean of log hours to various shocks that occur when t =10 for Model B.1. The diamond line reports the response to a one-standard-deviation shock to the error term in the autoregressive component of wages. The line with circles shows the effect of becoming unemployed. The line with triangles is the effect of an exogenous job change.
Figure A7: Response of Cross-Sectional variance of the First Difference of Log Earnings to Various Shocks at t=10 - Model B.1
| unemployment shock | 1SD 'w' shock | job change shock |
t=2 | 1 | 1 | 1 |
t=3 | 1 | 1 | 1 |
t=4 | 1 | 1 | 1 |
t=5 | 1 | 1 | 1 |
t=6 | 1 | 1 | 1 |
t=7 | 1 | 1 | 1 |
t=8 | 1 | 1 | 1 |
t=9 | 1 | 1 | 1 |
t=10 | 0.8694952 | 0.9714931 | 1.328897 |
t=11 | 1.466354 | 0.9945283 | 1.022987 |
t=12 | 1.23326 | 0.9928479 | 1.016241 |
t=13 | 1.169135 | 0.9928505 | 1.011256 |
t=14 | 1.139694 | 0.9935359 | 1.010932 |
t=15 | 1.114018 | 0.9941651 | 1.00918 |
t=16 | 1.094014 | 0.9947633 | 1.008709 |
t=17 | 1.077525 | 0.9950341 | 1.006014 |
t=18 | 1.065193 | 0.9958141 | 1.00452 |
t=19 | 1.042992 | 0.9965768 | 1.003251 |
t=20 | 1.029076 | 0.9965797 | 1.004322 |
t=21 | 1.023773 | 0.9971874 | 1.003585 |
t=22 | 1.019811 | 0.9973874 | 1.003145 |
t=23 | 1.01486 | 0.9975362 | 1.002257 |
t=24 | 1.012921 | 0.9978126 | 1.00219 |
t=25 | 1.0106 | 0.9983408 | 1.002216 |
t=26 | 1.008147 | 0.9984843 | 1.000891 |
t=27 | 1.005931 | 0.9985859 | 1.001059 |
t=28 | 1.003831 | 0.9987199 | 1.000578 |
t=29 | 1.004109 | 0.9990811 | 1.001006 |
t=30 | 1.003279 | 0.9992052 | 1.000336 |
t=31 | 1.002843 | 0.999289 | 1.000823 |
t=32 | 1.001722 | 0.9994239 | 1.000113 |
t=33 | 1.001603 | 0.9995354 | 1.000328 |
t=34 | 1.001017 | 0.999629 | 1.000366 |
t=35 | 1.000901 | 0.9997412 | 1.000056 |
t=36 | 1.000731 | 0.9996842 | 1.000332 |
t=37 | 1.000876 | 0.9998609 | 1.000515 |
t=38 | 1.000492 | 0.9998245 | 1.000283 |
t=39 | 1.000375 | 0.9999354 | 1.000158 |
t=40 | 1.000314 | 0.9999443 | 1.000078 |
Note: This figure shows the behavior of the ratio of var(earnit - earni,t-1) following an exogenous shock at t = 10 to the baseline variance for model B.1. The diamond line reports the response of the ratio to a one-standard-deviation shock to the error term in the autoregressive component of wages. The line with circles shows the effect of becoming unemployed. The line marked with "x" shows the average response to an exogenous job change.
Figure A8: Response of Cross-Sectional variance of Log Earnings to Various Shocks at t=10 - Model B.1
| unemployment shock | 1SD 'w' shock | job change shock |
t=1 | 1 | 1 | 1 |
t=2 | 1 | 1 | 1 |
t=3 | 1 | 1 | 1 |
t=4 | 1 | 1 | 1 |
t=5 | 1 | 1 | 1 |
t=6 | 1 | 1 | 1 |
t=7 | 1 | 1 | 1 |
t=8 | 1 | 1 | 1 |
t=9 | 1 | 1 | 1 |
t=10 | 0.895839 | 0.9574797 | 1.036472 |
t=11 | 1.175763 | 0.9631809 | 1.032827 |
t=12 | 1.123148 | 0.9703097 | 1.030485 |
t=13 | 1.103551 | 0.9765139 | 1.029217 |
t=14 | 1.091215 | 0.981994 | 1.026283 |
t=15 | 1.085855 | 0.9879863 | 1.02655 |
t=16 | 1.076559 | 0.9919695 | 1.026164 |
t=17 | 1.070105 | 0.9949493 | 1.024724 |
t=18 | 1.059844 | 0.9972593 | 1.023119 |
t=19 | 1.050738 | 0.9998587 | 1.022248 |
t=20 | 1.047207 | 1.001635 | 1.021578 |
t=21 | 1.040486 | 1.003032 | 1.019439 |
t=22 | 1.037646 | 1.0043 | 1.018062 |
t=23 | 1.033402 | 1.005055 | 1.018213 |
t=24 | 1.028419 | 1.006539 | 1.016746 |
t=25 | 1.025318 | 1.006938 | 1.016021 |
t=26 | 1.021821 | 1.007043 | 1.01458 |
t=27 | 1.018731 | 1.00789 | 1.013623 |
t=28 | 1.017319 | 1.008474 | 1.013549 |
t=29 | 1.015456 | 1.008209 | 1.012779 |
t=30 | 1.014576 | 1.008251 | 1.012627 |
t=31 | 1.012349 | 1.008327 | 1.011634 |
t=32 | 1.011572 | 1.008184 | 1.011798 |
t=33 | 1.010338 | 1.008186 | 1.011001 |
t=34 | 1.009888 | 1.008493 | 1.010018 |
t=35 | 1.009358 | 1.007999 | 1.010605 |
t=36 | 1.009073 | 1.008157 | 1.0096 |
t=37 | 1.007758 | 1.007774 | 1.008655 |
t=38 | 1.007509 | 1.007913 | 1.008392 |
t=39 | 1.006315 | 1.007568 | 1.007472 |
t=40 | 1.006068 | 1.007197 | 1.007306 |
Note: This figure shows the behavior of the ratio of the cross-sectional variance of log earnings following an exogenous shock at t = 10 to the baseline variance for model B.1. The diamond line reports the response of the ratio to a one-standard-deviation shock to the error term in the autoregressive component of wages. The line with circles shows the effect of becoming unemployed. The line marked with "x" shows the average response to an exogenous job change.
Figure B1: Decomposing the Wage-Experience Profile, SRC Sample. Whites with a High School Degree or Less
| E(v_j(t)|t) | E(lnwage|t) | E(Value of Tenure|t) | hc(t) |
t=1 | -0.0001194 | 0 | 0 | 0.0001194 |
t=2 | 0.0020135 | 0.0776476 | 0.0157807 | 0.0598534 |
t=3 | 0.0042186 | 0.14996 | 0.0266831 | 0.1190582 |
t=4 | 0.0082046 | 0.2171376 | 0.0345592 | 0.1743739 |
t=5 | 0.0108021 | 0.2793808 | 0.0408035 | 0.2277752 |
t=6 | 0.0140406 | 0.33689 | 0.0460465 | 0.2768029 |
t=7 | 0.0175036 | 0.3898656 | 0.0508455 | 0.3215165 |
t=8 | 0.0198992 | 0.438508 | 0.0547533 | 0.3638555 |
t=9 | 0.0197964 | 0.4830176 | 0.0586439 | 0.4045773 |
t=10 | 0.0214941 | 0.5235948 | 0.0619862 | 0.4401145 |
t=11 | 0.0235347 | 0.56044 | 0.0650516 | 0.4718536 |
t=12 | 0.0255054 | 0.5937536 | 0.0677189 | 0.5005293 |
t=13 | 0.0274757 | 0.623736 | 0.0698101 | 0.5264502 |
t=14 | 0.0299871 | 0.6505876 | 0.0719021 | 0.5486985 |
t=15 | 0.0311723 | 0.6745088 | 0.0740231 | 0.5693134 |
t=16 | 0.0324159 | 0.6957 | 0.0754979 | 0.5877863 |
t=17 | 0.032421 | 0.7143616 | 0.0769906 | 0.6049501 |
t=18 | 0.0330675 | 0.730694 | 0.0783999 | 0.6192267 |
t=19 | 0.033295 | 0.7448976 | 0.0797303 | 0.6318723 |
t=20 | 0.0329417 | 0.7571728 | 0.0814032 | 0.6428279 |
t=21 | 0.0341431 | 0.76772 | 0.0828998 | 0.6506771 |
t=22 | 0.0347709 | 0.7767396 | 0.0848373 | 0.6571314 |
t=23 | 0.0357531 | 0.784432 | 0.08704 | 0.6616389 |
t=24 | 0.0350177 | 0.7909976 | 0.0892977 | 0.6666823 |
t=25 | 0.0364797 | 0.7966368 | 0.0918507 | 0.6683065 |
t=26 | 0.0371427 | 0.80155 | 0.0946006 | 0.6698066 |
t=27 | 0.0379969 | 0.8059376 | 0.09772 | 0.6702207 |
t=28 | 0.0384705 | 0.81 | 0.1011552 | 0.6703743 |
t=29 | 0.0386111 | 0.8139376 | 0.1048171 | 0.6705095 |
t=30 | 0.0398674 | 0.8179508 | 0.1089491 | 0.6691344 |
t=31 | 0.0404686 | 0.82224 | 0.113086 | 0.6686854 |
t=32 | 0.0399609 | 0.8270056 | 0.1175198 | 0.6695248 |
t=33 | 0.0407922 | 0.832448 | 0.1220065 | 0.6696493 |
t=34 | 0.0412226 | 0.8387676 | 0.1268023 | 0.6707426 |
t=35 | 0.0411975 | 0.8461648 | 0.1316528 | 0.6733145 |
t=36 | 0.0412373 | 0.85484 | 0.1364502 | 0.6771525 |
t=37 | 0.0410309 | 0.8649936 | 0.1412666 | 0.682696 |
t=38 | 0.04152 | 0.876826 | 0.1459832 | 0.6893228 |
t=39 | 0.0419839 | 0.8905376 | 0.1503133 | 0.6982405 |
t=40 | 0.0425341 | 0.9063288 | 0.1545776 | 0.7092171 |
Note: This figure decomposes the experience profile of wages E(lnwage|t) into three components: the contributions of general human capital hc(t), job mobility E(v_j(t)|t), and accumulated job seniority E(Value of Tenure|t). The decomposition is based on the estimates of model A.3 on a subsample of whites with a high school degree or less from the SRC sample.
Figure B2: Decomposing the Wage-Experience Profile, SRC Sample, Whites, Some College or More.
| E(v_j(t)|t) | E(lnwage|t) | E(Value of Tenure|t) | hc(t) |
t=1 | -0.0004594 | 0 | 0 | 0.0004594 |
t=2 | 0.0097698 | 0.077815 | 0.0217053 | 0.0463399 |
t=3 | 0.0176675 | 0.1508232 | 0.0379272 | 0.0952285 |
t=4 | 0.0263929 | 0.2191734 | 0.0498143 | 0.1429662 |
t=5 | 0.035144 | 0.2830144 | 0.0584512 | 0.1894192 |
t=6 | 0.043877 | 0.342495 | 0.0644257 | 0.2341923 |
t=7 | 0.0516981 | 0.397764 | 0.0688553 | 0.2772106 |
t=8 | 0.0578828 | 0.4489702 | 0.0717522 | 0.3193353 |
t=9 | 0.0634305 | 0.4962624 | 0.0740352 | 0.3587967 |
t=10 | 0.068328 | 0.5397894 | 0.0753192 | 0.3961421 |
t=11 | 0.0739596 | 0.5797 | 0.076334 | 0.4294063 |
t=12 | 0.0789554 | 0.616143 | 0.0770877 | 0.4600998 |
t=13 | 0.0867236 | 0.6492672 | 0.0773609 | 0.4851827 |
t=14 | 0.0915519 | 0.6792214 | 0.0774074 | 0.5102622 |
t=15 | 0.0961262 | 0.7061544 | 0.0780623 | 0.5319659 |
t=16 | 0.0992439 | 0.730215 | 0.0783651 | 0.552606 |
t=17 | 0.1021927 | 0.751552 | 0.0789021 | 0.5704572 |
t=18 | 0.1044644 | 0.7703142 | 0.0796226 | 0.5862272 |
t=19 | 0.1065374 | 0.7866504 | 0.0808066 | 0.5993064 |
t=20 | 0.1082533 | 0.8007094 | 0.0821375 | 0.6103187 |
t=21 | 0.1117858 | 0.81264 | 0.0840473 | 0.6168069 |
t=22 | 0.1153634 | 0.822591 | 0.0861509 | 0.6210768 |
t=23 | 0.1173029 | 0.8307112 | 0.0890718 | 0.6243365 |
t=24 | 0.1190082 | 0.8371494 | 0.0919939 | 0.6261473 |
t=25 | 0.1213735 | 0.8420544 | 0.0954773 | 0.6252036 |
t=26 | 0.1232488 | 0.845575 | 0.0992249 | 0.6231012 |
t=27 | 0.1250796 | 0.84786 | 0.1033984 | 0.6193819 |
t=28 | 0.1264705 | 0.8490582 | 0.1077135 | 0.6148742 |
t=29 | 0.1279785 | 0.8493184 | 0.1124456 | 0.6088943 |
t=30 | 0.1298072 | 0.8487894 | 0.1175706 | 0.6014116 |
t=31 | 0.131622 | 0.84762 | 0.1228136 | 0.5931844 |
t=32 | 0.1321082 | 0.845959 | 0.1282361 | 0.5856147 |
t=33 | 0.1332261 | 0.8439552 | 0.1335243 | 0.5772048 |
t=34 | 0.1336664 | 0.8417574 | 0.1389848 | 0.5691062 |
t=35 | 0.1340047 | 0.8395144 | 0.1442314 | 0.5612783 |
t=36 | 0.134511 | 0.837375 | 0.1492891 | 0.5535749 |
t=37 | 0.1347437 | 0.835488 | 0.1541174 | 0.5466269 |
t=38 | 0.1350312 | 0.8340022 | 0.158602 | 0.540369 |
t=39 | 0.1350385 | 0.8330664 | 0.1625971 | 0.5354308 |
t=40 | 0.1351375 | 0.8328294 | 0.1659962 | 0.5316957 |
Note: This figure decomposes the experience profile of wages E(lnwage|t) into three components: the contributions of general human capital hc(t), job mobility E(v_j(t)|t), and accumulated job seniority E(Value of Tenure|t). The decomposition is based on the estimates of model A.3 on a subsample of whites with some college education or more from the SRC sample.