The Federal Reserve Board eagle logo links to home page

Trade Elasticity of Substitution and Equilibrium Dynamics*

Martin Bodenstein**

NOTE: International Finance Discussion Papers are preliminary materials circulated to stimulate discussion and critical comment. References in publications to International Finance Discussion Papers (other than an acknowledgment that the writer has had access to unpublished material) should be cleared with the author or authors. Recent IFDPs are available on the Web at http://www.federalreserve.gov/pubs/ifdp/. This paper can be downloaded without charge from the Social Science Research Network electronic library at http://www.ssrn.com/.


Abstract:

The empirical literature provides a wide range of estimates for trade elasticities at the aggregate level. Furthermore, recent contributions in international macroeconomics suggest that low (implied) values of the trade elasticity of substitution may play an important role in understanding the disconnect between international prices and real variables. However, a standard model of the international business cycle displays multiple locally isolated equilibria if the trade elasticity of substitution is sufficiently low. The main contribution of this paper is to compute and characterize some dynamic properties of these equilibria. While multiple steady states clearly signal equilibrium multiplicity in the dynamic setup, this is not a necessary condition. Solutions based on log-linearization around a deterministic steady state are of limited to no help in computing the true dynamics. However, the log-linear solution can hint at the presence of multiple dynamic equilibria.

Keywords: Multiple equilibria, linearization, DSGE models

JEL classification: C68, F41



1  Introduction

General equilibrium theory is plagued with the problem of equilibrium multiplicity.1 This paper analyzes a standard model of the international business cycle that is based on the seminal contribution of Backus, Kehoe, and Kydland (1995). If the elasticity of substitution between the home and the foreign good is sufficiently low, this model displays multiple locally isolated equilibria.2 The main contribution of this paper is to characterize the dynamic properties of these multiple equilibria in a model with endogenous capital accumulation and incomplete international financial markets for borrowing and lending. The two major computational issues that arise are to identify conditions that indicate the existence of multiple equilibria and to find a reliable method to compute these equilibria.

To build intuition, consider an endowment economy with two countries and two traded goods that are imperfect substitutes. The countries are mirroring each other with respect to preferences and endowments.3 There is always one equilibrium with the relative price of the traded goods equal to unity. However, there can be two more equilibria. Let the price of the domestic good be high relative to the price of the foreign good, so that domestic agents have high purchasing power relative to the foreign agents. If the elasticity of substitution is low, foreigners are willing to give up most of their good in order to consume at least some of the domestic good, and domestic agents end up consuming most of the domestic and the foreign good. The reverse is true as well. Foreign agents consume most of the two goods, if the foreign good is very expensive in relative terms. Of course, these last two scenarios cannot be an equilibrium for high values of the elasticity of substitution. In the limiting case of perfect substitutability the unique equilibrium features each country consuming its own endowment. Such a model of multiple locally unique equilibria allows for the construction of sunspot equilibria, meaning there are equilibria for which allocations are different across different states of nature, even though nothing fundamental has changed.4

In a model with endogenous state variables the computation of dynamic multiple equilibria cannot be separated from considering sunspot equilibria. To eliminate these complications I conduct the following experiment. In the first period the economy experiences an unforeseen shock to technology. This is the only period in which agents are free to coordinate on any of the possible equilibrium paths. Starting from the second period onwards, agents have perfect foresight and they keep coordinating on the equilibrium path that has been chosen in the first period.

Under these assumptions I can typically find three equilibria provided that the elasticity of substitution is sufficiently low. Along the first equilibrium path the dynamics are solely driven by the impact of the technology shock and all variables stay in the neighborhood of their pre-shock level. The dynamics of the other two equilibria are mostly driven by the shifts in relative purchasing power due to self-fulfilling changes in the relative price of the home and foreign good. The effects of the technology shock are negligible in these cases.

Whereas for a given calibration the existence of multiple equilibria mostly depends on the magnitude of the trade elasticity of substitution, it can also depend on the magnitude and the persistence of the shock. In some cases, two of the three equilibria cease to exists if the shock is sufficiently large or permanent. At least in the cases presented in this paper, the now unique equilibrium involves a large shift in relative purchasing power.

Although equilibrium multiplicity in the dynamic model mostly goes along with multiple steady states, one can also find multiple equilibria in cases with a unique steady state. In a model with a slow-moving capital stock the short-run excess demand function behaves differently from the long-run excess demand, as the economy is less flexible in the short run.

The major challenge in computing equilibria in an environment with multiple locally unique equilibria is to generate a good starting guess. Fortunately, it is possible to derive a starting guess for the model economy with capital and incomplete financial markets from an endowment economy with incomplete financial markets. Using a combination of backward and forward shooting algorithms the impulse response functions for a technology shock are derived under the aforementioned assumption that in the period of the shock agents coordinate once and for all on one equilibrium path.

Linearization or higher-order perturbation methods that approximate the equilibrium policy functions around a deterministic steady state are of limited use in an environment with low trade elasticities. First, these methods can only detect one of the three equilibria. In particular, the method cannot detect those equilibria that are associated with the large shifts in relative purchasing power. Second, in some cases of large shocks local approximation techniques are inappropriate. This issue is not just due to the declining accuracy of the approximation method with increasing distance from the deterministic steady state. The real problem is that the method searches for an equilibrium path where it can be shown that no such equilibrium path exists for a shock of the considered size. Hence, even if one is willing to abstract from equilibrium multiplicity and the possibility of sunspot equilibria, global non-linear methods are preferred to local approximation methods. However, the linear approximation to the policy functions can be put to use in detecting the presence multiple equilibria.

The literature provides a large range of estimates for the trade elasticity of substitution. Using aggregate data Whalley (1995) reports an elasticity of 1.5. In a recent study, Hooper, Johnson and Marquez (2000) estimate trade elasticities for the G7 countries. They report a short-run trade elasticity of 0.6 for the U.S. and values between 0 and 0.6 for the remaining G7 countries. Taylor (1993) estimates an import demand equation for the U.S. and finds a short-run elasticity of 0.22 and a long-run trade elasticity of 0.39. Obviously, these macro estimates are in sharp contrasts to the estimates from lower levels of aggregation. In Broda and Weinstein (2005), for example, the mean estimates are between 4 and 6. Most relevant for this paper, it is common in many applied macroeconomic models to choose values of the elasticity of substitution between 1 and 1.5. Examples include Backus et al (1995), Chari, Kehoe, and McGrattan (2003), and Heathcote and Perri (2002). Recently, however, models with (implied) low elasticities of substitution between home and foreign goods have received considerable attention - Corsetti, Dedola, and Leduc (2008), Collard and Dellas (2004), Benigno and Thoenissen (2008), Thoenissen (2008), and Enders and Mueller (2008) - as such models seem to provide a better fit to the international business cycle. In particular, this has been shown for the case of the puzzling negative correlation between the real exchange rate and relative consumption (Backus and Smith (1993)), cross-country consumption correlations, and the volatility of the real exchange rate. Furthermore, Rabanal and Tuesta (2005) and Lubik and Schorfheide (2005) show estimates for the elasticity of substitution well below unity in DSGE models using Bayesian techniques. In a model that is akin to Corsetti et al (2008), de Walque, Smets and Wouters (2005) find that the data speaks in favor of a low implied elasticity of substitution.

This paper does not take a stand on the value of the trade elasticity of substitution in macro models. However, as there seems to be considerable interest in models with low trade elasticities, it is important to search for tools that allow a complete analysis of models with multiple equilibria and to investigate the extent to which the results of these models and their support through the data hinge on the value of the elasticity of substitution between traded goods being so low that the model admits multiple equilibria.5

The remainder of the paper is organized as follows. Section 2 introduces the problem of multiple equilibria in a static endowment economy. Section 3 presents a dynamic model with endogenous capital accumulation and international borrowing and lending. Computational issues are addressed in Section 4. In Section 5, the equilibrium multiplicity in the dynamic economy is illustrated with the help of impulse response functions. Some sensitivity aspects of the results are discussed in Section 6. Section 7 concludes.


2  Multiple Equilibria

The analysis begins with the well-known example of a static exchange economy with two agents and two goods.6 Let agent $ i$ ($ i=1,2$) receive an endowment of $ y_{i}$ units of good $ i$. Agents can trade their endowments with each other and they have constant elasticity of substitution preferences over the two goods. The problem of agent $ i$ is given by

  $\displaystyle \max_{c_{i1}, c_{i2}}c_{i}=\left[ \left( \alpha_{i1}\right) ^{1-\rho }c_{i1}^{\rho}+\left( \alpha_{i2}\right) ^{1-\rho}c_{i2}^{\rho}\right] ^{ \frac{1}{\rho}}$ (1)
  s.t.    
  $\displaystyle \bar{P}_{1}c_{i1}+\bar{P}_{2}c_{i2}\leq\bar{P}_{i}y_{i},$ (2)

where $ \rho<1$ and $ \alpha_{ii}\geq\alpha_{ij}$, $ j\neq i$. $ \varepsilon \equiv\frac{1}{1- \rho}$ is the elasticity of substitution between the two goods. $ c_{ij}$ denotes the amount of good $ j$ that is consumed by agent $ i$. $ \bar{P}_{j}$ is the price of good $ j$. Absent trading frictions both agents face the same prices. Market clearing requires

$\displaystyle \sum_{j=1,2}c_{ji}\leq y_{i}, i=1,2.$ (3)

An equilibrium in this economy is defined as follows.




Definition 1   A competitive equilibrium is an allocation $ c_{ij},$ $ i=1,2,$ $ j=1,2$ and prices $ \bar{P}_{i},$ $ i=1,2$ such that $ \left( i\right) $ for every agent $ i $ the pair $ \left( c_{i1},c_{i2}\right) $ solves the problem stated in (1) at the given prices and $ \left( ii\right) $ all markets clear.


Define $ \bar{q}=\frac{\bar{P}_{2}}{\bar{P}_{1}}$, and let $ z_{2}$ denote the excess demand for good 2. A competitive equilibrium is then fully summarized by

$\displaystyle z_{2}\left( \bar{q}\right) =c_{12}\left( \bar{q}\right) +c_{22}\left( \bar{q}\right) -y_{2},$ (4)
$\displaystyle z_{2}\left( \bar{q}\right) \leq0$, $\displaystyle \bar{q}\geq0$ and $\displaystyle \bar {q}z_{2}\left( \bar{q}\right) =0.$ (5)

Since agents' preferences over goods in (1) are strictly monotone, the equilibrium price is strictly positive, and $ z_{2}\left( \bar{q}\right) =0$.

Standard theorems establish the existence of a competitive equilibrium. However, the equilibrium may not be unique. Let $ index\left( \bar{q}^{\ast}\right) =sign\left( \frac{\partial z_{2}\left( \bar{q}^{\ast }\right) }{\partial\bar{q}}\right) $ be the index of an equilibrium with the relative price $ \bar{q}^{\ast}$. If all equilibria are locally unique, the sum of the indices across equilibria equals $ +1$ by virtue of the index theorem. Hence, the number of equilibria is finite. If there is an equilibrium with $ \frac{\partial z_{2}\left( \bar{q}^{\ast}\right) }{\partial\bar{q}}>0$ , there are at least two more equilibria.7

Figure 1 plots the excess demand for good 2 as a function of a monotone transformation of the relative price, $ \frac{\bar{q}}{1+\bar{q}}$, for two different values of the elasticity of substitution, $ \varepsilon=2$ and $ \varepsilon=0.42$ .8 There is a unique equilibrium with $ \bar{q}=1$ $ \left( \frac{\bar{q}}{1+\bar{q}}=\frac{1}{2}\right) $ for $ \varepsilon=2$, but there are three equilibria with $ \bar{q}$ equal to 0.47 $ \left( \frac{\bar{q}}{1+\bar{q}}=0.32\right) $, 1, and 2.12 $ \left( \frac{\bar{q}}{1+\bar{q}}=0.68\right) $ for $ \varepsilon=0.42$. Notice, that in the latter case the slope of the excess demand function is positive for $ \bar{q}=1$ and all the equilibria are locally unique.9 To understand how multiple equilibria arise at low values of the elasticity of substitution consider the first equilibrium in the second panel of Figure 1. As the price of good 1 is high relative to the price of good 2, $ \bar{q}=0.47$, the value of the endowment of country 1 is high relative to country 2. Agents in country 2 are willing to pay the high price for good 1 and country 1 ends up consuming most of the two goods. The same logic applies in the third equilibrium, $ \bar{q}=2.12$, with the roles of country 1 and 2 being reversed. The second equilibrium is the symmetric equilibrium featuring $ \bar{q}=1$. If the elasticity of substitution is high, equilibria 1 and 3 cannot exist.

The dynamic extension of the static economy with a low elasticity of substitution delivers a simple example of an economy with sunspot equilibria. Let preferences admit an expected utility representation. Agents receive a fixed endowment every period and there are no international financial markets. The dynamic economy is then simply the repeated static economy. A sunspot equilibrium is given by a system of the three spot prices and a probability distribution $ \pi$ over the three spot prices: although the fundamentals of the economy, i.e., the endowments, are unaffected by the realization of the state, the equilibrium prices and allocations differ across states.10


3  General Model

The model is quite standard in the international business cycle literature and it is closely related to the seminal work of Backus et al (1995). There are two countries $ \left( i=1,2\right) $, each populated by an infinite number of households of measure one. Each country produces one good and the home and foreign good are imperfect substitutes in the households' utility functions. The two goods are produced under perfect competition using capital and labor. Agents have access to a non-contingent bond that pays one unit of country 1's currency.

Time is discrete and each period the economy experiences one of finitely many events $ s_{t}$. $ s^{t}=\left( s_{0},s_{1},...,s_{t}\right) $ denotes the history of events up through and including period $ t$. The probability, as of period 0, of any particular history $ s^{t}$ is $ \pi\left( s^{t}\right) $. The initial realization $ s_{0}$ is given.

3.1  Households

Households in country $ i$ maximize their expected discounted lifetime utility subject to their budget constraint. All variables are expressed in per household units

  $\displaystyle \max_{\substack{c_{i}\left( s^{t}\right) ,l_{i}\left( s^{t}\right) , c_{i1}\left( s^{t}\right) ,c_{i2}\left( s^{t}\right) \\ k_{i}\left( s^{t}\right) ,i_{i}\left( s^{t}\right) ,b_{i}\left( s^{t}\right) }} \sum_{t=0}^{\infty}\sum_{s^{t}}\beta^{t}\pi\left( s^{t}\right) U\left( c_{i}\left( s^{t}\right) ,l_{i}\left( s^{t}\right) \right)$ (6)
  s.t.    
  $\displaystyle P_{i}\left( s^{t}\right) \left( c_{i}\left( s^{t}\right) +i_{i}\left( s^{t}\right) \right) \leq\bar{P}_{i}\left( s^{t}\right) w_{i}\left( s^{t}\right) l_{i}\left( s^{t}\right) +\bar{P}_{i}\left( s^{t}\right) r_{i}\left( s^{t}\right) k_{i}\left( s^{t-1}\right)$    
  $\displaystyle +\bar{P}_{i}\left( s^{t}\right) p_{i}\left( s^{t}\right) +b_{i}\left( s^{t-1}\right) -Q_{i}\left( s^{t}\right) b_{i}\left( s^{t}\right) ,$ (7)
  $\displaystyle k_{i}\left( s^{t}\right) \leq\left( 1-\delta\right) k_{i}\left( s^{t-1}\right) +i_{i}\left( s^{t}\right) .$ (8)

where $ c_{i}$, $ i_{i}$, $ l_{i}$ and $ k_{i}$ denote consumption, investment, labor, and capital, respectively. $ P_{i}$ is the price of the final consumption-investment good, $ \bar{P}_{i}$ is the price of good $ i$, $ \bar {P}_{i}r_{i}$ and $ \bar{P}_{i}w_{i}$ are the nominal rental rate of capital and the nominal wage, $ \bar{P}_{i}p_{i}$ denotes nominal profits, and $ b_{i}$ denotes holdings of a non-contingent bond. $ Q_{i}$ is the price of the bond. To rule out Ponzi-schemes, I assume that agents face an upper bound for borrowing $ \bar{b}_{i}$ that is large enough to never bind in this application.

3.2  Firms

Firms utilize labor and capital in order to produce the traded good under perfect competition. The technology is assumed to be of the constant elasticity of substitution type. Since capital is owned by households and rented out to firms, the solution to the firms' maximization problem can be found from

  $\displaystyle \max_{l_{i},k_{i}}F\left( l_{i}\left( s^{t}\right) ,k_{i}\left( s^{t-1}\right) \right) -w_{i}\left( s^{t}\right) l_{i}\left( s^{t}\right) -r_{i}\left( s^{t}\right) k_{i}\left( s^{t-1}\right)$ (9)
  s.t.    
  $\displaystyle F_{i}\left( l_{i},k_{i}\right) =\left[ \omega_{li}^{1-\kappa}\left( A_{i}\left( s^{t}\right) l_{i}\left( s^{t}\right) \right) ^{\kappa }+\omega_{ki}^{1-\kappa}k_{i}\left( s^{t-1}\right) ^{\kappa}\right] ^{\frac{1}{\kappa}},$ (10)
  if $\displaystyle \kappa<1$ and    
  $\displaystyle F_{i}\left( l_{i},k_{i}\right) =\left( \frac{A_{i}\left( s^{t}\right) l_{i}\left( s^{t}\right) }{\omega_{li}}\right) ^{\omega_{li}}\left( \frac{k_{i}\left( s^{t-1}\right) }{\omega_{ki}}\right) ^{\omega_{ki}},$ (11)
  if $\displaystyle \kappa=0\ .$    

3.3  International trade

Households in country $ i$ demand a consumption-investment good $ \tilde{c}_{i} $ $ \left( =c_{i}+i_{i}\right) $. $ \tilde{c}_{i}$ is an aggregate of the domestically produced good and the imports of the foreign good according to

$\displaystyle \tilde{c}_{i}\left( s^{t}\right) =c_{i}\left( s^{t}\right) +i_{i}\left( s^{t}\right) =\left[ \alpha_{i1}^{1-\rho}c_{i1}\left( s^{t}\right) ^{\rho }+\alpha_{i2}^{1-\rho}c_{i2}\left( s^{t}\right) ^{\rho}\right] ^{\frac{1}{ \rho}},$ (12)

with $ 0<\alpha_{ij}<1$. The parameters $ \alpha_{ij}$ will be calibrated to match aggregate trade shares in the data.11 $ \rho<1$ and $ \varepsilon=\frac{1}{1-\rho}$ measures the elasticity of substitution between traded goods.

A household's optimal choices for consumption of the home and the foreign good are determined from the cost minimization problem

  $\displaystyle \min_{c_{i1}\left( s^{t}\right) ,c_{i2}\left( s^{t}\right) }\bar{P} _{1}\left( s^{t}\right) c_{i1}\left( s^{t}\right) +\bar{P}_{2}\left( s^{t}\right) c_{i2}\left( s^{t}\right)$ (13)
  s.t.    
  $\displaystyle \tilde{c}_{i}\left( s^{t}\right) = \left[ \alpha_{i1}^{1-\rho} c_{i1}\left( s^{t}\right) ^{\rho}+\alpha_{i2}^{1-\rho}c_{i2}\left( s^{t}\right) ^{\rho}\right] ^{\frac{1}{\rho}}.$ (14)

The first order conditions for country $ i$'s households imply

$\displaystyle \frac{c_{i1}\left( s^{t}\right) }{c_{i2}\left( s^{t}\right) }=\frac {\alpha_{i1}}{\alpha_{i2}}\left( \frac{1}{\bar{q}\left( s^{t}\right) }\right) ^{ \frac{1}{\rho-1}},$ (15)

where I have defined the relative price to be

$\displaystyle \bar{q}\left( s^{t}\right) =\frac{\bar{P}_{2}\left( s^{t}\right) }{\bar {P}_{1}\left( s^{t}\right) }.$ (16)

This relative price relates to the real exchange rate as follows

$\displaystyle q\left( s^{t}\right) =\frac{P_{2}\left( s^{t}\right) }{P_{1}\left( s^{t}\right) }=\frac{\tau_{22}}{\tau_{11}}\left[ \frac{\alpha_{11} +\alpha_{12}\left( \frac{\tau_{11}}{\tau_{12}}\bar{q}\left( s^{t}\right) \right) ^{\frac{\rho}{1-\rho}}}{\alpha_{21}\left( \frac{\tau_{21}}{\tau _{22}} \right) ^{\frac{\rho}{\rho-1}}+\alpha_{22}\left( \bar{q}\left( s^{t}\right) \right) ^{\frac{\rho}{\rho-1}}}\right] ^{\frac{1-\rho}{\rho} }.$ (17)

In what follows $ P_{1}\left( s^{t}\right) $ is normalized to unity. Using goods market clearing, budget constraints, and optimality conditions the demand for good 2 in countries 1 and 2 can be expressed as

$\displaystyle c_{12}\left( s^{t}\right) =\frac{\alpha_{12}\bar{q}\left( s^{t}\right) ^{ \frac{1}{\rho-1}}}{\alpha_{11}+\alpha_{12}\bar{q}\left( s^{t}\right) ^{ \frac{\rho}{\rho-1}}}\left[ y_{1}\left( s^{t}\right) +\frac{ b_{1}\left( s^{t-1}\right) -Q_{1}\left( s^{t}\right) b_{1}\left( s^{t}\right) } {\Phi_{1}\left( s^{t}\right) } \right] ,$ (18)
$\displaystyle c_{22}\left( s^{t}\right) =\frac{\alpha_{22}}{\alpha_{21}\left( \frac{1}{ \bar{q}\left( s^{t}\right) }\right) ^{\frac{\rho}{\rho-1}}+\alpha_{22}} \left[ y_{2}\left( s^{t}\right) +\frac{ b_{2}\left( s^{t-1}\right) -Q_{2}\left( s^{t}\right) b_{2}\left( s^{t}\right) }{\Phi_{1}\left( s^{t}\right) \bar{q }\left( s^{t}\right) } \right] ,$ (19)

and $ \Phi_{1}\left( s^{t}\right) =\frac{\bar{P}_{1}\left( s^{t}\right) }{ P_{1}\left( s^{t}\right) }$ .

3.4  Definition of Equilibrium

A competitive equilibrium in the dynamic model is defined as follows:



Definition 2   A competitive equilibrium is a collection of allocations $ c_{i1}\left( s^{t}\right) $, $ c_{i2}\left( s^{t}\right) $, $ c_{i}\left( s^{t}\right) $, $ i_{i}\left( s^{t}\right) $, $ y_{i}\left( s^{t}\right) $, $ k_{i}\left( s^{t}\right) $, $ l_{i}\left( s^{t}\right) $, prices $ q\left( s^{t}\right) $, $ \bar{q}\left( s^{t}\right) $, $ w\left( s^{t}\right) $, $ r\left( s^{t}\right) $, $ Q_{i}\left( s^{t}\right) $, and profits $ p_{i}\left( s^{t}\right) $, $ i=1,2$, such that $ \left( i\right) $ for every household the allocations solve the household's maximization problem for given prices, $ \left( ii\right) $ for every firm profits are maximized, and $ \left( iii\right) $ the markets for labor, capital, goods, and bonds ( $ b_{1}\left( s^{t}\right) + b_{2}\left( s^{t}\right) = 0$) clear.


4  Computation and Calibration

In a static model, the computation of the possibly multiple equilibria can be separated from the consideration of sunspot equilibria. However, in a dynamic model this is no longer possible. Each equilibrium path depends on the probability distribution over all the possible equilibria. To impose more discipline on the analysis, the following assumptions are made in the subsequent computations.

4.1  More Assumptions

As argued in Section 2, equilibrium multiplicity occurs because changes in the relative price lead to a shift in purchasing power that can be supported as equilibrium if the trade elasticity is low. In a dynamic economy with capital, labor, and internationally traded bonds the same intuition applies provided that markets are not complete.12

In order to characterize the equilibrium multiplicity in the general model, I impose two assumptions:

  1. At time 1 country 2 experiences an unexpected rise in its technology. The shock follows an AR(1) process with known persistence. Once the shock is realized agents perfectly foresee the future path of technology.

  2. The agents' problem is modified to yield stationarity of the net foreign asset position under the first assumption. Two alternatives are considered:

  3. (a)  Agents face a convex cost for holding/issuing bonds as in Heathcote and Perri (2002), and Schmitt-Grohé and Uribe (2003). The collected fees are reimbursed to the agents by a lump-sum transfer. $ \Gamma\left( \frac{B_{i}\left( s^{t}\right) }{\bar{P}_{i}\left( s^{t}\right) }\right) $ denotes the portfolio costs in terms of country $ i$'s traded good, where $ \Gamma\left( 0\right) =0$, $ \Gamma^{\prime}\left( 0\right) =0$, and $ \Gamma^{\prime}>0$ otherwise. The budget constraint of a household is now given by


      $\displaystyle P_{i}\left( s^{t}\right) \left( c_{i}\left( s^{t}\right) +i_{i}\left( s^{t}\right) \right) \leq\bar{P}_{i}\left( s^{t}\right) w_{i}\left( s^{t}\right) l_{i}\left( s^{t}\right)$    
      $\displaystyle +\bar{P}_{i}\left( s^{t}\right) r_{i}\left( s^{t}\right) k_{i}\left( s^{t-1}\right) +\bar{P}_{i}\left( s^{t}\right) p_{i}\left( s^{t}\right)$    
      $\displaystyle +b_{i}\left( s^{t-1}\right) -Q_{i}\left( s^{t}\right) b_{i}\left( s^{t}\right) -\bar{P}_{i}\left( s^{t}\right) \Gamma\left( \frac {B_{i}\left( s^{t}\right) }{\bar{P}_{i}\left( s^{t}\right) }\right) +T_{i}\left( s^{t}\right) .$ (20)

    (b)  Agents' intertemporal discount factors are endogenous as in Uzawa (1968).13 More specifically, the problem of the representative household is given by


      $\displaystyle \max_{\substack{c_{i}\left( s^{t}\right) ,l_{i}\left( s^{t}\right) c_{i1}\left( s^{t}\right) ,c_{i2}\left( s^{t}\right) \\ k_{i}\left( s^{t}\right) , i_{i}\left( s^{t}\right) ,b_{i}\left( s^{t}\right) }} \sum_{t=0}^{\infty}\sum_{s^{t}}\theta_{i}\left( s^{t}\right) \pi\left( s^{t}\right) U\left( c_{i}\left( s^{t}\right) ,l_{i}\left( s^{t}\right) \right)$ (21)
      s.t.    
      $\displaystyle \theta_{i}\left( s^{t+1}\right) =\beta_{i}\left[ U\left( c_{i}\left( s^{t}\right) ,l_{i}\left( s^{t}\right) \right) \right] \theta_{i}\left( s^{t}\right)$ (22)

    and equations (7) and (8).

The first assumption eliminates all uncertainty including sunspots from period 2 onwards. This assumption allows the characterization of the equilibrium multiplicity without the additional complications that arise in a fully stochastic model with incomplete markets, borrowing constraints and endogenous capital accumulation. Identifying multiple equilibria is a tedious task, but without this assumption, one does not even know where to look for the equilibrium multiplicity.

The second assumption is a direct consequence of the first. Since I assume perfect foresight from period 2 onwards, the long-run equilibrium value of the net foreign asset position changes in response to the temporary shock.14 Unfortunately, this long-run value and therefore the long-run equilibrium are unknown thereby making the computational procedure suggested below inapplicable. Under the second assumption, however, net foreign assets are known to return to their pre-shock level.15

4.2  Solution Method

I describe the solution algorithm for finding the equilibrium path of the endogenous variables for the (perfect-foresight) experiment described above.

The major step in accounting for equilibrium multiplicity is to generate a good starting guess. Unfortunately, local approximation methods such as linearization or second-order perturbation methods are of little help. These methods can only find one equilibrium. While the suggested algorithm does not guarantee the detection of all equilibria, it does detect some.16

To find the equilibrium paths I use a combination of forward and backward shooting algorithms. Since shooting algorithms with many state variable are computationally intensive, the algorithm starts under the assumption of fixed capital. Endogenous capital accumulation is then reintroduced once a starting guess is found. Without loss in generality, the stationarity inducing devices introduced under assumption 2 are parameterized to induce zero net-foreign asset positions in any steady state.




Algorithm 1  
  1. Choose the parametrization of the model, set $ \omega _{ki}\approx0$, and assume that capital is fixed at its steady level, i.e., remove the Euler equation for capital from the model. Assume that there are no shocks.

  2. For each locally stable steady state compute the stable manifold using a reverse shooting algorithm as described in Judd (1998). I reduce the dimension of the problem to the relative price $ \bar{q}$, and bond holdings $ b_{1}$. The resulting manifold shows the path along which the economy converges to a steady state from the initial net foreign asset position $ b_{1}\left( s_{-1}\right) $ and the initial value of the relative price $ \bar{q}\left( s_{0}\right) $.

  3. Compute the equilibrium path of the endogenous variables to a purely transitory shock in time 1, $ A_{2}\left( s_{1}\right) $. Prior to the shock the economy is assumed to be in steady state. Since bond holdings can freely adjust from one period to the other, the economy must move along the stable manifold(s) computed under step 2 starting from the second period on. To find a candidate equilibrium path:
    (a)  choose a pair $ \left( b_{1}\left( s^{1}\right) ,\bar {q}\left( s^{2}\right) \right) $ on the manifold as a guess for the position of the economy in the second period, the period right after the shock,
    (b)  use the first order conditions of the model to compute the implied value of $ b_{1}\left( s_{0}\right) $ if $ A_{2}\left( s_{1}\right) >0$. Since bond holdings are 0 in the steady state, a bond-price pair $ \left( b_{1}\left( s^{1}\right) ,\bar{q}\left( s^{2}\right) \right) $ is an equilibrium only if the implied bond holdings for state $ s_{0}$ satisfy $ b_{1}\left( s_{0}\right) =0$.

  4. This candidate impulse response is used as starting guess in a code that solves non-linear perfect foresight problems using a Newton method. The solution algorithm for this step borrows heavily from the DYNARE code "simul" and is implemented in FORTRAN.

  5. Once an equilibrium path has been computed, I reintroduce the dynamic investment decision and increase $ \omega_{ki}$ to its desired value. At this stage it is also convenient to increase the persistence of the shock if desired.


Figure 2 shows the stable manifolds computed under step 2 for the case of convex portfolio costs (top panel) and endogenous discounting (lower panel) with $ \varepsilon\approx0.44$ and $ \omega_{ki} =0.01$. In the case of convex portfolio costs the two stable steady states which are marked by the filled in circles feature different capital stocks and therefore the two manifolds do not "connect". As argued in Bodenstein (2007), the third steady state with $ \bar{q}=1$ is unstable. In the case of endogenous discounting the steady state is always unique and stable as indicated by the black arrows.

4.3  Calibration

Most parameter choices are taken straight from the international business cycle literature and are summarized in Table 1. The utility function is assumed to be additive separable between labor and consumption

$\displaystyle U\left( c,l\right) =\frac{c^{1-\sigma}}{1-\sigma}-\chi_{0}\frac{l^{1+\chi} }{1+\chi}.$ (23)

Following assumption 2a the convex portfolio costs are chosen to be quadratic

$\displaystyle \Gamma\left( \frac{B_{i}}{\bar{P}_{i}}\right) =\frac{1}{2}\phi_{b}\left( \frac{B_{i} }{\bar{P}_{i}}\right) ^{2},$ (24)

and under assumption 2b the endogenous discount factor is given by

$\displaystyle \beta\left( c_{i},l_{i}\right) =\left[ 1+\exp\left( \frac{c^{1-\sigma} }{1-\sigma}-\chi_{0}\frac{l^{1+\chi}}{1+\chi}\right) \right] ^{-\psi_{i}}.$ (25)

The $ \psi_{i}$'s are chosen such that $ \beta\left( c_{i},l_{i}\right) $ takes on the value of $ \beta$ at the steady state. The parameters $ \alpha _{11}$ and $ \alpha_{12}$ determine the home bias in consumption. Following the applied DSGE literature, these consumption weights are chosen to match the import to GDP ratio for the U.S., which is about 13% .17


5  Results

Before discussing the results for the dynamic economy a look at the steady state equilibria for this economy seems instructive. Similar to the endowment economy in Section 2, there are three steady states absent international financial markets provided that the elasticity of substitution between the traded goods $ \varepsilon$ is sufficiently low. For the above calibration this is true for $ \rho=-1.6$.18 The same steady states arise with incomplete markets under the additional restriction that steady state bond holdings are zero.

For an elasticity of substitution $ \varepsilon\approx0.38$ $ \left( \rho=-1.65\right) $ the three different values of the relative price that are consistent with an equilibrium are given in the first column of Table 2. Furthermore, Table 2 summarizes how capital, employment and output in country 1 differ across steady states. The value of variable $ x_{2}\left( \bar{q}^{\ast}\right) $ for country 2 coincides with $ x_{1}\left( \frac{1}{\bar{q}^{\ast}}\right) $. In contrast to the endowment economy, the differences in purchasing power across equilibria also have an impact on the supply side of the economy. For example, if the relative price is in favor of country 1, i.e., $ \bar{q}=0.35$, country 1 accumulates higher capital, enjoys higher output and uses less labor in the production process.

5.1  Convex Portfolio Costs

Under the above specification of the portfolio cost function the steady state value of bond holdings is uniquely determined to be zero. Thus, the steady states of the model with portfolio costs are the same as in the economy without international financial markets.

Similar to Bodenstein (2007), the steady state with $ \bar{q}=1$ is dynamically unstable, while the remaining two are stable. Prior to the realization of the positive technology shock in the foreign country, the economy is assumed to be in the steady state with $ \bar{q}=0.35$. The size of the shock is set equal to 0.01%.

5.1.1  Impulse Response Functions

Figure 3 plots the impulse response functions for selected variables in percentage deviations from the original steady state. Paths 1 (solid line) and 2 (dashed line) lead back to the original steady state, whereas path 3 (dotted line) converges to the other stable steady state with $ \bar{q}=2.86$. As the magnitude of the responses is considerably smaller for path 1 than for the other two paths, Figure 4 plots the responses of the variables for the non-linear solution of path 1 (solid line).

The reasoning behind the equilibrium multiplicity in the dynamic economy is the same as in the static endowment economy: given the predetermined capital stock, there are three locally isolated price equilibria each associated with a different distribution of relative purchasing power. If the capital stock adjusted quickly, one would expect that there is one path in the neighborhood of each of the three steady states. However, the capital stock is predetermined relative to the shock and adjusts slowly afterwards. Hence, only path 1 starts in the neighborhood of a steady state - the original steady state in the case of path 1. In particular, path 3, which converges to the steady state with $ \bar{q}=2.86$, starts with allocations and prices that are far away from their long run values. This fact is driven by the differences in the capital stock in the original steady state ($ \bar {q}=0.35$) and the new one ($ \bar{q}=2.86$) as reported in Table 2.

Path 1 is the sole path that linearization around the original steady state detects. In response to the transitory technology shock output rises in the foreign country for a few periods. Simultaneously, the real exchange rate appreciates for the home country reflecting a change of the relative price $ \bar{q}$ against the foreign country. Even more purchasing power is shifted to the home country and the home country's consumption rises relative to the foreign country's.

While the dynamics for path 1 are solely driven by the increase in foreign technology, the dynamics for paths 2 and 3 are driven mostly by the large shifts in relative purchasing power towards the foreign country that are associated with the rise in the relative price of the foreign good. The effects of the technology shock are negligible in these two cases. In fact, the same responses would be obtained if the technology shock was replaced by a pure sunspot shock. Demand in the home country (consumption plus investment) falls considerably. Home output falls as well, but by less than home consumption, as the foreign country raises its demand for the home good due to generally stronger foreign demand. Furthermore, the trade balance to GDP ratio falls on impact, indicating that the home country borrows funds to smooth the consequences of the shock.

5.1.2  Local Approximation

As shown in Figure 4, path 1 can be reliably approximated using (log-)linearization techniques around the model's non-stochastic steady state. However, this is not the case for paths 2 and 3.

Consider path 3 first. In general, one should be able to compute an approximate path using local approximation techniques around the new steady state with $ \bar{q}=2.86$. The values of the predetermined variables (capital stocks and bonds) in the original steady state are then taken as starting values of the system. While this approach works reasonably well if the share of capital in production is low, Figure 5 shows that this is not true for the chosen calibration. The linear approximation to path 3 (solid line) and the actual path 3 (dotted line) differ considerably. These differences are most obvious in the exaggerated response of the real exchange rate and the relative price $ \bar{q}$ in the linearized framework. A second order perturbation approach yields results that are even further away from the true path. Equally disappointing results are obtained with a starting guess that uses knowledge about the actual path 3, namely the values that the state variables assume for the period right after the shock. These observations suggest, that for a realistic calibration of the model the deviations of the starting values from their new steady state values are simply too large for path 3 to be correctly approximated by local approximation methods.

In the case of path 2 the attempt of using local approximation techniques is even less successful. Prior to computing path 2 it is not even known whether path 2 converges back to the original steady state or to the other stable steady state. Depending on the magnitude of the technology shock and the share of capital in production $ \omega_{ki}$, one can find either behavior. Even if the convergence properties of path 2 are known, one faces the question how to approximate this path by a first- or second-order approximation technique that expands the equilibrium system around the steady state to which the system will converge. For a given realization of the state variables (technology, home and foreign capital, international bond holdings) these methods prescribe a unique adjustment path. As the economy is in steady state prior to the shock, the adjustment path that is recovered using perturbation methods is path 1. Using the values of the state variables of the first period after the shock along the true path 2 rather than those of the period of the shock as starting values in the approximated decision rules does not recover path 2 either.

5.2  Endogenous Discount Factor

As discussed in more detail in Bodenstein (2007), there is always a unique steady state irrespective of the value of the trade elasticity if the agents' discount factors are endogenous. In the following I calibrate the free parameters in the functional form of the endogenous discount factor such that the unique stable steady state features $ \bar{q}=1$. Obviously, this uniqueness is somewhat artificial, since the underlying economy without endogenous discounting still has multiple steady states with zero bond holdings if $ \rho<-1.60$ for the above calibration.

However, the analysis with an endogenous discount factor provides insights that go beyond those gained in the model with convex portfolio costs. First, the version of the model allows for the construction of equilibria around the symmetric steady state as in Corsetti et al (2008) and Thoenissen (2008). Second, it turns out that there can be multiple equilibria even if $ \rho>-1.60$, i.e., for calibrations that never admit multiple steady states.

5.2.1  Impulse Response Functions

Figure 6 plots the impulse response functions for selected endogenous variables for $ \rho\approx-1.469$ to a purely transitory shock to the foreign country's technology level of 0.01%. Similar to the analysis under convex portfolio costs, the technology shock is the major determinant of the equilibrium dynamics for only one of the three paths. The other two paths are associated with large shifts in relative purchasing power and the effects of the technology shock are negligible. However, all these paths lead the economy back to the original steady state with $ \bar{q} =1$.

Path 1 (solid line) implies a persistent decline of the relative price $ \bar{q}$ that increases the purchasing power of the home country. Consequently, home consumption, investment, and output show a strong rise. The foreign country is willing to trade at the low relative price in order to receive at least some of the home good from which it can hardly substitute away. The roles are reversed for path 3 (dotted line) which features a strong rise in the relative price.

Path 2 (dashed line) has received considerable attention in the recent literature, see, e.g., the work of Corsetti et al (2008) and Thoenissen (2008). Subject to some caveats discussed below, this is the unique path that is recovered by linearization around the model's steady state.19 The increase in foreign technology raises foreign output. In contrast to the dynamics under a high elasticity of substitution the price of the foreign good does not need to fall under a low elasticity of substitution: if $ \bar{q}$ rises, the value of the foreign country's production increases, while it falls in the home country. In both countries there is a tendency to substitute away from the more expensive foreign good. This situation can only be an equilibrium if the increase in purchasing power in the foreign country offsets the negative impact that the higher price and lower home income exert on overall demand for the foreign good.

Corsetti et al (2008) refer to the appreciation of the terms of trade in light of a positive supply shock as "negative transmission mechanism".20 From an applied point of view, path 2 has certain appealing features. In a richer model with distribution costs and nontraded goods, Corsetti et al (2008) invoke this mechanism to address two important puzzles in the international macroeconomics literature, namely the Backus-Smith puzzle (Backus and Smith (1993)) and the real exchange rate volatility puzzle. If the implied elasticity of substitution between foreign and domestic goods is low enough, an appreciation of the relative price and the real exchange rate for the home country goes along with an increase in the home country's consumption relative to the foreign country's. In addition, the real exchange rate is about as volatile as in the data. Furthermore, just as the model presented in Thoenissen (2008) and in line with the data their model predicts a negative cross-country correlation for consumption and a negative correlation of output with the real exchange rate - a major step forward relative to previous attempts in the literature. The model presented here can replicate all of these findings if $ \rho$ is sufficiently close to but less than a critical value of -1.4685. The next section sheds more light on this critical value of the trade elasticity of substitution.

5.2.2  Multiple Equilibria and the Short-Run Excess Demand Function

In Section 5.1 the analysis of the multiple equilibrium paths relies on the presence of multiple steady state equilibria, i.e., $ \rho<-1.60$. However, as just shown equilibrium multiplicity can also occurs if there is a unique steady state with $ \rho>-1.60$. The reason for this finding lies in the behavior of the economy in the short-run: the capital stock is not fully flexible. Consequently, if the relative price moves against country $ i$ its agents' ability to lower the production of good $ i$ and offset some of the adverse movements in the relative price is diminished. Hence, multiple equilibria can exist in the short run but may be absent in the long run.

More formally, the short-run excess demand function can be upward-sloping while the long-run excess demand function is downward-sloping. Figure 7 plots the slope of the excess demand function around $ \bar{q} =1$, i.e., the partial derivative of the excess demand for good 2 with respect to the relative price, denoted by $ \frac{\partial z_{2t}}{\partial\bar{q}_{t}}$, for the two horizons as a function of $ \rho$. The underlying derivations are provided in Appendix A. The scale for the short-run and the long-run slopes are depicted on the left and the right vertical axis, respectively. A positive value of the slope indicates the presence of multiple equilibria. The curve labeled "long run excess demand'' intersects the horizontal axis at $ \rho= -1.60$, whereas the curve labeled "short run excess demand'' intersects with the horizontal axis for the higher value of $ \rho=-1.4685$.

The change in the sign of the slope of the excess demand function, $ sign\left( \frac{\partial z_{2t}}{\partial\bar{q}_{t}}\right) $ , can be easily detected by looking at the policy function for the relative price $ \bar{q}$ that is obtained from linearization around the steady state with $ \bar{q} = 1$. If $ sign\left( \frac{\partial z_{2t}}{\partial\bar{q}_{t} }\right) $ changes sign so do the coefficients on the endogenous state variables in the policy function for the relative price.

To offer an economic interpretation, consider the coefficient on current bond holdings which is denoted by $ \frac{\partial\bar{q}_{t}}{\partial b_{1t-1}}$. This coefficient is positive if $ sign\left( \frac{\partial z_{2t} }{\partial\bar{q}_{t}}\right) $ is positive and negative otherwise. Suppose $ b_{1t-1}>0$, i.e., the home country lends funds to the foreign country in period t - 1. In order to pay back its debt obligations in time t, the foreign country has to increase its total export revenue which implies that the price and/or the number of exported units have to rise. If $ \frac {\partial\bar{q}_{t}}{\partial b_{1t-1}} <0$, the foreign country increases the number of units determined for exports and the relative price of the foreign good falls. Since the elasticity of substitution is high, a small decline in the price leads to a relatively large increase in exports and the total export revenue rises. If $ \frac{\partial\bar{q}_{t}}{\partial b_{1t-1} }>0$, the relative price of the foreign good increases and the number of exported units falls. However, since the substitutability between the traded goods is low, a large price increase leads to a relatively small decline in the number of exported units and the total export revenue rises.21

Remember, that the slope of the short-run excess demand function is close to zero in the neighborhood of $ \rho=-1.4685$ for the equilibrium with $ \bar{q} =1$. When deriving the linear approximation to the law of motion of the relative price one divides by a number that is arbitrarily close to zero. This finding explains why Thoenissen (2008), Corsetti et al (2008), de Walque et al (2005), and Benigno and Thoenissen (2008) find that in each of their models there is a critical value of the trade elasticity of substitution for which the volatility of the real exchange rate is infinite. Such behavior of the model is again indicative of equilibrium multiplicity.22

5.2.3  Local Approximation

The existence of multiple equilibria poses some challenges to applying the model with a low trade elasticity of substitution. For example, it turns out that for a sufficiently large technology shock only one of the three equilibrium paths exists. For $ \rho\approx-1.469$ the maximum size of the technology shock in the foreign country for which all three paths exists is around 0.1%. For shocks larger than 0.1%, only path 1 exists.23

In particular, this finding poses a problem if relying on local approximation techniques. Log-linearization around the model's unique steady state delivers an approximation of path 2 as the sole equilibrium path. Figures 8 and 9 show the possible computational errors for a calibration of the technology shock that follows Backus et al (1995). The shock to the foreign country's technology is 0.85% with persistence of 0.95. The solid line in Figure 8 shows the unique equilibrium path for this technology shock. The dashed line is the suggested solution path derived from log-linearization around the steady state. The discrepancy between the two paths is obviously large. To convince the reader of the (in-)accuracy of the two suggested solution paths Figure 9 plots the approximation errors in the three dynamic equations of the model: the two Euler equations for capital and the risk sharing condition. The systematic nature of the approximation error indicates, that the dashed line (path 2) is not a solution of the model for a technology shock of size 0.85%.

The closer the value of the elasticity of substitution is to the threshold level of $ \varepsilon$ (meaning $ \rho$ close to -1.4685, the smaller is the size of the technology shock for which path 2 exists. For a calibration of $ \rho=-1.65$ as in Section 5.1, all three impulse responses exist for a 0.85% technology shock.


6  Sensitivity

The results are sensitive to three types of changes: parameters, model specification and the assumptions about financial markets. If financial markets are complete with respect to all states of nature (fundamental and non-fundamental), the equilibrium is always unique. However, if agents cannot insure against self-fulfilling fluctuations, sunspot equilibria can be constructed and there will be multiple equilibria provided that the trade elasticity is sufficiently low. Therefore, multiple equilibria will also be present in models with a richer set of assets, unless the assets span the complete market. As noted earlier, fundamental shocks are not really needed in the analysis, but they facilitate the computations and allow for comparisons of my results to the literature.

6.1  Sensitivity to Parametrization

Changes in the underlying model parameters affect the threshold level of the trade elasticity $ \bar{\varepsilon}$ for which the model displays multiple equilibria as follows:

$\displaystyle \begin{tabular}[c]{lllll} $\omega_{ki}$\ & $\downarrow$\ & $\Longrightarrow$\ & $\bar{\varepsilon}$\ & $\uparrow$\\ $\kappa$\ & $\downarrow$\ & $\Longrightarrow$\ & $\bar{\varepsilon}$\ & $\uparrow $\\ $\alpha_{ii}$\ & $\uparrow$\ & $\Longrightarrow$\ & $\bar{\varepsilon}$\ & $\uparrow$\\ $\chi$\ & $\uparrow$\ & $\Longrightarrow$\ & $\bar{\varepsilon}$\ & $\downarrow$ \end{tabular}$ (26)

Both lowering the share of capital in production $ \omega_{ki}$ or the elasticity of substitution between capital and labor $ \kappa$ makes the economy look more like an endowment economy and raises the threshold level $ \bar{\varepsilon}$ for which multiple equilibria are observed. Increasing home bias, i.e., a rise in $ \alpha_{ii}$, also leads to a higher value of $ \bar{\varepsilon}$ as shifts in relative purchasing power become less relevant with each country consuming mostly its own good.

The effect of lowering the labor supply elasticity (raising $ \chi$) depends on the value of $ \sigma$. If $ \sigma>1$, the threshold level $ \bar{\varepsilon}$ falls in response to a rise in $ \chi$. However, if $ \sigma<1$, a rise in $ \chi$ lowers $ \bar{\varepsilon}$. All these results can be obtained more formally from the derivations of the long- and short-run excess demand function that are provided in Appendix A.

6.2  Sensitivity to Model Specification

Multiple equilibria of the type discussed here can also occur in richer models with a low trade elasticity of substitution. A prominent example is the model with nontraded goods and distribution costs that is at the core of Corsetti et al (2008). In that model the implied elasticity of substitution between the home and foreign good at the consumer level is endogenous. Corsetti and Dedola (2005) mention the possibility of multiple steady states in such a model but do not analyze the dynamic case.

The following example serves to highlight some additional challenges that arise in models with distribution costs. Assume that agents in country $ i$ are endowed with $ y_{i}$ units of the traded good $ i$ and $ y_{iN}$ units of a nontraded good. Agents consume the two traded goods and their own nontraded good. However, in order to consume one unit of a traded good, agents have to forgive $ \eta$ units of their nontraded good. In the static economy agent $ i $ solves

  $\displaystyle \max_{{ c_{iT},c_{iN},c_{i1},c_{i2}}}c_{i}=\left[ \left( \alpha _{iT}\right) ^{1-\phi}c_{iT}^{\phi}+\left( \alpha_{iN}\right) ^{1-\phi }c_{iN}^{\phi}\right] ^{\frac{1}{\phi}}$ (27)
  s.t.    
  $\displaystyle P_{iN}c_{iN}+\left( \bar{P}_{1}+\eta P_{iN}\right) c_{i1}+\left( \bar{P} _{2}+\eta P_{iN}\right) c_{i2}\leq\bar{P}_{i}y_{i}+P_{iN}y_{iN},$ (28)

where $ c_{iT}=\left[ \left( \alpha_{i1}\right) ^{1-\rho}c_{i1}^{\rho }+\left( \alpha_{i2}\right) ^{1-\rho}c_{i2}^{\rho}\right] ^{\frac{1}{\rho} }$ . The market clearing conditions for this economy are

$\displaystyle c_{11}+c_{21}$ $\displaystyle \leq y_{1},$ (29)
$\displaystyle c_{12}+c_{22}$ $\displaystyle \leq y_{2},$ (30)
$\displaystyle c_{iN}+\eta\left( c_{i1}+c_{i2}\right)$ $\displaystyle \leq y_{iN},$ (31)

with $ i=1,2$. Following Corsetti et al (2008), let $ \alpha_{iT}=0.55$, $ \alpha_{iN}=0.45$, $ \alpha_{11} =$ $ \alpha_{22}=0.72$, $ \alpha_{12}=$ $ \alpha_{21}=0.28$, $ \eta=1.09$, $ \rho=-0.17$, and $ \phi=-0.35$. I set the ratio of nontraded to traded goods $ \frac{y_{iN}}{y_{i}}$ equal to 2.25, which is of similar magnitude as the ratio of service to manufacturing output in the U.S., the common proxies for traded and nontraded goods. For this parametrization, the trade elasticity of substitution between the foreign and the domestic good is around 0.27, the producer price elasticity of traded goods is around 0.68, and the consumer price elasticity of traded goods is $ \frac{1}{1- \rho}=0.85$.

This endowment economy features a unique equilibrium with the relative price $ \bar{q} = \frac{ \bar{P_{1}}}{ \bar{P_{2}}} = 1$. Consider, however, a 3 percent decline of the endowment with both traded goods while keeping the endowment with nontraded goods constant. Two new equilibria arise, one with $ \bar{q} = 0.82$ and the other one with $ \bar{q} = 1.22$. However, the equilibrium remains unique if the endowment with traded goods increases in both countries by the same amount. Hence, with an endogenous trade elasticity of substitution symmetric shocks can have very different implications for the number of equilibria and the resulting dynamics of the model.


7  Conclusions

Dynamic models with multiple equilibria can give rise to complex dynamics. As a first step, I characterize the dynamics of three equilibrium paths in a standard model of the international business cycle under the assumption that the elasticity of substitution between traded goods is low.

The empirical literature reports a wide range of trade elasticities at the aggregate level from 0 to 1.5. Recent macroeconomic research has pointed towards low trade elasticities: Corsetti, Dedola, and Leduc (2008), Thoenissen (2008) and others have shown that business cycle models with low trade elasticities may explain several puzzles in international macroeconomics, such as the Backus-Smith puzzle, the real exchange rate volatility puzzle, or the cross country correlation puzzles for consumption and output (see Thoenissen (2008) for a comprehensive list). In estimated DSGE models Rabanal and Tuesta (2005), Lubik and Schorfheide (2005), and de Walque, Smets, and Wouters (2005) show estimates for the trade elasticity that are very low and in some cases close to zero. At least in some of these cases the results hinge on values of the trade elasticity of substitution that imply the presence of multiple equilibria. However, no study has discussed the presence multiple equilibria in these DSGE models in depth, let alone the possible dynamics.24

Going forward the literature faces two major possibilities to address the aforementioned aspects of the data. Using the insights of this paper, one can proceed by building fully stochastic general equilibrium models with low trade elasticities that explicitly allow for sunspot equilibria. Such work requires the use of global approximation methods and is computationally intensive. It also seems important to continue the search for alternative models. Oil shocks as in Backus and Crucini (1998) and Bodenstein, Erceg, Guerrieri (2008), or investment-specific shocks as in Raffo (2008) are potentially promising. In the meantime trade adjustment costs as in Erceg, Guerrieri and Gust (2006) and taste shocks as in Corsetti et al (2008) can serve as simple fixes in the estimation of DSGE models to prevent the estimation algorithm from forcing the elasticity of substitution towards very low values in the attempt of fitting the model to the data.


References

Azariadis, C. (1981). Self-fulfillling Prophecies. Journal of Economic Theory 25, 380-396.

Backus, D., and M. Crucini (1998). Oil Prices and the Terms of Trade. Journal of International Economics 50, 185-213.

Backus, D., P. Kehoe, and F. Kydland (1995). International Business Cycles: Theory and Evidence. In T. Cooley (ed.) Frontiers of Business Cycle Research Princeton University Press, 331-356.

Backus, D. and G. Smith (1993). Consumption and Real Exchange Rates in Dynamic Economies with Non-traded Goods. Journal of International Economics 35, 297-316.

Benhabib, J. and R. Farmer (1994). Indeterminacy and Increasing Returns. Journal of Economic Theory 63, 19-46.

Benigno, G. and C. Thoenissen (2008). Consumption and Real Exchange Rates with Incomplete Markets and Non-traded Goods. Journal of International Money and Finance, forthcoming.

Bodenstein, M. (2007). Closing Large Open Economy Models. International Finance Discussion Papers 867, Board of Governors of the Federal Reserve System.

Bodenstein, M., C. Erceg, and L. Guerrieri (2007). Oil Shocks and External Adjustment. International Finance Discussion Papers 897, Board of Governors of the Federal Reserve System.

Boileau, M. and M. Normandin (2005). Closing International Real Business Cycle Models with Restricted Financial Markets. Center for Economic Analysis, University of Colorado at Boulder.

Broda, C. and D. Weinstein (2006). Globalization and the Gains from Variety. Quarterly Journal of Economics 121, 541-585.

Cass, D. and K. Shell (1983). Do Sunspots Matter? Journal of Political Economy 91, 193-227.

Chari, V.V., P. Kehoe, and E. McGrattan (2002). Can Sticky Prices Generate Volatile and Persistent Real Exchange Rates? Review of Economic Studies 69, 633-63.

Chiappori, P. and R. Guesnerie (1991). Sunspot Equilibria in Sequential Market Models. In W. Hildenbrand and H. Sonnenschein (eds.) Handbook of Mathematical Economics, vol.4. Amsterdam: North Holland.

Collard, F. and H. Dellas (2002). Technology Shocks and Employment. CEPR Discussion Papers 3680.

Corsetti, G. and L. Dedola (2005). A Macroeconomic Model of International Price Discrimination. Journal of International Economics 67, 129-155.

Corsetti, G., L. Dedola, and S. Leduc (2005). International Risk-sharing and the Transmission of Productivity Shocks. Review of Economic Studies 75, 443-473.

de Walque, G., F. Smets, and R. Wouters (2005). An Estimated Two Country DSGE Model for the Euro Area and the US Economy. Working Paper.

Enders, Z. and G. Mueller (2008). On the International Transmission of Technology Shocks. EUI Working Paper ECO 2006/36.

Epstein, L. (1983). Stationary Cardinal Utility and Optimal Growth under Uncertainty. Journal of Economic Theory 31, 133-152.

Epstein, L. (1987). A Simple Dynamic General Equilibrium Model. Journal of Economic Theory 41, 68-95.

Erceg C., C. Gust, and L. Guerrieri (2006). SIGMA: A New Open Economy Model for Policy Analysis. International Journal of Central Banking 2, 1-50.

Ghironi, F. (2003). Macroeconomic Interdependence under Incomplete Markets. Journal of International Economics 70, 428-450.

Heathcote, J. and F. Perri (2002). Financial Autarchy and International Business Cycles. Journal of Monetary Economics 49, 601-627.

Hooper, P., K. Johnson, and J. Marquez (2000). Trade Elasticities for the G-7 Countries. Princeton Studies in International Economics 87.

Kehoe, T. (1980). An Index Theorem for General Equilibrium Models with Production. Econometrica 48, 1211-1232.

Kehoe, T. (1991). Computation and Multiplicity of Equilibria. In W. Hildenbrand and H. Sonnenschein (eds.) Handbook of Mathematical Economics, vol.4. Amsterdam: North Holland.

Kim, S. and M. Kose (2003). Dynamics of Open Economy Business Cycle Models: Role of the Discount Factor. Macroeconomic Dynamics 7, 263-290.

Lubik, T. and Schorfheide F. (2005). A Bayesian Look at New Open Economy Macroeconomics. NBER Macroeconomics Annual 2005.

Mas-Colell, A., M. Whinston and J. Green (1995). Microeconomic Analysis. Oxford University Press, Oxford, UK.

Mendoza, E. (1991). Real Business Cycles in a Small Open Economy. American Economic Review 81, 797-818.

Rabanal, P. and V. Tuesta (2005). Euro-Dollar Real Exchange Rate Dynamics in an Estimated Two-country Model: What is Important and What is Not. International Monetary Fund.

Raffo, A. (2008). Technology Shocks: Novel Implications for International Business Cycles. Board of Governors of the Federal Reserve System.

Schmitt-Grohé, S. and M. Uribe (2003). Closing Small Open Economy Models. Journal of International Economics 61, 163-185.

Taylor, J. (1993). Macroeconomic Policy in a World Economy: from Economic Design to Practical Operation. Norton, New York, NY.

Thoenissen, C. (2008). Exchange Rate Dynamics, Asset Market Structure, and the Role of the Trade Elasticity. CDMA Working Paper Series 0803.

Uzawa, H. (1968). Time Preference, the Consumption Function and Optimum Asset Holdings. In J. Wolfe (ed), Value, capital and growth: papers in honor of Sir John Hicks. The University of Edinburgh Press, Edinburgh, 485-504.

Whalley, J. (1985). Trade Liberalization among Major World Trading Areas. MIT Press, Cambridge, MA.


Table 1: Calibration of Baseline Model - Panel A: Parameters Governing Households' Behavior

Parameter Used to Determine
β = 0.99 discount factor
σ = 1 intertemporal consumption elasticity
α11 = 0.87 weight on good 1 country 1's cons. basket
α21 = 0.13 weight on good 1 country 2's cons. basket
χ = 5 labor supply elasticitya
ρ = -1.65 elasticity between traded goods
α12 = 0.13 weight on good 2 country 1's cons. basket
α22 = 0.87 weight on good 2 country 2's cons. basket

a  The Frisch elasticity is 1/χ = 0.2.


Table 1: Calibration of Baseline Model - Panel B: Parameters Governing Firms' Behavior

Parameter Used to Determine
ωk = 0.33 share of capital in production
δ = 0.025 depreciation rate of capital
ωl = 0.67 share of capital in production

Table 1: Calibration of Baseline Model - Panel C: Parameters Governing Asset Dynamics

Parameter Used to Determine
ψ1 = 0.0275 endogenous discounting
φb = 0.0025 adjustment costs
ψ2 = 0.0275 endogenous discounting

Table 2:  Steady State Values of Selected Prices and Allocations

Relative Price:
$ \bar{q}^{\ast}$
Domestic Output:
$ y_{1}^{\ast}$
Domestic Capital:
$ k_{1}^{\ast} $
Domestic Labor:
$ l_{1}^{\ast}$
0.35
1.87
19.5
0.22
1.00
1.81
17.0
0.23
2.86
1.72
13.5
0.24

Steady state values for country 2 are mirroring the values for country 1. The value for variable x2, at the equilibrium with $ \bar{q}^{\ast}$ coincides with the equilibrium value for variable x1 at the equilibrium $ \frac{1}{\bar{q}^{\ast}}$.

Figure 1:  Excess Demand Function in the Endowment Economy

Data for Figure 1 immediately.

Data for Figure 1

Relative Price:
epsilon = 2
Excess Demand:
epsilon = 2
Relative Price:
epsilon = 0.42
Excess Demand:
epsilon = 0.42
0.010000
92.729934
0.010000
0.357704
0.014945
59.834305
0.014945
0.244339
0.019890
43.381403
0.019890
0.181651
0.024835
33.544174
0.024835
0.141842
0.029780
27.023144
0.029780
0.114399
0.034725
22.398591
0.034725
0.094418
0.039670
18.958927
0.039670
0.079287
0.044615
16.308235
0.044615
0.067483
0.049560
14.208765
0.049560
0.058059
0.054505
12.509170
0.054505
0.050394
0.059450
11.108562
0.059450
0.044062
0.064395
9.937125
0.064395
0.038764
0.069340
8.945029
0.069340
0.034284
0.074285
8.095772
0.074285
0.030458
0.079230
7.362013
0.079230
0.027165
0.084175
6.722880
0.084175
0.024311
0.089120
6.162169
0.089120
0.021821
0.094065
5.667114
0.094065
0.019637
0.099010
5.227529
0.099010
0.017711
0.103955
4.835186
0.103955
0.016007
0.108900
4.483376
0.108900
0.014491
0.113845
4.166570
0.113845
0.013139
0.118790
3.880177
0.118790
0.011928
0.123735
3.620353
0.123735
0.010841
0.128680
3.383859
0.128680
0.009863
0.133625
3.167944
0.133625
0.008980
0.138570
2.970261
0.138570
0.008182
0.143515
2.788793
0.143515
0.007458
0.148460
2.621802
0.148460
0.006801
0.153405
2.467779
0.153405
0.006203
0.158350
2.325411
0.158350
0.005659
0.163295
2.193548
0.163295
0.005162
0.168240
2.071181
0.168240
0.004709
0.173185
1.957421
0.173185
0.004294
0.178130
1.851481
0.178130
0.003915
0.183075
1.752664
0.183075
0.003567
0.188020
1.660349
0.188020
0.003248
0.192965
1.573980
0.192965
0.002956
0.197910
1.493063
0.197910
0.002687
0.202855
1.417150
0.202855
0.002440
0.207800
1.345843
0.207800
0.002214
0.212745
1.278779
0.212745
0.002005
0.217690
1.215631
0.217690
0.001814
0.222635
1.156105
0.222635
0.001638
0.227580
1.099931
0.227580
0.001476
0.232525
1.046865
0.232525
0.001327
0.237470
0.996685
0.237470
0.001190
0.242415
0.949188
0.242415
0.001064
0.247360
0.904188
0.247360
0.000949
0.252305
0.861514
0.252305
0.000842
0.257250
0.821012
0.257250
0.000745
0.262195
0.782537
0.262195
0.000656
0.267140
0.745958
0.267140
0.000574
0.272085
0.711152
0.272085
0.000499
0.277030
0.678009
0.277030
0.000430
0.281975
0.646425
0.281975
0.000368
0.286920
0.616303
0.286920
0.000311
0.291865
0.587554
0.291865
0.000259
0.296810
0.560097
0.296810
0.000211
0.301755
0.533856
0.301755
0.000169
0.306700
0.508758
0.306700
0.000130
0.311645
0.484738
0.311645
0.000095
0.316590
0.461735
0.316590
0.000064
0.321535
0.439690
0.321535
0.000036
0.326480
0.418551
0.326480
0.000011
0.331425
0.398267
0.331425
-0.000012
0.336370
0.378792
0.336370
-0.000031
0.341315
0.360081
0.341315
-0.000048
0.346260
0.342094
0.346260
-0.000063
0.351205
0.324792
0.351205
-0.000076
0.356150
0.308139
0.356150
-0.000087
0.361095
0.292101
0.361095
-0.000096
0.366040
0.276646
0.366040
-0.000103
0.370985
0.261744
0.370985
-0.000109
0.375930
0.247367
0.375930
-0.000113
0.380875
0.233488
0.380875
-0.000117
0.385820
0.220082
0.385820
-0.000118
0.390765
0.207126
0.390765
-0.000119
0.395710
0.194596
0.395710
-0.000119
0.400655
0.182472
0.400655
-0.000118
0.405600
0.170734
0.405600
-0.000116
0.410545
0.159362
0.410545
-0.000113
0.415490
0.148340
0.415490
-0.000110
0.420435
0.137648
0.420435
-0.000106
0.425380
0.127273
0.425380
-0.000101
0.430325
0.117198
0.430325
-0.000096
0.435270
0.107408
0.435270
-0.000090
0.440215
0.097890
0.440215
-0.000085
0.445160
0.088631
0.445160
-0.000078
0.450105
0.079617
0.450105
-0.000072
0.455050
0.070838
0.455050
-0.000065
0.459995
0.062282
0.459995
-0.000058
0.464940
0.053937
0.464940
-0.000051
0.469885
0.045794
0.469885
-0.000044
0.474830
0.037842
0.474830
-0.000037
0.479775
0.030072
0.479775
-0.000029
0.484720
0.022474
0.484720
-0.000022
0.489665
0.015041
0.489665
-0.000015
0.494610
0.007764
0.494610
-0.000008
0.499555
0.000635
0.499555
-0.000001
0.504500
-0.006355
0.504500
0.000006
0.509445
-0.013212
0.509445
0.000013
0.514390
-0.019943
0.514390
0.000020
0.519335
-0.026555
0.519335
0.000026
0.524280
-0.033056
0.524280
0.000032
0.529225
-0.039450
0.529225
0.000038
0.534170
-0.045746
0.534170
0.000043
0.539115
-0.051947
0.539115
0.000049
0.544060
-0.058061
0.544060
0.000053
0.549005
-0.064092
0.549005
0.000058
0.553950
-0.070046
0.553950
0.000062
0.558895
-0.075929
0.558895
0.000066
0.563840
-0.081745
0.563840
0.000069
0.568785
-0.087500
0.568785
0.000072
0.573730
-0.093198
0.573730
0.000074
0.578675
-0.098844
0.578675
0.000076
0.583620
-0.104442
0.583620
0.000078
0.588565
-0.109997
0.588565
0.000079
0.593510
-0.115514
0.593510
0.000079
0.598455
-0.120997
0.598455
0.000079
0.603400
-0.126450
0.603400
0.000078
0.608345
-0.131877
0.608345
0.000077
0.613290
-0.137282
0.613290
0.000075
0.618235
-0.142670
0.618235
0.000072
0.623180
-0.148044
0.623180
0.000069
0.628125
-0.153409
0.628125
0.000065
0.633070
-0.158768
0.633070
0.000060
0.638015
-0.164125
0.638015
0.000055
0.642960
-0.169484
0.642960
0.000049
0.647905
-0.174850
0.647905
0.000042
0.652850
-0.180225
0.652850
0.000035
0.657795
-0.185614
0.657795
0.000027
0.662740
-0.191021
0.662740
0.000018
0.667685
-0.196449
0.667685
0.000008
0.672630
-0.201903
0.672630
-0.000003
0.677575
-0.207386
0.677575
-0.000015
0.682520
-0.212902
0.682520
-0.000027
0.687465
-0.218456
0.687465
-0.000041
0.692410
-0.224051
0.692410
-0.000055
0.697355
-0.229692
0.697355
-0.000070
0.702300
-0.235382
0.702300
-0.000086
0.707245
-0.241127
0.707245
-0.000103
0.712190
-0.246929
0.712190
-0.000122
0.717135
-0.252794
0.717135
-0.000141
0.722080
-0.258727
0.722080
-0.000161
0.727025
-0.264731
0.727025
-0.000182
0.731970
-0.270811
0.731970
-0.000205
0.736915
-0.276973
0.736915
-0.000229
0.741860
-0.283222
0.741860
-0.000253
0.746805
-0.289561
0.746805
-0.000279
0.751750
-0.295998
0.751750
-0.000307
0.756695
-0.302537
0.756695
-0.000335
0.761640
-0.309183
0.761640
-0.000365
0.766585
-0.315944
0.766585
-0.000396
0.771530
-0.322824
0.771530
-0.000429
0.776475
-0.329830
0.776475
-0.000463
0.781420
-0.336969
0.781420
-0.000498
0.786365
-0.344247
0.786365
-0.000535
0.791310
-0.351672
0.791310
-0.000574
0.796255
-0.359251
0.796255
-0.000614
0.801200
-0.366992
0.801200
-0.000655
0.806145
-0.374902
0.806145
-0.000699
0.811090
-0.382991
0.811090
-0.000744
0.816035
-0.391267
0.816035
-0.000791
0.820980
-0.399739
0.820980
-0.000839
0.825925
-0.408417
0.825925
-0.000890
0.830870
-0.417313
0.830870
-0.000943
0.835815
-0.426435
0.835815
-0.000997
0.840760
-0.435797
0.840760
-0.001054
0.845705
-0.445410
0.845705
-0.001113
0.850650
-0.455286
0.850650
-0.001174
0.855595
-0.465440
0.855595
-0.001238
0.860540
-0.475885
0.860540
-0.001304
0.865485
-0.486638
0.865485
-0.001372
0.870430
-0.497713
0.870430
-0.001444
0.875375
-0.509128
0.875375
-0.001517
0.880320
-0.520902
0.880320
-0.001594
0.885265
-0.533054
0.885265
-0.001673
0.890210
-0.545604
0.890210
-0.001756
0.895155
-0.558575
0.895155
-0.001841
0.900100
-0.571991
0.900100
-0.001930
0.905045
-0.585876
0.905045
-0.002022
0.909990
-0.600259
0.909990
-0.002117
0.914935
-0.615169
0.914935
-0.002216
0.919880
-0.630637
0.919880
-0.002319
0.924825
-0.646698
0.924825
-0.002425
0.929770
-0.663387
0.929770
-0.002534
0.934715
-0.680745
0.934715
-0.002647
0.939660
-0.698815
0.939660
-0.002764
0.944605
-0.717644
0.944605
-0.002883
0.949550
-0.737281
0.949550
-0.003005
0.954495
-0.757783
0.954495
-0.003129
0.959440
-0.779209
0.959440
-0.003253
0.964385
-0.801626
0.964385
-0.003375
0.969330
-0.825106
0.969330
-0.003491
0.974275
-0.849727
0.974275
-0.003596
0.979220
-0.875576
0.979220
-0.003676
0.984165
-0.902751
0.984165
-0.003709
0.989110
-0.931357
0.989110
-0.003644
0.994055
-0.961511
0.994055
-0.003330

Figure 2:  Stable Manifolds

Figure 2 shows the stable manifolds computed under step 2 for the case of convex portfolio costs (top panel) and endogenous discounting (lower panel) with epsilon almost equal to 0.44 and omega subscript ki equal to 0.01. In the case of convex portfolio costs the two stable steady states which are marked by the filled in circles feature different capital stocks and therefore the two manifolds do not connect. The third steady state with q bar equals 1 is unstable. In the case of endogenous discounting the steady state is always unique and stable as indicated by the black arrows.

Figure 3:  Impulse Responses for Selected Variables: Convex Portfolio Costs

Data for Figure 3 immediately follows.

Data for Figure 3 - Panel A

Quarters
Output Home:
Path 3
Output Home:
Path 2
Output Home:
Path 1
Consumption Home:
Path 3
Consumption Home:
Path 2
Consumption Home:
Path 1
Investment Home:
Path 3
Investment Home:
Path 2
Investment Home:
Path 1
1
-1.984
0.089
0.000
-33.624
-3.923
0.049
-136.725
-13.470
-0.103
2
-2.544
0.007
-0.002
-34.328
-4.033
0.051
-129.735
-12.792
0.190
3
-3.085
-0.068
0.000
-34.996
-4.138
0.052
-124.097
-12.518
0.186
4
-3.616
-0.140
0.001
-35.629
-4.237
0.054
-118.835
-12.256
0.182
5
-4.134
-0.208
0.002
-36.228
-4.332
0.055
-113.926
-12.006
0.177
6
-4.638
-0.274
0.003
-36.793
-4.421
0.056
-109.348
-11.767
0.173
7
-5.126
-0.337
0.004
-37.327
-4.506
0.058
-105.081
-11.538
0.170
8
-5.599
-0.397
0.005
-37.830
-4.587
0.059
-101.102
-11.319
0.166
9
-6.055
-0.454
0.006
-38.303
-4.663
0.060
-97.393
-11.109
0.162
10
-6.493
-0.509
0.006
-38.747
-4.735
0.061
-93.935
-10.907
0.159
11
-6.913
-0.561
0.007
-39.163
-4.803
0.062
-90.710
-10.714
0.156
12
-7.316
-0.611
0.008
-39.553
-4.867
0.063
-87.703
-10.529
0.152
13
-7.701
-0.659
0.009
-39.918
-4.928
0.064
-84.897
-10.352
0.149
14
-8.067
-0.704
0.009
-40.258
-4.985
0.065
-82.278
-10.181
0.146
15
-8.416
-0.748
0.010
-40.575
-5.039
0.065
-79.834
-10.018
0.144
16
-8.748
-0.789
0.011
-40.869
-5.090
0.066
-77.551
-9.860
0.141
17
-9.062
-0.828
0.011
-41.142
-5.138
0.067
-75.417
-9.709
0.138
18
-9.360
-0.866
0.012
-41.395
-5.183
0.067
-73.423
-9.564
0.136
19
-9.641
-0.902
0.012
-41.628
-5.225
0.068
-71.557
-9.424
0.133
20
-9.906
-0.936
0.013
-41.843
-5.265
0.068
-69.811
-9.289
0.131
21
-10.156
-0.968
0.013
-42.041
-5.301
0.069
-68.177
-9.159
0.128
22
-10.390
-0.999
0.014
-42.221
-5.336
0.069
-66.645
-9.034
0.126
23
-10.611
-1.029
0.014
-42.386
-5.368
0.070
-65.209
-8.914
0.124
24
-10.817
-1.057
0.014
-42.536
-5.398
0.070
-63.863
-8.797
0.122
25
-11.010
-1.083
0.015
-42.671
-5.426
0.070
-62.598
-8.685
0.120
26
-11.190
-1.109
0.015
-42.793
-5.451
0.071
-61.411
-8.577
0.118
27
-11.358
-1.133
0.015
-42.903
-5.475
0.071
-60.295
-8.473
0.116
28
-11.514
-1.155
0.016
-43.000
-5.497
0.071
-59.246
-8.372
0.114
29
-11.659
-1.177
0.016
-43.086
-5.517
0.071
-58.259
-8.274
0.113
30
-11.793
-1.197
0.016
-43.161
-5.535
0.072
-57.329
-8.180
0.111
31
-11.917
-1.217
0.016
-43.225
-5.551
0.072
-56.452
-8.089
0.109
32
-12.032
-1.235
0.017
-43.281
-5.566
0.072
-55.626
-8.001
0.108
33
-12.137
-1.252
0.017
-43.327
-5.580
0.072
-54.847
-7.915
0.106
34
-12.233
-1.269
0.017
-43.365
-5.592
0.072
-54.110
-7.833
0.105
35
-12.322
-1.284
0.017
-43.394
-5.603
0.072
-53.415
-7.752
0.103
36
-12.402
-1.299
0.017
-43.416
-5.612
0.072
-52.757
-7.675
0.102
37
-12.475
-1.312
0.018
-43.432
-5.620
0.072
-52.135
-7.600
0.100
38
-12.541
-1.325
0.018
-43.440
-5.627
0.072
-51.545
-7.526
0.099
39
-12.600
-1.337
0.018
-43.442
-5.632
0.072
-50.987
-7.456
0.098
40
-12.653
-1.349
0.018
-43.439
-5.637
0.072
-50.458
-7.387
0.097
41
-12.700
-1.360
0.018
-43.430
-5.640
0.072
-49.955
-7.320
0.095
42
-12.742
-1.370
0.018
-43.415
-5.643
0.072
-49.479
-7.255
0.094
43
-12.778
-1.379
0.018
-43.397
-5.644
0.072
-49.025
-7.192
0.093
44
-12.809
-1.388
0.018
-43.373
-5.644
0.072
-48.594
-7.130
0.092
45
-12.836
-1.396
0.019
-43.345
-5.644
0.072
-48.184
-7.071
0.091
46
-12.859
-1.403
0.019
-43.314
-5.643
0.072
-47.794
-7.012
0.090
47
-12.877
-1.410
0.019
-43.279
-5.641
0.072
-47.422
-6.956
0.089
48
-12.891
-1.417
0.019
-43.240
-5.638
0.071
-47.067
-6.901
0.088
49
-12.902
-1.423
0.019
-43.198
-5.634
0.071
-46.729
-6.847
0.087
50
-12.910
-1.428
0.019
-43.154
-5.630
0.071
-46.406
-6.794
0.086
51
-12.914
-1.434
0.019
-43.106
-5.625
0.071
-46.097
-6.743
0.085
52
-12.915
-1.438
0.019
-43.057
-5.619
0.071
-45.802
-6.693
0.084
53
-12.914
-1.442
0.019
-43.004
-5.613
0.071
-45.519
-6.644
0.083
54
-12.910
-1.446
0.019
-42.950
-5.606
0.070
-45.249
-6.597
0.083
55
-12.903
-1.449
0.019
-42.894
-5.598
0.070
-44.990
-6.550
0.082
56
-12.895
-1.452
0.019
-42.835
-5.590
0.070
-44.741
-6.505
0.081
57
-12.884
-1.455
0.019
-42.776
-5.581
0.070
-44.503
-6.460
0.080
58
-12.871
-1.457
0.019
-42.714
-5.572
0.070
-44.274
-6.417
0.079
59
-12.857
-1.459
0.019
-42.651
-5.563
0.069
-44.054
-6.374
0.079
60
-12.841
-1.461
0.019
-42.587
-5.553
0.069
-43.842
-6.332
0.078
61
-12.823
-1.462
0.019
-42.522
-5.542
0.069
-43.639
-6.291
0.077
62
-12.804
-1.463
0.019
-42.456
-5.531
0.069
-43.443
-6.251
0.077
63
-12.783
-1.464
0.019
-42.389
-5.520
0.068
-43.254
-6.212
0.076
64
-12.761
-1.465
0.019
-42.320
-5.508
0.068
-43.072
-6.173
0.075
65
-12.739
-1.465
0.019
-42.252
-5.496
0.068
-42.897
-6.136
0.075
66
-12.715
-1.465
0.019
-42.182
-5.484
0.068
-42.727
-6.098
0.074
67
-12.690
-1.465
0.019
-42.112
-5.471
0.067
-42.563
-6.062
0.073
68
-12.664
-1.464
0.019
-42.041
-5.458
0.067
-42.405
-6.026
0.073
69
-12.637
-1.464
0.019
-41.970
-5.445
0.067
-42.252
-5.991
0.072
70
-12.610
-1.463
0.019
-41.899
-5.431
0.067
-42.104
-5.956
0.072
71
-12.582
-1.462
0.019
-41.827
-5.418
0.066
-41.960
-5.922
0.071
72
-12.553
-1.461
0.019
-41.755
-5.403
0.066
-41.821
-5.889
0.070
73
-12.524
-1.459
0.018
-41.682
-5.389
0.066
-41.686
-5.856
0.070
74
-12.494
-1.458
0.018
-41.610
-5.375
0.065
-41.556
-5.824
0.069
75
-12.464
-1.456
0.018
-41.537
-5.360
0.065
-41.429
-5.792
0.069
76
-12.434
-1.454
0.018
-41.465
-5.345
0.065
-41.305
-5.760
0.068
77
-12.403
-1.452
0.018
-41.392
-5.329
0.065
-41.185
-5.729
0.068
78
-12.372
-1.450
0.018
-41.319
-5.314
0.064
-41.069
-5.699
0.067
79
-12.340
-1.448
0.018
-41.247
-5.299
0.064
-40.955
-5.669
0.067
80
-12.309
-1.445
0.018
-41.174
-5.283
0.064
-40.845
-5.639
0.066
81
-12.277
-1.443
0.018
-41.102
-5.267
0.063
-40.737
-5.609
0.066
82
-12.245
-1.440
0.018
-41.030
-5.251
0.063
-40.632
-5.580
0.065
83
-12.213
-1.437
0.018
-40.958
-5.235
0.063
-40.530
-5.552
0.065
84
-12.180
-1.434
0.018
-40.886
-5.218
0.063
-40.430
-5.524
0.064
85
-12.148
-1.431
0.018
-40.814
-5.202
0.062
-40.333
-5.496
0.064
86
-12.116
-1.428
0.018
-40.743
-5.185
0.062
-40.238
-5.468
0.064
87
-12.083
-1.425
0.018
-40.672
-5.169
0.062
-40.145
-5.441
0.063
88
-12.051
-1.422
0.018
-40.601
-5.152
0.061
-40.054
-5.414
0.063
89
-12.018
-1.419
0.017
-40.531
-5.135
0.061
-39.965
-5.387
0.062
90
-11.986
-1.415
0.017
-40.460
-5.118
0.061
-39.878
-5.361
0.062
91
-11.954
-1.412
0.017
-40.391
-5.101
0.060
-39.793
-5.335
0.061
92
-11.921
-1.408
0.017
-40.321
-5.084
0.060
-39.709
-5.309
0.061
93
-11.889
-1.404
0.017
-40.252
-5.067
0.060
-39.628
-5.284
0.061
94
-11.857
-1.401
0.017
-40.183
-5.049
0.060
-39.547
-5.258
0.060
95
-11.825
-1.397
0.017
-40.115
-5.032
0.059
-39.469
-5.233
0.060
96
-11.793
-1.393
0.017
-40.047
-5.014
0.059
-39.392
-5.208
0.059
97
-11.762
-1.389
0.017
-39.980
-4.997
0.059
-39.316
-5.184
0.059
98
-11.730
-1.385
0.017
-39.912
-4.980
0.058
-39.242
-5.159
0.059
99
-11.699
-1.381
0.017
-39.846
-4.962
0.058
-39.169
-5.135
0.058
100
-11.667
-1.377
0.017
-39.779
-4.944
0.058
-39.097
-5.111
0.058
101
-11.636
-1.373
0.017
-39.714
-4.927
0.058
-39.027
-5.088
0.058
102
-11.605
-1.369
0.016
-39.648
-4.909
0.057
-38.958
-5.064
0.057
103
-11.575
-1.365
0.016
-39.583
-4.891
0.057
-38.890
-5.041
0.057
104
-11.544
-1.361
0.016
-39.519
-4.874
0.057
-38.823
-5.018
0.056
105
-11.514
-1.357
0.016
-39.455
-4.856
0.056
-38.757
-4.995
0.056
106
-11.484
-1.352
0.016
-39.391
-4.838
0.056
-38.692
-4.972
0.056
107
-11.454
-1.348
0.016
-39.328
-4.820
0.056
-38.628
-4.949
0.055
108
-11.424
-1.344
0.016
-39.266
-4.802
0.055
-38.565
-4.927
0.055
109
-11.394
-1.339
0.016
-39.203
-4.785
0.055
-38.503
-4.904
0.055
110
-11.365
-1.335
0.016
-39.142
-4.767
0.055
-38.442
-4.882
0.054
111
-11.336
-1.330
0.016
-39.080
-4.749
0.055
-38.382
-4.860
0.054
112
-11.307
-1.326
0.016
-39.020
-4.731
0.054
-38.323
-4.838
0.054
113
-11.278
-1.322
0.016
-38.959
-4.713
0.054
-38.264
-4.817
0.053
114
-11.250
-1.317
0.016
-38.899
-4.695
0.054
-38.207
-4.795
0.053
115
-11.222
-1.313
0.015
-38.840
-4.677
0.053
-38.150
-4.773
0.053
116
-11.194
-1.308
0.015
-38.781
-4.660
0.053
-38.094
-4.752
0.053
117
-11.166
-1.304
0.015
-38.723
-4.642
0.053
-38.038
-4.731
0.052
118
-11.138
-1.299
0.015
-38.665
-4.624
0.053
-37.983
-4.710
0.052
119
-11.111
-1.295
0.015
-38.607
-4.606
0.052
-37.929
-4.689
0.052
120
-11.084
-1.290
0.015
-38.550
-4.588
0.052
-37.876
-4.668
0.051
121
-11.057
-1.285
0.015
-38.493
-4.570
0.052
-37.823
-4.648
0.051
122
-11.031
-1.281
0.015
-38.437
-4.553
0.052
-37.771
-4.627
0.051
123
-11.004
-1.276
0.015
-38.382
-4.535
0.051
-37.720
-4.606
0.050
124
-10.978
-1.272
0.015
-38.326
-4.517
0.051
-37.669
-4.586
0.050
125
-10.952
-1.267
0.015
-38.271
-4.499
0.051
-37.619
-4.566
0.050
126
-10.926
-1.262
0.015
-38.217
-4.482
0.050
-37.569
-4.546
0.050
127
-10.901
-1.258
0.015
-38.163
-4.464
0.050
-37.520
-4.526
0.049
128
-10.876
-1.253
0.014
-38.110
-4.446
0.050
-37.471
-4.506
0.049
129
-10.851
-1.248
0.014
-38.057
-4.429
0.050
-37.423
-4.486
0.049
130
-10.826
-1.244
0.014
-38.004
-4.411
0.049
-37.376
-4.466
0.048
131
-10.801
-1.239
0.014
-37.952
-4.393
0.049
-37.329
-4.447
0.048
132
-10.777
-1.235
0.014
-37.900
-4.376
0.049
-37.282
-4.427
0.048
133
-10.753
-1.230
0.014
-37.849
-4.358
0.049
-37.236
-4.408
0.048
134
-10.729
-1.225
0.014
-37.798
-4.341
0.048
-37.190
-4.388
0.047
135
-10.705
-1.221
0.014
-37.748
-4.323
0.048
-37.145
-4.369
0.047
136
-10.682
-1.216
0.014
-37.698
-4.306
0.048
-37.101
-4.350
0.047
137
-10.659
-1.211
0.014
-37.648
-4.289
0.048
-37.056
-4.331
0.046
138
-10.636
-1.207
0.014
-37.599
-4.271
0.047
-37.013
-4.312
0.046
139
-10.613
-1.202
0.014
-37.550
-4.254
0.047
-36.969
-4.293
0.046
140
-10.590
-1.197
0.014
-37.502
-4.236
0.047
-36.926
-4.274
0.046
141
-10.568
-1.193
0.013
-37.454
-4.219
0.047
-36.884
-4.255
0.045
142
-10.546
-1.188
0.013
-37.406
-4.202
0.046
-36.842
-4.237
0.045
143
-10.524
-1.183
0.013
-37.359
-4.185
0.046
-36.800
-4.218
0.045
144
-10.502
-1.179
0.013
-37.312
-4.168
0.046
-36.759
-4.200
0.045
145
-10.480
-1.174
0.013
-37.266
-4.151
0.046
-36.718
-4.181
0.044
146
-10.459
-1.170
0.013
-37.220
-4.133
0.045
-36.677
-4.163
0.044
147
-10.438
-1.165
0.013
-37.174
-4.116
0.045
-36.637
-4.145
0.044
148
-10.417
-1.160
0.013
-37.129
-4.099
0.045
-36.597
-4.127
0.044
149
-10.396
-1.156
0.013
-37.084
-4.082
0.045
-36.558
-4.108
0.043
150
-10.376
-1.151
0.013
-37.040
-4.066
0.044
-36.519
-4.090
0.043
151
-10.355
-1.147
0.013
-36.996
-4.049
0.044
-36.480
-4.072
0.043
152
-10.335
-1.142
0.013
-36.952
-4.032
0.044
-36.442
-4.055
0.043
153
-10.315
-1.138
0.013
-36.909
-4.015
0.044
-36.403
-4.037
0.042
154
-10.295
-1.133
0.013
-36.866
-3.998
0.043
-36.366
-4.019
0.042
155
-10.276
-1.128
0.013
-36.823
-3.982
0.043
-36.328
-4.001
0.042
156
-10.256
-1.124
0.012
-36.781
-3.965
0.043
-36.291
-3.984
0.042
157
-10.237
-1.119
0.012
-36.739
-3.948
0.043
-36.254
-3.966
0.042
158
-10.218
-1.115
0.012
-36.697
-3.932
0.042
-36.218
-3.949
0.041
159
-10.199
-1.110
0.012
-36.656
-3.915
0.042
-36.182
-3.931
0.041
160
-10.180
-1.106
0.012
-36.615
-3.899
0.042
-36.146
-3.914
0.041
161
-10.162
-1.101
0.012
-36.574
-3.882
0.042
-36.110
-3.897
0.041
162
-10.143
-1.097
0.012
-36.534
-3.866
0.042
-36.075
-3.880
0.040
163
-10.125
-1.092
0.012
-36.494
-3.849
0.041
-36.040
-3.862
0.040
164
-10.107
-1.088
0.012
-36.454
-3.833
0.041
-36.005
-3.845
0.040
165
-10.089
-1.083
0.012
-36.415
-3.817
0.041
-35.971
-3.828
0.040
166
-10.071
-1.079
0.012
-36.376
-3.801
0.041
-35.937
-3.812
0.040
167
-10.054
-1.074
0.012
-36.338
-3.785
0.040
-35.903
-3.795
0.039
168
-10.036
-1.070
0.012
-36.299
-3.768
0.040
-35.869
-3.778
0.039
169
-10.019
-1.066
0.012
-36.261
-3.752
0.040
-35.836
-3.761
0.039
170
-10.002
-1.061
0.012
-36.224
-3.736
0.040
-35.803
-3.744
0.039
171
-9.985
-1.057
0.011
-36.186
-3.720
0.040
-35.770
-3.728
0.038
172
-9.968
-1.052
0.011
-36.149
-3.704
0.039
-35.737
-3.711
0.038
173
-9.952
-1.048
0.011
-36.112
-3.689
0.039
-35.705
-3.695
0.038
174
-9.935
-1.044
0.011
-36.076
-3.673
0.039
-35.673
-3.678
0.038
175
-9.919
-1.039
0.011
-36.040
-3.657
0.039
-35.641
-3.662
0.038
176
-9.903
-1.035
0.011
-36.004
-3.641
0.038
-35.610
-3.646
0.037
177
-9.887
-1.031
0.011
-35.968
-3.625
0.038
-35.578
-3.629
0.037
178
-9.871
-1.026
0.011
-35.933
-3.610
0.038
-35.547
-3.613
0.037
179
-9.855
-1.022
0.011
-35.898
-3.594
0.038
-35.516
-3.597
0.037
180
-9.840
-1.018
0.011
-35.863
-3.579
0.038
-35.486
-3.581
0.037
181
-9.824
-1.013
0.011
-35.829
-3.563
0.037
-35.455
-3.565
0.036
182
-9.809
-1.009
0.011
-35.794
-3.548
0.037
-35.425
-3.549
0.036
183
-9.794
-1.005
0.011
-35.761
-3.532
0.037
-35.395
-3.533
0.036
184
-9.779
-1.001
0.011
-35.727
-3.517
0.037
-35.366
-3.517
0.036
185
-9.764
-0.996
0.011
-35.693
-3.502
0.037
-35.336
-3.502
0.036
186
-9.749
-0.992
0.011
-35.660
-3.486
0.036
-35.307
-3.486
0.035
187
-9.734
-0.988
0.011
-35.627
-3.471
0.036
-35.278
-3.470
0.035
188
-9.720
-0.984
0.010
-35.595
-3.456
0.036
-35.249
-3.455
0.035
189
-9.705
-0.979
0.010
-35.563
-3.441
0.036
-35.220
-3.439
0.035
190
-9.691
-0.975
0.010
-35.530
-3.426
0.036
-35.192
-3.424
0.035
191
-9.677
-0.971
0.010
-35.499
-3.411
0.035
-35.164
-3.408
0.034
192
-9.663
-0.967
0.010
-35.467
-3.396
0.035
-35.136
-3.393
0.034
193
-9.649
-0.963
0.010
-35.436
-3.381
0.035
-35.108
-3.378
0.034
194
-9.635
-0.959
0.010
-35.405
-3.366
0.035
-35.080
-3.362
0.034
195
-9.622
-0.955
0.010
-35.374
-3.351
0.035
-35.053
-3.347
0.034
196
-9.608
-0.950
0.010
-35.343
-3.337
0.034
-35.026
-3.332
0.033
197
-9.595
-0.946
0.010
-35.313
-3.322
0.034
-34.999
-3.317
0.033
198
-9.581
-0.942
0.010
-35.283
-3.307
0.034
-34.972
-3.302
0.033
199
-9.568
-0.938
0.010
-35.253
-3.293
0.034
-34.945
-3.287
0.033
200
-9.555
-0.934
0.010
-35.223
-3.278
0.034
-34.919
-3.272
0.033
201
-9.542
-0.930
0.010
-35.194
-3.263
0.034
-34.893
-3.257
0.033
202
-9.529
-0.926
0.010
-35.164
-3.249
0.033
-34.867
-3.242
0.032
203
-9.517
-0.922
0.010
-35.135
-3.235
0.033
-34.841
-3.228
0.032
204
-9.504
-0.918
0.010
-35.107
-3.220
0.033
-34.815
-3.213
0.032
205
-9.492
-0.914
0.010
-35.078
-3.206
0.033
-34.790
-3.198
0.032
206
-9.479
-0.910
0.009
-35.050
-3.192
0.033
-34.765
-3.184
0.032
207
-9.467
-0.906
0.009
-35.022
-3.177
0.032
-34.739
-3.169
0.032
208
-9.455
-0.902
0.009
-34.994
-3.163
0.032
-34.715
-3.155
0.031
209
-9.443
-0.898
0.009
-34.966
-3.149
0.032
-34.690
-3.140
0.031
210
-9.431
-0.894
0.009
-34.938
-3.135
0.032
-34.665
-3.126
0.031
211
-9.419
-0.890
0.009
-34.911
-3.121
0.032
-34.641
-3.112
0.031
212
-9.407
-0.886
0.009
-34.884
-3.107
0.032
-34.617
-3.097
0.031
213
-9.395
-0.883
0.009
-34.857
-3.093
0.031
-34.592
-3.083
0.030
214
-9.384
-0.879
0.009
-34.831
-3.079
0.031
-34.569
-3.069
0.030
215
-9.372
-0.875
0.009
-34.804
-3.065
0.031
-34.545
-3.055
0.030
216
-9.361
-0.871
0.009
-34.778
-3.052
0.031
-34.521
-3.041
0.030
217
-9.349
-0.867
0.009
-34.752
-3.038
0.031
-34.498
-3.027
0.030
218
-9.338
-0.863
0.009
-34.726
-3.024
0.031
-34.475
-3.013
0.030
219
-9.327
-0.859
0.009
-34.700
-3.011
0.030
-34.451
-2.999
0.030
220
-9.316
-0.856
0.009
-34.675
-2.997
0.030
-34.429
-2.985
0.029
221
-9.305
-0.852
0.009
-34.649
-2.983
0.030
-34.406
-2.971
0.029
222
-9.294
-0.848
0.009
-34.624
-2.970
0.030
-34.383
-2.958
0.029
223
-9.283
-0.844
0.009
-34.599
-2.956
0.030
-34.361
-2.944
0.029
224
-9.273
-0.841
0.009
-34.575
-2.943
0.030
-34.338
-2.930
0.029
225
-9.262
-0.837
0.009
-34.550
-2.930
0.029
-34.316
-2.917
0.029
226
-9.252
-0.833
0.008
-34.526
-2.916
0.029
-34.294
-2.903
0.028
227
-9.241
-0.829
0.008
-34.502
-2.903
0.029
-34.272
-2.890
0.028
228
-9.231
-0.826
0.008
-34.478
-2.890
0.029
-34.251
-2.876
0.028
229
-9.221
-0.822
0.008
-34.454
-2.877
0.029
-34.229
-2.863
0.028
230
-9.210
-0.818
0.008
-34.430
-2.864
0.029
-34.208
-2.850
0.028
231
-9.200
-0.815
0.008
-34.407
-2.851
0.028
-34.187
-2.837
0.028
232
-9.190
-0.811
0.008
-34.383
-2.838
0.028
-34.165
-2.823
0.027
233
-9.180
-0.807
0.008
-34.360
-2.825
0.028
-34.144
-2.810
0.027
234
-9.170
-0.804
0.008
-34.337
-2.812
0.028
-34.124
-2.797
0.027
235
-9.161
-0.800
0.008
-34.314
-2.799
0.028
-34.103
-2.784
0.027
236
-9.151
-0.796
0.008
-34.292
-2.786
0.028
-34.082
-2.771
0.027
237
-9.141
-0.793
0.008
-34.269
-2.773
0.028
-34.062
-2.758
0.027
238
-9.132
-0.789
0.008
-34.247
-2.761
0.027
-34.042
-2.745
0.027
239
-9.122
-0.786
0.008
-34.225
-2.748
0.027
-34.022
-2.732
0.026
240
-9.113
-0.782
0.008
-34.203
-2.735
0.027
-34.002
-2.719
0.026
241
-9.104
-0.779
0.008
-34.181
-2.723
0.027
-33.982
-2.707
0.026
242
-9.094
-0.775
0.008
-34.159
-2.710
0.027
-33.962
-2.694
0.026
243
-9.085
-0.772
0.008
-34.138
-2.698
0.027
-33.942
-2.681
0.026
244
-9.076
-0.768
0.008
-34.116
-2.685
0.026
-33.923
-2.669
0.026
245
-9.067
-0.765
0.008
-34.095
-2.673
0.026
-33.904
-2.656
0.026
246
-9.058
-0.761
0.008
-34.074
-2.661
0.026
-33.884
-2.644
0.025
247
-9.049
-0.758
0.008
-34.053
-2.648
0.026
-33.865
-2.631
0.025
248
-9.040
-0.754
0.008
-34.032
-2.636
0.026
-33.846
-2.619
0.025
249
-9.032
-0.751
0.007
-34.011
-2.624
0.026
-33.827
-2.606
0.025
250
-9.023
-0.747
0.007
-33.991
-2.612
0.026
-33.809
-2.594
0.025
251
-9.014
-0.744
0.007
-33.971
-2.599
0.025
-33.790
-2.582
0.025
252
-9.006
-0.741
0.007
-33.950
-2.587
0.025
-33.772
-2.570
0.025
253
-8.997
-0.737
0.007
-33.930
-2.575
0.025
-33.753
-2.558
0.024
254
-8.989
-0.734
0.007
-33.911
-2.563
0.025
-33.735
-2.545
0.024
255
-8.981
-0.731
0.007
-33.891
-2.551
0.025
-33.717
-2.533
0.024
256
-8.972
-0.727
0.007
-33.871
-2.540
0.025
-33.699
-2.521
0.024
257
-8.964
-0.724
0.007
-33.852
-2.528
0.025
-33.681
-2.509
0.024
258
-8.956
-0.721
0.007
-33.832
-2.516
0.025
-33.664
-2.497
0.024
259
-8.948
-0.717
0.007
-33.813
-2.504
0.024
-33.646
-2.486
0.024
260
-8.940
-0.714
0.007
-33.794
-2.493
0.024
-33.628
-2.474
0.024
261
-8.932
-0.711
0.007
-33.775
-2.481
0.024
-33.611
-2.462
0.023
262
-8.924
-0.707
0.007
-33.756
-2.469
0.024
-33.594
-2.450
0.023
263
-8.916
-0.704
0.007
-33.737
-2.458
0.024
-33.577
-2.439
0.023
264
-8.908
-0.701
0.007
-33.719
-2.446
0.024
-33.560
-2.427
0.023
265
-8.900
-0.698
0.007
-33.700
-2.435
0.024
-33.543
-2.415
0.023
266
-8.893
-0.694
0.007
-33.682
-2.423
0.023
-33.526
-2.404
0.023
267
-8.885
-0.691
0.007
-33.664
-2.412
0.023
-33.509
-2.392
0.023
268
-8.877
-0.688
0.007
-33.646
-2.401
0.023
-33.492
-2.381
0.023
269
-8.870
-0.685
0.007
-33.628
-2.389
0.023
-33.476
-2.369
0.022
270
-8.862
-0.682
0.007
-33.610
-2.378
0.023
-33.459
-2.358
0.022
271
-8.855
-0.678
0.007
-33.593
-2.367
0.023
-33.443
-2.347
0.022
272
-8.848
-0.675
0.007
-33.575
-2.356
0.023
-33.427
-2.336
0.022
273
-8.840
-0.672
0.007
-33.558
-2.345
0.023
-33.411
-2.324
0.022
274
-8.833
-0.669
0.007
-33.540
-2.334
0.022
-33.395
-2.313
0.022
275
-8.826
-0.666
0.006
-33.523
-2.322
0.022
-33.379
-2.302
0.022
276
-8.819
-0.663
0.006
-33.506
-2.311
0.022
-33.363
-2.291
0.022
277
-8.812
-0.660
0.006
-33.489
-2.301
0.022
-33.348
-2.280
0.021
278
-8.805
-0.657
0.006
-33.472
-2.290
0.022
-33.332
-2.269
0.021
279
-8.798
-0.654
0.006
-33.455
-2.279
0.022
-33.317
-2.258
0.021
280
-8.791
-0.651
0.006
-33.439
-2.268
0.022
-33.301
-2.247
0.021
281
-8.784
-0.647
0.006
-33.422
-2.257
0.022
-33.286
-2.236
0.021
282
-8.777
-0.644
0.006
-33.406
-2.247
0.021
-33.271
-2.226
0.021
283
-8.770
-0.641
0.006
-33.390
-2.236
0.021
-33.256
-2.215
0.021
284
-8.763
-0.638
0.006
-33.373
-2.225
0.021
-33.241
-2.204
0.021
285
-8.757
-0.635
0.006
-33.357
-2.215
0.021
-33.226
-2.193
0.021
286
-8.750
-0.632
0.006
-33.341
-2.204
0.021
-33.211
-2.183
0.020
287
-8.743
-0.629
0.006
-33.325
-2.194
0.021
-33.196
-2.172
0.020
288
-8.737
-0.626
0.006
-33.310
-2.183
0.021
-33.182
-2.162
0.020
289
-8.730
-0.624
0.006
-33.294
-2.173
0.021
-33.167
-2.151
0.020
290
-8.724
-0.621
0.006
-33.279
-2.162
0.021
-33.153
-2.141
0.020
291
-8.718
-0.618
0.006
-33.263
-2.152
0.020
-33.139
-2.130
0.020
292
-8.711
-0.615
0.006
-33.248
-2.142
0.020
-33.124
-2.120
0.020
293
-8.705
-0.612
0.006
-33.233
-2.131
0.020
-33.110
-2.110
0.020
294
-8.699
-0.609
0.006
-33.217
-2.121
0.020
-33.096
-2.099
0.020
295
-8.692
-0.606
0.006
-33.202
-2.111
0.020
-33.082
-2.089
0.019
296
-8.686
-0.603
0.006
-33.187
-2.101
0.020
-33.068
-2.079
0.019
297
-8.680
-0.600
0.006
-33.173
-2.091
0.020
-33.055
-2.069
0.019
298
-8.674
-0.598
0.006
-33.158
-2.081
0.020
-33.041
-2.059
0.019
299
-8.668
-0.595
0.006
-33.143
-2.071
0.020
-33.027
-2.049
0.019
300
-8.662
-0.592
0.006
-33.129
-2.061
0.019
-33.014
-2.039
0.019
301
-8.656
-0.589
0.006
-33.114
-2.051
0.019
-33.000
-2.029
0.019
302
-8.650
-0.586
0.006
-33.100
-2.041
0.019
-32.987
-2.019
0.019
303
-8.644
-0.583
0.006
-33.086
-2.031
0.019
-32.974
-2.009
0.019
304
-8.638
-0.581
0.006
-33.072
-2.021
0.019
-32.961
-1.999
0.018
305
-8.633
-0.578
0.006
-33.058
-2.012
0.019
-32.947
-1.989
0.018
306
-8.627
-0.575
0.005
-33.044
-2.002
0.019
-32.934
-1.980
0.018
307
-8.621
-0.572
0.005
-33.030
-1.992
0.019
-32.921
-1.970
0.018
308
-8.615
-0.570
0.005
-33.016
-1.983
0.019
-32.909
-1.960
0.018
309
-8.610
-0.567
0.005
-33.002
-1.973
0.019
-32.896
-1.951
0.018
310
-8.604
-0.564
0.005
-32.989
-1.964
0.018
-32.883
-1.941
0.018
311
-8.599
-0.562
0.005
-32.975
-1.954
0.018
-32.871
-1.931
0.018
312
-8.593
-0.559
0.005
-32.962
-1.945
0.018
-32.858
-1.922
0.018
313
-8.588
-0.556
0.005
-32.948
-1.935
0.018
-32.846
-1.912
0.018
314
-8.582
-0.554
0.005
-32.935
-1.926
0.018
-32.833
-1.903
0.017
315
-8.577
-0.551
0.005
-32.922
-1.916
0.018
-32.821
-1.894
0.017
316
-8.571
-0.548
0.005
-32.909
-1.907
0.018
-32.809
-1.884
0.017
317
-8.566
-0.546
0.005
-32.896
-1.898
0.018
-32.796
-1.875
0.017
318
-8.561
-0.543
0.005
-32.883
-1.889
0.018
-32.784
-1.866
0.017
319
-8.555
-0.540
0.005
-32.870
-1.879
0.018
-32.772
-1.857
0.017
320
-8.550
-0.538
0.005
-32.857
-1.870
0.017
-32.760
-1.847
0.017
321
-8.545
-0.535
0.005
-32.845
-1.861
0.017
-32.749
-1.838
0.017
322
-8.540
-0.533
0.005
-32.832
-1.852
0.017
-32.737
-1.829
0.017
323
-8.535
-0.530
0.005
-32.820
-1.843
0.017
-32.725
-1.820
0.017
324
-8.530
-0.527
0.005
-32.807
-1.834
0.017
-32.714
-1.811
0.017
325
-8.525
-0.525
0.005
-32.795
-1.825
0.017
-32.702
-1.802
0.016
326
-8.520
-0.522
0.005
-32.783
-1.816
0.017
-32.691
-1.793
0.016
327
-8.515
-0.520
0.005
-32.770
-1.807
0.017
-32.679
-1.784
0.016
328
-8.510
-0.517
0.005
-32.758
-1.798
0.017
-32.668
-1.775
0.016
329
-8.505
-0.515
0.005
-32.746
-1.790
0.017
-32.656
-1.767
0.016
330
-8.500
-0.512
0.005
-32.734
-1.781
0.016
-32.645
-1.758
0.016
331
-8.495
-0.510
0.005
-32.723
-1.772
0.016
-32.634
-1.749
0.016
332
-8.490
-0.507
0.005
-32.711
-1.764
0.016
-32.623
-1.740
0.016
333
-8.485
-0.505
0.005
-32.699
-1.755
0.016
-32.612
-1.732
0.016
334
-8.481
-0.502
0.005
-32.687
-1.746
0.016
-32.601
-1.723
0.016
335
-8.476
-0.500
0.005
-32.676
-1.738
0.016
-32.590
-1.715
0.016
336
-8.471
-0.498
0.005
-32.664
-1.729
0.016
-32.579
-1.706
0.015
337
-8.467
-0.495
0.005
-32.653
-1.721
0.016
-32.569
-1.697
0.015
338
-8.462
-0.493
0.005
-32.642
-1.712
0.016
-32.558
-1.689
0.015
339
-8.457
-0.490
0.005
-32.630
-1.704
0.016
-32.548
-1.681
0.015
340
-8.453
-0.488
0.005
-32.619
-1.695
0.016
-32.537
-1.672
0.015
341
-8.448
-0.486
0.005
-32.608
-1.687
0.016
-32.527
-1.664
0.015
342
-8.444
-0.483
0.004
-32.597
-1.679
0.015
-32.516
-1.656
0.015
343
-8.439
-0.481
0.004
-32.586
-1.670
0.015
-32.506
-1.647
0.015
344
-8.435
-0.479
0.004
-32.575
-1.662
0.015
-32.495
-1.639
0.015
345
-8.430
-0.476
0.004
-32.564
-1.654
0.015
-32.485
-1.631
0.015
346
-8.426
-0.474
0.004
-32.553
-1.646
0.015
-32.475
-1.623
0.015
347
-8.422
-0.472
0.004
-32.543
-1.638
0.015
-32.465
-1.615
0.015
348
-8.417
-0.469
0.004
-32.532
-1.630
0.015
-32.455
-1.606
0.014
349
-8.413
-0.467
0.004
-32.521
-1.621
0.015
-32.445
-1.598
0.014
350
-8.409
-0.465
0.004
-32.511
-1.613
0.015
-32.435
-1.590
0.014
351
-8.405
-0.462
0.004
-32.500
-1.605
0.015
-32.425
-1.582
0.014
352
-8.400
-0.460
0.004
-32.490
-1.597
0.015
-32.416
-1.574
0.014
353
-8.396
-0.458
0.004
-32.480
-1.590
0.015
-32.406
-1.566
0.014
354
-8.392
-0.456
0.004
-32.470
-1.582
0.014
-32.396
-1.559
0.014
355
-8.388
-0.453
0.004
-32.459
-1.574
0.014
-32.387
-1.551
0.014
356
-8.384
-0.451
0.004
-32.449
-1.566
0.014
-32.377
-1.543
0.014
357
-8.380
-0.449
0.004
-32.439
-1.558
0.014
-32.367
-1.535
0.014
358
-8.376
-0.447
0.004
-32.429
-1.550
0.014
-32.358
-1.527
0.014
359
-8.372
-0.444
0.004
-32.419
-1.543
0.014
-32.349
-1.520
0.014
360
-8.368
-0.442
0.004
-32.409
-1.535
0.014
-32.339
-1.512
0.014
361
-8.364
-0.440
0.004
-32.400
-1.527
0.014
-32.330
-1.504
0.013
362
-8.360
-0.438
0.004
-32.390
-1.520
0.014
-32.321
-1.497
0.013
363
-8.356
-0.436
0.004
-32.380
-1.512
0.014
-32.312
-1.489
0.013
364
-8.352
-0.434
0.004
-32.370
-1.505
0.014
-32.303
-1.482
0.013
365
-8.348
-0.431
0.004
-32.361
-1.497
0.014
-32.294
-1.474
0.013
366
-8.344
-0.429
0.004
-32.351
-1.490
0.014
-32.285
-1.467
0.013
367
-8.340
-0.427
0.004
-32.342
-1.482
0.013
-32.276
-1.459
0.013
368
-8.337
-0.425
0.004
-32.333
-1.475
0.013
-32.267
-1.452
0.013
369
-8.333
-0.423
0.004
-32.323
-1.468
0.013
-32.258
-1.445
0.013
370
-8.329
-0.421
0.004
-32.314
-1.460
0.013
-32.249
-1.437
0.013
371
-8.325
-0.419
0.004
-32.305
-1.453
0.013
-32.241
-1.430
0.013
372
-8.322
-0.417
0.004
-32.296
-1.446
0.013
-32.232
-1.423
0.013
373
-8.318
-0.415
0.004
-32.286
-1.438
0.013
-32.223
-1.416
0.013
374
-8.314
-0.413
0.004
-32.277
-1.431
0.013
-32.215
-1.408
0.013
375
-8.311
-0.411
0.004
-32.268
-1.424
0.013
-32.206
-1.401
0.012
376
-8.307
-0.408
0.004
-32.260
-1.417
0.013
-32.198
-1.394
0.012
377
-8.304
-0.406
0.004
-32.251
-1.410
0.013
-32.189
-1.387
0.012
378
-8.300
-0.404
0.004
-32.242
-1.403
0.013
-32.181
-1.380
0.012
379
-8.296
-0.402
0.004
-32.233
-1.396
0.013
-32.173
-1.373
0.012
380
-8.293
-0.400
0.004
-32.224
-1.389
0.013
-32.164
-1.366
0.012
381
-8.289
-0.398
0.004
-32.216
-1.382
0.012
-32.156
-1.359
0.012
382
-8.286
-0.396
0.004
-32.207
-1.375
0.012
-32.148
-1.352
0.012
383
-8.283
-0.394
0.004
-32.199
-1.368
0.012
-32.140
-1.345
0.012
384
-8.279
-0.392
0.004
-32.190
-1.361
0.012
-32.132
-1.339
0.012
385
-8.276
-0.391
0.004
-32.182
-1.354
0.012
-32.124
-1.332
0.012
386
-8.272
-0.389
0.004
-32.173
-1.347
0.012
-32.116
-1.325
0.012
387
-8.269
-0.387
0.004
-32.165
-1.340
0.012
-32.108
-1.318
0.012
388
-8.266
-0.385
0.003
-32.157
-1.334
0.012
-32.100
-1.311
0.012
389
-8.262
-0.383
0.003
-32.148
-1.327
0.012
-32.092
-1.305
0.012
390
-8.259
-0.381
0.003
-32.140
-1.320
0.012
-32.084
-1.298
0.011
391
-8.256
-0.379
0.003
-32.132
-1.314
0.012
-32.077
-1.291
0.011
392
-8.252
-0.377
0.003
-32.124
-1.307
0.012
-32.069
-1.285
0.011
393
-8.249
-0.375
0.003
-32.116
-1.300
0.012
-32.061
-1.278
0.011
394
-8.246
-0.373
0.003
-32.108
-1.294
0.012
-32.054
-1.272
0.011
395
-8.243
-0.371
0.003
-32.100
-1.287
0.012
-32.046
-1.265
0.011
396
-8.240
-0.370
0.003
-32.092
-1.281
0.011
-32.039
-1.259
0.011
397
-8.237
-0.368
0.003
-32.084
-1.274
0.011
-32.031
-1.252
0.011
398
-8.233
-0.366
0.003
-32.076
-1.268
0.011
-32.024
-1.246
0.011
399
-8.230
-0.364
0.003
-32.069
-1.261
0.011
-32.017
-1.240
0.011
400
-8.227
-0.362
0.003
-32.061
-1.255
0.011
-32.009
-1.233
0.011
401
-8.224
-0.360
0.003
-32.053
-1.249
0.011
-32.002
-1.227
0.011
402
-8.221
-0.359
0.003
-32.046
-1.242
0.011
-31.995
-1.221
0.011
403
-8.218
-0.357
0.003
-32.038
-1.236
0.011
-31.988
-1.214
0.011
404
-8.215
-0.355
0.003
-32.030
-1.230
0.011
-31.980
-1.208
0.011
405
-8.212
-0.353
0.003
-32.023
-1.223
0.011
-31.973
-1.202
0.011
406
-8.209
-0.351
0.003
-32.016
-1.217
0.011
-31.966
-1.196
0.011
407
-8.206
-0.350
0.003
-32.008
-1.211
0.011
-31.959
-1.190
0.010
408
-8.203
-0.348
0.003
-32.001
-1.205
0.011
-31.952
-1.183
0.010
409
-8.200
-0.346
0.003
-31.993
-1.199
0.011
-31.945
-1.177
0.010
410
-8.197
-0.344
0.003
-31.986
-1.193
0.011
-31.938
-1.171
0.010
411
-8.194
-0.343
0.003
-31.979
-1.187
0.011
-31.931
-1.165
0.010
412
-8.192
-0.341
0.003
-31.972
-1.181
0.010
-31.925
-1.159
0.010
413
-8.189
-0.339
0.003
-31.965
-1.174
0.010
-31.918
-1.153
0.010
414
-8.186
-0.337
0.003
-31.958
-1.169
0.010
-31.911
-1.147
0.010
415
-8.183
-0.336
0.003
-31.951
-1.163
0.010
-31.904
-1.141
0.010
416
-8.180
-0.334
0.003
-31.944
-1.157
0.010
-31.898
-1.136
0.010
417
-8.178
-0.332
0.003
-31.937
-1.151
0.010
-31.891
-1.130
0.010
418
-8.175
-0.331
0.003
-31.930
-1.145
0.010
-31.885
-1.124
0.010
419
-8.172
-0.329
0.003
-31.923
-1.139
0.010
-31.878
-1.118
0.010
420
-8.169
-0.327
0.003
-31.916
-1.133
0.010
-31.871
-1.112
0.010
421
-8.167
-0.326
0.003
-31.909
-1.127
0.010
-31.865
-1.107
0.010
422
-8.164
-0.324
0.003
-31.903
-1.122
0.010
-31.859
-1.101
0.010
423
-8.161
-0.322
0.003
-31.896
-1.116
0.010
-31.852
-1.095
0.010
424
-8.159
-0.321
0.003
-31.889
-1.110
0.010
-31.846
-1.090
0.010
425
-8.156
-0.319
0.003
-31.883
-1.104
0.010
-31.840
-1.084
0.009
426
-8.153
-0.317
0.003
-31.876
-1.099
0.010
-31.833
-1.078
0.009
427
-8.151
-0.316
0.003
-31.869
-1.093
0.010
-31.827
-1.073
0.009
428
-8.148
-0.314
0.003
-31.863
-1.088
0.010
-31.821
-1.067
0.009
429
-8.146
-0.313
0.003
-31.856
-1.082
0.010
-31.815
-1.062
0.009
430
-8.143
-0.311
0.003
-31.850
-1.076
0.009
-31.808
-1.056
0.009
431
-8.140
-0.309
0.003
-31.844
-1.071
0.009
-31.802
-1.051
0.009
432
-8.138
-0.308
0.003
-31.837
-1.065
0.009
-31.796
-1.045
0.009
433
-8.135
-0.306
0.003
-31.831
-1.060
0.009
-31.790
-1.040
0.009
434
-8.133
-0.305
0.003
-31.825
-1.055
0.009
-31.784
-1.034
0.009
435
-8.130
-0.303
0.003
-31.818
-1.049
0.009
-31.778
-1.029
0.009
436
-8.128
-0.302
0.003
-31.812
-1.044
0.009
-31.772
-1.024
0.009
437
-8.125
-0.300
0.003
-31.806
-1.038
0.009
-31.767
-1.018
0.009
438
-8.123
-0.299
0.003
-31.800
-1.033
0.009
-31.761
-1.013
0.009
439
-8.121
-0.297
0.003
-31.794
-1.028
0.009
-31.755
-1.008
0.009
440
-8.118
-0.295
0.003
-31.788
-1.022
0.009
-31.749
-1.003
0.009
441
-8.116
-0.294
0.003
-31.782
-1.017
0.009
-31.743
-0.997
0.009
442
-8.113
-0.292
0.003
-31.776
-1.012
0.009
-31.738
-0.992
0.009
443
-8.111
-0.291
0.003
-31.770
-1.007
0.009
-31.732
-0.987
0.009
444
-8.109
-0.289
0.003
-31.764
-1.002
0.009
-31.726
-0.982
0.009
445
-8.106
-0.288
0.003
-31.758
-0.996
0.009
-31.721
-0.977
0.008
446
-8.104
-0.287
0.003
-31.752
-0.991
0.009
-31.715
-0.972
0.008
447
-8.102
-0.285
0.003
-31.746
-0.986
0.009
-31.709
-0.967
0.008
448
-8.099
-0.284
0.002
-31.740
-0.981
0.009
-31.704
-0.962
0.008
449
-8.097
-0.282
0.002
-31.735
-0.976
0.009
-31.698
-0.957
0.008
450
-8.095
-0.281
0.002
-31.729
-0.971
0.008
-31.693
-0.952
0.008
451
-8.093
-0.279
0.002
-31.723
-0.966
0.008
-31.688
-0.947
0.008
452
-8.090
-0.278
0.002
-31.718
-0.961
0.008
-31.682
-0.942
0.008
453
-8.088
-0.276
0.002
-31.712
-0.956
0.008
-31.677
-0.937
0.008
454
-8.086
-0.275
0.002
-31.707
-0.951
0.008
-31.671
-0.932
0.008
455
-8.084
-0.274
0.002
-31.701
-0.946
0.008
-31.666
-0.927
0.008
456
-8.082
-0.272
0.002
-31.695
-0.941
0.008
-31.661
-0.922
0.008
457
-8.079
-0.271
0.002
-31.690
-0.936
0.008
-31.656
-0.918
0.008
458
-8.077
-0.269
0.002
-31.685
-0.932
0.008
-31.650
-0.913
0.008
459
-8.075
-0.268
0.002
-31.679
-0.927
0.008
-31.645
-0.908
0.008
460
-8.073
-0.267
0.002
-31.674
-0.922
0.008
-31.640
-0.903
0.008
461
-8.071
-0.265
0.002
-31.668
-0.917
0.008
-31.635
-0.898
0.008
462
-8.069
-0.264
0.002
-31.663
-0.912
0.008
-31.630
-0.894
0.008
463
-8.067
-0.262
0.002
-31.658
-0.908
0.008
-31.625
-0.889
0.008
464
-8.065
-0.261
0.002
-31.653
-0.903
0.008
-31.620
-0.884
0.008
465
-8.062
-0.260
0.002
-31.647
-0.898
0.008
-31.615
-0.880
0.008
466
-8.060
-0.258
0.002
-31.642
-0.894
0.008
-31.610
-0.875
0.008
467
-8.058
-0.257
0.002
-31.637
-0.889
0.008
-31.605
-0.871
0.007
468
-8.056
-0.256
0.002
-31.632
-0.884
0.008
-31.600
-0.866
0.007
469
-8.054
-0.254
0.002
-31.627
-0.880
0.008
-31.595
-0.862
0.007
470
-8.052
-0.253
0.002
-31.622
-0.875
0.008
-31.590
-0.857
0.007
471
-8.050
-0.252
0.002
-31.617
-0.871
0.008
-31.585
-0.853
0.007
472
-8.048
-0.251
0.002
-31.612
-0.866
0.008
-31.581
-0.848
0.007
473
-8.046
-0.249
0.002
-31.607
-0.862
0.007
-31.576
-0.844
0.007
474
-8.044
-0.248
0.002
-31.602
-0.857
0.007
-31.571
-0.839
0.007
475
-8.042
-0.247
0.002
-31.597
-0.853
0.007
-31.566
-0.835
0.007
476
-8.040
-0.245
0.002
-31.592
-0.848
0.007
-31.562
-0.830
0.007
477
-8.039
-0.244
0.002
-31.587
-0.844
0.007
-31.557
-0.826
0.007
478
-8.037
-0.243
0.002
-31.582
-0.839
0.007
-31.552
-0.822
0.007
479
-8.035
-0.242
0.002
-31.577
-0.835
0.007
-31.548
-0.817
0.007
480
-8.033
-0.240
0.002
-31.572
-0.831
0.007
-31.543
-0.813
0.007
481
-8.031
-0.239
0.002
-31.568
-0.826
0.007
-31.539
-0.809
0.007
482
-8.029
-0.238
0.002
-31.563
-0.822
0.007
-31.534
-0.805
0.007
483
-8.027
-0.237
0.002
-31.558
-0.818
0.007
-31.530
-0.800
0.007
484
-8.025
-0.235
0.002
-31.554
-0.814
0.007
-31.525
-0.796
0.007
485
-8.024
-0.234
0.002
-31.549
-0.809
0.007
-31.521
-0.792
0.007
486
-8.022
-0.233
0.002
-31.544
-0.805
0.007
-31.516
-0.788
0.007
487
-8.020
-0.232
0.002
-31.540
-0.801
0.007
-31.512
-0.784
0.007
488
-8.018
-0.231
0.002
-31.535
-0.797
0.007
-31.507
-0.780
0.007
489
-8.016
-0.229
0.002
-31.531
-0.793
0.007
-31.503
-0.776
0.007
490
-8.015
-0.228
0.002
-31.526
-0.788
0.007
-31.499
-0.771
0.007
491
-8.013
-0.227
0.002
-31.522
-0.784
0.007
-31.494
-0.767
0.007
492
-8.011
-0.226
0.002
-31.517
-0.780
0.007
-31.490
-0.763
0.007
493
-8.009
-0.225
0.002
-31.513
-0.776
0.007
-31.486
-0.759
0.006
494
-8.008
-0.223
0.002
-31.508
-0.772
0.007
-31.482
-0.755
0.006
495
-8.006
-0.222
0.002
-31.504
-0.768
0.007
-31.477
-0.751
0.006
496
-8.004
-0.221
0.002
-31.500
-0.764
0.007
-31.473
-0.747
0.006
497
-8.002
-0.220
0.002
-31.495
-0.760
0.007
-31.469
-0.743
0.006
498
-8.001
-0.219
0.002
-31.491
-0.756
0.006
-31.465
-0.740
0.006
499
-7.999
-0.218
0.002
-31.487
-0.752
0.006
-31.461
-0.736
0.006

Data for Figure 3 - Panel B

Quarters
Consumption Home Relative to Foreign:
Path 3
Consumption Home Relative to Foreign
Path 2
Consumption Home Relative to Foreign
Path 1
Real Exchange Rate Home
Path 3
Real Exchange Rate Home
Path 2
Real Exchange Rate Home
Path 1
Trade Balance to GDP Ratio Home
Path 3
Trade Balance to GDP Ratio Home
Path 2
Trade Balance to GDP Ratio Home
Path 1
1
-48.876
-12.234
0.169
1432.772
78.605
-0.959
-0.144592
-0.008430
0.000848
2
-49.765
-12.555
0.177
1378.950
77.281
-0.941
-0.139647
-0.008916
0.000114
3
-50.599
-12.860
0.185
1328.396
76.014
-0.924
-0.129174
-0.008403
0.000106
4
-51.381
-13.148
0.192
1280.942
74.801
-0.908
-0.119334
-0.007916
0.000100
5
-52.115
-13.421
0.199
1236.422
73.639
-0.893
-0.110104
-0.007453
0.000093
6
-52.804
-13.679
0.205
1194.669
72.525
-0.878
-0.101458
-0.007013
0.000087
7
-53.449
-13.923
0.211
1155.520
71.455
-0.863
-0.093368
-0.006593
0.000081
8
-54.054
-14.154
0.217
1118.817
70.429
-0.849
-0.085803
-0.006194
0.000075
9
-54.621
-14.373
0.222
1084.408
69.442
-0.835
-0.078734
-0.005814
0.000070
10
-55.152
-14.579
0.227
1052.147
68.493
-0.822
-0.072132
-0.005452
0.000065
11
-55.649
-14.774
0.232
1021.897
67.581
-0.809
-0.065969
-0.005107
0.000060
12
-56.114
-14.959
0.237
993.527
66.702
-0.797
-0.060218
-0.004778
0.000055
13
-56.549
-15.133
0.241
966.913
65.856
-0.785
-0.054851
-0.004465
0.000050
14
-56.955
-15.297
0.245
941.939
65.041
-0.774
-0.049845
-0.004166
0.000046
15
-57.334
-15.452
0.249
918.495
64.254
-0.762
-0.045176
-0.003881
0.000042
16
-57.689
-15.598
0.252
896.481
63.495
-0.752
-0.040822
-0.003609
0.000038
17
-58.019
-15.736
0.255
875.799
62.762
-0.741
-0.036761
-0.003349
0.000034
18
-58.326
-15.865
0.259
856.361
62.054
-0.731
-0.032975
-0.003101
0.000030
19
-58.613
-15.987
0.261
838.083
61.369
-0.721
-0.029445
-0.002865
0.000027
20
-58.879
-16.101
0.264
820.887
60.707
-0.711
-0.026155
-0.002640
0.000024
21
-59.126
-16.209
0.267
804.702
60.066
-0.702
-0.023087
-0.002424
0.000021
22
-59.356
-16.310
0.269
789.459
59.446
-0.693
-0.020229
-0.002218
0.000018
23
-59.568
-16.404
0.271
775.096
58.845
-0.684
-0.017564
-0.002022
0.000015
24
-59.765
-16.492
0.273
761.554
58.262
-0.676
-0.015081
-0.001834
0.000012
25
-59.947
-16.575
0.275
748.779
57.697
-0.668
-0.012768
-0.001655
0.000009
26
-60.115
-16.652
0.277
736.720
57.148
-0.660
-0.010613
-0.001484
0.000007
27
-60.269
-16.723
0.278
725.330
56.616
-0.652
-0.008606
-0.001320
0.000005
28
-60.411
-16.790
0.280
714.565
56.099
-0.644
-0.006737
-0.001164
0.000002
29
-60.541
-16.852
0.281
704.385
55.596
-0.637
-0.004997
-0.001015
0.000000
30
-60.660
-16.909
0.282
694.751
55.107
-0.630
-0.003377
-0.000872
-0.000002
31
-60.769
-16.961
0.283
685.628
54.631
-0.623
-0.001870
-0.000736
-0.000004
32
-60.867
-17.009
0.284
676.984
54.168
-0.616
-0.000468
-0.000605
-0.000006
33
-60.957
-17.054
0.285
668.788
53.717
-0.610
0.000835
-0.000481
-0.000008
34
-61.037
-17.094
0.285
661.010
53.278
-0.603
0.002047
-0.000362
-0.000009
35
-61.109
-17.131
0.286
653.626
52.849
-0.597
0.003172
-0.000248
-0.000011
36
-61.174
-17.164
0.287
646.610
52.431
-0.591
0.004218
-0.000139
-0.000012
37
-61.231
-17.193
0.287
639.939
52.024
-0.585
0.005187
-0.000035
-0.000014
38
-61.282
-17.219
0.287
633.591
51.625
-0.579
0.006087
0.000064
-0.000015
39
-61.325
-17.243
0.288
627.548
51.237
-0.573
0.006921
0.000159
-0.000017
40
-61.363
-17.263
0.288
621.789
50.857
-0.568
0.007693
0.000250
-0.000018
41
-61.395
-17.280
0.288
616.299
50.485
-0.562
0.008407
0.000337
-0.000019
42
-61.422
-17.295
0.288
611.060
50.122
-0.557
0.009067
0.000420
-0.000020
43
-61.444
-17.307
0.288
606.057
49.766
-0.552
0.009677
0.000499
-0.000021
44
-61.461
-17.316
0.288
601.276
49.418
-0.547
0.010240
0.000575
-0.000022
45
-61.473
-17.323
0.288
596.705
49.077
-0.542
0.010758
0.000647
-0.000023
46
-61.481
-17.328
0.287
592.331
48.743
-0.537
0.011235
0.000717
-0.000024
47
-61.485
-17.330
0.287
588.142
48.416
-0.533
0.011673
0.000783
-0.000025
48
-61.486
-17.330
0.287
584.127
48.095
-0.528
0.012075
0.000846
-0.000026
49
-61.483
-17.329
0.286
580.277
47.780
-0.523
0.012443
0.000906
-0.000027
50
-61.477
-17.325
0.286
576.582
47.471
-0.519
0.012779
0.000964
-0.000027
51
-61.468
-17.319
0.286
573.034
47.168
-0.515
0.013085
0.001019
-0.000028
52
-61.455
-17.312
0.285
569.623
46.869
-0.510
0.013363
0.001072
-0.000029
53
-61.441
-17.303
0.284
566.343
46.576
-0.506
0.013615
0.001122
-0.000029
54
-61.423
-17.292
0.284
563.186
46.289
-0.502
0.013843
0.001170
-0.000030
55
-61.403
-17.280
0.283
560.146
46.005
-0.498
0.014047
0.001216
-0.000030
56
-61.381
-17.266
0.283
557.215
45.727
-0.494
0.014230
0.001259
-0.000031
57
-61.357
-17.250
0.282
554.389
45.453
-0.490
0.014393
0.001301
-0.000031
58
-61.331
-17.234
0.281
551.661
45.183
-0.487
0.014538
0.001341
-0.000032
59
-61.304
-17.216
0.280
549.027
44.917
-0.483
0.014664
0.001379
-0.000032
60
-61.274
-17.196
0.280
546.481
44.656
-0.479
0.014774
0.001415
-0.000033
61
-61.243
-17.176
0.279
544.018
44.398
-0.476
0.014869
0.001450
-0.000033
62
-61.211
-17.154
0.278
541.635
44.144
-0.472
0.014949
0.001483
-0.000033
63
-61.177
-17.131
0.277
539.328
43.893
-0.469
0.015016
0.001514
-0.000034
64
-61.142
-17.107
0.276
537.092
43.646
-0.465
0.015071
0.001544
-0.000034
65
-61.105
-17.082
0.275
534.924
43.402
-0.462
0.015113
0.001572
-0.000034
66
-61.068
-17.056
0.274
532.821
43.161
-0.459
0.015144
0.001600
-0.000034
67
-61.029
-17.029
0.273
530.779
42.923
-0.455
0.015166
0.001625
-0.000035
68
-60.990
-17.001
0.272
528.796
42.689
-0.452
0.015177
0.001650
-0.000035
69
-60.950
-16.973
0.272
526.868
42.457
-0.449
0.015180
0.001673
-0.000035
70
-60.909
-16.943
0.271
524.993
42.228
-0.446
0.015174
0.001696
-0.000035
71
-60.867
-16.913
0.269
523.169
42.001
-0.443
0.015160
0.001717
-0.000035
72
-60.824
-16.881
0.268
521.392
41.778
-0.440
0.015140
0.001737
-0.000036
73
-60.781
-16.850
0.267
519.662
41.556
-0.437
0.015112
0.001756
-0.000036
74
-60.738
-16.817
0.266
517.975
41.337
-0.434
0.015078
0.001774
-0.000036
75
-60.693
-16.784
0.265
516.331
41.121
-0.431
0.015039
0.001791
-0.000036
76
-60.649
-16.750
0.264
514.726
40.907
-0.428
0.014993
0.001807
-0.000036
77
-60.603
-16.715
0.263
513.159
40.695
-0.425
0.014943
0.001823
-0.000036
78
-60.558
-16.680
0.262
511.629
40.485
-0.422
0.014888
0.001837
-0.000036
79
-60.512
-16.644
0.261
510.133
40.277
-0.420
0.014829
0.001851
-0.000036
80
-60.466
-16.608
0.260
508.672
40.071
-0.417
0.014766
0.001864
-0.000036
81
-60.420
-16.571
0.259
507.242
39.867
-0.414
0.014699
0.001876
-0.000036
82
-60.373
-16.534
0.258
505.843
39.665
-0.412
0.014629
0.001888
-0.000036
83
-60.326
-16.496
0.256
504.473
39.465
-0.409
0.014555
0.001899
-0.000036
84
-60.279
-16.458
0.255
503.132
39.266
-0.406
0.014479
0.001909
-0.000036
85
-60.232
-16.419
0.254
501.818
39.070
-0.404
0.014400
0.001918
-0.000036
86
-60.185
-16.380
0.253
500.530
38.875
-0.401
0.014318
0.001928
-0.000036
87
-60.137
-16.341
0.252
499.267
38.681
-0.399
0.014235
0.001936
-0.000036
88
-60.090
-16.301
0.251
498.028
38.490
-0.396
0.014149
0.001944
-0.000036
89
-60.042
-16.261
0.250
496.812
38.299
-0.394
0.014061
0.001951
-0.000036
90
-59.995
-16.220
0.248
495.618
38.111
-0.391
0.013972
0.001958
-0.000036
91
-59.947
-16.179
0.247
494.446
37.923
-0.389
0.013881
0.001965
-0.000036
92
-59.899
-16.138
0.246
493.295
37.737
-0.387
0.013789
0.001971
-0.000036
93
-59.852
-16.097
0.245
492.164
37.553
-0.384
0.013696
0.001976
-0.000036
94
-59.804
-16.055
0.244
491.052
37.370
-0.382
0.013601
0.001981
-0.000036
95
-59.757
-16.013
0.243
489.959
37.188
-0.380
0.013506
0.001986
-0.000036
96
-59.710
-15.971
0.241
488.883
37.008
-0.377
0.013409
0.001990
-0.000036
97
-59.662
-15.928
0.240
487.825
36.828
-0.375
0.013312
0.001994
-0.000036
98
-59.615
-15.885
0.239
486.784
36.650
-0.373
0.013215
0.001997
-0.000036
99
-59.568
-15.842
0.238
485.759
36.474
-0.371
0.013117
0.002001
-0.000036
100
-59.521
-15.799
0.237
484.750
36.298
-0.368
0.013018
0.002003
-0.000036
101
-59.474
-15.755
0.236
483.756
36.124
-0.366
0.012919
0.002006
-0.000036
102
-59.428
-15.712
0.234
482.777
35.950
-0.364
0.012820
0.002008
-0.000035
103
-59.381
-15.668
0.233
481.812
35.778
-0.362
0.012721
0.002010
-0.000035
104
-59.335
-15.624
0.232
480.861
35.607
-0.360
0.012621
0.002012
-0.000035
105
-59.289
-15.580
0.231
479.923
35.437
-0.358
0.012522
0.002013
-0.000035
106
-59.243
-15.536
0.230
478.999
35.268
-0.355
0.012422
0.002014
-0.000035
107
-59.197
-15.491
0.229
478.087
35.100
-0.353
0.012323
0.002015
-0.000035
108
-59.151
-15.446
0.228
477.187
34.933
-0.351
0.012223
0.002015
-0.000035
109
-59.106
-15.402
0.226
476.300
34.767
-0.349
0.012124
0.002016
-0.000035
110
-59.061
-15.357
0.225
475.424
34.601
-0.347
0.012025
0.002016
-0.000035
111
-59.016
-15.312
0.224
474.559
34.437
-0.345
0.011927
0.002016
-0.000034
112
-58.971
-15.267
0.223
473.706
34.274
-0.343
0.011828
0.002016
-0.000034
113
-58.926
-15.222
0.222
472.863
34.112
-0.341
0.011730
0.002015
-0.000034
114
-58.882
-15.176
0.221
472.031
33.950
-0.339
0.011633
0.002014
-0.000034
115
-58.838
-15.131
0.219
471.209
33.790
-0.337
0.011536
0.002013
-0.000034
116
-58.794
-15.086
0.218
470.397
33.630
-0.335
0.011439
0.002012
-0.000034
117
-58.750
-15.040
0.217
469.595
33.471
-0.334
0.011343
0.002011
-0.000034
118
-58.707
-14.995
0.216
468.802
33.313
-0.332
0.011247
0.002010
-0.000034
119
-58.664
-14.949
0.215
468.019
33.156
-0.330
0.011151
0.002008
-0.000033
120
-58.621
-14.903
0.214
467.244
33.000
-0.328
0.011057
0.002007
-0.000033
121
-58.578
-14.857
0.213
466.478
32.844
-0.326
0.010963
0.002005
-0.000033
122
-58.536
-14.812
0.212
465.721
32.689
-0.324
0.010869
0.002003
-0.000033
123
-58.493
-14.766
0.211
464.973
32.535
-0.322
0.010776
0.002001
-0.000033
124
-58.451
-14.720
0.209
464.233
32.382
-0.320
0.010684
0.001998
-0.000033
125
-58.410
-14.674
0.208
463.501
32.230
-0.319
0.010592
0.001996
-0.000033
126
-58.368
-14.628
0.207
462.776
32.078
-0.317
0.010501
0.001994
-0.000032
127
-58.327
-14.582
0.206
462.060
31.927
-0.315
0.010410
0.001991
-0.000032
128
-58.286
-14.536
0.205
461.351
31.777
-0.313
0.010320
0.001988
-0.000032
129
-58.245
-14.490
0.204
460.650
31.627
-0.311
0.010231
0.001985
-0.000032
130
-58.205
-14.444
0.203
459.955
31.478
-0.310
0.010143
0.001982
-0.000032
131
-58.165
-14.398
0.202
459.268
31.330
-0.308
0.010055
0.001979
-0.000032
132
-58.125
-14.352
0.201
458.589
31.183
-0.306
0.009968
0.001976
-0.000032
133
-58.085
-14.306
0.200
457.915
31.036
-0.305
0.009882
0.001973
-0.000031
134
-58.046
-14.260
0.199
457.249
30.890
-0.303
0.009796
0.001970
-0.000031
135
-58.007
-14.214
0.198
456.590
30.745
-0.301
0.009711
0.001966
-0.000031
136
-57.968
-14.167
0.197
455.936
30.600
-0.299
0.009627
0.001963
-0.000031
137
-57.929
-14.121
0.195
455.290
30.456
-0.298
0.009543
0.001960
-0.000031
138
-57.891
-14.075
0.194
454.649
30.312
-0.296
0.009460
0.001956
-0.000031
139
-57.852
-14.029
0.193
454.015
30.170
-0.294
0.009378
0.001952
-0.000031
140
-57.814
-13.983
0.192
453.387
30.028
-0.293
0.009297
0.001949
-0.000030
141
-57.777
-13.937
0.191
452.765
29.886
-0.291
0.009216
0.001945
-0.000030
142
-57.739
-13.891
0.190
452.148
29.745
-0.290
0.009136
0.001941
-0.000030
143
-57.702
-13.845
0.189
451.538
29.605
-0.288
0.009057
0.001937
-0.000030
144
-57.665
-13.799
0.188
450.933
29.466
-0.286
0.008979
0.001933
-0.000030
145
-57.629
-13.753
0.187
450.333
29.327
-0.285
0.008901
0.001929
-0.000030
146
-57.592
-13.708
0.186
449.740
29.188
-0.283
0.008824
0.001925
-0.000029
147
-57.556
-13.662
0.185
449.151
29.051
-0.282
0.008747
0.001921
-0.000029
148
-57.520
-13.616
0.184
448.568
28.913
-0.280
0.008672
0.001916
-0.000029
149
-57.485
-13.570
0.183
447.991
28.777
-0.278
0.008597
0.001912
-0.000029
150
-57.449
-13.524
0.182
447.418
28.641
-0.277
0.008523
0.001908
-0.000029
151
-57.414
-13.479
0.181
446.851
28.506
-0.275
0.008449
0.001904
-0.000029
152
-57.379
-13.433
0.180
446.288
28.371
-0.274
0.008376
0.001899
-0.000029
153
-57.344
-13.387
0.179
445.731
28.237
-0.272
0.008304
0.001895
-0.000029
154
-57.310
-13.342
0.178
445.178
28.103
-0.271
0.008233
0.001890
-0.000028
155
-57.276
-13.296
0.177
444.630
27.970
-0.269
0.008162
0.001886
-0.000028
156
-57.242
-13.251
0.176
444.087
27.838
-0.268
0.008092
0.001881
-0.000028
157
-57.208
-13.205
0.175
443.549
27.706
-0.266
0.008022
0.001877
-0.000028
158
-57.175
-13.160
0.175
443.015
27.575
-0.265
0.007954
0.001872
-0.000028
159
-57.141
-13.114
0.174
442.486
27.444
-0.263
0.007886
0.001867
-0.000028
160
-57.108
-13.069
0.173
441.962
27.314
-0.262
0.007818
0.001863
-0.000027
161
-57.076
-13.024
0.172
441.441
27.184
-0.261
0.007751
0.001858
-0.000027
162
-57.043
-12.979
0.171
440.926
27.055
-0.259
0.007685
0.001853
-0.000027
163
-57.011
-12.934
0.170
440.414
26.926
-0.258
0.007620
0.001849
-0.000027
164
-56.979
-12.888
0.169
439.907
26.798
-0.256
0.007555
0.001844
-0.000027
165
-56.947
-12.843
0.168
439.404
26.671
-0.255
0.007491
0.001839
-0.000027
166
-56.915
-12.798
0.167
438.905
26.544
-0.253
0.007427
0.001834
-0.000027
167
-56.884
-12.754
0.166
438.410
26.418
-0.252
0.007364
0.001829
-0.000027
168
-56.852
-12.709
0.165
437.920
26.292
-0.251
0.007302
0.001825
-0.000026
169
-56.821
-12.664
0.164
437.433
26.167
-0.249
0.007240
0.001820
-0.000026
170
-56.791
-12.619
0.164
436.950
26.042
-0.248
0.007179
0.001815
-0.000026
171
-56.760
-12.575
0.163
436.472
25.918
-0.247
0.007119
0.001810
-0.000026
172
-56.730
-12.530
0.162
435.997
25.794
-0.245
0.007059
0.001805
-0.000026
173
-56.700
-12.486
0.161
435.526
25.671
-0.244
0.007000
0.001800
-0.000026
174
-56.670
-12.441
0.160
435.059
25.548
-0.242
0.006941
0.001795
-0.000026
175
-56.640
-12.397
0.159
434.595
25.426
-0.241
0.006883
0.001790
-0.000025
176
-56.611
-12.352
0.158
434.135
25.304
-0.240
0.006825
0.001785
-0.000025
177
-56.581
-12.308
0.157
433.679
25.183
-0.239
0.006769
0.001780
-0.000025
178
-56.552
-12.264
0.157
433.227
25.062
-0.237
0.006712
0.001775
-0.000025
179
-56.523
-12.220
0.156
432.778
24.942
-0.236
0.006656
0.001770
-0.000025
180
-56.495
-12.176
0.155
432.332
24.823
-0.235
0.006601
0.001765
-0.000025
181
-56.466
-12.132
0.154
431.890
24.704
-0.233
0.006546
0.001760
-0.000025
182
-56.438
-12.088
0.153
431.452
24.585
-0.232
0.006492
0.001755
-0.000025
183
-56.410
-12.044
0.152
431.017
24.467
-0.231
0.006438
0.001749
-0.000024
184
-56.382
-12.001
0.151
430.585
24.349
-0.229
0.006385
0.001744
-0.000024
185
-56.354
-11.957
0.151
430.157
24.232
-0.228
0.006333
0.001739
-0.000024
186
-56.327
-11.913
0.150
429.732
24.116
-0.227
0.006281
0.001734
-0.000024
187
-56.300
-11.870
0.149
429.310
24.000
-0.226
0.006229
0.001729
-0.000024
188
-56.273
-11.827
0.148
428.892
23.884
-0.224
0.006178
0.001724
-0.000024
189
-56.246
-11.783
0.147
428.476
23.769
-0.223
0.006128
0.001719
-0.000024
190
-56.219
-11.740
0.147
428.064
23.654
-0.222
0.006078
0.001714
-0.000024
191
-56.192
-11.697
0.146
427.655
23.540
-0.221
0.006028
0.001708
-0.000023
192
-56.166
-11.654
0.145
427.250
23.427
-0.220
0.005979
0.001703
-0.000023
193
-56.140
-11.611
0.144
426.847
23.313
-0.218
0.005930
0.001698
-0.000023
194
-56.114
-11.568
0.143
426.447
23.201
-0.217
0.005882
0.001693
-0.000023
195
-56.088
-11.525
0.143
426.051
23.088
-0.216
0.005835
0.001688
-0.000023
196
-56.063
-11.482
0.142
425.657
22.977
-0.215
0.005787
0.001682
-0.000023
197
-56.037
-11.440
0.141
425.266
22.865
-0.214
0.005741
0.001677
-0.000023
198
-56.012
-11.397
0.140
424.878
22.755
-0.212
0.005695
0.001672
-0.000022
199
-55.987
-11.354
0.140
424.493
22.644
-0.211
0.005649
0.001667
-0.000022
200
-55.962
-11.312
0.139
424.111
22.535
-0.210
0.005603
0.001662
-0.000022
201
-55.937
-11.270
0.138
423.732
22.425
-0.209
0.005559
0.001656
-0.000022
202
-55.913
-11.227
0.137
423.356
22.316
-0.208
0.005514
0.001651
-0.000022
203
-55.888
-11.185
0.137
422.982
22.208
-0.207
0.005470
0.001646
-0.000022
204
-55.864
-11.143
0.136
422.612
22.100
-0.206
0.005426
0.001641
-0.000022
205
-55.840
-11.101
0.135
422.244
21.992
-0.204
0.005383
0.001636
-0.000022
206
-55.816
-11.059
0.134
421.878
21.885
-0.203
0.005341
0.001630
-0.000022
207
-55.793
-11.018
0.134
421.516
21.779
-0.202
0.005298
0.001625
-0.000021
208
-55.769
-10.976
0.133
421.156
21.672
-0.201
0.005256
0.001620
-0.000021
209
-55.746
-10.934
0.132
420.798
21.567
-0.200
0.005215
0.001615
-0.000021
210
-55.722
-10.893
0.131
420.443
21.462
-0.199
0.005174
0.001609
-0.000021
211
-55.699
-10.851
0.131
420.091
21.357
-0.198
0.005133
0.001604
-0.000021
212
-55.676
-10.810
0.130
419.742
21.252
-0.197
0.005092
0.001599
-0.000021
213
-55.654
-10.769
0.129
419.395
21.149
-0.196
0.005053
0.001594
-0.000021
214
-55.631
-10.727
0.129
419.050
21.045
-0.195
0.005013
0.001589
-0.000021
215
-55.609
-10.686
0.128
418.708
20.942
-0.193
0.004974
0.001583
-0.000021
216
-55.587
-10.645
0.127
418.368
20.840
-0.192
0.004935
0.001578
-0.000020
217
-55.564
-10.604
0.126
418.031
20.738
-0.191
0.004896
0.001573
-0.000020
218
-55.542
-10.564
0.126
417.696
20.636
-0.190
0.004858
0.001568
-0.000020
219
-55.521
-10.523
0.125
417.364
20.535
-0.189
0.004821
0.001562
-0.000020
220
-55.499
-10.482
0.124
417.034
20.434
-0.188
0.004783
0.001557
-0.000020
221
-55.477
-10.442
0.124
416.707
20.334
-0.187
0.004746
0.001552
-0.000020
222
-55.456
-10.401
0.123
416.381
20.234
-0.186
0.004710
0.001547
-0.000020
223
-55.435
-10.361
0.122
416.059
20.134
-0.185
0.004673
0.001542
-0.000020
224
-55.414
-10.321
0.122
415.738
20.035
-0.184
0.004637
0.001536
-0.000020
225
-55.393
-10.281
0.121
415.420
19.937
-0.183
0.004602
0.001531
-0.000019
226
-55.372
-10.241
0.120
415.104
19.838
-0.182
0.004566
0.001526
-0.000019
227
-55.351
-10.201
0.120
414.790
19.741
-0.181
0.004531
0.001521
-0.000019
228
-55.331
-10.161
0.119
414.478
19.643
-0.180
0.004497
0.001516
-0.000019
229
-55.311
-10.121
0.118
414.169
19.547
-0.179
0.004462
0.001510
-0.000019
230
-55.290
-10.081
0.118
413.861
19.450
-0.178
0.004428
0.001505
-0.000019
231
-55.270
-10.042
0.117
413.556
19.354
-0.177
0.004395
0.001500
-0.000019
232
-55.250
-10.002
0.116
413.253
19.258
-0.176
0.004361
0.001495
-0.000019
233
-55.231
-9.963
0.116
412.953
19.163
-0.175
0.004328
0.001490
-0.000019
234
-55.211
-9.924
0.115
412.654
19.068
-0.174
0.004296
0.001485
-0.000019
235
-55.191
-9.884
0.115
412.357
18.974
-0.173
0.004263
0.001479
-0.000018
236
-55.172
-9.845
0.114
412.063
18.880
-0.172
0.004231
0.001474
-0.000018
237
-55.153
-9.806
0.113
411.770
18.787
-0.171
0.004199
0.001469
-0.000018
238
-55.134
-9.767
0.113
411.480
18.694
-0.170
0.004167
0.001464
-0.000018
239
-55.114
-9.729
0.112
411.192
18.601
-0.170
0.004136
0.001459
-0.000018
240
-55.096
-9.690
0.111
410.905
18.509
-0.169
0.004105
0.001454
-0.000018
241
-55.077
-9.651
0.111
410.621
18.417
-0.168
0.004074
0.001449
-0.000018
242
-55.058
-9.613
0.110
410.338
18.325
-0.167
0.004044
0.001443
-0.000018
243
-55.040
-9.574
0.110
410.058
18.234
-0.166
0.004014
0.001438
-0.000018
244
-55.021
-9.536
0.109
409.779
18.144
-0.165
0.003984
0.001433
-0.000018
245
-55.003
-9.498
0.108
409.502
18.053
-0.164
0.003954
0.001428
-0.000017
246
-54.985
-9.460
0.108
409.228
17.963
-0.163
0.003925
0.001423
-0.000017
247
-54.967
-9.422
0.107
408.955
17.874
-0.162
0.003896
0.001418
-0.000017
248
-54.949
-9.384
0.107
408.684
17.785
-0.161
0.003867
0.001413
-0.000017
249
-54.931
-9.346
0.106
408.415
17.696
-0.160
0.003839
0.001408
-0.000017
250
-54.914
-9.308
0.105
408.147
17.608
-0.160
0.003810
0.001403
-0.000017
251
-54.896
-9.271
0.105
407.882
17.520
-0.159
0.003782
0.001398
-0.000017
252
-54.879
-9.233
0.104
407.618
17.433
-0.158
0.003754
0.001393
-0.000017
253
-54.861
-9.196
0.104
407.357
17.346
-0.157
0.003727
0.001387
-0.000017
254
-54.844
-9.159
0.103
407.096
17.259
-0.156
0.003699
0.001382
-0.000017
255
-54.827
-9.121
0.103
406.838
17.173
-0.155
0.003672
0.001377
-0.000017
256
-54.810
-9.084
0.102
406.582
17.087
-0.154
0.003646
0.001372
-0.000016
257
-54.793
-9.047
0.101
406.327
17.001
-0.154
0.003619
0.001367
-0.000016
258
-54.776
-9.010
0.101
406.074
16.916
-0.153
0.003593
0.001362
-0.000016
259
-54.760
-8.974
0.100
405.822
16.831
-0.152
0.003566
0.001357
-0.000016
260
-54.743
-8.937
0.100
405.573
16.747
-0.151
0.003541
0.001352
-0.000016
261
-54.727
-8.900
0.099
405.325
16.663
-0.150
0.003515
0.001347
-0.000016
262
-54.710
-8.864
0.099
405.078
16.580
-0.149
0.003489
0.001342
-0.000016
263
-54.694
-8.827
0.098
404.834
16.496
-0.149
0.003464
0.001337
-0.000016
264
-54.678
-8.791
0.098
404.591
16.414
-0.148
0.003439
0.001332
-0.000016
265
-54.662
-8.755
0.097
404.349
16.331
-0.147
0.003414
0.001327
-0.000016
266
-54.646
-8.719
0.097
404.110
16.249
-0.146
0.003390
0.001322
-0.000016
267
-54.631
-8.683
0.096
403.871
16.167
-0.145
0.003366
0.001318
-0.000015
268
-54.615
-8.647
0.095
403.635
16.086
-0.145
0.003341
0.001313
-0.000015
269
-54.599
-8.611
0.095
403.400
16.005
-0.144
0.003317
0.001308
-0.000015
270
-54.584
-8.575
0.094
403.167
15.924
-0.143
0.003294
0.001303
-0.000015
271
-54.568
-8.540
0.094
402.935
15.844
-0.142
0.003270
0.001298
-0.000015
272
-54.553
-8.504
0.093
402.704
15.764
-0.141
0.003247
0.001293
-0.000015
273
-54.538
-8.469
0.093
402.476
15.685
-0.141
0.003224
0.001288
-0.000015
274
-54.523
-8.434
0.092
402.248
15.606
-0.140
0.003201
0.001283
-0.000015
275
-54.508
-8.399
0.092
402.023
15.527
-0.139
0.003178
0.001278
-0.000015
276
-54.493
-8.363
0.091
401.798
15.449
-0.138
0.003155
0.001273
-0.000015
277
-54.478
-8.328
0.091
401.576
15.371
-0.138
0.003133
0.001269
-0.000015
278
-54.464
-8.294
0.090
401.354
15.293
-0.137
0.003111
0.001264
-0.000015
279
-54.449
-8.259
0.090
401.134
15.216
-0.136
0.003089
0.001259
-0.000015
280
-54.435
-8.224
0.089
400.916
15.139
-0.135
0.003067
0.001254
-0.000014
281
-54.420
-8.190
0.089
400.699
15.062
-0.135
0.003046
0.001249
-0.000014
282
-54.406
-8.155
0.088
400.484
14.986
-0.134
0.003024
0.001244
-0.000014
283
-54.392
-8.121
0.088
400.270
14.910
-0.133
0.003003
0.001240
-0.000014
284
-54.377
-8.087
0.087
400.057
14.834
-0.132
0.002982
0.001235
-0.000014
285
-54.363
-8.052
0.087
399.846
14.759
-0.132
0.002961
0.001230
-0.000014
286
-54.350
-8.018
0.086
399.636
14.684
-0.131
0.002940
0.001225
-0.000014
287
-54.336
-7.984
0.086
399.427
14.610
-0.130
0.002920
0.001220
-0.000014
288
-54.322
-7.951
0.086
399.220
14.536
-0.129
0.002899
0.001216
-0.000014
289
-54.308
-7.917
0.085
399.014
14.462
-0.129
0.002879
0.001211
-0.000014
290
-54.295
-7.883
0.085
398.810
14.388
-0.128
0.002859
0.001206
-0.000014
291
-54.281
-7.850
0.084
398.607
14.315
-0.127
0.002839
0.001202
-0.000014
292
-54.268
-7.816
0.084
398.405
14.242
-0.127
0.002820
0.001197
-0.000014
293
-54.254
-7.783
0.083
398.204
14.170
-0.126
0.002800
0.001192
-0.000013
294
-54.241
-7.750
0.083
398.005
14.098
-0.125
0.002781
0.001187
-0.000013
295
-54.228
-7.717
0.082
397.807
14.026
-0.125
0.002761
0.001183
-0.000013
296
-54.215
-7.684
0.082
397.611
13.955
-0.124
0.002742
0.001178
-0.000013
297
-54.202
-7.651
0.081
397.415
13.884
-0.123
0.002723
0.001173
-0.000013
298
-54.189
-7.618
0.081
397.221
13.813
-0.122
0.002705
0.001169
-0.000013
299
-54.176
-7.585
0.080
397.028
13.742
-0.122
0.002686
0.001164
-0.000013
300
-54.163
-7.553
0.080
396.837
13.672
-0.121
0.002668
0.001159
-0.000013
301
-54.151
-7.520
0.080
396.647
13.602
-0.120
0.002649
0.001155
-0.000013
302
-54.138
-7.488
0.079
396.457
13.533
-0.120
0.002631
0.001150
-0.000013
303
-54.126
-7.455
0.079
396.270
13.464
-0.119
0.002613
0.001146
-0.000013
304
-54.113
-7.423
0.078
396.083
13.395
-0.118
0.002595
0.001141
-0.000013
305
-54.101
-7.391
0.078
395.897
13.327
-0.118
0.002578
0.001136
-0.000013
306
-54.089
-7.359
0.077
395.713
13.259
-0.117
0.002560
0.001132
-0.000013
307
-54.076
-7.327
0.077
395.530
13.191
-0.117
0.002543
0.001127
-0.000012
308
-54.064
-7.296
0.077
395.348
13.123
-0.116
0.002525
0.001123
-0.000012
309
-54.052
-7.264
0.076
395.167
13.056
-0.115
0.002508
0.001118
-0.000012
310
-54.040
-7.232
0.076
394.988
12.989
-0.115
0.002491
0.001114
-0.000012
311
-54.028
-7.201
0.075
394.809
12.923
-0.114
0.002474
0.001109
-0.000012
312
-54.017
-7.169
0.075
394.632
12.856
-0.113
0.002458
0.001105
-0.000012
313
-54.005
-7.138
0.075
394.456
12.791
-0.113
0.002441
0.001100
-0.000012
314
-53.993
-7.107
0.074
394.281
12.725
-0.112
0.002424
0.001096
-0.000012
315
-53.982
-7.076
0.074
394.107
12.660
-0.112
0.002408
0.001091
-0.000012
316
-53.970
-7.045
0.073
393.934
12.595
-0.111
0.002392
0.001087
-0.000012
317
-53.959
-7.014
0.073
393.762
12.530
-0.110
0.002376
0.001082
-0.000012
318
-53.947
-6.983
0.072
393.592
12.466
-0.110
0.002360
0.001078
-0.000012
319
-53.936
-6.953
0.072
393.422
12.402
-0.109
0.002344
0.001074
-0.000012
320
-53.925
-6.922
0.072
393.254
12.338
-0.108
0.002328
0.001069
-0.000012
321
-53.914
-6.892
0.071
393.086
12.274
-0.108
0.002313
0.001065
-0.000012
322
-53.903
-6.861
0.071
392.920
12.211
-0.107
0.002297
0.001060
-0.000011
323
-53.892
-6.831
0.071
392.755
12.149
-0.107
0.002282
0.001056
-0.000011
324
-53.881
-6.801
0.070
392.591
12.086
-0.106
0.002267
0.001052
-0.000011
325
-53.870
-6.771
0.070
392.427
12.024
-0.106
0.002252
0.001047
-0.000011
326
-53.859
-6.741
0.069
392.265
11.962
-0.105
0.002237
0.001043
-0.000011
327
-53.848
-6.711
0.069
392.104
11.900
-0.104
0.002222
0.001039
-0.000011
328
-53.837
-6.682
0.069
391.944
11.839
-0.104
0.002207
0.001034
-0.000011
329
-53.827
-6.652
0.068
391.785
11.778
-0.103
0.002192
0.001030
-0.000011
330
-53.816
-6.622
0.068
391.627
11.717
-0.103
0.002178
0.001026
-0.000011
331
-53.806
-6.593
0.067
391.470
11.657
-0.102
0.002163
0.001021
-0.000011
332
-53.795
-6.564
0.067
391.314
11.596
-0.102
0.002149
0.001017
-0.000011
333
-53.785
-6.534
0.067
391.158
11.537
-0.101
0.002135
0.001013
-0.000011
334
-53.775
-6.505
0.066
391.004
11.477
-0.100
0.002121
0.001009
-0.000011
335
-53.765
-6.476
0.066
390.851
11.418
-0.100
0.002107
0.001004
-0.000011
336
-53.754
-6.447
0.066
390.699
11.359
-0.099
0.002093
0.001000
-0.000011
337
-53.744
-6.419
0.065
390.548
11.300
-0.099
0.002079
0.000996
-0.000011
338
-53.734
-6.390
0.065
390.397
11.242
-0.098
0.002065
0.000992
-0.000011
339
-53.724
-6.361
0.065
390.248
11.183
-0.098
0.002052
0.000988
-0.000010
340
-53.714
-6.333
0.064
390.099
11.126
-0.097
0.002038
0.000983
-0.000010
341
-53.705
-6.304
0.064
389.952
11.068
-0.097
0.002025
0.000979
-0.000010
342
-53.695
-6.276
0.063
389.805
11.011
-0.096
0.002012
0.000975
-0.000010
343
-53.685
-6.248
0.063
389.659
10.954
-0.096
0.001999
0.000971
-0.000010
344
-53.675
-6.220
0.063
389.515
10.897
-0.095
0.001986
0.000967
-0.000010
345
-53.666
-6.192
0.062
389.371
10.840
-0.094
0.001973
0.000963
-0.000010
346
-53.656
-6.164
0.062
389.228
10.784
-0.094
0.001960
0.000959
-0.000010
347
-53.647
-6.136
0.062
389.086
10.728
-0.093
0.001947
0.000954
-0.000010
348
-53.637
-6.108
0.061
388.944
10.673
-0.093
0.001934
0.000950
-0.000010
349
-53.628
-6.081
0.061
388.804
10.617
-0.092
0.001922
0.000946
-0.000010
350
-53.619
-6.053
0.061
388.664
10.562
-0.092
0.001909
0.000942
-0.000010
351
-53.609
-6.026
0.060
388.526
10.507
-0.091
0.001897
0.000938
-0.000010
352
-53.600
-5.998
0.060
388.388
10.453
-0.091
0.001885
0.000934
-0.000010
353
-53.591
-5.971
0.060
388.251
10.398
-0.090
0.001872
0.000930
-0.000010
354
-53.582
-5.944
0.059
388.115
10.344
-0.090
0.001860
0.000926
-0.000010
355
-53.573
-5.917
0.059
387.980
10.290
-0.089
0.001848
0.000922
-0.000010
356
-53.564
-5.890
0.059
387.845
10.237
-0.089
0.001836
0.000918
-0.000010
357
-53.555
-5.863
0.058
387.712
10.184
-0.088
0.001824
0.000914
-0.000009
358
-53.546
-5.836
0.058
387.579
10.131
-0.088
0.001813
0.000910
-0.000009
359
-53.537
-5.810
0.058
387.447
10.078
-0.087
0.001801
0.000906
-0.000009
360
-53.528
-5.783
0.057
387.316
10.025
-0.087
0.001789
0.000902
-0.000009
361
-53.520
-5.757
0.057
387.186
9.973
-0.086
0.001778
0.000898
-0.000009
362
-53.511
-5.730
0.057
387.056
9.921
-0.086
0.001767
0.000895
-0.000009
363
-53.502
-5.704
0.057
386.928
9.870
-0.085
0.001755
0.000891
-0.000009
364
-53.494
-5.678
0.056
386.800
9.818
-0.085
0.001744
0.000887
-0.000009
365
-53.485
-5.652
0.056
386.673
9.767
-0.085
0.001733
0.000883
-0.000009
366
-53.477
-5.626
0.056
386.546
9.716
-0.084
0.001722
0.000879
-0.000009
367
-53.468
-5.600
0.055
386.421
9.665
-0.084
0.001711
0.000875
-0.000009
368
-53.460
-5.574
0.055
386.296
9.615
-0.083
0.001700
0.000871
-0.000009
369
-53.452
-5.549
0.055
386.172
9.565
-0.083
0.001689
0.000868
-0.000009
370
-53.444
-5.523
0.054
386.048
9.515
-0.082
0.001678
0.000864
-0.000009
371
-53.435
-5.498
0.054
385.926
9.465
-0.082
0.001668
0.000860
-0.000009
372
-53.427
-5.472
0.054
385.804
9.416
-0.081
0.001657
0.000856
-0.000009
373
-53.419
-5.447
0.053
385.683
9.366
-0.081
0.001646
0.000852
-0.000009
374
-53.411
-5.422
0.053
385.563
9.317
-0.080
0.001636
0.000849
-0.000009
375
-53.403
-5.397
0.053
385.443
9.269
-0.080
0.001626
0.000845
-0.000009
376
-53.395
-5.372
0.053
385.324
9.220
-0.080
0.001615
0.000841
-0.000009
377
-53.387
-5.347
0.052
385.206
9.172
-0.079
0.001605
0.000837
-0.000009
378
-53.379
-5.322
0.052
385.089
9.124
-0.079
0.001595
0.000834
-0.000008
379
-53.371
-5.297
0.052
384.972
9.076
-0.078
0.001585
0.000830
-0.000008
380
-53.364
-5.273
0.051
384.856
9.029
-0.078
0.001575
0.000826
-0.000008
381
-53.356
-5.248
0.051
384.741
8.981
-0.077
0.001565
0.000823
-0.000008
382
-53.348
-5.224
0.051
384.626
8.934
-0.077
0.001555
0.000819
-0.000008
383
-53.341
-5.199
0.051
384.512
8.888
-0.077
0.001545
0.000815
-0.000008
384
-53.333
-5.175
0.050
384.399
8.841
-0.076
0.001535
0.000812
-0.000008
385
-53.326
-5.151
0.050
384.287
8.795
-0.076
0.001526
0.000808
-0.000008
386
-53.318
-5.127
0.050
384.175
8.749
-0.075
0.001516
0.000804
-0.000008
387
-53.311
-5.103
0.049
384.064
8.703
-0.075
0.001507
0.000801
-0.000008
388
-53.303
-5.079
0.049
383.953
8.657
-0.074
0.001497
0.000797
-0.000008
389
-53.296
-5.055
0.049
383.843
8.612
-0.074
0.001488
0.000794
-0.000008
390
-53.289
-5.032
0.049
383.734
8.566
-0.074
0.001478
0.000790
-0.000008
391
-53.281
-5.008
0.048
383.626
8.521
-0.073
0.001469
0.000786
-0.000008
392
-53.274
-4.985
0.048
383.518
8.477
-0.073
0.001460
0.000783
-0.000008
393
-53.267
-4.961
0.048
383.411
8.432
-0.072
0.001451
0.000779
-0.000008
394
-53.260
-4.938
0.048
383.304
8.388
-0.072
0.001442
0.000776
-0.000008
395
-53.253
-4.915
0.047
383.198
8.344
-0.072
0.001433
0.000772
-0.000008
396
-53.246
-4.892
0.047
383.093
8.300
-0.071
0.001424
0.000769
-0.000008
397
-53.239
-4.869
0.047
382.989
8.256
-0.071
0.001415
0.000765
-0.000008
398
-53.232
-4.846
0.047
382.885
8.213
-0.070
0.001406
0.000762
-0.000008
399
-53.225
-4.823
0.046
382.781
8.170
-0.070
0.001397
0.000759
-0.000008
400
-53.218
-4.800
0.046
382.678
8.127
-0.070
0.001389
0.000755
-0.000007
401
-53.211
-4.777
0.046
382.576
8.084
-0.069
0.001380
0.000752
-0.000007
402
-53.204
-4.755
0.046
382.475
8.041
-0.069
0.001372
0.000748
-0.000007
403
-53.197
-4.732
0.045
382.374
7.999
-0.068
0.001363
0.000745
-0.000007
404
-53.191
-4.710
0.045
382.274
7.957
-0.068
0.001355
0.000741
-0.000007
405
-53.184
-4.688
0.045
382.174
7.915
-0.068
0.001346
0.000738
-0.000007
406
-53.177
-4.665
0.045
382.075
7.873
-0.067
0.001338
0.000735
-0.000007
407
-53.171
-4.643
0.044
381.976
7.832
-0.067
0.001330
0.000731
-0.000007
408
-53.164
-4.621
0.044
381.878
7.790
-0.067
0.001321
0.000728
-0.000007
409
-53.158
-4.599
0.044
381.781
7.749
-0.066
0.001313
0.000725
-0.000007
410
-53.151
-4.577
0.044
381.684
7.709
-0.066
0.001305
0.000721
-0.000007
411
-53.145
-4.555
0.043
381.588
7.668
-0.065
0.001297
0.000718
-0.000007
412
-53.138
-4.534
0.043
381.492
7.627
-0.065
0.001289
0.000715
-0.000007
413
-53.132
-4.512
0.043
381.397
7.587
-0.065
0.001281
0.000711
-0.000007
414
-53.125
-4.491
0.043
381.303
7.547
-0.064
0.001273
0.000708
-0.000007
415
-53.119
-4.469
0.042
381.209
7.507
-0.064
0.001265
0.000705
-0.000007
416
-53.113
-4.448
0.042
381.116
7.468
-0.064
0.001258
0.000702
-0.000007
417
-53.107
-4.427
0.042
381.023
7.428
-0.063
0.001250
0.000698
-0.000007
418
-53.100
-4.405
0.042
380.930
7.389
-0.063
0.001242
0.000695
-0.000007
419
-53.094
-4.384
0.041
380.839
7.350
-0.063
0.001235
0.000692
-0.000007
420
-53.088
-4.363
0.041
380.748
7.311
-0.062
0.001227
0.000689
-0.000007
421
-53.082
-4.342
0.041
380.657
7.272
-0.062
0.001220
0.000686
-0.000007
422
-53.076
-4.322
0.041
380.567
7.234
-0.062
0.001212
0.000682
-0.000007
423
-53.070
-4.301
0.041
380.477
7.196
-0.061
0.001205
0.000679
-0.000007
424
-53.064
-4.280
0.040
380.388
7.158
-0.061
0.001197
0.000676
-0.000007
425
-53.058
-4.260
0.040
380.300
7.120
-0.061
0.001190
0.000673
-0.000007
426
-53.052
-4.239
0.040
380.212
7.082
-0.060
0.001183
0.000670
-0.000006
427
-53.046
-4.219
0.040
380.124
7.045
-0.060
0.001176
0.000667
-0.000006
428
-53.040
-4.199
0.039
380.038
7.007
-0.060
0.001168
0.000664
-0.000006
429
-53.035
-4.178
0.039
379.951
6.970
-0.059
0.001161
0.000660
-0.000006
430
-53.029
-4.158
0.039
379.865
6.933
-0.059
0.001154
0.000657
-0.000006
431
-53.023
-4.138
0.039
379.780
6.897
-0.059
0.001147
0.000654
-0.000006
432
-53.017
-4.118
0.039
379.695
6.860
-0.058
0.001140
0.000651
-0.000006
433
-53.012
-4.098
0.038
379.611
6.824
-0.058
0.001133
0.000648
-0.000006
434
-53.006
-4.078
0.038
379.527
6.788
-0.058
0.001126
0.000645
-0.000006
435
-53.001
-4.059
0.038
379.443
6.752
-0.057
0.001120
0.000642
-0.000006
436
-52.995
-4.039
0.038
379.360
6.716
-0.057
0.001113
0.000639
-0.000006
437
-52.989
-4.020
0.038
379.278
6.680
-0.057
0.001106
0.000636
-0.000006
438
-52.984
-4.000
0.037
379.196
6.645
-0.056
0.001099
0.000633
-0.000006
439
-52.978
-3.981
0.037
379.115
6.609
-0.056
0.001093
0.000630
-0.000006
440
-52.973
-3.961
0.037
379.034
6.574
-0.056
0.001086
0.000627
-0.000006
441
-52.968
-3.942
0.037
378.953
6.540
-0.055
0.001079
0.000624
-0.000006
442
-52.962
-3.923
0.036
378.873
6.505
-0.055
0.001073
0.000621
-0.000006
443
-52.957
-3.904
0.036
378.794
6.470
-0.055
0.001066
0.000618
-0.000006
444
-52.952
-3.885
0.036
378.715
6.436
-0.055
0.001060
0.000615
-0.000006
445
-52.946
-3.866
0.036
378.636
6.402
-0.054
0.001054
0.000612
-0.000006
446
-52.941
-3.847
0.036
378.558
6.368
-0.054
0.001047
0.000610
-0.000006
447
-52.936
-3.828
0.035
378.480
6.334
-0.054
0.001041
0.000607
-0.000006
448
-52.931
-3.810
0.035
378.403
6.300
-0.053
0.001035
0.000604
-0.000006
449
-52.925
-3.791
0.035
378.326
6.267
-0.053
0.001028
0.000601
-0.000006
450
-52.920
-3.773
0.035
378.250
6.233
-0.053
0.001022
0.000598
-0.000006
451
-52.915
-3.754
0.035
378.174
6.200
-0.052
0.001016
0.000595
-0.000006
452
-52.910
-3.736
0.034
378.098
6.167
-0.052
0.001010
0.000592
-0.000006
453
-52.905
-3.718
0.034
378.023
6.135
-0.052
0.001004
0.000590
-0.000006
454
-52.900
-3.699
0.034
377.949
6.102
-0.052
0.000998
0.000587
-0.000006
455
-52.895
-3.681
0.034
377.875
6.069
-0.051
0.000992
0.000584
-0.000006
456
-52.890
-3.663
0.034
377.801
6.037
-0.051
0.000986
0.000581
-0.000006
457
-52.885
-3.645
0.034
377.728
6.005
-0.051
0.000980
0.000578
-0.000005
458
-52.880
-3.627
0.033
377.655
5.973
-0.050
0.000974
0.000576
-0.000005
459
-52.875
-3.610
0.033
377.582
5.941
-0.050
0.000968
0.000573
-0.000005
460
-52.871
-3.592
0.033
377.510
5.910
-0.050
0.000963
0.000570
-0.000005
461
-52.866
-3.574
0.033
377.439
5.878
-0.050
0.000957
0.000567
-0.000005
462
-52.861
-3.557
0.033
377.368
5.847
-0.049
0.000951
0.000565
-0.000005
463
-52.856
-3.539
0.032
377.297
5.816
-0.049
0.000945
0.000562
-0.000005
464
-52.851
-3.522
0.032
377.227
5.785
-0.049
0.000940
0.000559
-0.000005
465
-52.847
-3.504
0.032
377.157
5.754
-0.048
0.000934
0.000557
-0.000005
466
-52.842
-3.487
0.032
377.087
5.723
-0.048
0.000929
0.000554
-0.000005
467
-52.837
-3.470
0.032
377.018
5.693
-0.048
0.000923
0.000551
-0.000005
468
-52.833
-3.453
0.032
376.949
5.662
-0.048
0.000918
0.000549
-0.000005
469
-52.828
-3.436
0.031
376.881
5.632
-0.047
0.000912
0.000546
-0.000005
470
-52.824
-3.419
0.031
376.813
5.602
-0.047
0.000907
0.000543
-0.000005
471
-52.819
-3.402
0.031
376.746
5.572
-0.047
0.000901
0.000541
-0.000005
472
-52.815
-3.385
0.031
376.678
5.542
-0.047
0.000896
0.000538
-0.000005
473
-52.810
-3.368
0.031
376.612
5.513
-0.046
0.000891
0.000536
-0.000005
474
-52.806
-3.352
0.031
376.545
5.483
-0.046
0.000885
0.000533
-0.000005
475
-52.801
-3.335
0.030
376.479
5.454
-0.046
0.000880
0.000530
-0.000005
476
-52.797
-3.319
0.030
376.414
5.425
-0.046
0.000875
0.000528
-0.000005
477
-52.792
-3.302
0.030
376.349
5.396
-0.045
0.000870
0.000525
-0.000005
478
-52.788
-3.286
0.030
376.284
5.367
-0.045
0.000865
0.000523
-0.000005
479
-52.784
-3.270
0.030
376.219
5.339
-0.045
0.000859
0.000520
-0.000005
480
-52.779
-3.253
0.030
376.155
5.310
-0.045
0.000854
0.000518
-0.000005
481
-52.775
-3.237
0.029
376.092
5.282
-0.044
0.000849
0.000515
-0.000005
482
-52.771
-3.221
0.029
376.028
5.254
-0.044
0.000844
0.000513
-0.000005
483
-52.767
-3.205
0.029
375.965
5.225
-0.044
0.000839
0.000510
-0.000005
484
-52.762
-3.189
0.029
375.903
5.198
-0.044
0.000834
0.000508
-0.000005
485
-52.758
-3.173
0.029
375.840
5.170
-0.043
0.000829
0.000505
-0.000005
486
-52.754
-3.157
0.029
375.779
5.142
-0.043
0.000825
0.000503
-0.000005
487
-52.750
-3.142
0.028
375.717
5.115
-0.043
0.000820
0.000500
-0.000005
488
-52.746
-3.126
0.028
375.656
5.087
-0.043
0.000815
0.000498
-0.000005
489
-52.742
-3.110
0.028
375.595
5.060
-0.042
0.000810
0.000495
-0.000005
490
-52.738
-3.095
0.028
375.535
5.033
-0.042
0.000805
0.000493
-0.000005
491
-52.733
-3.080
0.028
375.474
5.006
-0.042
0.000800
0.000491
-0.000005
492
-52.729
-3.064
0.028
375.415
4.979
-0.042
0.000796
0.000488
-0.000005
493
-52.725
-3.049
0.027
375.355
4.953
-0.041
0.000791
0.000486
-0.000004
494
-52.721
-3.034
0.027
375.296
4.926
-0.041
0.000786
0.000483
-0.000004
495
-52.717
-3.018
0.027
375.237
4.900
-0.041
0.000782
0.000481
-0.000004
496
-52.714
-3.003
0.027
375.179
4.874
-0.041
0.000777
0.000479
-0.000004
497
-52.710
-2.988
0.027
375.121
4.847
-0.041
0.000773
0.000476
-0.000004
498
-52.706
-2.973
0.027
375.063
4.821
-0.040
0.000768
0.000474
-0.000004
499
-52.702
-2.958
0.027
375.006
4.796
-0.040
0.000764
0.000472
-0.000004

Figure 4:  Linear vs Nonlinear Impulse Responses: Path 1

Data for Figure 4 immediately follows.

Data for Figure 4

Quarters
Output Home:
Path 1
(nonlinear)
Output Home:
Path 1
(linear)
Consumption Home:
Path 1
(nonlinear)
Consumption Home:
Path 1
(linear)
Investment Home:
Path 1
(nonlinear)
Investment Home:
Path 1
(linear)
Real Exchange Rate Home:
Path 1
(nonlinear)
Real Exchange Rate Home:
Path 1
(linear)
Real Exchange Rate Home:
Path 1
(nonlinear)
Real Exchange Rate Home:
Path 1
(linear)
Trade Balance to GDP Ratio Home:
Path 1
(nonlinear)
Trade Balance to GDP Ratio Home:
Path 1
(linear)
1
0.0000
0.0000
0.0497
0.0489
-0.1003
-0.1025
0.1719
0.1692
-0.9719
-0.9585
0.00085272
0.00084798
2
-0.0016
-0.0016
0.0514
0.0506
0.1926
0.1904
0.1799
0.1772
-0.9543
-0.9412
0.00011781
0.00011357
3
-0.0004
-0.0004
0.0530
0.0522
0.1881
0.1859
0.1875
0.1847
-0.9374
-0.9245
0.00011051
0.00010644
4
0.0007
0.0007
0.0545
0.0537
0.1837
0.1816
0.1947
0.1918
-0.9210
-0.9083
0.00010353
0.00009964
5
0.0018
0.0018
0.0560
0.0552
0.1795
0.1774
0.2016
0.1986
-0.9052
-0.8927
0.00009686
0.00009314
6
0.0028
0.0028
0.0573
0.0565
0.1755
0.1734
0.2080
0.2050
-0.8899
-0.8776
0.00009048
0.00008691
7
0.0038
0.0037
0.0586
0.0578
0.1716
0.1696
0.2141
0.2110
-0.8752
-0.8630
0.00008438
0.00008095
8
0.0047
0.0047
0.0598
0.0589
0.1679
0.1659
0.2199
0.2167
-0.8609
-0.8489
0.00007855
0.00007526
9
0.0056
0.0055
0.0609
0.0601
0.1643
0.1623
0.2254
0.2221
-0.8471
-0.8353
0.00007297
0.00006983
10
0.0064
0.0064
0.0620
0.0611
0.1608
0.1589
0.2305
0.2272
-0.8338
-0.8221
0.00006765
0.00006461
11
0.0072
0.0071
0.0630
0.0621
0.1575
0.1556
0.2354
0.2320
-0.8209
-0.8094
0.00006255
0.00005964
12
0.0080
0.0079
0.0639
0.0630
0.1542
0.1524
0.2399
0.2366
-0.8085
-0.7970
0.00005769
0.00005492
13
0.0087
0.0086
0.0648
0.0639
0.1511
0.1493
0.2442
0.2408
-0.7964
-0.7851
0.00005304
0.00005035
14
0.0094
0.0093
0.0656
0.0647
0.1482
0.1464
0.2483
0.2448
-0.7847
-0.7735
0.00004860
0.00004599
15
0.0100
0.0099
0.0664
0.0654
0.1453
0.1435
0.2521
0.2486
-0.7734
-0.7624
0.00004435
0.00004186
16
0.0106
0.0105
0.0671
0.0661
0.1425
0.1408
0.2556
0.2521
-0.7625
-0.7515
0.00004030
0.00003789
17
0.0112
0.0111
0.0677
0.0668
0.1398
0.1381
0.2590
0.2554
-0.7519
-0.7410
0.00003642
0.00003411
18
0.0118
0.0116
0.0683
0.0674
0.1372
0.1356
0.2621
0.2585
-0.7416
-0.7309
0.00003273
0.00003050
19
0.0123
0.0121
0.0689
0.0679
0.1347
0.1331
0.2650
0.2614
-0.7316
-0.7210
0.00002919
0.00002705
20
0.0128
0.0126
0.0694
0.0684
0.1323
0.1307
0.2677
0.2641
-0.7220
-0.7114
0.00002582
0.00002376
21
0.0132
0.0131
0.0699
0.0689
0.1300
0.1284
0.2703
0.2666
-0.7126
-0.7022
0.00002260
0.00002061
22
0.0137
0.0135
0.0703
0.0694
0.1278
0.1262
0.2726
0.2689
-0.7035
-0.6932
0.00001953
0.00001761
23
0.0141
0.0139
0.0707
0.0697
0.1256
0.1240
0.2748
0.2711
-0.6947
-0.6844
0.00001660
0.00001474
24
0.0145
0.0143
0.0711
0.0701
0.1235
0.1220
0.2768
0.2731
-0.6861
-0.6759
0.00001380
0.00001203
25
0.0148
0.0147
0.0714
0.0704
0.1215
0.1200
0.2787
0.2749
-0.6778
-0.6677
0.00001113
0.00000938
26
0.0152
0.0150
0.0717
0.0707
0.1196
0.1180
0.2804
0.2766
-0.6697
-0.6597
0.00000858
0.00000690
27
0.0155
0.0153
0.0720
0.0710
0.1177
0.1162
0.2820
0.2781
-0.6619
-0.6519
0.00000615
0.00000454
28
0.0158
0.0156
0.0723
0.0712
0.1158
0.1144
0.2834
0.2795
-0.6542
-0.6444
0.00000383
0.00000227
29
0.0161
0.0159
0.0725
0.0714
0.1141
0.1126
0.2847
0.2808
-0.6468
-0.6370
0.00000163
0.00000011
30
0.0164
0.0162
0.0726
0.0716
0.1124
0.1109
0.2859
0.2820
-0.6396
-0.6299
-0.00000048
-0.00000192
31
0.0166
0.0164
0.0728
0.0718
0.1107
0.1093
0.2869
0.2830
-0.6326
-0.6229
-0.00000249
-0.00000390
32
0.0169
0.0167
0.0729
0.0719
0.1091
0.1077
0.2878
0.2839
-0.6257
-0.6162
-0.00000440
-0.00000577
33
0.0171
0.0169
0.0730
0.0720
0.1076
0.1062
0.2887
0.2847
-0.6191
-0.6096
-0.00000622
-0.00000753
34
0.0173
0.0171
0.0731
0.0721
0.1061
0.1047
0.2894
0.2854
-0.6126
-0.6031
-0.00000795
-0.00000922
35
0.0175
0.0173
0.0732
0.0721
0.1046
0.1032
0.2900
0.2860
-0.6063
-0.5969
-0.00000960
-0.00001084
36
0.0177
0.0175
0.0732
0.0722
0.1032
0.1018
0.2905
0.2866
-0.6001
-0.5908
-0.00001117
-0.00001234
37
0.0178
0.0176
0.0733
0.0722
0.1019
0.1005
0.2910
0.2870
-0.5941
-0.5848
-0.00001267
-0.00001383
38
0.0180
0.0178
0.0733
0.0722
0.1005
0.0992
0.2913
0.2873
-0.5883
-0.5790
-0.00001409
-0.00001520
39
0.0181
0.0179
0.0733
0.0722
0.0993
0.0979
0.2916
0.2876
-0.5826
-0.5734
-0.00001544
-0.00001653
40
0.0183
0.0180
0.0732
0.0722
0.0980
0.0967
0.2918
0.2878
-0.5770
-0.5679
-0.00001673
-0.00001776
41
0.0184
0.0182
0.0732
0.0721
0.0968
0.0955
0.2919
0.2879
-0.5715
-0.5625
-0.00001795
-0.00001897
42
0.0185
0.0183
0.0731
0.0721
0.0956
0.0943
0.2920
0.2879
-0.5662
-0.5572
-0.00001911
-0.00002009
43
0.0186
0.0184
0.0730
0.0720
0.0945
0.0932
0.2919
0.2879
-0.5610
-0.5520
-0.00002021
-0.00002117
44
0.0187
0.0184
0.0730
0.0719
0.0934
0.0921
0.2918
0.2878
-0.5560
-0.5470
-0.00002126
-0.00002217
45
0.0188
0.0185
0.0729
0.0718
0.0923
0.0910
0.2917
0.2876
-0.5510
-0.5421
-0.00002225
-0.00002311
46
0.0188
0.0186
0.0727
0.0717
0.0913
0.0900
0.2915
0.2874
-0.5461
-0.5373
-0.00002319
-0.00002404
47
0.0189
0.0187
0.0726
0.0715
0.0903
0.0890
0.2912
0.2871
-0.5414
-0.5326
-0.00002408
-0.00002492
48
0.0190
0.0187
0.0725
0.0714
0.0893
0.0880
0.2909
0.2868
-0.5367
-0.5280
-0.00002492
-0.00002573
49
0.0190
0.0188
0.0723
0.0713
0.0883
0.0871
0.2905
0.2865
-0.5322
-0.5234
-0.00002572
-0.00002652
50
0.0191
0.0188
0.0722
0.0711
0.0874
0.0861
0.2901
0.2860
-0.5277
-0.5190
-0.00002648
-0.00002726
51
0.0191
0.0188
0.0720
0.0709
0.0865
0.0852
0.2896
0.2856
-0.5234
-0.5147
-0.00002719
-0.00002794
52
0.0191
0.0189
0.0718
0.0708
0.0856
0.0843
0.2891
0.2851
-0.5191
-0.5105
-0.00002787
-0.00002858
53
0.0191
0.0189
0.0717
0.0706
0.0847
0.0835
0.2886
0.2845
-0.5149
-0.5063
-0.00002850
-0.00002919
54
0.0192
0.0189
0.0715
0.0704
0.0839
0.0826
0.2880
0.2839
-0.5108
-0.5022
-0.00002910
-0.00002976
55
0.0192
0.0189
0.0713
0.0702
0.0830
0.0818
0.2874
0.2833
-0.5067
-0.4982
-0.00002967
-0.00003031
56
0.0192
0.0189
0.0711
0.0700
0.0822
0.0810
0.2867
0.2826
-0.5028
-0.4943
-0.00003020
-0.00003086
57
0.0192
0.0189
0.0708
0.0698
0.0815
0.0803
0.2860
0.2819
-0.4989
-0.4904
-0.00003070
-0.00003130
58
0.0192
0.0189
0.0706
0.0696
0.0807
0.0795
0.2853
0.2812
-0.4950
-0.4866
-0.00003117
-0.00003179
59
0.0192
0.0189
0.0704
0.0693
0.0799
0.0788
0.2845
0.2804
-0.4913
-0.4829
-0.00003162
-0.00003219
60
0.0192
0.0189
0.0702
0.0691
0.0792
0.0780
0.2837
0.2796
-0.4876
-0.4793
-0.00003203
-0.00003261
61
0.0192
0.0189
0.0699
0.0689
0.0785
0.0773
0.2829
0.2788
-0.4840
-0.4757
-0.00003242
-0.00003296
62
0.0191
0.0189
0.0697
0.0686
0.0778
0.0766
0.2821
0.2780
-0.4804
-0.4721
-0.00003278
-0.00003330
63
0.0191
0.0189
0.0694
0.0684
0.0771
0.0760
0.2812
0.2771
-0.4769
-0.4687
-0.00003312
-0.00003362
64
0.0191
0.0188
0.0692
0.0681
0.0765
0.0753
0.2803
0.2762
-0.4735
-0.4653
-0.00003343
-0.00003391
65
0.0191
0.0188
0.0689
0.0679
0.0758
0.0746
0.2794
0.2753
-0.4701
-0.4619
-0.00003373
-0.00003421
66
0.0190
0.0188
0.0687
0.0676
0.0752
0.0740
0.2785
0.2744
-0.4667
-0.4586
-0.00003400
-0.00003447
67
0.0190
0.0187
0.0684
0.0674
0.0745
0.0734
0.2776
0.2735
-0.4634
-0.4553
-0.00003425
-0.00003471
68
0.0189
0.0187
0.0682
0.0671
0.0739
0.0728
0.2766
0.2725
-0.4602
-0.4521
-0.00003448
-0.00003493
69
0.0189
0.0187
0.0679
0.0668
0.0733
0.0722
0.2756
0.2715
-0.4570
-0.4490
-0.00003470
-0.00003512
70
0.0189
0.0186
0.0676
0.0666
0.0727
0.0716
0.2746
0.2705
-0.4539
-0.4458
-0.00003489
-0.00003532
71
0.0188
0.0186
0.0673
0.0663
0.0722
0.0710
0.2736
0.2695
-0.4508
-0.4428
-0.00003507
-0.00003546
72
0.0188
0.0185
0.0671
0.0660
0.0716
0.0705
0.2726
0.2685
-0.4477
-0.4397
-0.00003523
-0.00003562
73
0.0187
0.0185
0.0668
0.0657
0.0710
0.0699
0.2715
0.2674
-0.4447
-0.4368
-0.00003538
-0.00003576
74
0.0187
0.0184
0.0665
0.0654
0.0705
0.0694
0.2705
0.2664
-0.4417
-0.4338
-0.00003551
-0.00003585
75
0.0186
0.0184
0.0662
0.0652
0.0700
0.0688
0.2694
0.2653
-0.4388
-0.4309
-0.00003563
-0.00003596
76
0.0186
0.0183
0.0659
0.0649
0.0694
0.0683
0.2683
0.2642
-0.4359
-0.4280
-0.00003574
-0.00003607
77
0.0185
0.0182
0.0656
0.0646
0.0689
0.0678
0.2672
0.2632
-0.4331
-0.4252
-0.00003583
-0.00003617
78
0.0184
0.0182
0.0654
0.0643
0.0684
0.0673
0.2661
0.2621
-0.4303
-0.4224
-0.00003591
-0.00003623
79
0.0184
0.0181
0.0651
0.0640
0.0679
0.0668
0.2650
0.2610
-0.4275
-0.4197
-0.00003598
-0.00003629
80
0.0183
0.0181
0.0648
0.0637
0.0674
0.0663
0.2639
0.2599
-0.4247
-0.4169
-0.00003604
-0.00003632
81
0.0183
0.0180
0.0645
0.0634
0.0669
0.0658
0.2628
0.2587
-0.4220
-0.4142
-0.00003608
-0.00003638
82
0.0182
0.0179
0.0642
0.0631
0.0665
0.0654
0.2617
0.2576
-0.4193
-0.4116
-0.00003612
-0.00003638
83
0.0181
0.0179
0.0639
0.0628
0.0660
0.0649
0.2605
0.2565
-0.4167
-0.4090
-0.00003615
-0.00003640
84
0.0181
0.0178
0.0636
0.0626
0.0655
0.0644
0.2594
0.2553
-0.4141
-0.4064
-0.00003616
-0.00003641
85
0.0180
0.0177
0.0633
0.0623
0.0651
0.0640
0.2582
0.2542
-0.4115
-0.4038
-0.00003617
-0.00003643
86
0.0179
0.0177
0.0630
0.0620
0.0646
0.0635
0.2571
0.2531
-0.4089
-0.4013
-0.00003617
-0.00003641
87
0.0178
0.0176
0.0627
0.0617
0.0642
0.0631
0.2559
0.2519
-0.4064
-0.3987
-0.00003617
-0.00003640
88
0.0178
0.0175
0.0624
0.0614
0.0638
0.0627
0.2548
0.2508
-0.4039
-0.3963
-0.00003615
-0.00003635
89
0.0177
0.0174
0.0621
0.0611
0.0633
0.0623
0.2536
0.2496
-0.4014
-0.3938
-0.00003613
-0.00003635
90
0.0176
0.0174
0.0618
0.0608
0.0629
0.0618
0.2525
0.2484
-0.3989
-0.3914
-0.00003610
-0.00003632
91
0.0176
0.0173
0.0615
0.0605
0.0625
0.0614
0.2513
0.2473
-0.3965
-0.3890
-0.00003606
-0.00003626
92
0.0175
0.0172
0.0612
0.0602
0.0621
0.0610
0.2501
0.2461
-0.3941
-0.3866
-0.00003602
-0.00003621
93
0.0174
0.0172
0.0609
0.0599
0.0617
0.0606
0.2490
0.2450
-0.3917
-0.3842
-0.00003597
-0.00003614
94
0.0173
0.0171
0.0606
0.0596
0.0613
0.0602
0.2478
0.2438
-0.3893
-0.3819
-0.00003592
-0.00003609
95
0.0173
0.0170
0.0603
0.0593
0.0609
0.0598
0.2466
0.2426
-0.3870
-0.3796
-0.00003586
-0.00003605
96
0.0172
0.0169
0.0600
0.0590
0.0605
0.0594
0.2454
0.2415
-0.3847
-0.3773
-0.00003579
-0.00003597
97
0.0171
0.0169
0.0597
0.0587
0.0601
0.0591
0.2443
0.2403
-0.3824
-0.3750
-0.00003572
-0.00003588
98
0.0170
0.0168
0.0594
0.0584
0.0597
0.0587
0.2431
0.2391
-0.3801
-0.3728
-0.00003565
-0.00003579
99
0.0170
0.0167
0.0591
0.0581
0.0593
0.0583
0.2419
0.2380
-0.3779
-0.3705
-0.00003557
-0.00003571
100
0.0169
0.0166
0.0588
0.0578
0.0590
0.0579
0.2408
0.2368
-0.3757
-0.3683
-0.00003549
-0.00003562
101
0.0168
0.0165
0.0585
0.0575
0.0586
0.0576
0.2396
0.2356
-0.3735
-0.3661
-0.00003540
-0.00003553
102
0.0167
0.0165
0.0582
0.0572
0.0582
0.0572
0.2384
0.2345
-0.3713
-0.3640
-0.00003531
-0.00003543
103
0.0166
0.0164
0.0579
0.0569
0.0579
0.0568
0.2372
0.2333
-0.3691
-0.3618
-0.00003522
-0.00003535
104
0.0166
0.0163
0.0577
0.0567
0.0575
0.0565
0.2361
0.2321
-0.3669
-0.3597
-0.00003512
-0.00003522
105
0.0165
0.0162
0.0574
0.0564
0.0572
0.0561
0.2349
0.2310
-0.3648
-0.3576
-0.00003502
-0.00003513
106
0.0164
0.0162
0.0571
0.0561
0.0568
0.0558
0.2337
0.2298
-0.3627
-0.3555
-0.00003492
-0.00003503
107
0.0163
0.0161
0.0568
0.0558
0.0565
0.0555
0.2326
0.2287
-0.3606
-0.3534
-0.00003481
-0.00003490
108
0.0162
0.0160
0.0565
0.0555
0.0561
0.0551
0.2314
0.2275
-0.3585
-0.3513
-0.00003470
-0.00003478
109
0.0162
0.0159
0.0562
0.0552
0.0558
0.0548
0.2303
0.2264
-0.3565
-0.3493
-0.00003459
-0.00003468
110
0.0161
0.0158
0.0559
0.0549
0.0555
0.0544
0.2291
0.2252
-0.3544
-0.3473
-0.00003447
-0.00003455
111
0.0160
0.0158
0.0556
0.0546
0.0551
0.0541
0.2279
0.2241
-0.3524
-0.3453
-0.00003436
-0.00003445
112
0.0159
0.0157
0.0553
0.0543
0.0548
0.0538
0.2268
0.2229
-0.3504
-0.3433
-0.00003424
-0.00003431
113
0.0159
0.0156
0.0550
0.0541
0.0545
0.0535
0.2256
0.2218
-0.3484
-0.3413
-0.00003412
-0.00003419
114
0.0158
0.0155
0.0548
0.0538
0.0541
0.0532
0.2245
0.2206
-0.3464
-0.3393
-0.00003400
-0.00003406
115
0.0157
0.0155
0.0545
0.0535
0.0538
0.0528
0.2234
0.2195
-0.3444
-0.3374
-0.00003387
-0.00003390
116
0.0156
0.0154
0.0542
0.0532
0.0535
0.0525
0.2222
0.2184
-0.3425
-0.3354
-0.00003375
-0.00003380
117
0.0155
0.0153
0.0539
0.0529
0.0532
0.0522
0.2211
0.2172
-0.3405
-0.3335
-0.00003362
-0.00003368
118
0.0155
0.0152
0.0536
0.0527
0.0529
0.0519
0.2199
0.2161
-0.3386
-0.3316
-0.00003349
-0.00003351
119
0.0154
0.0151
0.0533
0.0524
0.0526
0.0516
0.2188
0.2150
-0.3367
-0.3297
-0.00003336
-0.00003339
120
0.0153
0.0151
0.0531
0.0521
0.0523
0.0513
0.2177
0.2139
-0.3348
-0.3278
-0.00003323
-0.00003327
121
0.0152
0.0150
0.0528
0.0518
0.0520
0.0510
0.2166
0.2127
-0.3329
-0.3260
-0.00003309
-0.00003312
122
0.0152
0.0149
0.0525
0.0515
0.0517
0.0507
0.2155
0.2116
-0.3310
-0.3241
-0.00003296
-0.00003296
123
0.0151
0.0148
0.0522
0.0513
0.0514
0.0504
0.2143
0.2105
-0.3292
-0.3223
-0.00003282
-0.00003285
124
0.0150
0.0148
0.0520
0.0510
0.0511
0.0501
0.2132
0.2094
-0.3273
-0.3204
-0.00003269
-0.00003269
125
0.0149
0.0147
0.0517
0.0507
0.0508
0.0498
0.2121
0.2083
-0.3255
-0.3186
-0.00003255
-0.00003258
126
0.0148
0.0146
0.0514
0.0505
0.0505
0.0495
0.2110
0.2072
-0.3237
-0.3168
-0.00003241
-0.00003242
127
0.0148
0.0145
0.0511
0.0502
0.0502
0.0492
0.2099
0.2061
-0.3219
-0.3150
-0.00003228
-0.00003227
128
0.0147
0.0145
0.0509
0.0499
0.0499
0.0490
0.2088
0.2051
-0.3201
-0.3133
-0.00003214
-0.00003213
129
0.0146
0.0144
0.0506
0.0497
0.0496
0.0487
0.2077
0.2040
-0.3183
-0.3115
-0.00003200
-0.00003199
130
0.0145
0.0143
0.0503
0.0494
0.0494
0.0484
0.2067
0.2029
-0.3165
-0.3097
-0.00003186
-0.00003185
131
0.0145
0.0142
0.0501
0.0491
0.0491
0.0481
0.2056
0.2018
-0.3148
-0.3080
-0.00003172
-0.00003170
132
0.0144
0.0142
0.0498
0.0489
0.0488
0.0478
0.2045
0.2007
-0.3130
-0.3063
-0.00003158
-0.00003155
133
0.0143
0.0141
0.0495
0.0486
0.0485
0.0476
0.2034
0.1997
-0.3113
-0.3046
-0.00003143
-0.00003140
134
0.0142
0.0140
0.0493
0.0483
0.0482
0.0473
0.2024
0.1986
-0.3096
-0.3028
-0.00003129
-0.00003127
135
0.0142
0.0139
0.0490
0.0481
0.0480
0.0470
0.2013
0.1976
-0.3078
-0.3011
-0.00003115
-0.00003114
136
0.0141
0.0139
0.0488
0.0478
0.0477
0.0468
0.2002
0.1965
-0.3061
-0.2995
-0.00003101
-0.00003098
137
0.0140
0.0138
0.0485
0.0476
0.0474
0.0465
0.1992
0.1955
-0.3044
-0.2978
-0.00003086
-0.00003081
138
0.0139
0.0137
0.0482
0.0473
0.0472
0.0462
0.1981
0.1944
-0.3028
-0.2961
-0.00003072
-0.00003067
139
0.0139
0.0136
0.0480
0.0470
0.0469
0.0460
0.1971
0.1934
-0.3011
-0.2945
-0.00003058
-0.00003055
140
0.0138
0.0136
0.0477
0.0468
0.0466
0.0457
0.1960
0.1923
-0.2994
-0.2928
-0.00003044
-0.00003040
141
0.0137
0.0135
0.0475
0.0465
0.0464
0.0455
0.1950
0.1913
-0.2978
-0.2912
-0.00003029
-0.00003025
142
0.0137
0.0134
0.0472
0.0463
0.0461
0.0452
0.1940
0.1903
-0.2961
-0.2896
-0.00003015
-0.00003011
143
0.0136
0.0134
0.0470
0.0460
0.0459
0.0449
0.1929
0.1893
-0.2945
-0.2880
-0.00003001
-0.00002993
144
0.0135
0.0133
0.0467
0.0458
0.0456
0.0447
0.1919
0.1883
-0.2929
-0.2864
-0.00002986
-0.00002983
145
0.0134
0.0132
0.0465
0.0455
0.0454
0.0444
0.1909
0.1872
-0.2913
-0.2848
-0.00002972
-0.00002966
146
0.0134
0.0131
0.0462
0.0453
0.0451
0.0442
0.1899
0.1862
-0.2897
-0.2832
-0.00002958
-0.00002949
147
0.0133
0.0131
0.0460
0.0450
0.0449
0.0439
0.1889
0.1852
-0.2881
-0.2816
-0.00002944
-0.00002938
148
0.0132
0.0130
0.0457
0.0448
0.0446
0.0437
0.1879
0.1842
-0.2865
-0.2800
-0.00002929
-0.00002924
149
0.0132
0.0129
0.0455
0.0446
0.0444
0.0434
0.1869
0.1832
-0.2849
-0.2785
-0.00002915
-0.00002909
150
0.0131
0.0129
0.0452
0.0443
0.0441
0.0432
0.1859
0.1823
-0.2834
-0.2769
-0.00002901
-0.00002894
151
0.0130
0.0128
0.0450
0.0441
0.0439
0.0430
0.1849
0.1813
-0.2818
-0.2754
-0.00002887
-0.00002879
152
0.0129
0.0127
0.0447
0.0438
0.0436
0.0427
0.1839
0.1803
-0.2803
-0.2739
-0.00002872
-0.00002864
153
0.0129
0.0127
0.0445
0.0436
0.0434
0.0425
0.1829
0.1793
-0.2788
-0.2724
-0.00002858
-0.00002850
154
0.0128
0.0126
0.0443
0.0434
0.0432
0.0422
0.1820
0.1784
-0.2772
-0.2709
-0.00002844
-0.00002838
155
0.0127
0.0125
0.0440
0.0431
0.0429
0.0420
0.1810
0.1774
-0.2757
-0.2694
-0.00002830
-0.00002821
156
0.0127
0.0124
0.0438
0.0429
0.0427
0.0418
0.1800
0.1764
-0.2742
-0.2679
-0.00002816
-0.00002808
157
0.0126
0.0124
0.0436
0.0427
0.0424
0.0415
0.1791
0.1755
-0.2727
-0.2664
-0.00002802
-0.00002794
158
0.0125
0.0123
0.0433
0.0424
0.0422
0.0413
0.1781
0.1745
-0.2712
-0.2649
-0.00002788
-0.00002776
159
0.0125
0.0122
0.0431
0.0422
0.0420
0.0411
0.1771
0.1736
-0.2698
-0.2635
-0.00002774
-0.00002764
160
0.0124
0.0122
0.0429
0.0420
0.0417
0.0409
0.1762
0.1727
-0.2683
-0.2620
-0.00002760
-0.00002750
161
0.0123
0.0121
0.0426
0.0417
0.0415
0.0406
0.1753
0.1717
-0.2668
-0.2606
-0.00002746
-0.00002736
162
0.0123
0.0120
0.0424
0.0415
0.0413
0.0404
0.1743
0.1708
-0.2654
-0.2591
-0.00002732
-0.00002723
163
0.0122
0.0120
0.0422
0.0413
0.0411
0.0402
0.1734
0.1699
-0.2639
-0.2577
-0.00002719
-0.00002707
164
0.0121
0.0119
0.0419
0.0411
0.0408
0.0400
0.1725
0.1689
-0.2625
-0.2563
-0.00002705
-0.00002696
165
0.0121
0.0119
0.0417
0.0408
0.0406
0.0397
0.1715
0.1680
-0.2611
-0.2549
-0.00002691
-0.00002682
166
0.0120
0.0118
0.0415
0.0406
0.0404
0.0395
0.1706
0.1671
-0.2596
-0.2534
-0.00002678
-0.00002666
167
0.0119
0.0117
0.0413
0.0404
0.0402
0.0393
0.1697
0.1662
-0.2582
-0.2521
-0.00002664
-0.00002653
168
0.0119
0.0117
0.0410
0.0402
0.0400
0.0391
0.1688
0.1653
-0.2568
-0.2507
-0.00002650
-0.00002639
169
0.0118
0.0116
0.0408
0.0400
0.0397
0.0389
0.1679
0.1644
-0.2554
-0.2493
-0.00002637
-0.00002625
170
0.0118
0.0115
0.0406
0.0397
0.0395
0.0387
0.1670
0.1635
-0.2540
-0.2479
-0.00002623
-0.00002610
171
0.0117
0.0115
0.0404
0.0395
0.0393
0.0384
0.1661
0.1626
-0.2526
-0.2465
-0.00002610
-0.00002600
172
0.0116
0.0114
0.0402
0.0393
0.0391
0.0382
0.1652
0.1617
-0.2513
-0.2452
-0.00002597
-0.00002582
173
0.0116
0.0113
0.0400
0.0391
0.0389
0.0380
0.1643
0.1609
-0.2499
-0.2438
-0.00002583
-0.00002571
174
0.0115
0.0113
0.0397
0.0389
0.0387
0.0378
0.1634
0.1600
-0.2486
-0.2425
-0.00002570
-0.00002559
175
0.0114
0.0112
0.0395
0.0387
0.0385
0.0376
0.1625
0.1591
-0.2472
-0.2412
-0.00002557
-0.00002543
176
0.0114
0.0112
0.0393
0.0385
0.0382
0.0374
0.1617
0.1582
-0.2459
-0.2398
-0.00002543
-0.00002531
177
0.0113
0.0111
0.0391
0.0382
0.0380
0.0372
0.1608
0.1574
-0.2445
-0.2385
-0.00002530
-0.00002515
178
0.0113
0.0110
0.0389
0.0380
0.0378
0.0370
0.1599
0.1565
-0.2432
-0.2372
-0.00002517
-0.00002506
179
0.0112
0.0110
0.0387
0.0378
0.0376
0.0368
0.1591
0.1557
-0.2419
-0.2359
-0.00002504
-0.00002489
180
0.0111
0.0109
0.0385
0.0376
0.0374
0.0366
0.1582
0.1548
-0.2406
-0.2346
-0.00002491
-0.00002476
181
0.0111
0.0109
0.0383
0.0374
0.0372
0.0364
0.1574
0.1540
-0.2393
-0.2333
-0.00002478
-0.00002463
182
0.0110
0.0108
0.0381
0.0372
0.0370
0.0362
0.1565
0.1531
-0.2380
-0.2320
-0.00002466
-0.00002453
183
0.0110
0.0107
0.0378
0.0370
0.0368
0.0360
0.1557
0.1523
-0.2367
-0.2308
-0.00002453
-0.00002439
184
0.0109
0.0107
0.0376
0.0368
0.0366
0.0358
0.1548
0.1515
-0.2354
-0.2295
-0.00002440
-0.00002427
185
0.0108
0.0106
0.0374
0.0366
0.0364
0.0356
0.1540
0.1506
-0.2341
-0.2282
-0.00002427
-0.00002413
186
0.0108
0.0106
0.0372
0.0364
0.0362
0.0354
0.1532
0.1498
-0.2328
-0.2270
-0.00002415
-0.00002402
187
0.0107
0.0105
0.0370
0.0362
0.0360
0.0352
0.1524
0.1490
-0.2316
-0.2257
-0.00002402
-0.00002387
188
0.0107
0.0105
0.0368
0.0360
0.0358
0.0350
0.1515
0.1482
-0.2303
-0.2245
-0.00002389
-0.00002373
189
0.0106
0.0104
0.0366
0.0358
0.0356
0.0348
0.1507
0.1474
-0.2291
-0.2232
-0.00002377
-0.00002363
190
0.0105
0.0103
0.0364
0.0356
0.0354
0.0346
0.1499
0.1466
-0.2278
-0.2220
-0.00002365
-0.00002352
191
0.0105
0.0103
0.0362
0.0354
0.0352
0.0344
0.1491
0.1458
-0.2266
-0.2208
-0.00002352
-0.00002336
192
0.0104
0.0102
0.0360
0.0352
0.0351
0.0342
0.1483
0.1450
-0.2254
-0.2196
-0.00002340
-0.00002323
193
0.0104
0.0102
0.0359
0.0350
0.0349
0.0340
0.1475
0.1442
-0.2242
-0.2184
-0.00002328
-0.00002310
194
0.0103
0.0101
0.0357
0.0348
0.0347
0.0339
0.1467
0.1434
-0.2229
-0.2172
-0.00002315
-0.00002301
195
0.0103
0.0101
0.0355
0.0346
0.0345
0.0337
0.1459
0.1426
-0.2217
-0.2160
-0.00002303
-0.00002287
196
0.0102
0.0100
0.0353
0.0345
0.0343
0.0335
0.1451
0.1418
-0.2205
-0.2148
-0.00002291
-0.00002277
197
0.0102
0.0100
0.0351
0.0343
0.0341
0.0333
0.1443
0.1411
-0.2193
-0.2136
-0.00002279
-0.00002263
198
0.0101
0.0099
0.0349
0.0341
0.0339
0.0331
0.1436
0.1403
-0.2182
-0.2125
-0.00002267
-0.00002250
199
0.0100
0.0098
0.0347
0.0339
0.0337
0.0329
0.1428
0.1395
-0.2170
-0.2113
-0.00002255
-0.00002236
200
0.0100
0.0098
0.0345
0.0337
0.0336
0.0328
0.1420
0.1388
-0.2158
-0.2101
-0.00002243
-0.00002228
201
0.0099
0.0097
0.0343
0.0335
0.0334
0.0326
0.1413
0.1380
-0.2146
-0.2090
-0.00002232
-0.00002218
202
0.0099
0.0097
0.0341
0.0333
0.0332
0.0324
0.1405
0.1373
-0.2135
-0.2078
-0.00002220
-0.00002203
203
0.0098
0.0096
0.0340
0.0332
0.0330
0.0322
0.1397
0.1365
-0.2123
-0.2067
-0.00002208
-0.00002192
204
0.0098
0.0096
0.0338
0.0330
0.0328
0.0320
0.1390
0.1358
-0.2112
-0.2056
-0.00002197
-0.00002180
205
0.0097
0.0095
0.0336
0.0328
0.0327
0.0319
0.1382
0.1350
-0.2100
-0.2044
-0.00002185
-0.00002168
206
0.0097
0.0095
0.0334
0.0326
0.0325
0.0317
0.1375
0.1343
-0.2089
-0.2033
-0.00002173
-0.00002156
207
0.0096
0.0094
0.0332
0.0324
0.0323
0.0315
0.1367
0.1335
-0.2078
-0.2022
-0.00002162
-0.00002143
208
0.0096
0.0094
0.0331
0.0323
0.0321
0.0313
0.1360
0.1328
-0.2066
-0.2011
-0.00002151
-0.00002134
209
0.0095
0.0093
0.0329
0.0321
0.0320
0.0312
0.1353
0.1321
-0.2055
-0.2000
-0.00002139
-0.00002122
210
0.0095
0.0093
0.0327
0.0319
0.0318
0.0310
0.1345
0.1314
-0.2044
-0.1989
-0.00002128
-0.00002111
211
0.0094
0.0092
0.0325
0.0317
0.0316
0.0308
0.1338
0.1306
-0.2033
-0.1978
-0.00002117
-0.00002099
212
0.0094
0.0092
0.0323
0.0316
0.0314
0.0307
0.1331
0.1299
-0.2022
-0.1967
-0.00002105
-0.00002089
213
0.0093
0.0091
0.0322
0.0314
0.0313
0.0305
0.1324
0.1292
-0.2011
-0.1956
-0.00002094
-0.00002076
214
0.0093
0.0091
0.0320
0.0312
0.0311
0.0303
0.1317
0.1285
-0.2000
-0.1945
-0.00002083
-0.00002066
215
0.0092
0.0090
0.0318
0.0310
0.0309
0.0302
0.1310
0.1278
-0.1989
-0.1935
-0.00002072
-0.00002052
216
0.0092
0.0090
0.0317
0.0309
0.0308
0.0300
0.1302
0.1271
-0.1979
-0.1924
-0.00002061
-0.00002044
217
0.0091
0.0089
0.0315
0.0307
0.0306
0.0298
0.1295
0.1264
-0.1968
-0.1914
-0.00002050
-0.00002034
218
0.0091
0.0089
0.0313
0.0305
0.0304
0.0297
0.1288
0.1257
-0.1957
-0.1903
-0.00002039
-0.00002023
219
0.0090
0.0088
0.0311
0.0304
0.0303
0.0295
0.1281
0.1250
-0.1947
-0.1893
-0.00002029
-0.00002009
220
0.0090
0.0088
0.0310
0.0302
0.0301
0.0293
0.1275
0.1243
-0.1936
-0.1882
-0.00002018
-0.00002001
221
0.0089
0.0087
0.0308
0.0300
0.0299
0.0292
0.1268
0.1237
-0.1926
-0.1872
-0.00002007
-0.00001989
222
0.0089
0.0087
0.0306
0.0299
0.0298
0.0290
0.1261
0.1230
-0.1915
-0.1862
-0.00001997
-0.00001977
223
0.0088
0.0086
0.0305
0.0297
0.0296
0.0289
0.1254
0.1223
-0.1905
-0.1851
-0.00001986
-0.00001966
224
0.0088
0.0086
0.0303
0.0295
0.0295
0.0287
0.1247
0.1216
-0.1895
-0.1841
-0.00001975
-0.00001956
225
0.0087
0.0085
0.0301
0.0294
0.0293
0.0285
0.1240
0.1210
-0.1884
-0.1831
-0.00001965
-0.00001948
226
0.0087
0.0085
0.0300
0.0292
0.0291
0.0284
0.1234
0.1203
-0.1874
-0.1821
-0.00001954
-0.00001936
227
0.0086
0.0084
0.0298
0.0291
0.0290
0.0282
0.1227
0.1197
-0.1864
-0.1811
-0.00001944
-0.00001926
228
0.0086
0.0084
0.0297
0.0289
0.0288
0.0281
0.1221
0.1190
-0.1854
-0.1801
-0.00001934
-0.00001914
229
0.0085
0.0084
0.0295
0.0287
0.0287
0.0279
0.1214
0.1183
-0.1844
-0.1791
-0.00001923
-0.00001905
230
0.0085
0.0083
0.0293
0.0286
0.0285
0.0278
0.1207
0.1177
-0.1834
-0.1781
-0.00001913
-0.00001894
231
0.0084
0.0083
0.0292
0.0284
0.0284
0.0276
0.1201
0.1171
-0.1824
-0.1772
-0.00001903
-0.00001884
232
0.0084
0.0082
0.0290
0.0283
0.0282
0.0275
0.1194
0.1164
-0.1814
-0.1762
-0.00001893
-0.00001874
233
0.0084
0.0082
0.0289
0.0281
0.0281
0.0273
0.1188
0.1158
-0.1804
-0.1752
-0.00001883
-0.00001864
234
0.0083
0.0081
0.0287
0.0280
0.0279
0.0272
0.1181
0.1151
-0.1795
-0.1743
-0.00001873
-0.00001854
235
0.0083
0.0081
0.0286
0.0278
0.0278
0.0270
0.1175
0.1145
-0.1785
-0.1733
-0.00001863
-0.00001843
236
0.0082
0.0080
0.0284
0.0277
0.0276
0.0269
0.1169
0.1139
-0.1775
-0.1724
-0.00001853
-0.00001832
237
0.0082
0.0080
0.0283
0.0275
0.0275
0.0267
0.1162
0.1133
-0.1766
-0.1714
-0.00001843
-0.00001824
238
0.0081
0.0079
0.0281
0.0274
0.0273
0.0266
0.1156
0.1126
-0.1756
-0.1705
-0.00001833
-0.00001814
239
0.0081
0.0079
0.0279
0.0272
0.0272
0.0264
0.1150
0.1120
-0.1747
-0.1695
-0.00001824
-0.00001803
240
0.0080
0.0079
0.0278
0.0271
0.0270
0.0263
0.1144
0.1114
-0.1737
-0.1686
-0.00001814
-0.00001795
241
0.0080
0.0078
0.0276
0.0269
0.0269
0.0261
0.1138
0.1108
-0.1728
-0.1677
-0.00001804
-0.00001783
242
0.0080
0.0078
0.0275
0.0268
0.0267
0.0260
0.1131
0.1102
-0.1719
-0.1668
-0.00001795
-0.00001772
243
0.0079
0.0077
0.0273
0.0266
0.0266
0.0259
0.1125
0.1096
-0.1709
-0.1658
-0.00001785
-0.00001766
244
0.0079
0.0077
0.0272
0.0265
0.0264
0.0257
0.1119
0.1090
-0.1700
-0.1649
-0.00001776
-0.00001758
245
0.0078
0.0077
0.0271
0.0263
0.0263
0.0256
0.1113
0.1084
-0.1691
-0.1640
-0.00001766
-0.00001746
246
0.0078
0.0076
0.0269
0.0262
0.0262
0.0254
0.1107
0.1078
-0.1682
-0.1631
-0.00001757
-0.00001736
247
0.0077
0.0076
0.0268
0.0260
0.0260
0.0253
0.1101
0.1072
-0.1673
-0.1622
-0.00001747
-0.00001728
248
0.0077
0.0075
0.0266
0.0259
0.0259
0.0252
0.1095
0.1066
-0.1664
-0.1613
-0.00001738
-0.00001718
249
0.0077
0.0075
0.0265
0.0258
0.0257
0.0250
0.1089
0.1060
-0.1655
-0.1605
-0.00001729
-0.00001709
250
0.0076
0.0074
0.0263
0.0256
0.0256
0.0249
0.1083
0.1054
-0.1646
-0.1596
-0.00001719
-0.00001699
251
0.0076
0.0074
0.0262
0.0255
0.0255
0.0247
0.1078
0.1049
-0.1637
-0.1587
-0.00001710
-0.00001690
252
0.0075
0.0074
0.0260
0.0253
0.0253
0.0246
0.1072
0.1043
-0.1628
-0.1578
-0.00001701
-0.00001681
253
0.0075
0.0073
0.0259
0.0252
0.0252
0.0245
0.1066
0.1037
-0.1619
-0.1570
-0.00001692
-0.00001674
254
0.0075
0.0073
0.0258
0.0251
0.0250
0.0243
0.1060
0.1031
-0.1610
-0.1561
-0.00001683
-0.00001663
255
0.0074
0.0072
0.0256
0.0249
0.0249
0.0242
0.1054
0.1026
-0.1602
-0.1552
-0.00001674
-0.00001653
256
0.0074
0.0072
0.0255
0.0248
0.0248
0.0241
0.1049
0.1020
-0.1593
-0.1544
-0.00001665
-0.00001643
257
0.0073
0.0072
0.0254
0.0246
0.0246
0.0239
0.1043
0.1015
-0.1584
-0.1535
-0.00001656
-0.00001636
258
0.0073
0.0071
0.0252
0.0245
0.0245
0.0238
0.1037
0.1009
-0.1576
-0.1527
-0.00001647
-0.00001629
259
0.0073
0.0071
0.0251
0.0244
0.0244
0.0237
0.1032
0.1003
-0.1567
-0.1519
-0.00001639
-0.00001618
260
0.0072
0.0070
0.0249
0.0242
0.0242
0.0235
0.1026
0.0998
-0.1559
-0.1510
-0.00001630
-0.00001610
261
0.0072
0.0070
0.0248
0.0241
0.0241
0.0234
0.1021
0.0992
-0.1551
-0.1502
-0.00001621
-0.00001602
262
0.0071
0.0070
0.0247
0.0240
0.0240
0.0233
0.1015
0.0987
-0.1542
-0.1494
-0.00001613
-0.00001592
263
0.0071
0.0069
0.0245
0.0238
0.0239
0.0232
0.1010
0.0982
-0.1534
-0.1485
-0.00001604
-0.00001583
264
0.0071
0.0069
0.0244
0.0237
0.0237
0.0230
0.1004
0.0976
-0.1526
-0.1477
-0.00001595
-0.00001575
265
0.0070
0.0069
0.0243
0.0236
0.0236
0.0229
0.0999
0.0971
-0.1517
-0.1469
-0.00001587
-0.00001566
266
0.0070
0.0068
0.0241
0.0235
0.0235
0.0228
0.0993
0.0965
-0.1509
-0.1461
-0.00001578
-0.00001559
267
0.0070
0.0068
0.0240
0.0233
0.0233
0.0227
0.0988
0.0960
-0.1501
-0.1453
-0.00001570
-0.00001550
268
0.0069
0.0067
0.0239
0.0232
0.0232
0.0225
0.0983
0.0955
-0.1493
-0.1445
-0.00001562
-0.00001541
269
0.0069
0.0067
0.0238
0.0231
0.0231
0.0224
0.0977
0.0950
-0.1485
-0.1437
-0.00001553
-0.00001532
270
0.0068
0.0067
0.0236
0.0229
0.0230
0.0223
0.0972
0.0944
-0.1477
-0.1429
-0.00001545
-0.00001526
271
0.0068
0.0066
0.0235
0.0228
0.0228
0.0222
0.0967
0.0939
-0.1469
-0.1421
-0.00001537
-0.00001518
272
0.0068
0.0066
0.0234
0.0227
0.0227
0.0220
0.0962
0.0934
-0.1461
-0.1414
-0.00001528
-0.00001508
273
0.0067
0.0066
0.0232
0.0226
0.0226
0.0219
0.0956
0.0929
-0.1453
-0.1406
-0.00001520
-0.00001498
274
0.0067
0.0065
0.0231
0.0224
0.0225
0.0218
0.0951
0.0924
-0.1445
-0.1398
-0.00001512
-0.00001489
275
0.0067
0.0065
0.0230
0.0223
0.0224
0.0217
0.0946
0.0919
-0.1437
-0.1390
-0.00001504
-0.00001483
276
0.0066
0.0065
0.0229
0.0222
0.0222
0.0216
0.0941
0.0914
-0.1430
-0.1383
-0.00001496
-0.00001476
277
0.0066
0.0064
0.0227
0.0221
0.0221
0.0214
0.0936
0.0909
-0.1422
-0.1375
-0.00001488
-0.00001466
278
0.0065
0.0064
0.0226
0.0220
0.0220
0.0213
0.0931
0.0904
-0.1414
-0.1368
-0.00001480
-0.00001460
279
0.0065
0.0063
0.0225
0.0218
0.0219
0.0212
0.0926
0.0899
-0.1407
-0.1360
-0.00001472
-0.00001453
280
0.0065
0.0063
0.0224
0.0217
0.0218
0.0211
0.0921
0.0894
-0.1399
-0.1353
-0.00001464
-0.00001443
281
0.0064
0.0063
0.0223
0.0216
0.0216
0.0210
0.0916
0.0889
-0.1391
-0.1345
-0.00001456
-0.00001436
282
0.0064
0.0062
0.0221
0.0215
0.0215
0.0209
0.0911
0.0884
-0.1384
-0.1338
-0.00001449
-0.00001428
283
0.0064
0.0062
0.0220
0.0214
0.0214
0.0207
0.0906
0.0879
-0.1376
-0.1330
-0.00001441
-0.00001421
284
0.0063
0.0062
0.0219
0.0212
0.0213
0.0206
0.0901
0.0874
-0.1369
-0.1323
-0.00001433
-0.00001410
285
0.0063
0.0061
0.0218
0.0211
0.0212
0.0205
0.0896
0.0870
-0.1362
-0.1316
-0.00001426
-0.00001403
286
0.0063
0.0061
0.0217
0.0210
0.0211
0.0204
0.0891
0.0865
-0.1354
-0.1309
-0.00001418
-0.00001398
287
0.0062
0.0061
0.0215
0.0209
0.0209
0.0203
0.0887
0.0860
-0.1347
-0.1301
-0.00001410
-0.00001388
288
0.0062
0.0060
0.0214
0.0208
0.0208
0.0202
0.0882
0.0855
-0.1340
-0.1294
-0.00001403
-0.00001380
289
0.0062
0.0060
0.0213
0.0207
0.0207
0.0201
0.0877
0.0851
-0.1332
-0.1287
-0.00001395
-0.00001375
290
0.0061
0.0060
0.0212
0.0206
0.0206
0.0200
0.0872
0.0846
-0.1325
-0.1280
-0.00001388
-0.00001367
291
0.0061
0.0059
0.0211
0.0204
0.0205
0.0199
0.0868
0.0841
-0.1318
-0.1273
-0.00001380
-0.00001359
292
0.0061
0.0059
0.0210
0.0203
0.0204
0.0197
0.0863
0.0837
-0.1311
-0.1266
-0.00001373
-0.00001351
293
0.0060
0.0059
0.0209
0.0202
0.0203
0.0196
0.0858
0.0832
-0.1304
-0.1259
-0.00001366
-0.00001342
294
0.0060
0.0058
0.0207
0.0201
0.0202
0.0195
0.0854
0.0828
-0.1297
-0.1252
-0.00001358
-0.00001337
295
0.0060
0.0058
0.0206
0.0200
0.0201
0.0194
0.0849
0.0823
-0.1290
-0.1245
-0.00001351
-0.00001331
296
0.0059
0.0058
0.0205
0.0199
0.0199
0.0193
0.0844
0.0818
-0.1283
-0.1238
-0.00001344
-0.00001324
297
0.0059
0.0057
0.0204
0.0198
0.0198
0.0192
0.0840
0.0814
-0.1276
-0.1232
-0.00001337
-0.00001317
298
0.0059
0.0057
0.0203
0.0197
0.0197
0.0191
0.0835
0.0809
-0.1269
-0.1225
-0.00001329
-0.00001311
299
0.0058
0.0057
0.0202
0.0196
0.0196
0.0190
0.0831
0.0805
-0.1262
-0.1218
-0.00001322
-0.00001299
300
0.0058
0.0057
0.0201
0.0195
0.0195
0.0189
0.0826
0.0801
-0.1255
-0.1211
-0.00001315
-0.00001294
301
0.0058
0.0056
0.0200
0.0193
0.0194
0.0188
0.0822
0.0796
-0.1249
-0.1205
-0.00001308
-0.00001286
302
0.0057
0.0056
0.0199
0.0192
0.0193
0.0187
0.0817
0.0792
-0.1242
-0.1198
-0.00001301
-0.00001280
303
0.0057
0.0056
0.0198
0.0191
0.0192
0.0186
0.0813
0.0787
-0.1235
-0.1191
-0.00001294
-0.00001274
304
0.0057
0.0055
0.0197
0.0190
0.0191
0.0185
0.0809
0.0783
-0.1228
-0.1185
-0.00001287
-0.00001267
305
0.0057
0.0055
0.0195
0.0189
0.0190
0.0184
0.0804
0.0779
-0.1222
-0.1178
-0.00001280
-0.00001258
306
0.0056
0.0055
0.0194
0.0188
0.0189
0.0183
0.0800
0.0775
-0.1215
-0.1172
-0.00001274
-0.00001251
307
0.0056
0.0054
0.0193
0.0187
0.0188
0.0182
0.0796
0.0770
-0.1209
-0.1165
-0.00001267
-0.00001247
308
0.0056
0.0054
0.0192
0.0186
0.0187
0.0181
0.0791
0.0766
-0.1202
-0.1159
-0.00001260
-0.00001238
309
0.0055
0.0054
0.0191
0.0185
0.0186
0.0180
0.0787
0.0762
-0.1196
-0.1153
-0.00001253
-0.00001233
310
0.0055
0.0054
0.0190
0.0184
0.0185
0.0179
0.0783
0.0758
-0.1189
-0.1146
-0.00001246
-0.00001227
311
0.0055
0.0053
0.0189
0.0183
0.0184
0.0178
0.0779
0.0753
-0.1183
-0.1140
-0.00001240
-0.00001220
312
0.0054
0.0053
0.0188
0.0182
0.0183
0.0177
0.0774
0.0749
-0.1176
-0.1134
-0.00001233
-0.00001212
313
0.0054
0.0053
0.0187
0.0181
0.0182
0.0176
0.0770
0.0745
-0.1170
-0.1127
-0.00001227
-0.00001205
314
0.0054
0.0052
0.0186
0.0180
0.0181
0.0175
0.0766
0.0741
-0.1164
-0.1121
-0.00001220
-0.00001200
315
0.0054
0.0052
0.0185
0.0179
0.0180
0.0174
0.0762
0.0737
-0.1157
-0.1115
-0.00001213
-0.00001193
316
0.0053
0.0052
0.0184
0.0178
0.0179
0.0173
0.0758
0.0733
-0.1151
-0.1109
-0.00001207
-0.00001185
317
0.0053
0.0051
0.0183
0.0177
0.0178
0.0172
0.0754
0.0729
-0.1145
-0.1103
-0.00001200
-0.00001181
318
0.0053
0.0051
0.0182
0.0176
0.0177
0.0171
0.0750
0.0725
-0.1139
-0.1097
-0.00001194
-0.00001173
319
0.0052
0.0051
0.0181
0.0175
0.0176
0.0170
0.0745
0.0721
-0.1133
-0.1091
-0.00001188
-0.00001168
320
0.0052
0.0051
0.0180
0.0174
0.0175
0.0169
0.0741
0.0717
-0.1126
-0.1085
-0.00001181
-0.00001160
321
0.0052
0.0050
0.0179
0.0173
0.0174
0.0168
0.0737
0.0713
-0.1120
-0.1079
-0.00001175
-0.00001153
322
0.0052
0.0050
0.0178
0.0172
0.0173
0.0167
0.0733
0.0709
-0.1114
-0.1073
-0.00001169
-0.00001148
323
0.0051
0.0050
0.0177
0.0171
0.0172
0.0166
0.0730
0.0705
-0.1108
-0.1067
-0.00001162
-0.00001142
324
0.0051
0.0050
0.0176
0.0170
0.0171
0.0165
0.0726
0.0701
-0.1102
-0.1061
-0.00001156
-0.00001137
325
0.0051
0.0049
0.0175
0.0169
0.0171
0.0165
0.0722
0.0697
-0.1096
-0.1055
-0.00001150
-0.00001129
326
0.0050
0.0049
0.0174
0.0169
0.0170
0.0164
0.0718
0.0694
-0.1090
-0.1049
-0.00001144
-0.00001123
327
0.0050
0.0049
0.0174
0.0168
0.0169
0.0163
0.0714
0.0690
-0.1085
-0.1043
-0.00001138
-0.00001117
328
0.0050
0.0048
0.0173
0.0167
0.0168
0.0162
0.0710
0.0686
-0.1079
-0.1038
-0.00001132
-0.00001109
329
0.0050
0.0048
0.0172
0.0166
0.0167
0.0161
0.0706
0.0682
-0.1073
-0.1032
-0.00001125
-0.00001104
330
0.0049
0.0048
0.0171
0.0165
0.0166
0.0160
0.0702
0.0678
-0.1067
-0.1026
-0.00001119
-0.00001098
331
0.0049
0.0048
0.0170
0.0164
0.0165
0.0159
0.0699
0.0675
-0.1061
-0.1021
-0.00001113
-0.00001092
332
0.0049
0.0047
0.0169
0.0163
0.0164
0.0158
0.0695
0.0671
-0.1056
-0.1015
-0.00001107
-0.00001086
333
0.0049
0.0047
0.0168
0.0162
0.0163
0.0157
0.0691
0.0667
-0.1050
-0.1009
-0.00001102
-0.00001080
334
0.0048
0.0047
0.0167
0.0161
0.0162
0.0157
0.0687
0.0664
-0.1044
-0.1004
-0.00001096
-0.00001074
335
0.0048
0.0047
0.0166
0.0160
0.0162
0.0156
0.0684
0.0660
-0.1039
-0.0998
-0.00001090
-0.00001071
336
0.0048
0.0046
0.0165
0.0159
0.0161
0.0155
0.0680
0.0656
-0.1033
-0.0993
-0.00001084
-0.00001065
337
0.0048
0.0046
0.0164
0.0159
0.0160
0.0154
0.0676
0.0653
-0.1027
-0.0987
-0.00001078
-0.00001058
338
0.0047
0.0046
0.0163
0.0158
0.0159
0.0153
0.0673
0.0649
-0.1022
-0.0982
-0.00001072
-0.00001051
339
0.0047
0.0046
0.0163
0.0157
0.0158
0.0152
0.0669
0.0646
-0.1016
-0.0976
-0.00001067
-0.00001045
340
0.0047
0.0045
0.0162
0.0156
0.0157
0.0151
0.0665
0.0642
-0.1011
-0.0971
-0.00001061
-0.00001042
341
0.0047
0.0045
0.0161
0.0155
0.0156
0.0151
0.0662
0.0638
-0.1005
-0.0966
-0.00001055
-0.00001034
342
0.0046
0.0045
0.0160
0.0154
0.0156
0.0150
0.0658
0.0635
-0.1000
-0.0960
-0.00001049
-0.00001028
343
0.0046
0.0045
0.0159
0.0153
0.0155
0.0149
0.0655
0.0631
-0.0995
-0.0955
-0.00001044
-0.00001024
344
0.0046
0.0044
0.0158
0.0153
0.0154
0.0148
0.0651
0.0628
-0.0989
-0.0950
-0.00001038
-0.00001020
345
0.0046
0.0044
0.0157
0.0152
0.0153
0.0147
0.0648
0.0624
-0.0984
-0.0945
-0.00001033
-0.00001010
346
0.0045
0.0044
0.0157
0.0151
0.0152
0.0147
0.0644
0.0621
-0.0979
-0.0939
-0.00001027
-0.00001007
347
0.0045
0.0044
0.0156
0.0150
0.0151
0.0146
0.0641
0.0618
-0.0973
-0.0934
-0.00001022
-0.00000999
348
0.0045
0.0043
0.0155
0.0149
0.0151
0.0145
0.0637
0.0614
-0.0968
-0.0929
-0.00001016
-0.00000995
349
0.0045
0.0043
0.0154
0.0148
0.0150
0.0144
0.0634
0.0611
-0.0963
-0.0924
-0.00001011
-0.00000987
350
0.0044
0.0043
0.0153
0.0148
0.0149
0.0143
0.0630
0.0607
-0.0958
-0.0919
-0.00001005
-0.00000986
351
0.0044
0.0043
0.0152
0.0147
0.0148
0.0143
0.0627
0.0604
-0.0952
-0.0914
-0.00001000
-0.00000979
352
0.0044
0.0042
0.0152
0.0146
0.0147
0.0142
0.0623
0.0601
-0.0947
-0.0909
-0.00000994
-0.00000975
353
0.0044
0.0042
0.0151
0.0145
0.0147
0.0141
0.0620
0.0597
-0.0942
-0.0904
-0.00000989
-0.00000967
354
0.0043
0.0042
0.0150
0.0144
0.0146
0.0140
0.0617
0.0594
-0.0937
-0.0899
-0.00000984
-0.00000965
355
0.0043
0.0042
0.0149
0.0144
0.0145
0.0139
0.0613
0.0591
-0.0932
-0.0894
-0.00000979
-0.00000958
356
0.0043
0.0042
0.0148
0.0143
0.0144
0.0139
0.0610
0.0588
-0.0927
-0.0889
-0.00000973
-0.00000953
357
0.0043
0.0041
0.0148
0.0142
0.0143
0.0138
0.0607
0.0584
-0.0922
-0.0884
-0.00000968
-0.00000949
358
0.0042
0.0041
0.0147
0.0141
0.0143
0.0137
0.0604
0.0581
-0.0917
-0.0879
-0.00000963
-0.00000943
359
0.0042
0.0041
0.0146
0.0140
0.0142
0.0136
0.0600
0.0578
-0.0912
-0.0874
-0.00000958
-0.00000935
360
0.0042
0.0041
0.0145
0.0140
0.0141
0.0136
0.0597
0.0575
-0.0907
-0.0869
-0.00000953
-0.00000932
361
0.0042
0.0040
0.0144
0.0139
0.0140
0.0135
0.0594
0.0572
-0.0902
-0.0864
-0.00000947
-0.00000929
362
0.0042
0.0040
0.0144
0.0138
0.0140
0.0134
0.0591
0.0568
-0.0897
-0.0860
-0.00000942
-0.00000923
363
0.0041
0.0040
0.0143
0.0137
0.0139
0.0133
0.0587
0.0565
-0.0893
-0.0855
-0.00000937
-0.00000918
364
0.0041
0.0040
0.0142
0.0137
0.0138
0.0133
0.0584
0.0562
-0.0888
-0.0850
-0.00000932
-0.00000913
365
0.0041
0.0040
0.0141
0.0136
0.0137
0.0132
0.0581
0.0559
-0.0883
-0.0846
-0.00000927
-0.00000910
366
0.0041
0.0039
0.0140
0.0135
0.0137
0.0131
0.0578
0.0556
-0.0878
-0.0841
-0.00000922
-0.00000904
367
0.0040
0.0039
0.0140
0.0134
0.0136
0.0130
0.0575
0.0553
-0.0873
-0.0836
-0.00000917
-0.00000898
368
0.0040
0.0039
0.0139
0.0134
0.0135
0.0130
0.0572
0.0550
-0.0869
-0.0832
-0.00000912
-0.00000893
369
0.0040
0.0039
0.0138
0.0133
0.0134
0.0129
0.0569
0.0547
-0.0864
-0.0827
-0.00000908
-0.00000888
370
0.0040
0.0038
0.0137
0.0132
0.0134
0.0128
0.0566
0.0544
-0.0859
-0.0822
-0.00000903
-0.00000881
371
0.0040
0.0038
0.0137
0.0131
0.0133
0.0128
0.0562
0.0541
-0.0855
-0.0818
-0.00000898
-0.00000879
372
0.0039
0.0038
0.0136
0.0131
0.0132
0.0127
0.0559
0.0538
-0.0850
-0.0813
-0.00000893
-0.00000873
373
0.0039
0.0038
0.0135
0.0130
0.0131
0.0126
0.0556
0.0535
-0.0845
-0.0809
-0.00000888
-0.00000868
374
0.0039
0.0038
0.0135
0.0129
0.0131
0.0126
0.0553
0.0532
-0.0841
-0.0804
-0.00000883
-0.00000864
375
0.0039
0.0037
0.0134
0.0129
0.0130
0.0125
0.0550
0.0529
-0.0836
-0.0800
-0.00000879
-0.00000858
376
0.0039
0.0037
0.0133
0.0128
0.0129
0.0124
0.0547
0.0526
-0.0832
-0.0796
-0.00000874
-0.00000855
377
0.0038
0.0037
0.0132
0.0127
0.0129
0.0123
0.0544
0.0523
-0.0827
-0.0791
-0.00000869
-0.00000852
378
0.0038
0.0037
0.0132
0.0126
0.0128
0.0123
0.0542
0.0520
-0.0823
-0.0787
-0.00000865
-0.00000843
379
0.0038
0.0037
0.0131
0.0126
0.0127
0.0122
0.0539
0.0517
-0.0818
-0.0782
-0.00000860
-0.00000839
380
0.0038
0.0036
0.0130
0.0125
0.0127
0.0121
0.0536
0.0515
-0.0814
-0.0778
-0.00000855
-0.00000836
381
0.0037
0.0036
0.0130
0.0124
0.0126
0.0121
0.0533
0.0512
-0.0810
-0.0774
-0.00000851
-0.00000832
382
0.0037
0.0036
0.0129
0.0124
0.0125
0.0120
0.0530
0.0509
-0.0805
-0.0769
-0.00000846
-0.00000828
383
0.0037
0.0036
0.0128
0.0123
0.0125
0.0119
0.0527
0.0506
-0.0801
-0.0765
-0.00000842
-0.00000820
384
0.0037
0.0036
0.0127
0.0122
0.0124
0.0119
0.0524
0.0503
-0.0797
-0.0761
-0.00000837
-0.00000816
385
0.0037
0.0035
0.0127
0.0122
0.0123
0.0118
0.0521
0.0500
-0.0792
-0.0757
-0.00000833
-0.00000812
386
0.0036
0.0035
0.0126
0.0121
0.0123
0.0117
0.0519
0.0498
-0.0788
-0.0753
-0.00000828
-0.00000808
387
0.0036
0.0035
0.0125
0.0120
0.0122
0.0117
0.0516
0.0495
-0.0784
-0.0748
-0.00000824
-0.00000804
388
0.0036
0.0035
0.0125
0.0120
0.0121
0.0116
0.0513
0.0492
-0.0780
-0.0744
-0.00000819
-0.00000800
389
0.0036
0.0035
0.0124
0.0119
0.0121
0.0116
0.0510
0.0490
-0.0775
-0.0740
-0.00000815
-0.00000796
390
0.0036
0.0034
0.0123
0.0118
0.0120
0.0115
0.0507
0.0487
-0.0771
-0.0736
-0.00000810
-0.00000789
391
0.0036
0.0034
0.0123
0.0118
0.0119
0.0114
0.0505
0.0484
-0.0767
-0.0732
-0.00000806
-0.00000789
392
0.0035
0.0034
0.0122
0.0117
0.0119
0.0114
0.0502
0.0481
-0.0763
-0.0728
-0.00000802
-0.00000781
393
0.0035
0.0034
0.0121
0.0116
0.0118
0.0113
0.0499
0.0479
-0.0759
-0.0724
-0.00000797
-0.00000777
394
0.0035
0.0034
0.0121
0.0116
0.0117
0.0112
0.0497
0.0476
-0.0755
-0.0720
-0.00000793
-0.00000775
395
0.0035
0.0034
0.0120
0.0115
0.0117
0.0112
0.0494
0.0473
-0.0751
-0.0716
-0.00000789
-0.00000769
396
0.0035
0.0033
0.0119
0.0114
0.0116
0.0111
0.0491
0.0471
-0.0746
-0.0712
-0.00000785
-0.00000768
397
0.0034
0.0033
0.0119
0.0114
0.0115
0.0111
0.0489
0.0468
-0.0742
-0.0708
-0.00000780
-0.00000760
398
0.0034
0.0033
0.0118
0.0113
0.0115
0.0110
0.0486
0.0466
-0.0738
-0.0704
-0.00000776
-0.00000756
399
0.0034
0.0033
0.0117
0.0113
0.0114
0.0109
0.0483
0.0463
-0.0734
-0.0700
-0.00000772
-0.00000753
400
0.0034
0.0033
0.0117
0.0112
0.0114
0.0109
0.0481
0.0461
-0.0730
-0.0696
-0.00000768
-0.00000746
401
0.0034
0.0032
0.0116
0.0111
0.0113
0.0108
0.0478
0.0458
-0.0727
-0.0692
-0.00000764
-0.00000745
402
0.0033
0.0032
0.0116
0.0111
0.0112
0.0107
0.0476
0.0456
-0.0723
-0.0689
-0.00000760
-0.00000741
403
0.0033
0.0032
0.0115
0.0110
0.0112
0.0107
0.0473
0.0453
-0.0719
-0.0685
-0.00000756
-0.00000738
404
0.0033
0.0032
0.0114
0.0109
0.0111
0.0106
0.0470
0.0450
-0.0715
-0.0681
-0.00000752
-0.00000734
405
0.0033
0.0032
0.0114
0.0109
0.0111
0.0106
0.0468
0.0448
-0.0711
-0.0677
-0.00000748
-0.00000729
406
0.0033
0.0032
0.0113
0.0108
0.0110
0.0105
0.0465
0.0445
-0.0707
-0.0673
-0.00000744
-0.00000726
407
0.0033
0.0031
0.0113
0.0108
0.0109
0.0105
0.0463
0.0443
-0.0703
-0.0670
-0.00000740
-0.00000722
408
0.0032
0.0031
0.0112
0.0107
0.0109
0.0104
0.0460
0.0441
-0.0700
-0.0666
-0.00000736
-0.00000717
409
0.0032
0.0031
0.0111
0.0106
0.0108
0.0103
0.0458
0.0438
-0.0696
-0.0662
-0.00000732
-0.00000712
410
0.0032
0.0031
0.0111
0.0106
0.0108
0.0103
0.0455
0.0436
-0.0692
-0.0659
-0.00000728
-0.00000710
411
0.0032
0.0031
0.0110
0.0105
0.0107
0.0102
0.0453
0.0433
-0.0688
-0.0655
-0.00000724
-0.00000704
412
0.0032
0.0030
0.0110
0.0105
0.0106
0.0102
0.0450
0.0431
-0.0685
-0.0651
-0.00000720
-0.00000699
413
0.0032
0.0030
0.0109
0.0104
0.0106
0.0101
0.0448
0.0429
-0.0681
-0.0648
-0.00000716
-0.00000697
414
0.0031
0.0030
0.0108
0.0104
0.0105
0.0101
0.0446
0.0426
-0.0677
-0.0644
-0.00000712
-0.00000692
415
0.0031
0.0030
0.0108
0.0103
0.0105
0.0100
0.0443
0.0424
-0.0673
-0.0641
-0.00000708
-0.00000690
416
0.0031
0.0030
0.0107
0.0102
0.0104
0.0099
0.0441
0.0421
-0.0670
-0.0637
-0.00000704
-0.00000687
417
0.0031
0.0030
0.0107
0.0102
0.0104
0.0099
0.0438
0.0419
-0.0666
-0.0633
-0.00000701
-0.00000682
418
0.0031
0.0030
0.0106
0.0101
0.0103
0.0098
0.0436
0.0417
-0.0663
-0.0630
-0.00000697
-0.00000679
419
0.0031
0.0029
0.0105
0.0101
0.0102
0.0098
0.0434
0.0414
-0.0659
-0.0626
-0.00000693
-0.00000674
420
0.0030
0.0029
0.0105
0.0100
0.0102
0.0097
0.0431
0.0412
-0.0656
-0.0623
-0.00000689
-0.00000670
421
0.0030
0.0029
0.0104
0.0100
0.0101
0.0097
0.0429
0.0410
-0.0652
-0.0620
-0.00000686
-0.00000665
422
0.0030
0.0029
0.0104
0.0099
0.0101
0.0096
0.0427
0.0408
-0.0648
-0.0616
-0.00000682
-0.00000663
423
0.0030
0.0029
0.0103
0.0099
0.0100
0.0096
0.0424
0.0405
-0.0645
-0.0613
-0.00000678
-0.00000660
424
0.0030
0.0029
0.0103
0.0098
0.0100
0.0095
0.0422
0.0403
-0.0641
-0.0609
-0.00000675
-0.00000656
425
0.0030
0.0028
0.0102
0.0097
0.0099
0.0095
0.0420
0.0401
-0.0638
-0.0606
-0.00000671
-0.00000651
426
0.0029
0.0028
0.0102
0.0097
0.0099
0.0094
0.0418
0.0399
-0.0635
-0.0603
-0.00000668
-0.00000648
427
0.0029
0.0028
0.0101
0.0096
0.0098
0.0094
0.0415
0.0396
-0.0631
-0.0599
-0.00000664
-0.00000645
428
0.0029
0.0028
0.0100
0.0096
0.0098
0.0093
0.0413
0.0394
-0.0628
-0.0596
-0.00000660
-0.00000642
429
0.0029
0.0028
0.0100
0.0095
0.0097
0.0093
0.0411
0.0392
-0.0624
-0.0593
-0.00000657
-0.00000639
430
0.0029
0.0028
0.0099
0.0095
0.0097
0.0092
0.0409
0.0390
-0.0621
-0.0589
-0.00000653
-0.00000635
431
0.0029
0.0027
0.0099
0.0094
0.0096
0.0091
0.0406
0.0388
-0.0618
-0.0586
-0.00000650
-0.00000632
432
0.0028
0.0027
0.0098
0.0094
0.0096
0.0091
0.0404
0.0386
-0.0614
-0.0583
-0.00000646
-0.00000629
433
0.0028
0.0027
0.0098
0.0093
0.0095
0.0090
0.0402
0.0383
-0.0611
-0.0579
-0.00000643
-0.00000626
434
0.0028
0.0027
0.0097
0.0093
0.0094
0.0090
0.0400
0.0381
-0.0608
-0.0576
-0.00000639
-0.00000622
435
0.0028
0.0027
0.0097
0.0092
0.0094
0.0089
0.0398
0.0379
-0.0604
-0.0573
-0.00000636
-0.00000617
436
0.0028
0.0027
0.0096
0.0092
0.0093
0.0089
0.0396
0.0377
-0.0601
-0.0570
-0.00000632
-0.00000613
437
0.0028
0.0027
0.0096
0.0091
0.0093
0.0088
0.0393
0.0375
-0.0598
-0.0567
-0.00000629
-0.00000612
438
0.0028
0.0026
0.0095
0.0091
0.0092
0.0088
0.0391
0.0373
-0.0595
-0.0564
-0.00000626
-0.00000609
439
0.0027
0.0026
0.0095
0.0090
0.0092
0.0088
0.0389
0.0371
-0.0591
-0.0560
-0.00000622
-0.00000606
440
0.0027
0.0026
0.0094
0.0090
0.0091
0.0087
0.0387
0.0369
-0.0588
-0.0557
-0.00000619
-0.00000599
441
0.0027
0.0026
0.0094
0.0089
0.0091
0.0087
0.0385
0.0367
-0.0585
-0.0554
-0.00000616
-0.00000599
442
0.0027
0.0026
0.0093
0.0089
0.0090
0.0086
0.0383
0.0365
-0.0582
-0.0551
-0.00000612
-0.00000594
443
0.0027
0.0026
0.0093
0.0088
0.0090
0.0086
0.0381
0.0363
-0.0579
-0.0548
-0.00000609
-0.00000593
444
0.0027
0.0026
0.0092
0.0088
0.0090
0.0085
0.0379
0.0361
-0.0576
-0.0545
-0.00000606
-0.00000587
445
0.0027
0.0025
0.0092
0.0087
0.0089
0.0085
0.0377
0.0359
-0.0573
-0.0542
-0.00000602
-0.00000586
446
0.0026
0.0025
0.0091
0.0087
0.0089
0.0084
0.0375
0.0357
-0.0569
-0.0539
-0.00000599
-0.00000582
447
0.0026
0.0025
0.0091
0.0086
0.0088
0.0084
0.0373
0.0355
-0.0566
-0.0536
-0.00000596
-0.00000578
448
0.0026
0.0025
0.0090
0.0086
0.0088
0.0083
0.0371
0.0353
-0.0563
-0.0533
-0.00000593
-0.00000575
449
0.0026
0.0025
0.0090
0.0085
0.0087
0.0083
0.0369
0.0351
-0.0560
-0.0530
-0.00000590
-0.00000573
450
0.0026
0.0025
0.0089
0.0085
0.0087
0.0082
0.0367
0.0349
-0.0557
-0.0527
-0.00000586
-0.00000569
451
0.0026
0.0025
0.0089
0.0084
0.0086
0.0082
0.0365
0.0347
-0.0554
-0.0524
-0.00000583
-0.00000565
452
0.0026
0.0024
0.0088
0.0084
0.0086
0.0081
0.0363
0.0345
-0.0551
-0.0521
-0.00000580
-0.00000561
453
0.0025
0.0024
0.0088
0.0083
0.0085
0.0081
0.0361
0.0343
-0.0548
-0.0518
-0.00000577
-0.00000560
454
0.0025
0.0024
0.0087
0.0083
0.0085
0.0081
0.0359
0.0341
-0.0545
-0.0515
-0.00000574
-0.00000558
455
0.0025
0.0024
0.0087
0.0082
0.0084
0.0080
0.0357
0.0339
-0.0542
-0.0513
-0.00000571
-0.00000555
456
0.0025
0.0024
0.0086
0.0082
0.0084
0.0080
0.0355
0.0337
-0.0539
-0.0510
-0.00000568
-0.00000553
457
0.0025
0.0024
0.0086
0.0082
0.0083
0.0079
0.0353
0.0336
-0.0536
-0.0507
-0.00000565
-0.00000545
458
0.0025
0.0024
0.0085
0.0081
0.0083
0.0079
0.0351
0.0334
-0.0534
-0.0504
-0.00000562
-0.00000544
459
0.0025
0.0024
0.0085
0.0081
0.0083
0.0078
0.0349
0.0332
-0.0531
-0.0501
-0.00000559
-0.00000539
460
0.0024
0.0023
0.0084
0.0080
0.0082
0.0078
0.0347
0.0330
-0.0528
-0.0498
-0.00000556
-0.00000539
461
0.0024
0.0023
0.0084
0.0080
0.0082
0.0077
0.0345
0.0328
-0.0525
-0.0496
-0.00000553
-0.00000535
462
0.0024
0.0023
0.0084
0.0079
0.0081
0.0077
0.0344
0.0326
-0.0522
-0.0493
-0.00000550
-0.00000536
463
0.0024
0.0023
0.0083
0.0079
0.0081
0.0077
0.0342
0.0325
-0.0519
-0.0490
-0.00000547
-0.00000531
464
0.0024
0.0023
0.0083
0.0078
0.0080
0.0076
0.0340
0.0323
-0.0517
-0.0487
-0.00000544
-0.00000526
465
0.0024
0.0023
0.0082
0.0078
0.0080
0.0076
0.0338
0.0321
-0.0514
-0.0485
-0.00000541
-0.00000525
466
0.0024
0.0023
0.0082
0.0078
0.0079
0.0075
0.0336
0.0319
-0.0511
-0.0482
-0.00000538
-0.00000520
467
0.0024
0.0022
0.0081
0.0077
0.0079
0.0075
0.0334
0.0317
-0.0508
-0.0479
-0.00000535
-0.00000518
468
0.0023
0.0022
0.0081
0.0077
0.0079
0.0074
0.0333
0.0316
-0.0505
-0.0477
-0.00000532
-0.00000516
469
0.0023
0.0022
0.0080
0.0076
0.0078
0.0074
0.0331
0.0314
-0.0503
-0.0474
-0.00000529
-0.00000512
470
0.0023
0.0022
0.0080
0.0076
0.0078
0.0074
0.0329
0.0312
-0.0500
-0.0471
-0.00000526
-0.00000510
471
0.0023
0.0022
0.0080
0.0075
0.0077
0.0073
0.0327
0.0310
-0.0497
-0.0469
-0.00000524
-0.00000507
472
0.0023
0.0022
0.0079
0.0075
0.0077
0.0073
0.0325
0.0309
-0.0495
-0.0466
-0.00000521
-0.00000503
473
0.0023
0.0022
0.0079
0.0075
0.0077
0.0072
0.0324
0.0307
-0.0492
-0.0464
-0.00000518
-0.00000501
474
0.0023
0.0022
0.0078
0.0074
0.0076
0.0072
0.0322
0.0305
-0.0489
-0.0461
-0.00000515
-0.00000499
475
0.0023
0.0022
0.0078
0.0074
0.0076
0.0072
0.0320
0.0304
-0.0487
-0.0458
-0.00000512
-0.00000495
476
0.0022
0.0021
0.0077
0.0073
0.0075
0.0071
0.0319
0.0302
-0.0484
-0.0456
-0.00000510
-0.00000491
477
0.0022
0.0021
0.0077
0.0073
0.0075
0.0071
0.0317
0.0300
-0.0481
-0.0453
-0.00000507
-0.00000490
478
0.0022
0.0021
0.0077
0.0073
0.0074
0.0070
0.0315
0.0298
-0.0479
-0.0451
-0.00000504
-0.00000487
479
0.0022
0.0021
0.0076
0.0072
0.0074
0.0070
0.0313
0.0297
-0.0476
-0.0448
-0.00000502
-0.00000485
480
0.0022
0.0021
0.0076
0.0072
0.0074
0.0070
0.0312
0.0295
-0.0474
-0.0446
-0.00000499
-0.00000480
481
0.0022
0.0021
0.0075
0.0071
0.0073
0.0069
0.0310
0.0294
-0.0471
-0.0443
-0.00000496
-0.00000482
482
0.0022
0.0021
0.0075
0.0071
0.0073
0.0069
0.0308
0.0292
-0.0469
-0.0441
-0.00000493
-0.00000479
483
0.0022
0.0021
0.0075
0.0071
0.0072
0.0068
0.0307
0.0290
-0.0466
-0.0438
-0.00000491
-0.00000473
484
0.0021
0.0020
0.0074
0.0070
0.0072
0.0068
0.0305
0.0289
-0.0464
-0.0436
-0.00000488
-0.00000470
485
0.0021
0.0020
0.0074
0.0070
0.0072
0.0068
0.0303
0.0287
-0.0461
-0.0433
-0.00000486
-0.00000469
486
0.0021
0.0020
0.0073
0.0069
0.0071
0.0067
0.0302
0.0285
-0.0459
-0.0431
-0.00000483
-0.00000468
487
0.0021
0.0020
0.0073
0.0069
0.0071
0.0067
0.0300
0.0284
-0.0456
-0.0429
-0.00000480
-0.00000464
488
0.0021
0.0020
0.0073
0.0069
0.0071
0.0067
0.0298
0.0282
-0.0454
-0.0426
-0.00000478
-0.00000461
489
0.0021
0.0020
0.0072
0.0068
0.0070
0.0066
0.0297
0.0281
-0.0451
-0.0424
-0.00000475
-0.00000458
490
0.0021
0.0020
0.0072
0.0068
0.0070
0.0066
0.0295
0.0279
-0.0449
-0.0421
-0.00000473
-0.00000456
491
0.0021
0.0020
0.0071
0.0067
0.0069
0.0065
0.0294
0.0278
-0.0446
-0.0419
-0.00000470
-0.00000453
492
0.0021
0.0020
0.0071
0.0067
0.0069
0.0065
0.0292
0.0276
-0.0444
-0.0417
-0.00000468
-0.00000451
493
0.0020
0.0019
0.0071
0.0067
0.0069
0.0065
0.0290
0.0275
-0.0441
-0.0414
-0.00000465
-0.00000448
494
0.0020
0.0019
0.0070
0.0066
0.0068
0.0064
0.0289
0.0273
-0.0439
-0.0412
-0.00000462
-0.00000445
495
0.0020
0.0019
0.0070
0.0066
0.0068
0.0064
0.0287
0.0271
-0.0437
-0.0410
-0.00000460
-0.00000443
496
0.0020
0.0019
0.0069
0.0066
0.0068
0.0064
0.0286
0.0270
-0.0434
-0.0408
-0.00000458
-0.00000440
497
0.0020
0.0019
0.0069
0.0065
0.0067
0.0063
0.0284
0.0268
-0.0432
-0.0405
-0.00000455
-0.00000437
498
0.0020
0.0019
0.0069
0.0065
0.0067
0.0063
0.0283
0.0267
-0.0430
-0.0403
-0.00000453
-0.00000437
499
0.0020
0.0019
0.0068
0.0065
0.0066
0.0063
0.0281
0.0265
-0.0427
-0.0401
-0.00000450
-0.00000436

Figure 5:  Linear vs Nonlinear Impulse Responses: Path 3

Data for Figure 5 immediately follows.

Data for Figure 5

Quarters
Output Home:
Path 3
(linear)
Output Home:
Path 3
(nonlinear)
Consumption Home
Path 3
(linear)
Consumption Home:
Path 3
(nonlinear)
Investment Home:
Path 3
(linear)
Investment Home:
Path 3
(nonlinear)
Consumption Home Relative to Foreign:
Path 3
(linear)
Consumption Home Relative to Foreign:
Path 3
(nonlinear)
Real Exchange Rate Home:
Path 3
(linear)
Real Exchange Rate Home:
Path 3
(nonlinear)
Trade Balance to GDP Ratio Home:
Path 3
(linear)
Trade Balance to GDP Ratio Home:
Path 3
(nonlinear)
1
-1.98
1.94
-0.85
3.07
-33.62
-51.88
-136.72
-91.61
1432.77
11562.23
-0.145
21.899
2
-2.54
0.40
-1.23
1.56
-34.33
-52.90
-129.74
-91.06
1378.95
10847.56
-0.140
19.860
3
-3.09
-1.03
-2.26
-0.54
-35.00
-53.84
-124.10
-90.59
1328.40
10199.91
-0.129
18.347
4
-3.62
-2.37
-3.24
-2.50
-35.63
-54.71
-118.83
-90.11
1280.94
9611.59
-0.119
16.987
5
-4.13
-3.63
-4.18
-4.34
-36.23
-55.52
-113.93
-89.62
1236.42
9075.91
-0.110
15.763
6
-4.64
-4.82
-5.08
-6.06
-36.79
-56.28
-109.35
-89.14
1194.67
8587.08
-0.101
14.658
7
-5.13
-5.94
-5.94
-7.68
-37.33
-56.98
-105.08
-88.65
1155.52
8140.01
-0.093
13.658
8
-5.60
-6.99
-6.76
-9.19
-37.83
-57.63
-101.10
-88.15
1118.82
7730.30
-0.086
12.752
9
-6.05
-7.99
-7.54
-10.61
-38.30
-58.24
-97.39
-87.66
1084.41
7354.06
-0.079
11.927
10
-6.49
-8.92
-8.28
-11.95
-38.75
-58.81
-93.93
-87.16
1052.15
7007.88
-0.072
11.177
11
-6.91
-9.80
-8.98
-13.20
-39.16
-59.33
-90.71
-86.67
1021.90
6688.75
-0.066
10.491
12
-7.32
-10.63
-9.65
-14.38
-39.55
-59.82
-87.70
-86.17
993.53
6394.03
-0.060
9.864
13
-7.70
-11.41
-10.28
-15.49
-39.92
-60.28
-84.90
-85.68
966.91
6121.37
-0.055
9.290
14
-8.07
-12.15
-10.88
-16.53
-40.26
-60.70
-82.28
-85.19
941.94
5868.68
-0.050
8.762
15
-8.42
-12.84
-11.45
-17.51
-40.57
-61.10
-79.83
-84.70
918.50
5634.12
-0.045
8.276
16
-8.75
-13.50
-11.99
-18.44
-40.87
-61.47
-77.55
-84.21
896.48
5416.04
-0.041
7.829
17
-9.06
-14.12
-12.50
-19.31
-41.14
-61.81
-75.42
-83.73
875.80
5212.95
-0.037
7.416
18
-9.36
-14.70
-12.98
-20.13
-41.40
-62.12
-73.42
-83.24
856.36
5023.55
-0.033
7.033
19
-9.64
-15.25
-13.44
-20.90
-41.63
-62.42
-71.56
-82.77
838.08
4846.66
-0.029
6.679
20
-9.91
-15.76
-13.87
-21.63
-41.84
-62.69
-69.81
-82.30
820.89
4681.21
-0.026
6.351
21
-10.16
-16.25
-14.27
-22.32
-42.04
-62.94
-68.18
-81.83
804.70
4526.25
-0.023
6.045
22
-10.39
-16.71
-14.65
-22.96
-42.22
-63.17
-66.65
-81.37
789.46
4380.92
-0.020
5.761
23
-10.61
-17.14
-15.01
-23.57
-42.39
-63.39
-65.21
-80.91
775.10
4244.45
-0.018
5.496
24
-10.82
-17.55
-15.35
-24.15
-42.54
-63.58
-63.86
-80.46
761.55
4116.14
-0.015
5.248
25
-11.01
-17.94
-15.67
-24.69
-42.67
-63.76
-62.60
-80.01
748.78
3995.34
-0.013
5.017
26
-11.19
-18.30
-15.97
-25.20
-42.79
-63.93
-61.41
-79.57
736.72
3881.48
-0.011
4.800
27
-11.36
-18.64
-16.25
-25.68
-42.90
-64.08
-60.30
-79.14
725.33
3774.04
-0.009
4.597
28
-11.51
-18.96
-16.52
-26.13
-43.00
-64.22
-59.25
-78.71
714.57
3672.54
-0.007
4.407
29
-11.66
-19.26
-16.76
-26.56
-43.09
-64.35
-58.26
-78.29
704.38
3576.55
-0.005
4.228
30
-11.79
-19.54
-17.00
-26.96
-43.16
-64.46
-57.33
-77.87
694.75
3485.67
-0.003
4.059
31
-11.92
-19.81
-17.21
-27.34
-43.23
-64.57
-56.45
-77.46
685.63
3399.53
-0.002
3.900
32
-12.03
-20.06
-17.42
-27.70
-43.28
-64.66
-55.63
-77.06
676.98
3317.81
0.000
3.751
33
-12.14
-20.29
-17.61
-28.03
-43.33
-64.74
-54.85
-76.66
668.79
3240.20
0.001
3.609
34
-12.23
-20.51
-17.78
-28.35
-43.36
-64.81
-54.11
-76.27
661.01
3166.43
0.002
3.476
35
-12.32
-20.72
-17.95
-28.65
-43.39
-64.87
-53.41
-75.89
653.63
3096.23
0.003
3.349
36
-12.40
-20.91
-18.11
-28.92
-43.42
-64.93
-52.76
-75.51
646.61
3029.37
0.004
3.229
37
-12.47
-21.09
-18.25
-29.19
-43.43
-64.97
-52.13
-75.14
639.94
2965.63
0.005
3.116
38
-12.54
-21.26
-18.38
-29.43
-43.44
-65.01
-51.55
-74.78
633.59
2904.82
0.006
3.008
39
-12.60
-21.41
-18.51
-29.66
-43.44
-65.04
-50.99
-74.42
627.55
2846.74
0.007
2.906
40
-12.65
-21.56
-18.62
-29.88
-43.44
-65.07
-50.46
-74.07
621.79
2791.23
0.008
2.808
41
-12.70
-21.69
-18.73
-30.08
-43.43
-65.08
-49.96
-73.73
616.30
2738.14
0.008
2.716
42
-12.74
-21.82
-18.83
-30.27
-43.42
-65.09
-49.48
-73.39
611.06
2687.30
0.009
2.627
43
-12.78
-21.93
-18.92
-30.44
-43.40
-65.10
-49.03
-73.05
606.06
2638.60
0.010
2.543
44
-12.81
-22.04
-19.00
-30.61
-43.37
-65.09
-48.59
-72.73
601.28
2591.89
0.010
2.463
45
-12.84
-22.14
-19.08
-30.76
-43.35
-65.09
-48.18
-72.41
596.71
2547.08
0.011
2.386
46
-12.86
-22.23
-19.15
-30.90
-43.31
-65.08
-47.79
-72.09
592.33
2504.04
0.011
2.313
47
-12.88
-22.31
-19.22
-31.04
-43.28
-65.06
-47.42
-71.78
588.14
2462.67
0.012
2.243
48
-12.89
-22.39
-19.28
-31.16
-43.24
-65.04
-47.07
-71.48
584.13
2422.89
0.012
2.176
49
-12.90
-22.46
-19.33
-31.27
-43.20
-65.01
-46.73
-71.18
580.28
2384.61
0.012
2.111
50
-12.91
-22.52
-19.38
-31.38
-43.15
-64.98
-46.41
-70.89
576.58
2347.73
0.013
2.050
51
-12.91
-22.57
-19.43
-31.47
-43.11
-64.94
-46.10
-70.60
573.03
2312.20
0.013
1.991
52
-12.92
-22.62
-19.47
-31.56
-43.06
-64.90
-45.80
-70.32
569.62
2277.93
0.013
1.934
53
-12.91
-22.67
-19.50
-31.64
-43.00
-64.86
-45.52
-70.05
566.34
2244.86
0.014
1.880
54
-12.91
-22.71
-19.53
-31.71
-42.95
-64.81
-45.25
-69.77
563.19
2212.92
0.014
1.827
55
-12.90
-22.74
-19.56
-31.78
-42.89
-64.76
-44.99
-69.51
560.15
2182.07
0.014
1.777
56
-12.89
-22.77
-19.59
-31.84
-42.84
-64.71
-44.74
-69.24
557.22
2152.23
0.014
1.728
57
-12.88
-22.79
-19.61
-31.89
-42.78
-64.65
-44.50
-68.99
554.39
2123.37
0.014
1.682
58
-12.87
-22.81
-19.62
-31.94
-42.71
-64.59
-44.27
-68.73
551.66
2095.44
0.015
1.637
59
-12.86
-22.83
-19.64
-31.98
-42.65
-64.53
-44.05
-68.48
549.03
2068.38
0.015
1.594
60
-12.84
-22.84
-19.65
-32.02
-42.59
-64.47
-43.84
-68.24
546.48
2042.16
0.015
1.552
61
-12.82
-22.85
-19.66
-32.05
-42.52
-64.40
-43.64
-68.00
544.02
2016.74
0.015
1.512
62
-12.80
-22.85
-19.67
-32.07
-42.46
-64.33
-43.44
-67.76
541.64
1992.07
0.015
1.473
63
-12.78
-22.85
-19.67
-32.10
-42.39
-64.26
-43.25
-67.53
539.33
1968.13
0.015
1.436
64
-12.76
-22.85
-19.68
-32.11
-42.32
-64.18
-43.07
-67.30
537.09
1944.88
0.015
1.399
65
-12.74
-22.84
-19.68
-32.13
-42.25
-64.11
-42.90
-67.08
534.92
1922.29
0.015
1.364
66
-12.71
-22.83
-19.67
-32.13
-42.18
-64.03
-42.73
-66.86
532.82
1900.33
0.015
1.331
67
-12.69
-22.82
-19.67
-32.14
-42.11
-63.95
-42.56
-66.64
530.78
1878.97
0.015
1.298
68
-12.66
-22.80
-19.67
-32.14
-42.04
-63.86
-42.41
-66.42
528.80
1858.19
0.015
1.266
69
-12.64
-22.79
-19.66
-32.14
-41.97
-63.78
-42.25
-66.21
526.87
1837.95
0.015
1.236
70
-12.61
-22.77
-19.65
-32.13
-41.90
-63.69
-42.10
-66.01
524.99
1818.24
0.015
1.206
71
-12.58
-22.74
-19.64
-32.12
-41.83
-63.61
-41.96
-65.80
523.17
1799.04
0.015
1.177
72
-12.55
-22.72
-19.63
-32.11
-41.75
-63.52
-41.82
-65.60
521.39
1780.32
0.015
1.149
73
-12.52
-22.69
-19.62
-32.09
-41.68
-63.43
-41.69
-65.40
519.66
1762.07
0.015
1.122
74
-12.49
-22.66
-19.61
-32.08
-41.61
-63.34
-41.56
-65.20
517.98
1744.26
0.015
1.096
75
-12.46
-22.63
-19.59
-32.06
-41.54
-63.24
-41.43
-65.01
516.33
1726.87
0.015
1.071
76
-12.43
-22.60
-19.58
-32.03
-41.46
-63.15
-41.31
-64.82
514.73
1709.90
0.015
1.046
77
-12.40
-22.57
-19.56
-32.01
-41.39
-63.05
-41.19
-64.63
513.16
1693.32
0.015
1.022
78
-12.37
-22.53
-19.55
-31.98
-41.32
-62.96
-41.07
-64.45
511.63
1677.12
0.015
0.999
79
-12.34
-22.50
-19.53
-31.95
-41.25
-62.86
-40.96
-64.27
510.13
1661.28
0.015
0.976
80
-12.31
-22.46
-19.51
-31.92
-41.17
-62.76
-40.84
-64.09
508.67
1645.79
0.015
0.955
81
-12.28
-22.42
-19.49
-31.88
-41.10
-62.66
-40.74
-63.91
507.24
1630.64
0.015
0.933
82
-12.24
-22.38
-19.47
-31.85
-41.03
-62.56
-40.63
-63.73
505.84
1615.82
0.015
0.913
83
-12.21
-22.33
-19.45
-31.81
-40.96
-62.46
-40.53
-63.56
504.47
1601.30
0.015
0.892
84
-12.18
-22.29
-19.43
-31.77
-40.89
-62.36
-40.43
-63.39
503.13
1587.09
0.014
0.873
85
-12.15
-22.25
-19.41
-31.73
-40.81
-62.26
-40.33
-63.22
501.82
1573.17
0.014
0.854
86
-12.12
-22.20
-19.39
-31.69
-40.74
-62.15
-40.24
-63.05
500.53
1559.54
0.014
0.835
87
-12.08
-22.15
-19.36
-31.64
-40.67
-62.05
-40.14
-62.88
499.27
1546.17
0.014
0.817
88
-12.05
-22.11
-19.34
-31.60
-40.60
-61.95
-40.05
-62.72
498.03
1533.06
0.014
0.800
89
-12.02
-22.06
-19.32
-31.55
-40.53
-61.84
-39.96
-62.56
496.81
1520.21
0.014
0.783
90
-11.99
-22.01
-19.30
-31.51
-40.46
-61.73
-39.88
-62.40
495.62
1507.60
0.014
0.766
91
-11.95
-21.96
-19.27
-31.46
-40.39
-61.63
-39.79
-62.24
494.45
1495.23
0.014
0.750
92
-11.92
-21.91
-19.25
-31.41
-40.32
-61.52
-39.71
-62.08
493.30
1483.09
0.014
0.734
93
-11.89
-21.86
-19.22
-31.36
-40.25
-61.42
-39.63
-61.93
492.16
1471.17
0.014
0.719
94
-11.86
-21.81
-19.20
-31.30
-40.18
-61.31
-39.55
-61.77
491.05
1459.47
0.014
0.704
95
-11.83
-21.75
-19.17
-31.25
-40.11
-61.20
-39.47
-61.62
489.96
1447.97
0.014
0.689
96
-11.79
-21.70
-19.15
-31.20
-40.05
-61.09
-39.39
-61.47
488.88
1436.67
0.013
0.675
97
-11.76
-21.65
-19.12
-31.14
-39.98
-60.98
-39.32
-61.32
487.83
1425.57
0.013
0.661
98
-11.73
-21.59
-19.10
-31.09
-39.91
-60.87
-39.24
-61.17
486.78
1414.66
0.013
0.647
99
-11.70
-21.54
-19.07
-31.03
-39.85
-60.77
-39.17
-61.03
485.76
1403.93
0.013
0.634
100
-11.67
-21.48
-19.05
-30.97
-39.78
-60.66
-39.10
-60.88
484.75
1393.39
0.013
0.621
101
-11.64
-21.43
-19.02
-30.92
-39.71
-60.55
-39.03
-60.74
483.76
1383.01
0.013
0.609
102
-11.61
-21.37
-19.00
-30.86
-39.65
-60.44
-38.96
-60.60
482.78
1372.81
0.013
0.597
103
-11.57
-21.32
-18.97
-30.80
-39.58
-60.33
-38.89
-60.45
481.81
1362.76
0.013
0.585
104
-11.54
-21.26
-18.95
-30.74
-39.52
-60.22
-38.82
-60.31
480.86
1352.88
0.013
0.573
105
-11.51
-21.20
-18.92
-30.68
-39.45
-60.11
-38.76
-60.17
479.92
1343.16
0.013
0.561
106
-11.48
-21.15
-18.90
-30.62
-39.39
-60.00
-38.69
-60.04
479.00
1333.58
0.012
0.550
107
-11.45
-21.09
-18.87
-30.56
-39.33
-59.88
-38.63
-59.90
478.09
1324.15
0.012
0.539
108
-11.42
-21.03
-18.84
-30.50
-39.27
-59.77
-38.57
-59.76
477.19
1314.86
0.012
0.529
109
-11.39
-20.97
-18.82
-30.44
-39.20
-59.66
-38.50
-59.63
476.30
1305.72
0.012
0.518
110
-11.36
-20.92
-18.79
-30.38
-39.14
-59.55
-38.44
-59.50
475.42
1296.70
0.012
0.508
111
-11.34
-20.86
-18.77
-30.31
-39.08
-59.44
-38.38
-59.36
474.56
1287.83
0.012
0.498
112
-11.31
-20.80
-18.74
-30.25
-39.02
-59.33
-38.32
-59.23
473.71
1279.08
0.012
0.489
113
-11.28
-20.74
-18.72
-30.19
-38.96
-59.22
-38.26
-59.10
472.86
1270.45
0.012
0.479
114
-11.25
-20.69
-18.69
-30.13
-38.90
-59.11
-38.21
-58.97
472.03
1261.95
0.012
0.470
115
-11.22
-20.63
-18.66
-30.06
-38.84
-59.00
-38.15
-58.84
471.21
1253.57
0.012
0.461
116
-11.19
-20.57
-18.64
-30.00
-38.78
-58.89
-38.09
-58.71
470.40
1245.30
0.011
0.452
117
-11.17
-20.51
-18.61
-29.94
-38.72
-58.78
-38.04
-58.58
469.59
1237.15
0.011
0.444
118
-11.14
-20.45
-18.59
-29.87
-38.66
-58.67
-37.98
-58.46
468.80
1229.12
0.011
0.435
119
-11.11
-20.39
-18.56
-29.81
-38.61
-58.56
-37.93
-58.33
468.02
1221.19
0.011
0.427
120
-11.08
-20.34
-18.54
-29.74
-38.55
-58.45
-37.88
-58.21
467.24
1213.37
0.011
0.419
121
-11.06
-20.28
-18.51
-29.68
-38.49
-58.33
-37.82
-58.08
466.48
1205.65
0.011
0.411
122
-11.03
-20.22
-18.49
-29.62
-38.44
-58.22
-37.77
-57.96
465.72
1198.03
0.011
0.403
123
-11.00
-20.16
-18.46
-29.55
-38.38
-58.11
-37.72
-57.83
464.97
1190.52
0.011
0.396
124
-10.98
-20.10
-18.44
-29.49
-38.33
-58.00
-37.67
-57.71
464.23
1183.10
0.011
0.389
125
-10.95
-20.05
-18.42
-29.42
-38.27
-57.89
-37.62
-57.59
463.50
1175.78
0.011
0.381
126
-10.93
-19.99
-18.39
-29.36
-38.22
-57.78
-37.57
-57.47
462.78
1168.55
0.011
0.374
127
-10.90
-19.93
-18.37
-29.29
-38.16
-57.67
-37.52
-57.35
462.06
1161.41
0.010
0.367
128
-10.88
-19.87
-18.34
-29.23
-38.11
-57.56
-37.47
-57.23
461.35
1154.36
0.010
0.361
129
-10.85
-19.81
-18.32
-29.17
-38.06
-57.46
-37.42
-57.11
460.65
1147.40
0.010
0.354
130
-10.83
-19.76
-18.29
-29.10
-38.00
-57.35
-37.38
-56.99
459.96
1140.53
0.010
0.348
131
-10.80
-19.70
-18.27
-29.04
-37.95
-57.24
-37.33
-56.88
459.27
1133.74
0.010
0.341
132
-10.78
-19.64
-18.25
-28.97
-37.90
-57.13
-37.28
-56.76
458.59
1127.04
0.010
0.335
133
-10.75
-19.58
-18.22
-28.91
-37.85
-57.02
-37.24
-56.64
457.92
1120.41
0.010
0.329
134
-10.73
-19.53
-18.20
-28.84
-37.80
-56.91
-37.19
-56.53
457.25
1113.87
0.010
0.323
135
-10.71
-19.47
-18.18
-28.78
-37.75
-56.80
-37.15
-56.41
456.59
1107.41
0.010
0.317
136
-10.68
-19.41
-18.15
-28.72
-37.70
-56.69
-37.10
-56.30
455.94
1101.02
0.010
0.312
137
-10.66
-19.36
-18.13
-28.65
-37.65
-56.59
-37.06
-56.18
455.29
1094.70
0.010
0.306
138
-10.64
-19.30
-18.11
-28.59
-37.60
-56.48
-37.01
-56.07
454.65
1088.47
0.009
0.301
139
-10.61
-19.24
-18.09
-28.52
-37.55
-56.37
-36.97
-55.96
454.01
1082.30
0.009
0.295
140
-10.59
-19.19
-18.06
-28.46
-37.50
-56.26
-36.93
-55.84
453.39
1076.21
0.009
0.290
141
-10.57
-19.13
-18.04
-28.40
-37.45
-56.16
-36.88
-55.73
452.76
1070.18
0.009
0.285
142
-10.55
-19.08
-18.02
-28.33
-37.41
-56.05
-36.84
-55.62
452.15
1064.23
0.009
0.280
143
-10.52
-19.02
-18.00
-28.27
-37.36
-55.94
-36.80
-55.51
451.54
1058.34
0.009
0.275
144
-10.50
-18.96
-17.98
-28.21
-37.31
-55.84
-36.76
-55.40
450.93
1052.52
0.009
0.270
145
-10.48
-18.91
-17.95
-28.14
-37.27
-55.73
-36.72
-55.29
450.33
1046.76
0.009
0.265
146
-10.46
-18.85
-17.93
-28.08
-37.22
-55.63
-36.68
-55.18
449.74
1041.07
0.009
0.261
147
-10.44
-18.80
-17.91
-28.02
-37.17
-55.52
-36.64
-55.07
449.15
1035.45
0.009
0.256
148
-10.42
-18.74
-17.89
-27.96
-37.13
-55.41
-36.60
-54.96
448.57
1029.88
0.009
0.252
149
-10.40
-18.69
-17.87
-27.89
-37.08
-55.31
-36.56
-54.85
447.99
1024.38
0.009
0.247
150
-10.38
-18.63
-17.85
-27.83
-37.04
-55.20
-36.52
-54.75
447.42
1018.93
0.009
0.243
151
-10.36
-18.58
-17.83
-27.77
-37.00
-55.10
-36.48
-54.64
446.85
1013.55
0.008
0.239
152
-10.33
-18.53
-17.81
-27.71
-36.95
-55.00
-36.44
-54.53
446.29
1008.22
0.008
0.235
153
-10.31
-18.47
-17.79
-27.65
-36.91
-54.89
-36.40
-54.43
445.73
1002.96
0.008
0.231
154
-10.30
-18.42
-17.77
-27.58
-36.87
-54.79
-36.37
-54.32
445.18
997.75
0.008
0.227
155
-10.28
-18.36
-17.74
-27.52
-36.82
-54.68
-36.33
-54.22
444.63
992.59
0.008
0.223
156
-10.26
-18.31
-17.72
-27.46
-36.78
-54.58
-36.29
-54.11
444.09
987.49
0.008
0.219
157
-10.24
-18.26
-17.70
-27.40
-36.74
-54.48
-36.25
-54.01
443.55
982.44
0.008
0.216
158
-10.22
-18.21
-17.69
-27.34
-36.70
-54.38
-36.22
-53.90
443.02
977.45
0.008
0.212
159
-10.20
-18.15
-17.67
-27.28
-36.66
-54.27
-36.18
-53.80
442.49
972.51
0.008
0.209
160
-10.18
-18.10
-17.65
-27.22
-36.61
-54.17
-36.15
-53.70
441.96
967.62
0.008
0.205
161
-10.16
-18.05
-17.63
-27.16
-36.57
-54.07
-36.11
-53.59
441.44
962.78
0.008
0.202
162
-10.14
-18.00
-17.61
-27.10
-36.53
-53.97
-36.07
-53.49
440.93
957.99
0.008
0.198
163
-10.12
-17.94
-17.59
-27.04
-36.49
-53.87
-36.04
-53.39
440.41
953.25
0.008
0.195
164
-10.11
-17.89
-17.57
-26.98
-36.45
-53.77
-36.01
-53.29
439.91
948.56
0.008
0.192
165
-10.09
-17.84
-17.55
-26.92
-36.42
-53.67
-35.97
-53.19
439.40
943.92
0.007
0.189
166
-10.07
-17.79
-17.53
-26.86
-36.38
-53.57
-35.94
-53.08
438.91
939.33
0.007
0.186
167
-10.05
-17.74
-17.51
-26.80
-36.34
-53.47
-35.90
-52.98
438.41
934.78
0.007
0.183
168
-10.04
-17.69
-17.49
-26.74
-36.30
-53.37
-35.87
-52.88
437.92
930.28
0.007
0.180
169
-10.02
-17.64
-17.48
-26.68
-36.26
-53.27
-35.84
-52.78
437.43
925.82
0.007
0.177
170
-10.00
-17.59
-17.46
-26.63
-36.22
-53.17
-35.80
-52.69
436.95
921.41
0.007
0.174
171
-9.99
-17.54
-17.44
-26.57
-36.19
-53.07
-35.77
-52.59
436.47
917.04
0.007
0.171
172
-9.97
-17.49
-17.42
-26.51
-36.15
-52.97
-35.74
-52.49
436.00
912.72
0.007
0.168
173
-9.95
-17.44
-17.40
-26.45
-36.11
-52.87
-35.70
-52.39
435.53
908.43
0.007
0.165
174
-9.94
-17.39
-17.39
-26.39
-36.08
-52.77
-35.67
-52.29
435.06
904.20
0.007
0.163
175
-9.92
-17.34
-17.37
-26.34
-36.04
-52.68
-35.64
-52.20
434.60
900.00
0.007
0.160
176
-9.90
-17.29
-17.35
-26.28
-36.00
-52.58
-35.61
-52.10
434.14
895.84
0.007
0.158
177
-9.89
-17.24
-17.34
-26.22
-35.97
-52.48
-35.58
-52.00
433.68
891.73
0.007
0.155
178
-9.87
-17.19
-17.32
-26.17
-35.93
-52.39
-35.55
-51.91
433.23
887.65
0.007
0.153
179
-9.86
-17.14
-17.30
-26.11
-35.90
-52.29
-35.52
-51.81
432.78
883.62
0.007
0.150
180
-9.84
-17.10
-17.28
-26.06
-35.86
-52.19
-35.49
-51.72
432.33
879.62
0.007
0.148
181
-9.82
-17.05
-17.27
-26.00
-35.83
-52.10
-35.46
-51.62
431.89
875.66
0.007
0.146
182
-9.81
-17.00
-17.25
-25.94
-35.79
-52.00
-35.43
-51.53
431.45
871.74
0.006
0.143
183
-9.79
-16.95
-17.23
-25.89
-35.76
-51.91
-35.40
-51.43
431.02
867.86
0.006
0.141
184
-9.78
-16.91
-17.22
-25.83
-35.73
-51.81
-35.37
-51.34
430.59
864.02
0.006
0.139
185
-9.76
-16.86
-17.20
-25.78
-35.69
-51.72
-35.34
-51.24
430.16
860.21
0.006
0.137
186
-9.75
-16.81
-17.19
-25.72
-35.66
-51.62
-35.31
-51.15
429.73
856.44
0.006
0.135
187
-9.73
-16.77
-17.17
-25.67
-35.63
-51.53
-35.28
-51.06
429.31
852.70
0.006
0.132
188
-9.72
-16.72
-17.15
-25.62
-35.59
-51.44
-35.25
-50.97
428.89
849.00
0.006
0.130
189
-9.71
-16.67
-17.14
-25.56
-35.56
-51.34
-35.22
-50.87
428.48
845.33
0.006
0.128
190
-9.69
-16.63
-17.12
-25.51
-35.53
-51.25
-35.19
-50.78
428.06
841.70
0.006
0.126
191
-9.68
-16.58
-17.11
-25.45
-35.50
-51.16
-35.16
-50.69
427.66
838.10
0.006
0.125
192
-9.66
-16.54
-17.09
-25.40
-35.47
-51.07
-35.14
-50.60
427.25
834.54
0.006
0.123
193
-9.65
-16.49
-17.08
-25.35
-35.44
-50.97
-35.11
-50.51
426.85
831.01
0.006
0.121
194
-9.64
-16.45
-17.06
-25.29
-35.40
-50.88
-35.08
-50.42
426.45
827.51
0.006
0.119
195
-9.62
-16.40
-17.05
-25.24
-35.37
-50.79
-35.05
-50.33
426.05
824.05
0.006
0.117
196
-9.61
-16.36
-17.03
-25.19
-35.34
-50.70
-35.03
-50.24
425.66
820.61
0.006
0.115
197
-9.59
-16.31
-17.02
-25.14
-35.31
-50.61
-35.00
-50.15
425.27
817.21
0.006
0.114
198
-9.58
-16.27
-17.00
-25.09
-35.28
-50.52
-34.97
-50.06
424.88
813.84
0.006
0.112
199
-9.57
-16.22
-16.99
-25.03
-35.25
-50.43
-34.95
-49.97
424.49
810.50
0.006
0.110
200
-9.56
-16.18
-16.97
-24.98
-35.22
-50.34
-34.92
-49.88
424.11
807.19
0.006
0.109
201
-9.54
-16.14
-16.96
-24.93
-35.19
-50.25
-34.89
-49.79
423.73
803.91
0.006
0.107
202
-9.53
-16.09
-16.95
-24.88
-35.16
-50.16
-34.87
-49.71
423.36
800.67
0.006
0.105
203
-9.52
-16.05
-16.93
-24.83
-35.14
-50.07
-34.84
-49.62
422.98
797.45
0.005
0.104
204
-9.50
-16.01
-16.92
-24.78
-35.11
-49.98
-34.82
-49.53
422.61
794.26
0.005
0.102
205
-9.49
-15.96
-16.90
-24.73
-35.08
-49.90
-34.79
-49.45
422.24
791.09
0.005
0.101
206
-9.48
-15.92
-16.89
-24.68
-35.05
-49.81
-34.76
-49.36
421.88
787.96
0.005
0.099
207
-9.47
-15.88
-16.88
-24.63
-35.02
-49.72
-34.74
-49.27
421.52
784.86
0.005
0.098
208
-9.45
-15.84
-16.86
-24.58
-34.99
-49.63
-34.71
-49.19
421.16
781.78
0.005
0.097
209
-9.44
-15.80
-16.85
-24.53
-34.97
-49.55
-34.69
-49.10
420.80
778.73
0.005
0.095
210
-9.43
-15.75
-16.84
-24.48
-34.94
-49.46
-34.67
-49.02
420.44
775.71
0.005
0.094
211
-9.42
-15.71
-16.82
-24.43
-34.91
-49.38
-34.64
-48.93
420.09
772.71
0.005
0.092
212
-9.41
-15.67
-16.81
-24.38
-34.88
-49.29
-34.62
-48.85
419.74
769.74
0.005
0.091
213
-9.40
-15.63
-16.80
-24.33
-34.86
-49.20
-34.59
-48.76
419.39
766.80
0.005
0.090
214
-9.38
-15.59
-16.78
-24.29
-34.83
-49.12
-34.57
-48.68
419.05
763.88
0.005
0.088
215
-9.37
-15.55
-16.77
-24.24
-34.80
-49.03
-34.54
-48.60
418.71
760.99
0.005
0.087
216
-9.36
-15.51
-16.76
-24.19
-34.78
-48.95
-34.52
-48.51
418.37
758.12
0.005
0.086
217
-9.35
-15.47
-16.74
-24.14
-34.75
-48.87
-34.50
-48.43
418.03
755.28
0.005
0.085
218
-9.34
-15.43
-16.73
-24.10
-34.73
-48.78
-34.47
-48.35
417.70
752.47
0.005
0.084
219
-9.33
-15.39
-16.72
-24.05
-34.70
-48.70
-34.45
-48.27
417.36
749.68
0.005
0.082
220
-9.32
-15.35
-16.71
-24.00
-34.67
-48.61
-34.43
-48.18
417.03
746.91
0.005
0.081
221
-9.30
-15.31
-16.69
-23.95
-34.65
-48.53
-34.41
-48.10
416.71
744.17
0.005
0.080
222
-9.29
-15.27
-16.68
-23.91
-34.62
-48.45
-34.38
-48.02
416.38
741.45
0.005
0.079
223
-9.28
-15.23
-16.67
-23.86
-34.60
-48.37
-34.36
-47.94
416.06
738.75
0.005
0.078
224
-9.27
-15.19
-16.66
-23.82
-34.57
-48.28
-34.34
-47.86
415.74
736.08
0.005
0.077
225
-9.26
-15.15
-16.65
-23.77
-34.55
-48.20
-34.32
-47.78
415.42
733.43
0.005
0.076
226
-9.25
-15.11
-16.63
-23.72
-34.53
-48.12
-34.29
-47.70
415.10
730.80
0.005
0.075
227
-9.24
-15.07
-16.62
-23.68
-34.50
-48.04
-34.27
-47.62
414.79
728.20
0.005
0.074
228
-9.23
-15.04
-16.61
-23.63
-34.48
-47.96
-34.25
-47.54
414.48
725.61
0.004
0.073
229
-9.22
-15.00
-16.60
-23.59
-34.45
-47.88
-34.23
-47.46
414.17
723.05
0.004
0.072
230
-9.21
-14.96
-16.59
-23.54
-34.43
-47.80
-34.21
-47.38
413.86
720.52
0.004
0.071
231
-9.20
-14.92
-16.58
-23.50
-34.41
-47.72
-34.19
-47.31
413.56
718.00
0.004
0.070
232
-9.19
-14.89
-16.57
-23.45
-34.38
-47.64
-34.17
-47.23
413.25
715.50
0.004
0.069
233
-9.18
-14.85
-16.55
-23.41
-34.36
-47.56
-34.14
-47.15
412.95
713.03
0.004
0.068
234
-9.17
-14.81
-16.54
-23.37
-34.34
-47.48
-34.12
-47.07
412.65
710.58
0.004
0.067
235
-9.16
-14.77
-16.53
-23.32
-34.31
-47.40
-34.10
-47.00
412.36
708.14
0.004
0.066
236
-9.15
-14.74
-16.52
-23.28
-34.29
-47.32
-34.08
-46.92
412.06
705.73
0.004
0.065
237
-9.14
-14.70
-16.51
-23.24
-34.27
-47.25
-34.06
-46.84
411.77
703.34
0.004
0.064
238
-9.13
-14.66
-16.50
-23.19
-34.25
-47.17
-34.04
-46.77
411.48
700.97
0.004
0.063
239
-9.12
-14.63
-16.49
-23.15
-34.22
-47.09
-34.02
-46.69
411.19
698.62
0.004
0.063
240
-9.11
-14.59
-16.48
-23.11
-34.20
-47.01
-34.00
-46.62
410.91
696.28
0.004
0.062
241
-9.10
-14.56
-16.47
-23.07
-34.18
-46.94
-33.98
-46.54
410.62
693.97
0.004
0.061
242
-9.09
-14.52
-16.46
-23.02
-34.16
-46.86
-33.96
-46.47
410.34
691.68
0.004
0.060
243
-9.09
-14.49
-16.45
-22.98
-34.14
-46.78
-33.94
-46.39
410.06
689.40
0.004
0.059
244
-9.08
-14.45
-16.44
-22.94
-34.12
-46.71
-33.92
-46.32
409.78
687.15
0.004
0.059
245
-9.07
-14.41
-16.43
-22.90
-34.09
-46.63
-33.90
-46.24
409.50
684.91
0.004
0.058
246
-9.06
-14.38
-16.41
-22.86
-34.07
-46.56
-33.88
-46.17
409.23
682.69
0.004
0.057
247
-9.05
-14.35
-16.40
-22.81
-34.05
-46.48
-33.87
-46.10
408.95
680.49
0.004
0.056
248
-9.04
-14.31
-16.39
-22.77
-34.03
-46.41
-33.85
-46.02
408.68
678.31
0.004
0.056
249
-9.03
-14.28
-16.38
-22.73
-34.01
-46.33
-33.83
-45.95
408.41
676.14
0.004
0.055
250
-9.02
-14.24
-16.37
-22.69
-33.99
-46.26
-33.81
-45.88
408.15
673.99
0.004
0.054
251
-9.01
-14.21
-16.36
-22.65
-33.97
-46.19
-33.79
-45.80
407.88
671.86
0.004
0.054
252
-9.01
-14.17
-16.35
-22.61
-33.95
-46.11
-33.77
-45.73
407.62
669.75
0.004
0.053
253
-9.00
-14.14
-16.35
-22.57
-33.93
-46.04
-33.75
-45.66
407.36
667.66
0.004
0.052
254
-8.99
-14.11
-16.34
-22.53
-33.91
-45.97
-33.74
-45.59
407.10
665.58
0.004
0.052
255
-8.98
-14.07
-16.33
-22.49
-33.89
-45.89
-33.72
-45.52
406.84
663.52
0.004
0.051
256
-8.97
-14.04
-16.32
-22.45
-33.87
-45.82
-33.70
-45.45
406.58
661.47
0.004
0.050
257
-8.96
-14.01
-16.31
-22.41
-33.85
-45.75
-33.68
-45.38
406.33
659.45
0.004
0.050
258
-8.96
-13.97
-16.30
-22.37
-33.83
-45.68
-33.66
-45.31
406.07
657.43
0.004
0.049
259
-8.95
-13.94
-16.29
-22.33
-33.81
-45.61
-33.65
-45.24
405.82
655.44
0.004
0.048
260
-8.94
-13.91
-16.28
-22.30
-33.79
-45.54
-33.63
-45.17
405.57
653.46
0.004
0.048
261
-8.93
-13.88
-16.27
-22.26
-33.77
-45.46
-33.61
-45.10
405.32
651.50
0.004
0.047
262
-8.92
-13.84
-16.26
-22.22
-33.76
-45.39
-33.59
-45.03
405.08
649.55
0.003
0.047
263
-8.92
-13.81
-16.25
-22.18
-33.74
-45.32
-33.58
-44.96
404.83
647.61
0.003
0.046
264
-8.91
-13.78
-16.24
-22.14
-33.72
-45.25
-33.56
-44.89
404.59
645.70
0.003
0.045
265
-8.90
-13.75
-16.23
-22.10
-33.70
-45.18
-33.54
-44.82
404.35
643.80
0.003
0.045
266
-8.89
-13.72
-16.22
-22.07
-33.68
-45.12
-33.53
-44.76
404.11
641.91
0.003
0.044
267
-8.88
-13.69
-16.22
-22.03
-33.66
-45.05
-33.51
-44.69
403.87
640.04
0.003
0.044
268
-8.88
-13.65
-16.21
-21.99
-33.65
-44.98
-33.49
-44.62
403.63
638.18
0.003
0.043
269
-8.87
-13.62
-16.20
-21.95
-33.63
-44.91
-33.48
-44.55
403.40
636.34
0.003
0.043
270
-8.86
-13.59
-16.19
-21.92
-33.61
-44.84
-33.46
-44.49
403.17
634.51
0.003
0.042
271
-8.85
-13.56
-16.18
-21.88
-33.59
-44.77
-33.44
-44.42
402.93
632.70
0.003
0.042
272
-8.85
-13.53
-16.17
-21.84
-33.57
-44.71
-33.43
-44.36
402.70
630.90
0.003
0.041
273
-8.84
-13.50
-16.16
-21.81
-33.56
-44.64
-33.41
-44.29
402.48
629.11
0.003
0.041
274
-8.83
-13.47
-16.16
-21.77
-33.54
-44.57
-33.39
-44.22
402.25
627.34
0.003
0.040
275
-8.83
-13.44
-16.15
-21.74
-33.52
-44.50
-33.38
-44.16
402.02
625.59
0.003
0.040
276
-8.82
-13.41
-16.14
-21.70
-33.51
-44.44
-33.36
-44.09
401.80
623.84
0.003
0.039
277
-8.81
-13.38
-16.13
-21.66
-33.49
-44.37
-33.35
-44.03
401.58
622.11
0.003
0.039
278
-8.80
-13.35
-16.12
-21.63
-33.47
-44.31
-33.33
-43.96
401.35
620.40
0.003
0.038
279
-8.80
-13.32
-16.11
-21.59
-33.46
-44.24
-33.32
-43.90
401.13
618.69
0.003
0.038
280
-8.79
-13.29
-16.11
-21.56
-33.44
-44.17
-33.30
-43.84
400.92
617.00
0.003
0.037
281
-8.78
-13.26
-16.10
-21.52
-33.42
-44.11
-33.29
-43.77
400.70
615.33
0.003
0.037
282
-8.78
-13.23
-16.09
-21.49
-33.41
-44.04
-33.27
-43.71
400.48
613.66
0.003
0.037
283
-8.77
-13.20
-16.08
-21.45
-33.39
-43.98
-33.26
-43.65
400.27
612.01
0.003
0.036
284
-8.76
-13.18
-16.08
-21.42
-33.37
-43.92
-33.24
-43.58
400.06
610.37
0.003
0.036
285
-8.76
-13.15
-16.07
-21.39
-33.36
-43.85
-33.23
-43.52
399.85
608.75
0.003
0.035
286
-8.75
-13.12
-16.06
-21.35
-33.34
-43.79
-33.21
-43.46
399.64
607.13
0.003
0.035
287
-8.74
-13.09
-16.05
-21.32
-33.33
-43.72
-33.20
-43.40
399.43
605.53
0.003
0.035
288
-8.74
-13.06
-16.04
-21.28
-33.31
-43.66
-33.18
-43.33
399.22
603.94
0.003
0.034
289
-8.73
-13.03
-16.04
-21.25
-33.29
-43.60
-33.17
-43.27
399.01
602.37
0.003
0.034
290
-8.72
-13.01
-16.03
-21.22
-33.28
-43.54
-33.15
-43.21
398.81
600.80
0.003
0.033
291
-8.72
-12.98
-16.02
-21.18
-33.26
-43.47
-33.14
-43.15
398.61
599.25
0.003
0.033
292
-8.71
-12.95
-16.01
-21.15
-33.25
-43.41
-33.12
-43.09
398.40
597.71
0.003
0.033
293
-8.70
-12.92
-16.01
-21.12
-33.23
-43.35
-33.11
-43.03
398.20
596.18
0.003
0.032
294
-8.70
-12.89
-16.00
-21.08
-33.22
-43.29
-33.10
-42.97
398.01
594.66
0.003
0.032
295
-8.69
-12.87
-15.99
-21.05
-33.20
-43.23
-33.08
-42.91
397.81
593.16
0.003
0.032
296
-8.69
-12.84
-15.99
-21.02
-33.19
-43.16
-33.07
-42.85
397.61
591.66
0.003
0.031
297
-8.68
-12.81
-15.98
-20.99
-33.17
-43.10
-33.05
-42.79
397.42
590.18
0.003
0.031
298
-8.67
-12.79
-15.97
-20.96
-33.16
-43.04
-33.04
-42.73
397.22
588.71
0.003
0.031
299
-8.67
-12.76
-15.96
-20.92
-33.14
-42.98
-33.03
-42.67
397.03
587.25
0.003
0.030
300
-8.66
-12.73
-15.96
-20.89
-33.13
-42.92
-33.01
-42.61
396.84
585.80
0.003
0.030
301
-8.66
-12.71
-15.95
-20.86
-33.11
-42.86
-33.00
-42.56
396.65
584.36
0.003
0.030
302
-8.65
-12.68
-15.94
-20.83
-33.10
-42.80
-32.99
-42.50
396.46
582.93
0.003
0.029
303
-8.64
-12.65
-15.94
-20.80
-33.09
-42.74
-32.97
-42.44
396.27
581.51
0.003
0.029
304
-8.64
-12.63
-15.93
-20.77
-33.07
-42.69
-32.96
-42.38
396.08
580.10
0.003
0.029
305
-8.63
-12.60
-15.92
-20.74
-33.06
-42.63
-32.95
-42.32
395.90
578.71
0.003
0.028
306
-8.63
-12.58
-15.92
-20.70
-33.04
-42.57
-32.93
-42.27
395.71
577.32
0.003
0.028
307
-8.62
-12.55
-15.91
-20.67
-33.03
-42.51
-32.92
-42.21
395.53
575.94
0.003
0.028
308
-8.62
-12.53
-15.90
-20.64
-33.02
-42.45
-32.91
-42.15
395.35
574.58
0.003
0.027
309
-8.61
-12.50
-15.90
-20.61
-33.00
-42.40
-32.90
-42.10
395.17
573.22
0.003
0.027
310
-8.60
-12.48
-15.89
-20.58
-32.99
-42.34
-32.88
-42.04
394.99
571.88
0.002
0.027
311
-8.60
-12.45
-15.88
-20.55
-32.98
-42.28
-32.87
-41.99
394.81
570.54
0.002
0.026
312
-8.59
-12.42
-15.88
-20.52
-32.96
-42.22
-32.86
-41.93
394.63
569.21
0.002
0.026
313
-8.59
-12.40
-15.87
-20.49
-32.95
-42.17
-32.85
-41.87
394.46
567.90
0.002
0.026
314
-8.58
-12.38
-15.86
-20.46
-32.94
-42.11
-32.83
-41.82
394.28
566.59
0.002
0.026
315
-8.58
-12.35
-15.86
-20.43
-32.92
-42.05
-32.82
-41.76
394.11
565.29
0.002
0.025
316
-8.57
-12.33
-15.85
-20.40
-32.91
-42.00
-32.81
-41.71
393.93
564.01
0.002
0.025
317
-8.57
-12.30
-15.84
-20.37
-32.90
-41.94
-32.80
-41.66
393.76
562.73
0.002
0.025
318
-8.56
-12.28
-15.84
-20.35
-32.88
-41.89
-32.78
-41.60
393.59
561.46
0.002
0.025
319
-8.56
-12.25
-15.83
-20.32
-32.87
-41.83
-32.77
-41.55
393.42
560.20
0.002
0.024
320
-8.55
-12.23
-15.83
-20.29
-32.86
-41.78
-32.76
-41.49
393.25
558.95
0.002
0.024
321
-8.54
-12.21
-15.82
-20.26
-32.84
-41.72
-32.75
-41.44
393.09
557.71
0.002
0.024
322
-8.54
-12.18
-15.81
-20.23
-32.83
-41.67
-32.74
-41.39
392.92
556.48
0.002
0.024
323
-8.53
-12.16
-15.81
-20.20
-32.82
-41.61
-32.73
-41.33
392.75
555.25
0.002
0.023
324
-8.53
-12.14
-15.80
-20.17
-32.81
-41.56
-32.71
-41.28
392.59
554.04
0.002
0.023
325
-8.52
-12.11
-15.80
-20.15
-32.79
-41.51
-32.70
-41.23
392.43
552.83
0.002
0.023
326
-8.52
-12.09
-15.79
-20.12
-32.78
-41.45
-32.69
-41.18
392.27
551.64
0.002
0.023
327
-8.51
-12.07
-15.78
-20.09
-32.77
-41.40
-32.68
-41.12
392.10
550.45
0.002
0.022
328
-8.51
-12.04
-15.78
-20.06
-32.76
-41.35
-32.67
-41.07
391.94
549.27
0.002
0.022
329
-8.50
-12.02
-15.77
-20.04
-32.75
-41.29
-32.66
-41.02
391.78
548.10
0.002
0.022
330
-8.50
-12.00
-15.77
-20.01
-32.73
-41.24
-32.65
-40.97
391.63
546.94
0.002
0.022
331
-8.49
-11.97
-15.76
-19.98
-32.72
-41.19
-32.63
-40.92
391.47
545.78
0.002
0.022
332
-8.49
-11.95
-15.76
-19.95
-32.71
-41.14
-32.62
-40.87
391.31
544.64
0.002
0.021
333
-8.49
-11.93
-15.75
-19.93
-32.70
-41.09
-32.61
-40.82
391.16
543.50
0.002
0.021
334
-8.48
-11.91
-15.74
-19.90
-32.69
-41.03
-32.60
-40.77
391.00
542.37
0.002
0.021
335
-8.48
-11.88
-15.74
-19.87
-32.68
-40.98
-32.59
-40.72
390.85
541.25
0.002
0.021
336
-8.47
-11.86
-15.73
-19.85
-32.66
-40.93
-32.58
-40.67
390.70
540.13
0.002
0.020
337
-8.47
-11.84
-15.73
-19.82
-32.65
-40.88
-32.57
-40.62
390.55
539.03
0.002
0.020
338
-8.46
-11.82
-15.72
-19.79
-32.64
-40.83
-32.56
-40.57
390.40
537.93
0.002
0.020
339
-8.46
-11.80
-15.72
-19.77
-32.63
-40.78
-32.55
-40.52
390.25
536.84
0.002
0.020
340
-8.45
-11.78
-15.71
-19.74
-32.62
-40.73
-32.54
-40.47
390.10
535.76
0.002
0.020
341
-8.45
-11.75
-15.71
-19.72
-32.61
-40.68
-32.53
-40.42
389.95
534.68
0.002
0.020
342
-8.44
-11.73
-15.70
-19.69
-32.60
-40.63
-32.52
-40.37
389.81
533.62
0.002
0.019
343
-8.44
-11.71
-15.70
-19.67
-32.59
-40.58
-32.51
-40.32
389.66
532.56
0.002
0.019
344
-8.43
-11.69
-15.69
-19.64
-32.57
-40.53
-32.50
-40.28
389.51
531.50
0.002
0.019
345
-8.43
-11.67
-15.68
-19.61
-32.56
-40.48
-32.49
-40.23
389.37
530.46
0.002
0.019
346
-8.43
-11.65
-15.68
-19.59
-32.55
-40.43
-32.48
-40.18
389.23
529.42
0.002
0.019
347
-8.42
-11.63
-15.67
-19.56
-32.54
-40.38
-32.47
-40.13
389.09
528.39
0.002
0.018
348
-8.42
-11.61
-15.67
-19.54
-32.53
-40.34
-32.46
-40.09
388.94
527.37
0.002
0.018
349
-8.41
-11.59
-15.66
-19.51
-32.52
-40.29
-32.45
-40.04
388.80
526.35
0.002
0.018
350
-8.41
-11.57
-15.66
-19.49
-32.51
-40.24
-32.44
-39.99
388.66
525.35
0.002
0.018
351
-8.40
-11.54
-15.65
-19.47
-32.50
-40.19
-32.43
-39.95
388.53
524.35
0.002
0.018
352
-8.40
-11.52
-15.65
-19.44
-32.49
-40.14
-32.42
-39.90
388.39
523.35
0.002
0.018
353
-8.40
-11.50
-15.64
-19.42
-32.48
-40.10
-32.41
-39.85
388.25
522.36
0.002
0.017
354
-8.39
-11.48
-15.64
-19.39
-32.47
-40.05
-32.40
-39.81
388.12
521.38
0.002
0.017
355
-8.39
-11.46
-15.63
-19.37
-32.46
-40.00
-32.39
-39.76
387.98
520.41
0.002
0.017
356
-8.38
-11.44
-15.63
-19.34
-32.45
-39.96
-32.38
-39.72
387.85
519.44
0.002
0.017
357
-8.38
-11.42
-15.62
-19.32
-32.44
-39.91
-32.37
-39.67
387.71
518.48
0.002
0.017
358
-8.38
-11.40
-15.62
-19.30
-32.43
-39.86
-32.36
-39.63
387.58
517.53
0.002
0.017
359
-8.37
-11.39
-15.62
-19.27
-32.42
-39.82
-32.35
-39.58
387.45
516.58
0.002
0.016
360
-8.37
-11.37
-15.61
-19.25
-32.41
-39.77
-32.34
-39.54
387.32
515.64
0.002
0.016
361
-8.36
-11.35
-15.61
-19.23
-32.40
-39.73
-32.33
-39.49
387.19
514.71
0.002
0.016
362
-8.36
-11.33
-15.60
-19.20
-32.39
-39.68
-32.32
-39.45
387.06
513.78
0.002
0.016
363
-8.36
-11.31
-15.60
-19.18
-32.38
-39.64
-32.31
-39.40
386.93
512.86
0.002
0.016
364
-8.35
-11.29
-15.59
-19.16
-32.37
-39.59
-32.30
-39.36
386.80
511.94
0.002
0.016
365
-8.35
-11.27
-15.59
-19.13
-32.36
-39.55
-32.29
-39.32
386.67
511.04
0.002
0.016
366
-8.34
-11.25
-15.58
-19.11
-32.35
-39.50
-32.28
-39.27
386.55
510.13
0.002
0.015
367
-8.34
-11.23
-15.58
-19.09
-32.34
-39.46
-32.28
-39.23
386.42
509.24
0.002
0.015
368
-8.34
-11.21
-15.57
-19.07
-32.33
-39.41
-32.27
-39.19
386.30
508.35
0.002
0.015
369
-8.33
-11.19
-15.57
-19.04
-32.32
-39.37
-32.26
-39.14
386.17
507.46
0.002
0.015
370
-8.33
-11.18
-15.56
-19.02
-32.31
-39.33
-32.25
-39.10
386.05
506.59
0.002
0.015
371
-8.33
-11.16
-15.56
-19.00
-32.30
-39.28
-32.24
-39.06
385.93
505.71
0.002
0.015
372
-8.32
-11.14
-15.56
-18.98
-32.30
-39.24
-32.23
-39.02
385.80
504.85
0.002
0.015
373
-8.32
-11.12
-15.55
-18.96
-32.29
-39.20
-32.22
-38.98
385.68
503.99
0.002
0.014
374
-8.31
-11.10
-15.55
-18.93
-32.28
-39.15
-32.21
-38.93
385.56
503.14
0.002
0.014
375
-8.31
-11.09
-15.54
-18.91
-32.27
-39.11
-32.21
-38.89
385.44
502.29
0.002
0.014
376
-8.31
-11.07
-15.54
-18.89
-32.26
-39.07
-32.20
-38.85
385.32
501.44
0.002
0.014
377
-8.30
-11.05
-15.53
-18.87
-32.25
-39.03
-32.19
-38.81
385.21
500.61
0.002
0.014
378
-8.30
-11.03
-15.53
-18.85
-32.24
-38.98
-32.18
-38.77
385.09
499.78
0.002
0.014
379
-8.30
-11.01
-15.53
-18.83
-32.23
-38.94
-32.17
-38.73
384.97
498.95
0.002
0.014
380
-8.29
-11.00
-15.52
-18.81
-32.22
-38.90
-32.16
-38.69
384.86
498.13
0.002
0.014
381
-8.29
-10.98
-15.52
-18.78
-32.22
-38.86
-32.16
-38.65
384.74
497.32
0.002
0.013
382
-8.29
-10.96
-15.51
-18.76
-32.21
-38.82
-32.15
-38.61
384.63
496.51
0.002
0.013
383
-8.28
-10.94
-15.51
-18.74
-32.20
-38.78
-32.14
-38.57
384.51
495.71
0.002
0.013
384
-8.28
-10.93
-15.51
-18.72
-32.19
-38.74
-32.13
-38.53
384.40
494.91
0.002
0.013
385
-8.28
-10.91
-15.50
-18.70
-32.18
-38.70
-32.12
-38.49
384.29
494.11
0.002
0.013
386
-8.27
-10.89
-15.50
-18.68
-32.17
-38.66
-32.12
-38.45
384.17
493.33
0.002
0.013
387
-8.27
-10.88
-15.49
-18.66
-32.16
-38.62
-32.11
-38.41
384.06
492.55
0.002
0.013
388
-8.27
-10.86
-15.49
-18.64
-32.16
-38.58
-32.10
-38.37
383.95
491.77
0.001
0.013
389
-8.26
-10.84
-15.49
-18.62
-32.15
-38.54
-32.09
-38.33
383.84
491.00
0.001
0.013
390
-8.26
-10.83
-15.48
-18.60
-32.14
-38.50
-32.08
-38.29
383.73
490.23
0.001
0.012
391
-8.26
-10.81
-15.48
-18.58
-32.13
-38.46
-32.08
-38.25
383.63
489.47
0.001
0.012
392
-8.25
-10.79
-15.47
-18.56
-32.12
-38.42
-32.07
-38.21
383.52
488.71
0.001
0.012
393
-8.25
-10.78
-15.47
-18.54
-32.12
-38.38
-32.06
-38.18
383.41
487.96
0.001
0.012
394
-8.25
-10.76
-15.47
-18.52
-32.11
-38.34
-32.05
-38.14
383.30
487.22
0.001
0.012
395
-8.24
-10.74
-15.46
-18.50
-32.10
-38.30
-32.05
-38.10
383.20
486.48
0.001
0.012
396
-8.24
-10.73
-15.46
-18.48
-32.09
-38.26
-32.04
-38.06
383.09
485.74
0.001
0.012
397
-8.24
-10.71
-15.45
-18.46
-32.08
-38.22
-32.03
-38.02
382.99
485.01
0.001
0.012
398
-8.23
-10.70
-15.45
-18.44
-32.08
-38.18
-32.02
-37.99
382.88
484.28
0.001
0.012
399
-8.23
-10.68
-15.45
-18.42
-32.07
-38.15
-32.02
-37.95
382.78
483.56
0.001
0.012
400
-8.23
-10.66
-15.44
-18.40
-32.06
-38.11
-32.01
-37.91
382.68
482.84
0.001
0.011
401
-8.22
-10.65
-15.44
-18.38
-32.05
-38.07
-32.00
-37.88
382.58
482.13
0.001
0.011
402
-8.22
-10.63
-15.44
-18.37
-32.05
-38.03
-31.99
-37.84
382.47
481.42
0.001
0.011
403
-8.22
-10.62
-15.43
-18.35
-32.04
-38.00
-31.99
-37.80
382.37
480.72
0.001
0.011
404
-8.22
-10.60
-15.43
-18.33
-32.03
-37.96
-31.98
-37.77
382.27
480.02
0.001
0.011
405
-8.21
-10.59
-15.43
-18.31
-32.02
-37.92
-31.97
-37.73
382.17
479.33
0.001
0.011
406
-8.21
-10.57
-15.42
-18.29
-32.02
-37.89
-31.97
-37.70
382.07
478.64
0.001
0.011
407
-8.21
-10.56
-15.42
-18.27
-32.01
-37.85
-31.96
-37.66
381.98
477.96
0.001
0.011
408
-8.20
-10.54
-15.42
-18.25
-32.00
-37.81
-31.95
-37.62
381.88
477.28
0.001
0.011
409
-8.20
-10.53
-15.41
-18.24
-31.99
-37.78
-31.95
-37.59
381.78
476.60
0.001
0.011
410
-8.20
-10.51
-15.41
-18.22
-31.99
-37.74
-31.94
-37.55
381.68
475.93
0.001
0.011
411
-8.19
-10.50
-15.40
-18.20
-31.98
-37.70
-31.93
-37.52
381.59
475.26
0.001
0.010
412
-8.19
-10.48
-15.40
-18.18
-31.97
-37.67
-31.92
-37.48
381.49
474.60
0.001
0.010
413
-8.19
-10.47
-15.40
-18.16
-31.96
-37.63
-31.92
-37.45
381.40
473.94
0.001
0.010
414
-8.19
-10.45
-15.39
-18.15
-31.96
-37.60
-31.91
-37.41
381.30
473.29
0.001
0.010
415
-8.18
-10.44
-15.39
-18.13
-31.95
-37.56
-31.90
-37.38
381.21
472.64
0.001
0.010
416
-8.18
-10.42
-15.39
-18.11
-31.94
-37.53
-31.90
-37.35
381.12
472.00
0.001
0.010
417
-8.18
-10.41
-15.38
-18.09
-31.94
-37.49
-31.89
-37.31
381.02
471.36
0.001
0.010
418
-8.17
-10.39
-15.38
-18.08
-31.93
-37.46
-31.88
-37.28
380.93
470.72
0.001
0.010
419
-8.17
-10.38
-15.38
-18.06
-31.92
-37.42
-31.88
-37.24
380.84
470.09
0.001
0.010
420
-8.17
-10.36
-15.37
-18.04
-31.92
-37.39
-31.87
-37.21
380.75
469.46
0.001
0.010
421
-8.17
-10.35
-15.37
-18.03
-31.91
-37.35
-31.87
-37.18
380.66
468.83
0.001
0.010
422
-8.16
-10.34
-15.37
-18.01
-31.90
-37.32
-31.86
-37.14
380.57
468.21
0.001
0.010
423
-8.16
-10.32
-15.37
-17.99
-31.90
-37.29
-31.85
-37.11
380.48
467.60
0.001
0.010
424
-8.16
-10.31
-15.36
-17.97
-31.89
-37.25
-31.85
-37.08
380.39
466.98
0.001
0.009
425
-8.16
-10.29
-15.36
-17.96
-31.88
-37.22
-31.84
-37.05
380.30
466.38
0.001
0.009
426
-8.15
-10.28
-15.36
-17.94
-31.88
-37.19
-31.83
-37.01
380.21
465.77
0.001
0.009
427
-8.15
-10.27
-15.35
-17.92
-31.87
-37.15
-31.83
-36.98
380.12
465.17
0.001
0.009
428
-8.15
-10.25
-15.35
-17.91
-31.86
-37.12
-31.82
-36.95
380.04
464.57
0.001
0.009
429
-8.15
-10.24
-15.35
-17.89
-31.86
-37.09
-31.81
-36.92
379.95
463.98
0.001
0.009
430
-8.14
-10.23
-15.34
-17.87
-31.85
-37.05
-31.81
-36.89
379.87
463.39
0.001
0.009
431
-8.14
-10.21
-15.34
-17.86
-31.84
-37.02
-31.80
-36.85
379.78
462.81
0.001
0.009
432
-8.14
-10.20
-15.34
-17.84
-31.84
-36.99
-31.80
-36.82
379.69
462.23
0.001
0.009
433
-8.14
-10.19
-15.33
-17.83
-31.83
-36.96
-31.79
-36.79
379.61
461.65
0.001
0.009
434
-8.13
-10.17
-15.33
-17.81
-31.82
-36.92
-31.78
-36.76
379.53
461.07
0.001
0.009
435
-8.13
-10.16
-15.33
-17.79
-31.82
-36.89
-31.78
-36.73
379.44
460.50
0.001
0.009
436
-8.13
-10.15
-15.33
-17.78
-31.81
-36.86
-31.77
-36.70
379.36
459.94
0.001
0.009
437
-8.13
-10.13
-15.32
-17.76
-31.81
-36.83
-31.77
-36.67
379.28
459.37
0.001
0.009
438
-8.12
-10.12
-15.32
-17.75
-31.80
-36.80
-31.76
-36.64
379.20
458.82
0.001
0.008
439
-8.12
-10.11
-15.32
-17.73
-31.79
-36.77
-31.75
-36.60
379.11
458.26
0.001
0.008
440
-8.12
-10.09
-15.31
-17.72
-31.79
-36.74
-31.75
-36.57
379.03
457.71
0.001
0.008
441
-8.12
-10.08
-15.31
-17.70
-31.78
-36.70
-31.74
-36.54
378.95
457.16
0.001
0.008
442
-8.11
-10.07
-15.31
-17.69
-31.78
-36.67
-31.74
-36.51
378.87
456.61
0.001
0.008
443
-8.11
-10.06
-15.30
-17.67
-31.77
-36.64
-31.73
-36.48
378.79
456.07
0.001
0.008
444
-8.11
-10.04
-15.30
-17.66
-31.76
-36.61
-31.73
-36.45
378.71
455.53
0.001
0.008
445
-8.11
-10.03
-15.30
-17.64
-31.76
-36.58
-31.72
-36.42
378.64
455.00
0.001
0.008
446
-8.10
-10.02
-15.30
-17.62
-31.75
-36.55
-31.72
-36.40
378.56
454.47
0.001
0.008
447
-8.10
-10.01
-15.29
-17.61
-31.75
-36.52
-31.71
-36.37
378.48
453.94
0.001
0.008
448
-8.10
-9.99
-15.29
-17.60
-31.74
-36.49
-31.70
-36.34
378.40
453.41
0.001
0.008
449
-8.10
-9.98
-15.29
-17.58
-31.73
-36.46
-31.70
-36.31
378.33
452.89
0.001
0.008
450
-8.09
-9.97
-15.29
-17.57
-31.73
-36.43
-31.69
-36.28
378.25
452.37
0.001
0.008
451
-8.09
-9.96
-15.28
-17.55
-31.72
-36.40
-31.69
-36.25
378.17
451.86
0.001
0.008
452
-8.09
-9.95
-15.28
-17.54
-31.72
-36.37
-31.68
-36.22
378.10
451.35
0.001
0.008
453
-8.09
-9.93
-15.28
-17.52
-31.71
-36.34
-31.68
-36.19
378.02
450.84
0.001
0.008
454
-8.09
-9.92
-15.27
-17.51
-31.71
-36.31
-31.67
-36.16
377.95
450.33
0.001
0.007
455
-8.08
-9.91
-15.27
-17.49
-31.70
-36.29
-31.67
-36.14
377.87
449.83
0.001
0.007
456
-8.08
-9.90
-15.27
-17.48
-31.70
-36.26
-31.66
-36.11
377.80
449.33
0.001
0.007
457
-8.08
-9.89
-15.27
-17.46
-31.69
-36.23
-31.66
-36.08
377.73
448.84
0.001
0.007
458
-8.08
-9.87
-15.26
-17.45
-31.68
-36.20
-31.65
-36.05
377.65
448.35
0.001
0.007
459
-8.08
-9.86
-15.26
-17.44
-31.68
-36.17
-31.65
-36.03
377.58
447.86
0.001
0.007
460
-8.07
-9.85
-15.26
-17.42
-31.67
-36.14
-31.64
-36.00
377.51
447.37
0.001
0.007
461
-8.07
-9.84
-15.26
-17.41
-31.67
-36.11
-31.64
-35.97
377.44
446.89
0.001
0.007
462
-8.07
-9.83
-15.25
-17.39
-31.66
-36.09
-31.63
-35.94
377.37
446.41
0.001
0.007
463
-8.07
-9.82
-15.25
-17.38
-31.66
-36.06
-31.62
-35.92
377.30
445.93
0.001
0.007
464
-8.06
-9.81
-15.25
-17.37
-31.65
-36.03
-31.62
-35.89
377.23
445.45
0.001
0.007
465
-8.06
-9.80
-15.25
-17.35
-31.65
-36.00
-31.61
-35.86
377.16
444.98
0.001
0.007
466
-8.06
-9.78
-15.24
-17.34
-31.64
-35.98
-31.61
-35.84
377.09
444.51
0.001
0.007
467
-8.06
-9.77
-15.24
-17.33
-31.64
-35.95
-31.60
-35.81
377.02
444.05
0.001
0.007
468
-8.06
-9.76
-15.24
-17.31
-31.63
-35.92
-31.60
-35.78
376.95
443.59
0.001
0.007
469
-8.05
-9.75
-15.24
-17.30
-31.63
-35.90
-31.60
-35.76
376.88
443.13
0.001
0.007
470
-8.05
-9.74
-15.23
-17.29
-31.62
-35.87
-31.59
-35.73
376.81
442.67
0.001
0.007
471
-8.05
-9.73
-15.23
-17.27
-31.62
-35.84
-31.59
-35.70
376.75
442.22
0.001
0.007
472
-8.05
-9.72
-15.23
-17.26
-31.61
-35.82
-31.58
-35.68
376.68
441.77
0.001
0.007
473
-8.05
-9.71
-15.23
-17.25
-31.61
-35.79
-31.58
-35.65
376.61
441.32
0.001
0.007
474
-8.04
-9.70
-15.23
-17.23
-31.60
-35.76
-31.57
-35.63
376.55
440.87
0.001
0.006
475
-8.04
-9.69
-15.22
-17.22
-31.60
-35.74
-31.57
-35.60
376.48
440.43
0.001
0.006
476
-8.04
-9.68
-15.22
-17.21
-31.59
-35.71
-31.56
-35.58
376.41
439.99
0.001
0.006
477
-8.04
-9.66
-15.22
-17.20
-31.59
-35.68
-31.56
-35.55
376.35
439.55
0.001
0.006
478
-8.04
-9.65
-15.22
-17.18
-31.58
-35.66
-31.55
-35.53
376.28
439.12
0.001
0.006
479
-8.03
-9.64
-15.21
-17.17
-31.58
-35.63
-31.55
-35.50
376.22
438.68
0.001
0.006
480
-8.03
-9.63
-15.21
-17.16
-31.57
-35.61
-31.54
-35.48
376.16
438.26
0.001
0.006
481
-8.03
-9.62
-15.21
-17.15
-31.57
-35.58
-31.54
-35.45
376.09
437.83
0.001
0.006
482
-8.03
-9.61
-15.21
-17.13
-31.56
-35.56
-31.53
-35.43
376.03
437.41
0.001
0.006
483
-8.03
-9.60
-15.20
-17.12
-31.56
-35.53
-31.53
-35.40
375.97
436.98
0.001
0.006
484
-8.03
-9.59
-15.20
-17.11
-31.55
-35.51
-31.53
-35.38
375.90
436.57
0.001
0.006
485
-8.02
-9.58
-15.20
-17.10
-31.55
-35.48
-31.52
-35.35
375.84
436.15
0.001
0.006
486
-8.02
-9.57
-15.20
-17.08
-31.54
-35.46
-31.52
-35.33
375.78
435.74
0.001
0.006
487
-8.02
-9.56
-15.20
-17.07
-31.54
-35.43
-31.51
-35.30
375.72
435.33
0.001
0.006
488
-8.02
-9.55
-15.19
-17.06
-31.54
-35.41
-31.51
-35.28
375.66
434.92
0.001
0.006
489
-8.02
-9.54
-15.19
-17.05
-31.53
-35.38
-31.50
-35.26
375.59
434.51
0.001
0.006
490
-8.01
-9.53
-15.19
-17.04
-31.53
-35.36
-31.50
-35.23
375.53
434.11
0.001
0.006
491
-8.01
-9.52
-15.19
-17.02
-31.52
-35.33
-31.49
-35.21
375.47
433.71
0.001
0.006
492
-8.01
-9.51
-15.18
-17.01
-31.52
-35.31
-31.49
-35.19
375.41
433.31
0.001
0.006
493
-8.01
-9.50
-15.18
-17.00
-31.51
-35.29
-31.49
-35.16
375.36
432.91
0.001
0.006
494
-8.01
-9.49
-15.18
-16.99
-31.51
-35.26
-31.48
-35.14
375.30
432.52
0.001
0.006
495
-8.01
-9.48
-15.18
-16.98
-31.50
-35.24
-31.48
-35.12
375.24
432.13
0.001
0.006
496
-8.00
-9.47
-15.18
-16.97
-31.50
-35.22
-31.47
-35.09
375.18
431.74
0.001
0.006
497
-8.00
-9.47
-15.17
-16.95
-31.50
-35.19
-31.47
-35.07
375.12
431.35
0.001
0.006
498
-8.00
-9.46
-15.17
-16.94
-31.49
-35.17
-31.46
-35.05
375.06
430.97
0.001
0.005
499
-8.00
-9.45
-15.17
-16.93
-31.49
-35.15
-31.46
-35.03
375.01
430.59
0.001
0.005

Figure 6:  Impulse Responses for Selected Variables: Endogenous Discounting

Data for Figure 6 immediately follows.

Data for Figure 6 - Panel A

Quarters
Output Home:
Path 3
Output Home:
Path 2
Output Home:
Path 1
Consumption Home:
Path3
Consumption Home:
Path 2
Consumption Home:
Path1
Investment Home:
Path 3
Investment Home:
Path 2
Investment Home:
Path 1
1
0.060
0.005
-0.080
-0.862
-0.075
1.137
-1.907
-0.169
2.472
2
0.048
0.004
-0.065
-0.879
-0.076
1.160
-1.856
-0.160
2.420
3
0.037
0.003
-0.050
-0.895
-0.078
1.181
-1.812
-0.156
2.365
4
0.027
0.002
-0.037
-0.910
-0.079
1.201
-1.771
-0.152
2.313
5
0.017
0.001
-0.024
-0.924
-0.080
1.220
-1.731
-0.149
2.263
6
0.007
0.001
-0.011
-0.938
-0.081
1.238
-1.694
-0.146
2.215
7
-0.002
0.000
0.001
-0.951
-0.082
1.255
-1.658
-0.143
2.169
8
-0.011
-0.001
0.012
-0.963
-0.084
1.271
-1.623
-0.140
2.126
9
-0.019
-0.002
0.023
-0.974
-0.084
1.287
-1.591
-0.137
2.084
10
-0.027
-0.002
0.033
-0.985
-0.085
1.301
-1.559
-0.134
2.044
11
-0.034
-0.003
0.043
-0.995
-0.086
1.315
-1.529
-0.132
2.006
12
-0.041
-0.003
0.052
-1.005
-0.087
1.328
-1.501
-0.129
1.969
13
-0.048
-0.004
0.061
-1.014
-0.088
1.340
-1.473
-0.127
1.935
14
-0.054
-0.005
0.069
-1.022
-0.089
1.351
-1.447
-0.125
1.901
15
-0.060
-0.005
0.077
-1.030
-0.089
1.362
-1.422
-0.123
1.869
16
-0.066
-0.006
0.085
-1.038
-0.090
1.372
-1.399
-0.121
1.839
17
-0.071
-0.006
0.092
-1.045
-0.091
1.382
-1.376
-0.119
1.810
18
-0.077
-0.007
0.099
-1.052
-0.091
1.391
-1.354
-0.117
1.782
19
-0.082
-0.007
0.105
-1.058
-0.092
1.400
-1.333
-0.115
1.755
20
-0.086
-0.007
0.111
-1.064
-0.092
1.408
-1.314
-0.113
1.730
21
-0.091
-0.008
0.117
-1.069
-0.093
1.415
-1.294
-0.112
1.705
22
-0.095
-0.008
0.123
-1.075
-0.093
1.422
-1.276
-0.110
1.682
23
-0.099
-0.008
0.128
-1.079
-0.094
1.429
-1.259
-0.109
1.659
24
-0.103
-0.009
0.133
-1.084
-0.094
1.435
-1.242
-0.107
1.638
25
-0.107
-0.009
0.138
-1.088
-0.094
1.441
-1.226
-0.106
1.618
26
-0.110
-0.009
0.142
-1.092
-0.095
1.446
-1.211
-0.105
1.598
27
-0.113
-0.010
0.147
-1.096
-0.095
1.451
-1.196
-0.103
1.579
28
-0.116
-0.010
0.151
-1.099
-0.095
1.456
-1.182
-0.102
1.561
29
-0.119
-0.010
0.155
-1.102
-0.096
1.460
-1.169
-0.101
1.544
30
-0.122
-0.010
0.158
-1.105
-0.096
1.464
-1.156
-0.100
1.527
31
-0.125
-0.011
0.162
-1.108
-0.096
1.468
-1.144
-0.099
1.511
32
-0.127
-0.011
0.165
-1.110
-0.096
1.471
-1.132
-0.098
1.496
33
-0.130
-0.011
0.168
-1.113
-0.097
1.474
-1.121
-0.097
1.481
34
-0.132
-0.011
0.171
-1.115
-0.097
1.477
-1.110
-0.096
1.467
35
-0.134
-0.011
0.174
-1.116
-0.097
1.480
-1.100
-0.095
1.454
36
-0.136
-0.012
0.177
-1.118
-0.097
1.482
-1.090
-0.094
1.441
37
-0.138
-0.012
0.179
-1.120
-0.097
1.484
-1.080
-0.093
1.428
38
-0.140
-0.012
0.182
-1.121
-0.097
1.486
-1.071
-0.093
1.416
39
-0.141
-0.012
0.184
-1.122
-0.097
1.488
-1.062
-0.092
1.405
40
-0.143
-0.012
0.186
-1.123
-0.097
1.489
-1.053
-0.091
1.394
41
-0.145
-0.012
0.188
-1.124
-0.098
1.491
-1.045
-0.090
1.383
42
-0.146
-0.013
0.190
-1.125
-0.098
1.492
-1.037
-0.090
1.373
43
-0.147
-0.013
0.192
-1.126
-0.098
1.493
-1.030
-0.089
1.363
44
-0.149
-0.013
0.194
-1.126
-0.098
1.494
-1.023
-0.088
1.354
45
-0.150
-0.013
0.195
-1.126
-0.098
1.494
-1.016
-0.088
1.345
46
-0.151
-0.013
0.197
-1.127
-0.098
1.495
-1.009
-0.087
1.336
47
-0.152
-0.013
0.198
-1.127
-0.098
1.495
-1.003
-0.087
1.328
48
-0.153
-0.013
0.199
-1.127
-0.098
1.495
-0.996
-0.086
1.320
49
-0.154
-0.013
0.201
-1.127
-0.098
1.496
-0.990
-0.086
1.312
50
-0.155
-0.013
0.202
-1.127
-0.098
1.496
-0.984
-0.085
1.304
51
-0.156
-0.013
0.203
-1.127
-0.098
1.495
-0.979
-0.085
1.297
52
-0.156
-0.013
0.204
-1.127
-0.098
1.495
-0.973
-0.084
1.290
53
-0.157
-0.014
0.205
-1.126
-0.098
1.495
-0.968
-0.084
1.283
54
-0.158
-0.014
0.206
-1.126
-0.098
1.495
-0.963
-0.083
1.277
55
-0.158
-0.014
0.207
-1.125
-0.098
1.494
-0.958
-0.083
1.270
56
-0.159
-0.014
0.208
-1.125
-0.098
1.493
-0.954
-0.083
1.264
57
-0.160
-0.014
0.208
-1.124
-0.098
1.493
-0.949
-0.082
1.258
58
-0.160
-0.014
0.209
-1.124
-0.098
1.492
-0.945
-0.082
1.253
59
-0.161
-0.014
0.210
-1.123
-0.097
1.491
-0.940
-0.081
1.247
60
-0.161
-0.014
0.210
-1.122
-0.097
1.490
-0.936
-0.081
1.242
61
-0.161
-0.014
0.211
-1.121
-0.097
1.489
-0.932
-0.081
1.237
62
-0.162
-0.014
0.211
-1.120
-0.097
1.488
-0.928
-0.080
1.231
63
-0.162
-0.014
0.212
-1.120
-0.097
1.487
-0.925
-0.080
1.227
64
-0.162
-0.014
0.212
-1.119
-0.097
1.486
-0.921
-0.080
1.222
65
-0.163
-0.014
0.213
-1.118
-0.097
1.485
-0.917
-0.079
1.217
66
-0.163
-0.014
0.213
-1.117
-0.097
1.484
-0.914
-0.079
1.213
67
-0.163
-0.014
0.213
-1.115
-0.097
1.482
-0.911
-0.079
1.208
68
-0.163
-0.014
0.214
-1.114
-0.097
1.481
-0.907
-0.079
1.204
69
-0.164
-0.014
0.214
-1.113
-0.097
1.479
-0.904
-0.078
1.200
70
-0.164
-0.014
0.214
-1.112
-0.097
1.478
-0.901
-0.078
1.196
71
-0.164
-0.014
0.214
-1.111
-0.096
1.477
-0.898
-0.078
1.192
72
-0.164
-0.014
0.215
-1.110
-0.096
1.475
-0.895
-0.077
1.188
73
-0.164
-0.014
0.215
-1.108
-0.096
1.473
-0.892
-0.077
1.184
74
-0.164
-0.014
0.215
-1.107
-0.096
1.472
-0.890
-0.077
1.181
75
-0.164
-0.014
0.215
-1.106
-0.096
1.470
-0.887
-0.077
1.177
76
-0.164
-0.014
0.215
-1.104
-0.096
1.468
-0.884
-0.077
1.174
77
-0.164
-0.014
0.215
-1.103
-0.096
1.467
-0.882
-0.076
1.170
78
-0.164
-0.014
0.215
-1.102
-0.096
1.465
-0.879
-0.076
1.167
79
-0.164
-0.014
0.215
-1.100
-0.096
1.463
-0.876
-0.076
1.164
80
-0.164
-0.014
0.215
-1.099
-0.095
1.461
-0.874
-0.076
1.161
81
-0.164
-0.014
0.215
-1.097
-0.095
1.460
-0.872
-0.075
1.158
82
-0.164
-0.014
0.215
-1.096
-0.095
1.458
-0.869
-0.075
1.155
83
-0.164
-0.014
0.215
-1.095
-0.095
1.456
-0.867
-0.075
1.152
84
-0.164
-0.014
0.215
-1.093
-0.095
1.454
-0.865
-0.075
1.149
85
-0.164
-0.014
0.215
-1.092
-0.095
1.452
-0.863
-0.075
1.146
86
-0.164
-0.014
0.215
-1.090
-0.095
1.450
-0.860
-0.074
1.143
87
-0.164
-0.014
0.215
-1.089
-0.095
1.448
-0.858
-0.074
1.140
88
-0.164
-0.014
0.215
-1.087
-0.094
1.446
-0.856
-0.074
1.137
89
-0.164
-0.014
0.215
-1.085
-0.094
1.444
-0.854
-0.074
1.135
90
-0.164
-0.014
0.215
-1.084
-0.094
1.442
-0.852
-0.074
1.132
91
-0.164
-0.014
0.214
-1.082
-0.094
1.440
-0.850
-0.074
1.130
92
-0.163
-0.014
0.214
-1.081
-0.094
1.438
-0.848
-0.073
1.127
93
-0.163
-0.014
0.214
-1.079
-0.094
1.436
-0.846
-0.073
1.124
94
-0.163
-0.014
0.214
-1.078
-0.094
1.434
-0.844
-0.073
1.122
95
-0.163
-0.014
0.214
-1.076
-0.093
1.432
-0.842
-0.073
1.120
96
-0.163
-0.014
0.214
-1.074
-0.093
1.430
-0.840
-0.073
1.117
97
-0.163
-0.014
0.213
-1.073
-0.093
1.428
-0.839
-0.073
1.115
98
-0.163
-0.014
0.213
-1.071
-0.093
1.426
-0.837
-0.072
1.112
99
-0.162
-0.014
0.213
-1.070
-0.093
1.424
-0.835
-0.072
1.110
100
-0.162
-0.014
0.213
-1.068
-0.093
1.422
-0.833
-0.072
1.108
101
-0.162
-0.014
0.213
-1.066
-0.093
1.420
-0.832
-0.072
1.106
102
-0.162
-0.014
0.212
-1.065
-0.092
1.418
-0.830
-0.072
1.103
103
-0.162
-0.014
0.212
-1.063
-0.092
1.416
-0.828
-0.072
1.101
104
-0.161
-0.014
0.212
-1.061
-0.092
1.414
-0.826
-0.072
1.099
105
-0.161
-0.014
0.212
-1.060
-0.092
1.411
-0.825
-0.071
1.097
106
-0.161
-0.014
0.212
-1.058
-0.092
1.409
-0.823
-0.071
1.095
107
-0.161
-0.014
0.211
-1.056
-0.092
1.407
-0.821
-0.071
1.092
108
-0.161
-0.014
0.211
-1.055
-0.092
1.405
-0.820
-0.071
1.090
109
-0.160
-0.014
0.211
-1.053
-0.091
1.403
-0.818
-0.071
1.088
110
-0.160
-0.014
0.211
-1.052
-0.091
1.401
-0.817
-0.071
1.086
111
-0.160
-0.014
0.210
-1.050
-0.091
1.399
-0.815
-0.071
1.084
112
-0.160
-0.014
0.210
-1.048
-0.091
1.397
-0.813
-0.070
1.082
113
-0.160
-0.014
0.210
-1.047
-0.091
1.394
-0.812
-0.070
1.080
114
-0.159
-0.014
0.209
-1.045
-0.091
1.392
-0.810
-0.070
1.078
115
-0.159
-0.014
0.209
-1.043
-0.091
1.390
-0.809
-0.070
1.076
116
-0.159
-0.014
0.209
-1.042
-0.090
1.388
-0.807
-0.070
1.074
117
-0.159
-0.014
0.209
-1.040
-0.090
1.386
-0.806
-0.070
1.072
118
-0.159
-0.014
0.208
-1.038
-0.090
1.384
-0.804
-0.070
1.070
119
-0.158
-0.014
0.208
-1.037
-0.090
1.381
-0.803
-0.070
1.068
120
-0.158
-0.014
0.208
-1.035
-0.090
1.379
-0.801
-0.069
1.066
121
-0.158
-0.014
0.208
-1.033
-0.090
1.377
-0.800
-0.069
1.064
122
-0.158
-0.014
0.207
-1.032
-0.090
1.375
-0.798
-0.069
1.062
123
-0.157
-0.014
0.207
-1.030
-0.089
1.373
-0.797
-0.069
1.061
124
-0.157
-0.014
0.207
-1.028
-0.089
1.371
-0.795
-0.069
1.059
125
-0.157
-0.014
0.206
-1.027
-0.089
1.369
-0.794
-0.069
1.057
126
-0.157
-0.013
0.206
-1.025
-0.089
1.366
-0.793
-0.069
1.055
127
-0.156
-0.013
0.206
-1.023
-0.089
1.364
-0.791
-0.069
1.053
128
-0.156
-0.013
0.206
-1.022
-0.089
1.362
-0.790
-0.068
1.051
129
-0.156
-0.013
0.205
-1.020
-0.089
1.360
-0.788
-0.068
1.049
130
-0.156
-0.013
0.205
-1.018
-0.088
1.358
-0.787
-0.068
1.048
131
-0.156
-0.013
0.205
-1.017
-0.088
1.356
-0.786
-0.068
1.046
132
-0.155
-0.013
0.204
-1.015
-0.088
1.353
-0.784
-0.068
1.044
133
-0.155
-0.013
0.204
-1.013
-0.088
1.351
-0.783
-0.068
1.042
134
-0.155
-0.013
0.204
-1.012
-0.088
1.349
-0.781
-0.068
1.040
135
-0.155
-0.013
0.203
-1.010
-0.088
1.347
-0.780
-0.068
1.039
136
-0.154
-0.013
0.203
-1.008
-0.088
1.345
-0.779
-0.067
1.037
137
-0.154
-0.013
0.203
-1.007
-0.087
1.343
-0.777
-0.067
1.035
138
-0.154
-0.013
0.203
-1.005
-0.087
1.341
-0.776
-0.067
1.033
139
-0.154
-0.013
0.202
-1.003
-0.087
1.338
-0.775
-0.067
1.032
140
-0.153
-0.013
0.202
-1.002
-0.087
1.336
-0.773
-0.067
1.030
141
-0.153
-0.013
0.202
-1.000
-0.087
1.334
-0.772
-0.067
1.028
142
-0.153
-0.013
0.201
-0.998
-0.087
1.332
-0.771
-0.067
1.026
143
-0.153
-0.013
0.201
-0.997
-0.087
1.330
-0.769
-0.067
1.025
144
-0.152
-0.013
0.201
-0.995
-0.086
1.328
-0.768
-0.066
1.023
145
-0.152
-0.013
0.200
-0.993
-0.086
1.326
-0.767
-0.066
1.021
146
-0.152
-0.013
0.200
-0.992
-0.086
1.324
-0.765
-0.066
1.020
147
-0.152
-0.013
0.200
-0.990
-0.086
1.321
-0.764
-0.066
1.018
148
-0.151
-0.013
0.199
-0.988
-0.086
1.319
-0.763
-0.066
1.016
149
-0.151
-0.013
0.199
-0.987
-0.086
1.317
-0.761
-0.066
1.014
150
-0.151
-0.013
0.199
-0.985
-0.086
1.315
-0.760
-0.066
1.013
151
-0.151
-0.013
0.199
-0.984
-0.085
1.313
-0.759
-0.066
1.011
152
-0.150
-0.013
0.198
-0.982
-0.085
1.311
-0.757
-0.066
1.009
153
-0.150
-0.013
0.198
-0.980
-0.085
1.309
-0.756
-0.065
1.008
154
-0.150
-0.013
0.198
-0.979
-0.085
1.307
-0.755
-0.065
1.006
155
-0.150
-0.013
0.197
-0.977
-0.085
1.304
-0.754
-0.065
1.004
156
-0.149
-0.013
0.197
-0.975
-0.085
1.302
-0.752
-0.065
1.003
157
-0.149
-0.013
0.197
-0.974
-0.085
1.300
-0.751
-0.065
1.001
158
-0.149
-0.013
0.196
-0.972
-0.084
1.298
-0.750
-0.065
0.999
159
-0.149
-0.013
0.196
-0.971
-0.084
1.296
-0.748
-0.065
0.998
160
-0.148
-0.013
0.196
-0.969
-0.084
1.294
-0.747
-0.065
0.996
161
-0.148
-0.013
0.195
-0.967
-0.084
1.292
-0.746
-0.065
0.994
162
-0.148
-0.013
0.195
-0.966
-0.084
1.290
-0.745
-0.064
0.993
163
-0.148
-0.013
0.195
-0.964
-0.084
1.288
-0.743
-0.064
0.991
164
-0.147
-0.013
0.195
-0.963
-0.084
1.286
-0.742
-0.064
0.990
165
-0.147
-0.013
0.194
-0.961
-0.083
1.284
-0.741
-0.064
0.988
166
-0.147
-0.013
0.194
-0.959
-0.083
1.281
-0.740
-0.064
0.986
167
-0.147
-0.013
0.194
-0.958
-0.083
1.279
-0.738
-0.064
0.985
168
-0.147
-0.013
0.193
-0.956
-0.083
1.277
-0.737
-0.064
0.983
169
-0.146
-0.013
0.193
-0.955
-0.083
1.275
-0.736
-0.064
0.981
170
-0.146
-0.013
0.193
-0.953
-0.083
1.273
-0.735
-0.064
0.980
171
-0.146
-0.013
0.192
-0.951
-0.083
1.271
-0.733
-0.064
0.978
172
-0.146
-0.013
0.192
-0.950
-0.082
1.269
-0.732
-0.063
0.977
173
-0.145
-0.013
0.192
-0.948
-0.082
1.267
-0.731
-0.063
0.975
174
-0.145
-0.013
0.191
-0.947
-0.082
1.265
-0.730
-0.063
0.973
175
-0.145
-0.012
0.191
-0.945
-0.082
1.263
-0.729
-0.063
0.972
176
-0.145
-0.012
0.191
-0.944
-0.082
1.261
-0.727
-0.063
0.970
177
-0.144
-0.012
0.191
-0.942
-0.082
1.259
-0.726
-0.063
0.969
178
-0.144
-0.012
0.190
-0.940
-0.082
1.257
-0.725
-0.063
0.967
179
-0.144
-0.012
0.190
-0.939
-0.082
1.255
-0.724
-0.063
0.965
180
-0.144
-0.012
0.190
-0.937
-0.081
1.253
-0.722
-0.063
0.964
181
-0.143
-0.012
0.189
-0.936
-0.081
1.251
-0.721
-0.062
0.962
182
-0.143
-0.012
0.189
-0.934
-0.081
1.249
-0.720
-0.062
0.961
183
-0.143
-0.012
0.189
-0.933
-0.081
1.247
-0.719
-0.062
0.959
184
-0.143
-0.012
0.188
-0.931
-0.081
1.245
-0.718
-0.062
0.958
185
-0.142
-0.012
0.188
-0.930
-0.081
1.243
-0.716
-0.062
0.956
186
-0.142
-0.012
0.188
-0.928
-0.081
1.241
-0.715
-0.062
0.954
187
-0.142
-0.012
0.188
-0.926
-0.080
1.239
-0.714
-0.062
0.953
188
-0.142
-0.012
0.187
-0.925
-0.080
1.237
-0.713
-0.062
0.951
189
-0.141
-0.012
0.187
-0.923
-0.080
1.235
-0.712
-0.062
0.950
190
-0.141
-0.012
0.187
-0.922
-0.080
1.233
-0.710
-0.062
0.948
191
-0.141
-0.012
0.186
-0.920
-0.080
1.231
-0.709
-0.061
0.947
192
-0.141
-0.012
0.186
-0.919
-0.080
1.229
-0.708
-0.061
0.945
193
-0.141
-0.012
0.186
-0.917
-0.080
1.227
-0.707
-0.061
0.944
194
-0.140
-0.012
0.185
-0.916
-0.080
1.225
-0.706
-0.061
0.942
195
-0.140
-0.012
0.185
-0.914
-0.079
1.223
-0.704
-0.061
0.941
196
-0.140
-0.012
0.185
-0.913
-0.079
1.221
-0.703
-0.061
0.939
197
-0.140
-0.012
0.185
-0.911
-0.079
1.219
-0.702
-0.061
0.937
198
-0.139
-0.012
0.184
-0.910
-0.079
1.217
-0.701
-0.061
0.936
199
-0.139
-0.012
0.184
-0.908
-0.079
1.215
-0.700
-0.061
0.934
200
-0.139
-0.012
0.184
-0.907
-0.079
1.213
-0.699
-0.060
0.933
201
-0.139
-0.012
0.183
-0.905
-0.079
1.211
-0.697
-0.060
0.931
202
-0.138
-0.012
0.183
-0.904
-0.078
1.209
-0.696
-0.060
0.930
203
-0.138
-0.012
0.183
-0.902
-0.078
1.207
-0.695
-0.060
0.928
204
-0.138
-0.012
0.182
-0.901
-0.078
1.205
-0.694
-0.060
0.927
205
-0.138
-0.012
0.182
-0.899
-0.078
1.203
-0.693
-0.060
0.925
206
-0.138
-0.012
0.182
-0.898
-0.078
1.201
-0.692
-0.060
0.924
207
-0.137
-0.012
0.182
-0.896
-0.078
1.199
-0.690
-0.060
0.922
208
-0.137
-0.012
0.181
-0.895
-0.078
1.197
-0.689
-0.060
0.921
209
-0.137
-0.012
0.181
-0.893
-0.078
1.195
-0.688
-0.060
0.919
210
-0.137
-0.012
0.181
-0.892
-0.077
1.193
-0.687
-0.059
0.918
211
-0.136
-0.012
0.180
-0.890
-0.077
1.191
-0.686
-0.059
0.916
212
-0.136
-0.012
0.180
-0.889
-0.077
1.189
-0.685
-0.059
0.915
213
-0.136
-0.012
0.180
-0.887
-0.077
1.187
-0.684
-0.059
0.913
214
-0.136
-0.012
0.180
-0.886
-0.077
1.185
-0.682
-0.059
0.912
215
-0.135
-0.012
0.179
-0.884
-0.077
1.183
-0.681
-0.059
0.910
216
-0.135
-0.012
0.179
-0.883
-0.077
1.181
-0.680
-0.059
0.909
217
-0.135
-0.012
0.179
-0.881
-0.077
1.180
-0.679
-0.059
0.907
218
-0.135
-0.012
0.178
-0.880
-0.076
1.178
-0.678
-0.059
0.906
219
-0.135
-0.012
0.178
-0.878
-0.076
1.176
-0.677
-0.059
0.904
220
-0.134
-0.012
0.178
-0.877
-0.076
1.174
-0.676
-0.058
0.903
221
-0.134
-0.012
0.178
-0.875
-0.076
1.172
-0.675
-0.058
0.901
222
-0.134
-0.012
0.177
-0.874
-0.076
1.170
-0.673
-0.058
0.900
223
-0.134
-0.012
0.177
-0.873
-0.076
1.168
-0.672
-0.058
0.899
224
-0.133
-0.012
0.177
-0.871
-0.076
1.166
-0.671
-0.058
0.897
225
-0.133
-0.011
0.176
-0.870
-0.076
1.164
-0.670
-0.058
0.896
226
-0.133
-0.011
0.176
-0.868
-0.075
1.162
-0.669
-0.058
0.894
227
-0.133
-0.011
0.176
-0.867
-0.075
1.161
-0.668
-0.058
0.893
228
-0.133
-0.011
0.176
-0.865
-0.075
1.159
-0.667
-0.058
0.891
229
-0.132
-0.011
0.175
-0.864
-0.075
1.157
-0.666
-0.058
0.890
230
-0.132
-0.011
0.175
-0.862
-0.075
1.155
-0.664
-0.058
0.888
231
-0.132
-0.011
0.175
-0.861
-0.075
1.153
-0.663
-0.057
0.887
232
-0.132
-0.011
0.174
-0.860
-0.075
1.151
-0.662
-0.057
0.885
233
-0.131
-0.011
0.174
-0.858
-0.075
1.149
-0.661
-0.057
0.884
234
-0.131
-0.011
0.174
-0.857
-0.074
1.147
-0.660
-0.057
0.883
235
-0.131
-0.011
0.174
-0.855
-0.074
1.145
-0.659
-0.057
0.881
236
-0.131
-0.011
0.173
-0.854
-0.074
1.144
-0.658
-0.057
0.880
237
-0.131
-0.011
0.173
-0.852
-0.074
1.142
-0.657
-0.057
0.878
238
-0.130
-0.011
0.173
-0.851
-0.074
1.140
-0.656
-0.057
0.877
239
-0.130
-0.011
0.172
-0.850
-0.074
1.138
-0.655
-0.057
0.875
240
-0.130
-0.011
0.172
-0.848
-0.074
1.136
-0.653
-0.057
0.874
241
-0.130
-0.011
0.172
-0.847
-0.074
1.134
-0.652
-0.056
0.873
242
-0.129
-0.011
0.172
-0.845
-0.073
1.132
-0.651
-0.056
0.871
243
-0.129
-0.011
0.171
-0.844
-0.073
1.131
-0.650
-0.056
0.870
244
-0.129
-0.011
0.171
-0.843
-0.073
1.129
-0.649
-0.056
0.868
245
-0.129
-0.011
0.171
-0.841
-0.073
1.127
-0.648
-0.056
0.867
246
-0.129
-0.011
0.171
-0.840
-0.073
1.125
-0.647
-0.056
0.866
247
-0.128
-0.011
0.170
-0.838
-0.073
1.123
-0.646
-0.056
0.864
248
-0.128
-0.011
0.170
-0.837
-0.073
1.121
-0.645
-0.056
0.863
249
-0.128
-0.011
0.170
-0.836
-0.073
1.120
-0.644
-0.056
0.861
250
-0.128
-0.011
0.169
-0.834
-0.072
1.118
-0.643
-0.056
0.860
251
-0.128
-0.011
0.169
-0.833
-0.072
1.116
-0.642
-0.056
0.859
252
-0.127
-0.011
0.169
-0.831
-0.072
1.114
-0.641
-0.055
0.857
253
-0.127
-0.011
0.169
-0.830
-0.072
1.112
-0.639
-0.055
0.856
254
-0.127
-0.011
0.168
-0.829
-0.072
1.111
-0.638
-0.055
0.854
255
-0.127
-0.011
0.168
-0.827
-0.072
1.109
-0.637
-0.055
0.853
256
-0.126
-0.011
0.168
-0.826
-0.072
1.107
-0.636
-0.055
0.852
257
-0.126
-0.011
0.167
-0.824
-0.072
1.105
-0.635
-0.055
0.850
258
-0.126
-0.011
0.167
-0.823
-0.071
1.103
-0.634
-0.055
0.849
259
-0.126
-0.011
0.167
-0.822
-0.071
1.102
-0.633
-0.055
0.847
260
-0.126
-0.011
0.167
-0.820
-0.071
1.100
-0.632
-0.055
0.846
261
-0.125
-0.011
0.166
-0.819
-0.071
1.098
-0.631
-0.055
0.845
262
-0.125
-0.011
0.166
-0.818
-0.071
1.096
-0.630
-0.055
0.843
263
-0.125
-0.011
0.166
-0.816
-0.071
1.094
-0.629
-0.054
0.842
264
-0.125
-0.011
0.166
-0.815
-0.071
1.093
-0.628
-0.054
0.841
265
-0.125
-0.011
0.165
-0.814
-0.071
1.091
-0.627
-0.054
0.839
266
-0.124
-0.011
0.165
-0.812
-0.071
1.089
-0.626
-0.054
0.838
267
-0.124
-0.011
0.165
-0.811
-0.070
1.087
-0.625
-0.054
0.836
268
-0.124
-0.011
0.165
-0.810
-0.070
1.086
-0.624
-0.054
0.835
269
-0.124
-0.011
0.164
-0.808
-0.070
1.084
-0.623
-0.054
0.834
270
-0.124
-0.011
0.164
-0.807
-0.070
1.082
-0.622
-0.054
0.832
271
-0.123
-0.011
0.164
-0.805
-0.070
1.080
-0.621
-0.054
0.831
272
-0.123
-0.011
0.163
-0.804
-0.070
1.078
-0.620
-0.054
0.830
273
-0.123
-0.011
0.163
-0.803
-0.070
1.077
-0.618
-0.054
0.828
274
-0.123
-0.011
0.163
-0.801
-0.070
1.075
-0.617
-0.053
0.827
275
-0.123
-0.011
0.163
-0.800
-0.069
1.073
-0.616
-0.053
0.826
276
-0.122
-0.011
0.162
-0.799
-0.069
1.071
-0.615
-0.053
0.824
277
-0.122
-0.011
0.162
-0.797
-0.069
1.070
-0.614
-0.053
0.823
278
-0.122
-0.011
0.162
-0.796
-0.069
1.068
-0.613
-0.053
0.822
279
-0.122
-0.010
0.162
-0.795
-0.069
1.066
-0.612
-0.053
0.820
280
-0.122
-0.010
0.161
-0.793
-0.069
1.064
-0.611
-0.053
0.819
281
-0.121
-0.010
0.161
-0.792
-0.069
1.063
-0.610
-0.053
0.818
282
-0.121
-0.010
0.161
-0.791
-0.069
1.061
-0.609
-0.053
0.816
283
-0.121
-0.010
0.161
-0.790
-0.069
1.059
-0.608
-0.053
0.815
284
-0.121
-0.010
0.160
-0.788
-0.068
1.058
-0.607
-0.053
0.814
285
-0.121
-0.010
0.160
-0.787
-0.068
1.056
-0.606
-0.052
0.812
286
-0.120
-0.010
0.160
-0.786
-0.068
1.054
-0.605
-0.052
0.811
287
-0.120
-0.010
0.160
-0.784
-0.068
1.052
-0.604
-0.052
0.810
288
-0.120
-0.010
0.159
-0.783
-0.068
1.051
-0.603
-0.052
0.808
289
-0.120
-0.010
0.159
-0.782
-0.068
1.049
-0.602
-0.052
0.807
290
-0.119
-0.010
0.159
-0.780
-0.068
1.047
-0.601
-0.052
0.806
291
-0.119
-0.010
0.159
-0.779
-0.068
1.046
-0.600
-0.052
0.804
292
-0.119
-0.010
0.158
-0.778
-0.068
1.044
-0.599
-0.052
0.803
293
-0.119
-0.010
0.158
-0.776
-0.067
1.042
-0.598
-0.052
0.802
294
-0.119
-0.010
0.158
-0.775
-0.067
1.040
-0.597
-0.052
0.800
295
-0.119
-0.010
0.157
-0.774
-0.067
1.039
-0.596
-0.052
0.799
296
-0.118
-0.010
0.157
-0.773
-0.067
1.037
-0.595
-0.052
0.798
297
-0.118
-0.010
0.157
-0.771
-0.067
1.035
-0.594
-0.051
0.797
298
-0.118
-0.010
0.157
-0.770
-0.067
1.034
-0.593
-0.051
0.795
299
-0.118
-0.010
0.156
-0.769
-0.067
1.032
-0.592
-0.051
0.794
300
-0.118
-0.010
0.156
-0.767
-0.067
1.030
-0.591
-0.051
0.793
301
-0.117
-0.010
0.156
-0.766
-0.067
1.029
-0.590
-0.051
0.791
302
-0.117
-0.010
0.156
-0.765
-0.066
1.027
-0.589
-0.051
0.790
303
-0.117
-0.010
0.155
-0.764
-0.066
1.025
-0.588
-0.051
0.789
304
-0.117
-0.010
0.155
-0.762
-0.066
1.024
-0.587
-0.051
0.787
305
-0.117
-0.010
0.155
-0.761
-0.066
1.022
-0.586
-0.051
0.786
306
-0.116
-0.010
0.155
-0.760
-0.066
1.020
-0.585
-0.051
0.785
307
-0.116
-0.010
0.154
-0.759
-0.066
1.019
-0.584
-0.051
0.784
308
-0.116
-0.010
0.154
-0.757
-0.066
1.017
-0.583
-0.051
0.782
309
-0.116
-0.010
0.154
-0.756
-0.066
1.015
-0.582
-0.050
0.781
310
-0.116
-0.010
0.154
-0.755
-0.066
1.014
-0.582
-0.050
0.780
311
-0.115
-0.010
0.153
-0.754
-0.065
1.012
-0.581
-0.050
0.779
312
-0.115
-0.010
0.153
-0.752
-0.065
1.010
-0.580
-0.050
0.777
313
-0.115
-0.010
0.153
-0.751
-0.065
1.009
-0.579
-0.050
0.776
314
-0.115
-0.010
0.153
-0.750
-0.065
1.007
-0.578
-0.050
0.775
315
-0.115
-0.010
0.152
-0.749
-0.065
1.005
-0.577
-0.050
0.773
316
-0.114
-0.010
0.152
-0.747
-0.065
1.004
-0.576
-0.050
0.772
317
-0.114
-0.010
0.152
-0.746
-0.065
1.002
-0.575
-0.050
0.771
318
-0.114
-0.010
0.152
-0.745
-0.065
1.000
-0.574
-0.050
0.770
319
-0.114
-0.010
0.151
-0.744
-0.065
0.999
-0.573
-0.050
0.768
320
-0.114
-0.010
0.151
-0.742
-0.064
0.997
-0.572
-0.050
0.767
321
-0.113
-0.010
0.151
-0.741
-0.064
0.996
-0.571
-0.049
0.766
322
-0.113
-0.010
0.151
-0.740
-0.064
0.994
-0.570
-0.049
0.765
323
-0.113
-0.010
0.150
-0.739
-0.064
0.992
-0.569
-0.049
0.763
324
-0.113
-0.010
0.150
-0.737
-0.064
0.991
-0.568
-0.049
0.762
325
-0.113
-0.010
0.150
-0.736
-0.064
0.989
-0.567
-0.049
0.761
326
-0.113
-0.010
0.150
-0.735
-0.064
0.988
-0.566
-0.049
0.760
327
-0.112
-0.010
0.150
-0.734
-0.064
0.986
-0.565
-0.049
0.758
328
-0.112
-0.010
0.149
-0.733
-0.064
0.984
-0.564
-0.049
0.757
329
-0.112
-0.010
0.149
-0.731
-0.063
0.983
-0.563
-0.049
0.756
330
-0.112
-0.010
0.149
-0.730
-0.063
0.981
-0.562
-0.049
0.755
331
-0.112
-0.010
0.149
-0.729
-0.063
0.979
-0.562
-0.049
0.754
332
-0.111
-0.010
0.148
-0.728
-0.063
0.978
-0.561
-0.049
0.752
333
-0.111
-0.010
0.148
-0.726
-0.063
0.976
-0.560
-0.048
0.751
334
-0.111
-0.010
0.148
-0.725
-0.063
0.975
-0.559
-0.048
0.750
335
-0.111
-0.010
0.148
-0.724
-0.063
0.973
-0.558
-0.048
0.749
336
-0.111
-0.010
0.147
-0.723
-0.063
0.972
-0.557
-0.048
0.747
337
-0.110
-0.010
0.147
-0.722
-0.063
0.970
-0.556
-0.048
0.746
338
-0.110
-0.010
0.147
-0.720
-0.063
0.968
-0.555
-0.048
0.745
339
-0.110
-0.009
0.147
-0.719
-0.062
0.967
-0.554
-0.048
0.744
340
-0.110
-0.009
0.146
-0.718
-0.062
0.965
-0.553
-0.048
0.743
341
-0.110
-0.009
0.146
-0.717
-0.062
0.964
-0.552
-0.048
0.741
342
-0.110
-0.009
0.146
-0.716
-0.062
0.962
-0.551
-0.048
0.740
343
-0.109
-0.009
0.146
-0.714
-0.062
0.960
-0.550
-0.048
0.739
344
-0.109
-0.009
0.145
-0.713
-0.062
0.959
-0.550
-0.048
0.738
345
-0.109
-0.009
0.145
-0.712
-0.062
0.957
-0.549
-0.047
0.737
346
-0.109
-0.009
0.145
-0.711
-0.062
0.956
-0.548
-0.047
0.735
347
-0.109
-0.009
0.145
-0.710
-0.062
0.954
-0.547
-0.047
0.734
348
-0.108
-0.009
0.145
-0.709
-0.061
0.953
-0.546
-0.047
0.733
349
-0.108
-0.009
0.144
-0.707
-0.061
0.951
-0.545
-0.047
0.732
350
-0.108
-0.009
0.144
-0.706
-0.061
0.950
-0.544
-0.047
0.731
351
-0.108
-0.009
0.144
-0.705
-0.061
0.948
-0.543
-0.047
0.729
352
-0.108
-0.009
0.144
-0.704
-0.061
0.946
-0.542
-0.047
0.728
353
-0.108
-0.009
0.143
-0.703
-0.061
0.945
-0.541
-0.047
0.727
354
-0.107
-0.009
0.143
-0.702
-0.061
0.943
-0.540
-0.047
0.726
355
-0.107
-0.009
0.143
-0.700
-0.061
0.942
-0.540
-0.047
0.725
356
-0.107
-0.009
0.143
-0.699
-0.061
0.940
-0.539
-0.047
0.723
357
-0.107
-0.009
0.142
-0.698
-0.061
0.939
-0.538
-0.047
0.722
358
-0.107
-0.009
0.142
-0.697
-0.060
0.937
-0.537
-0.046
0.721
359
-0.106
-0.009
0.142
-0.696
-0.060
0.936
-0.536
-0.046
0.720
360
-0.106
-0.009
0.142
-0.695
-0.060
0.934
-0.535
-0.046
0.719
361
-0.106
-0.009
0.141
-0.693
-0.060
0.933
-0.534
-0.046
0.718
362
-0.106
-0.009
0.141
-0.692
-0.060
0.931
-0.533
-0.046
0.716
363
-0.106
-0.009
0.141
-0.691
-0.060
0.930
-0.532
-0.046
0.715
364
-0.106
-0.009
0.141
-0.690
-0.060
0.928
-0.532
-0.046
0.714
365
-0.105
-0.009
0.141
-0.689
-0.060
0.927
-0.531
-0.046
0.713
366
-0.105
-0.009
0.140
-0.688
-0.060
0.925
-0.530
-0.046
0.712
367
-0.105
-0.009
0.140
-0.687
-0.060
0.924
-0.529
-0.046
0.711
368
-0.105
-0.009
0.140
-0.685
-0.059
0.922
-0.528
-0.046
0.709
369
-0.105
-0.009
0.140
-0.684
-0.059
0.921
-0.527
-0.046
0.708
370
-0.105
-0.009
0.139
-0.683
-0.059
0.919
-0.526
-0.046
0.707
371
-0.104
-0.009
0.139
-0.682
-0.059
0.918
-0.525
-0.045
0.706
372
-0.104
-0.009
0.139
-0.681
-0.059
0.916
-0.524
-0.045
0.705
373
-0.104
-0.009
0.139
-0.680
-0.059
0.915
-0.524
-0.045
0.704
374
-0.104
-0.009
0.139
-0.679
-0.059
0.913
-0.523
-0.045
0.702
375
-0.104
-0.009
0.138
-0.677
-0.059
0.912
-0.522
-0.045
0.701
376
-0.104
-0.009
0.138
-0.676
-0.059
0.910
-0.521
-0.045
0.700
377
-0.103
-0.009
0.138
-0.675
-0.059
0.909
-0.520
-0.045
0.699
378
-0.103
-0.009
0.138
-0.674
-0.058
0.907
-0.519
-0.045
0.698
379
-0.103
-0.009
0.137
-0.673
-0.058
0.906
-0.518
-0.045
0.697
380
-0.103
-0.009
0.137
-0.672
-0.058
0.904
-0.518
-0.045
0.696
381
-0.103
-0.009
0.137
-0.671
-0.058
0.903
-0.517
-0.045
0.694
382
-0.102
-0.009
0.137
-0.670
-0.058
0.901
-0.516
-0.045
0.693
383
-0.102
-0.009
0.137
-0.668
-0.058
0.900
-0.515
-0.045
0.692
384
-0.102
-0.009
0.136
-0.667
-0.058
0.898
-0.514
-0.044
0.691
385
-0.102
-0.009
0.136
-0.666
-0.058
0.897
-0.513
-0.044
0.690
386
-0.102
-0.009
0.136
-0.665
-0.058
0.895
-0.512
-0.044
0.689
387
-0.102
-0.009
0.136
-0.664
-0.058
0.894
-0.512
-0.044
0.688
388
-0.101
-0.009
0.135
-0.663
-0.058
0.892
-0.511
-0.044
0.687
389
-0.101
-0.009
0.135
-0.662
-0.057
0.891
-0.510
-0.044
0.685
390
-0.101
-0.009
0.135
-0.661
-0.057
0.889
-0.509
-0.044
0.684
391
-0.101
-0.009
0.135
-0.660
-0.057
0.888
-0.508
-0.044
0.683
392
-0.101
-0.009
0.135
-0.659
-0.057
0.887
-0.507
-0.044
0.682
393
-0.101
-0.009
0.134
-0.657
-0.057
0.885
-0.506
-0.044
0.681
394
-0.100
-0.009
0.134
-0.656
-0.057
0.884
-0.506
-0.044
0.680
395
-0.100
-0.009
0.134
-0.655
-0.057
0.882
-0.505
-0.044
0.679
396
-0.100
-0.009
0.134
-0.654
-0.057
0.881
-0.504
-0.044
0.678
397
-0.100
-0.009
0.133
-0.653
-0.057
0.879
-0.503
-0.044
0.677
398
-0.100
-0.009
0.133
-0.652
-0.057
0.878
-0.502
-0.043
0.675
399
-0.100
-0.009
0.133
-0.651
-0.056
0.876
-0.501
-0.043
0.674
400
-0.099
-0.009
0.133
-0.650
-0.056
0.875
-0.501
-0.043
0.673
401
-0.099
-0.009
0.133
-0.649
-0.056
0.874
-0.500
-0.043
0.672
402
-0.099
-0.009
0.132
-0.648
-0.056
0.872
-0.499
-0.043
0.671
403
-0.099
-0.009
0.132
-0.647
-0.056
0.871
-0.498
-0.043
0.670
404
-0.099
-0.009
0.132
-0.646
-0.056
0.869
-0.497
-0.043
0.669
405
-0.099
-0.009
0.132
-0.644
-0.056
0.868
-0.496
-0.043
0.668
406
-0.098
-0.008
0.132
-0.643
-0.056
0.867
-0.496
-0.043
0.667
407
-0.098
-0.008
0.131
-0.642
-0.056
0.865
-0.495
-0.043
0.666
408
-0.098
-0.008
0.131
-0.641
-0.056
0.864
-0.494
-0.043
0.665
409
-0.098
-0.008
0.131
-0.640
-0.056
0.862
-0.493
-0.043
0.663
410
-0.098
-0.008
0.131
-0.639
-0.055
0.861
-0.492
-0.043
0.662
411
-0.098
-0.008
0.130
-0.638
-0.055
0.859
-0.492
-0.043
0.661
412
-0.097
-0.008
0.130
-0.637
-0.055
0.858
-0.491
-0.042
0.660
413
-0.097
-0.008
0.130
-0.636
-0.055
0.857
-0.490
-0.042
0.659
414
-0.097
-0.008
0.130
-0.635
-0.055
0.855
-0.489
-0.042
0.658
415
-0.097
-0.008
0.130
-0.634
-0.055
0.854
-0.488
-0.042
0.657
416
-0.097
-0.008
0.129
-0.633
-0.055
0.852
-0.487
-0.042
0.656
417
-0.097
-0.008
0.129
-0.632
-0.055
0.851
-0.487
-0.042
0.655
418
-0.097
-0.008
0.129
-0.631
-0.055
0.850
-0.486
-0.042
0.654
419
-0.096
-0.008
0.129
-0.630
-0.055
0.848
-0.485
-0.042
0.653
420
-0.096
-0.008
0.129
-0.629
-0.055
0.847
-0.484
-0.042
0.652
421
-0.096
-0.008
0.128
-0.628
-0.054
0.846
-0.483
-0.042
0.651
422
-0.096
-0.008
0.128
-0.627
-0.054
0.844
-0.483
-0.042
0.650
423
-0.096
-0.008
0.128
-0.625
-0.054
0.843
-0.482
-0.042
0.648
424
-0.096
-0.008
0.128
-0.624
-0.054
0.841
-0.481
-0.042
0.647
425
-0.095
-0.008
0.128
-0.623
-0.054
0.840
-0.480
-0.042
0.646
426
-0.095
-0.008
0.127
-0.622
-0.054
0.839
-0.479
-0.041
0.645
427
-0.095
-0.008
0.127
-0.621
-0.054
0.837
-0.479
-0.041
0.644
428
-0.095
-0.008
0.127
-0.620
-0.054
0.836
-0.478
-0.041
0.643
429
-0.095
-0.008
0.127
-0.619
-0.054
0.835
-0.477
-0.041
0.642
430
-0.095
-0.008
0.126
-0.618
-0.054
0.833
-0.476
-0.041
0.641
431
-0.094
-0.008
0.126
-0.617
-0.054
0.832
-0.475
-0.041
0.640
432
-0.094
-0.008
0.126
-0.616
-0.053
0.830
-0.475
-0.041
0.639
433
-0.094
-0.008
0.126
-0.615
-0.053
0.829
-0.474
-0.041
0.638
434
-0.094
-0.008
0.126
-0.614
-0.053
0.828
-0.473
-0.041
0.637
435
-0.094
-0.008
0.125
-0.613
-0.053
0.826
-0.472
-0.041
0.636
436
-0.094
-0.008
0.125
-0.612
-0.053
0.825
-0.472
-0.041
0.635
437
-0.093
-0.008
0.125
-0.611
-0.053
0.824
-0.471
-0.041
0.634
438
-0.093
-0.008
0.125
-0.610
-0.053
0.822
-0.470
-0.041
0.633
439
-0.093
-0.008
0.125
-0.609
-0.053
0.821
-0.469
-0.041
0.632
440
-0.093
-0.008
0.124
-0.608
-0.053
0.820
-0.468
-0.041
0.631
441
-0.093
-0.008
0.124
-0.607
-0.053
0.818
-0.468
-0.040
0.630
442
-0.093
-0.008
0.124
-0.606
-0.053
0.817
-0.467
-0.040
0.629
443
-0.093
-0.008
0.124
-0.605
-0.052
0.816
-0.466
-0.040
0.628
444
-0.092
-0.008
0.124
-0.604
-0.052
0.814
-0.465
-0.040
0.627
445
-0.092
-0.008
0.123
-0.603
-0.052
0.813
-0.465
-0.040
0.626
446
-0.092
-0.008
0.123
-0.602
-0.052
0.812
-0.464
-0.040
0.625
447
-0.092
-0.008
0.123
-0.601
-0.052
0.810
-0.463
-0.040
0.624
448
-0.092
-0.008
0.123
-0.600
-0.052
0.809
-0.462
-0.040
0.622
449
-0.092
-0.008
0.123
-0.599
-0.052
0.808
-0.461
-0.040
0.621
450
-0.091
-0.008
0.122
-0.598
-0.052
0.806
-0.461
-0.040
0.620
451
-0.091
-0.008
0.122
-0.597
-0.052
0.805
-0.460
-0.040
0.619
452
-0.091
-0.008
0.122
-0.596
-0.052
0.804
-0.459
-0.040
0.618
453
-0.091
-0.008
0.122
-0.595
-0.052
0.802
-0.458
-0.040
0.617
454
-0.091
-0.008
0.122
-0.594
-0.052
0.801
-0.458
-0.040
0.616
455
-0.091
-0.008
0.121
-0.593
-0.051
0.800
-0.457
-0.040
0.615
456
-0.091
-0.008
0.121
-0.592
-0.051
0.798
-0.456
-0.039
0.614
457
-0.090
-0.008
0.121
-0.591
-0.051
0.797
-0.455
-0.039
0.613
458
-0.090
-0.008
0.121
-0.590
-0.051
0.796
-0.455
-0.039
0.612
459
-0.090
-0.008
0.121
-0.589
-0.051
0.795
-0.454
-0.039
0.611
460
-0.090
-0.008
0.120
-0.588
-0.051
0.793
-0.453
-0.039
0.610
461
-0.090
-0.008
0.120
-0.587
-0.051
0.792
-0.452
-0.039
0.609
462
-0.090
-0.008
0.120
-0.586
-0.051
0.791
-0.452
-0.039
0.608
463
-0.090
-0.008
0.120
-0.585
-0.051
0.789
-0.451
-0.039
0.607
464
-0.089
-0.008
0.120
-0.584
-0.051
0.788
-0.450
-0.039
0.606
465
-0.089
-0.008
0.119
-0.583
-0.051
0.787
-0.449
-0.039
0.605
466
-0.089
-0.008
0.119
-0.582
-0.051
0.786
-0.449
-0.039
0.604
467
-0.089
-0.008
0.119
-0.581
-0.050
0.784
-0.448
-0.039
0.603
468
-0.089
-0.008
0.119
-0.580
-0.050
0.783
-0.447
-0.039
0.602
469
-0.089
-0.008
0.119
-0.579
-0.050
0.782
-0.446
-0.039
0.601
470
-0.088
-0.008
0.118
-0.578
-0.050
0.780
-0.446
-0.039
0.600
471
-0.088
-0.008
0.118
-0.578
-0.050
0.779
-0.445
-0.038
0.600
472
-0.088
-0.008
0.118
-0.577
-0.050
0.778
-0.444
-0.038
0.599
473
-0.088
-0.008
0.118
-0.576
-0.050
0.777
-0.443
-0.038
0.598
474
-0.088
-0.008
0.118
-0.575
-0.050
0.775
-0.443
-0.038
0.597
475
-0.088
-0.008
0.118
-0.574
-0.050
0.774
-0.442
-0.038
0.596
476
-0.088
-0.008
0.117
-0.573
-0.050
0.773
-0.441
-0.038
0.595
477
-0.087
-0.008
0.117
-0.572
-0.050
0.772
-0.440
-0.038
0.594
478
-0.087
-0.008
0.117
-0.571
-0.050
0.770
-0.440
-0.038
0.593
479
-0.087
-0.008
0.117
-0.570
-0.049
0.769
-0.439
-0.038
0.592
480
-0.087
-0.008
0.117
-0.569
-0.049
0.768
-0.438
-0.038
0.591
481
-0.087
-0.007
0.116
-0.568
-0.049
0.766
-0.438
-0.038
0.590
482
-0.087
-0.007
0.116
-0.567
-0.049
0.765
-0.437
-0.038
0.589
483
-0.087
-0.007
0.116
-0.566
-0.049
0.764
-0.436
-0.038
0.588
484
-0.086
-0.007
0.116
-0.565
-0.049
0.763
-0.435
-0.038
0.587
485
-0.086
-0.007
0.116
-0.564
-0.049
0.761
-0.435
-0.038
0.586
486
-0.086
-0.007
0.115
-0.563
-0.049
0.760
-0.434
-0.038
0.585
487
-0.086
-0.007
0.115
-0.562
-0.049
0.759
-0.433
-0.037
0.584
488
-0.086
-0.007
0.115
-0.561
-0.049
0.758
-0.432
-0.037
0.583
489
-0.086
-0.007
0.115
-0.561
-0.049
0.757
-0.432
-0.037
0.582
490
-0.086
-0.007
0.115
-0.560
-0.049
0.755
-0.431
-0.037
0.581
491
-0.085
-0.007
0.115
-0.559
-0.048
0.754
-0.430
-0.037
0.580
492
-0.085
-0.007
0.114
-0.558
-0.048
0.753
-0.430
-0.037
0.579
493
-0.085
-0.007
0.114
-0.557
-0.048
0.752
-0.429
-0.037
0.578
494
-0.085
-0.007
0.114
-0.556
-0.048
0.750
-0.428
-0.037
0.577
495
-0.085
-0.007
0.114
-0.555
-0.048
0.749
-0.427
-0.037
0.576
496
-0.085
-0.007
0.114
-0.554
-0.048
0.748
-0.427
-0.037
0.575
497
-0.085
-0.007
0.113
-0.553
-0.048
0.747
-0.426
-0.037
0.575
498
-0.084
-0.007
0.113
-0.552
-0.048
0.745
-0.425
-0.037
0.574
499
-0.084
-0.007
0.113
-0.551
-0.048
0.744
-0.425
-0.037
0.573

Data for Figure 6 - Panel B

Quarters
Consumption Home Relative to Foreign:
Path 3
Consumption Home Relative to Foreign:
Path 2
Consumption Home Relative to Foreign:
Path 1
Real Exchange Rate Home:
Path 3
Real Exchange Rate Home:
Path 2
Real Exchange Rate Home:
Path 1
Trade Balance to GDP Ratio Home:
Path 3
Trade Balance to GDP Ratio Home:
Path 2
Trade Balance to GDP Ratio Home:
Path 1
1
-1.684
-0.150
2.353
7.223
0.614
-9.112
-0.00082
-0.00006
0.00103
2
-1.716
-0.153
2.400
7.140
0.608
-9.015
-0.00078
-0.00007
0.00096
3
-1.747
-0.155
2.444
7.060
0.601
-8.922
-0.00073
-0.00006
0.00090
4
-1.777
-0.158
2.486
6.984
0.595
-8.833
-0.00069
-0.00006
0.00085
5
-1.804
-0.160
2.526
6.910
0.589
-8.748
-0.00065
-0.00005
0.00080
6
-1.831
-0.163
2.563
6.840
0.583
-8.666
-0.00061
-0.00005
0.00075
7
-1.856
-0.165
2.599
6.773
0.577
-8.587
-0.00057
-0.00005
0.00070
8
-1.879
-0.167
2.632
6.709
0.572
-8.511
-0.00053
-0.00004
0.00066
9
-1.901
-0.169
2.664
6.647
0.567
-8.439
-0.00050
-0.00004
0.00062
10
-1.922
-0.171
2.694
6.588
0.562
-8.369
-0.00046
-0.00004
0.00057
11
-1.942
-0.172
2.723
6.531
0.557
-8.302
-0.00043
-0.00004
0.00054
12
-1.961
-0.174
2.750
6.476
0.553
-8.237
-0.00040
-0.00003
0.00050
13
-1.978
-0.176
2.775
6.424
0.548
-8.175
-0.00037
-0.00003
0.00046
14
-1.995
-0.177
2.799
6.373
0.544
-8.115
-0.00035
-0.00003
0.00043
15
-2.011
-0.179
2.821
6.325
0.540
-8.058
-0.00032
-0.00003
0.00040
16
-2.025
-0.180
2.843
6.278
0.536
-8.003
-0.00030
-0.00003
0.00037
17
-2.039
-0.181
2.863
6.233
0.533
-7.949
-0.00027
-0.00002
0.00034
18
-2.052
-0.182
2.881
6.190
0.529
-7.898
-0.00025
-0.00002
0.00031
19
-2.064
-0.183
2.899
6.148
0.526
-7.849
-0.00023
-0.00002
0.00029
20
-2.076
-0.184
2.916
6.109
0.522
-7.801
-0.00021
-0.00002
0.00026
21
-2.087
-0.185
2.931
6.070
0.519
-7.755
-0.00019
-0.00002
0.00024
22
-2.097
-0.186
2.946
6.033
0.516
-7.711
-0.00017
-0.00001
0.00021
23
-2.106
-0.187
2.959
5.997
0.513
-7.668
-0.00015
-0.00001
0.00019
24
-2.115
-0.188
2.972
5.963
0.510
-7.627
-0.00014
-0.00001
0.00017
25
-2.123
-0.189
2.984
5.929
0.507
-7.587
-0.00012
-0.00001
0.00015
26
-2.131
-0.189
2.995
5.897
0.505
-7.549
-0.00011
-0.00001
0.00013
27
-2.138
-0.190
3.005
5.866
0.502
-7.511
-0.00009
-0.00001
0.00012
28
-2.145
-0.190
3.015
5.836
0.500
-7.475
-0.00008
-0.00001
0.00010
29
-2.151
-0.191
3.024
5.807
0.497
-7.441
-0.00007
-0.00001
0.00008
30
-2.156
-0.191
3.032
5.779
0.495
-7.407
-0.00005
0.00000
0.00007
31
-2.162
-0.192
3.039
5.752
0.493
-7.374
-0.00004
0.00000
0.00005
32
-2.166
-0.192
3.046
5.726
0.490
-7.343
-0.00003
0.00000
0.00004
33
-2.171
-0.193
3.053
5.700
0.488
-7.312
-0.00002
0.00000
0.00002
34
-2.175
-0.193
3.058
5.675
0.486
-7.283
-0.00001
0.00000
0.00001
35
-2.179
-0.193
3.064
5.651
0.484
-7.254
0.00000
0.00000
0.00000
36
-2.182
-0.194
3.069
5.628
0.482
-7.226
0.00001
0.00000
-0.00001
37
-2.185
-0.194
3.073
5.606
0.480
-7.199
0.00002
0.00000
-0.00002
38
-2.188
-0.194
3.077
5.584
0.479
-7.172
0.00003
0.00000
-0.00003
39
-2.190
-0.194
3.080
5.563
0.477
-7.147
0.00003
0.00000
-0.00004
40
-2.192
-0.195
3.083
5.542
0.475
-7.122
0.00004
0.00000
-0.00005
41
-2.194
-0.195
3.086
5.522
0.473
-7.098
0.00005
0.00000
-0.00006
42
-2.195
-0.195
3.088
5.502
0.472
-7.074
0.00006
0.00000
-0.00007
43
-2.197
-0.195
3.090
5.483
0.470
-7.051
0.00006
0.00001
-0.00008
44
-2.198
-0.195
3.092
5.465
0.469
-7.029
0.00007
0.00001
-0.00009
45
-2.199
-0.195
3.093
5.447
0.467
-7.007
0.00007
0.00001
-0.00009
46
-2.199
-0.195
3.094
5.429
0.466
-6.986
0.00008
0.00001
-0.00010
47
-2.200
-0.195
3.095
5.412
0.464
-6.965
0.00008
0.00001
-0.00011
48
-2.200
-0.195
3.095
5.395
0.463
-6.944
0.00009
0.00001
-0.00011
49
-2.200
-0.195
3.095
5.379
0.461
-6.925
0.00009
0.00001
-0.00012
50
-2.200
-0.195
3.095
5.363
0.460
-6.905
0.00010
0.00001
-0.00012
51
-2.200
-0.195
3.095
5.347
0.459
-6.886
0.00010
0.00001
-0.00013
52
-2.200
-0.195
3.094
5.332
0.457
-6.868
0.00011
0.00001
-0.00013
53
-2.199
-0.195
3.093
5.317
0.456
-6.849
0.00011
0.00001
-0.00014
54
-2.198
-0.195
3.092
5.302
0.455
-6.832
0.00011
0.00001
-0.00014
55
-2.197
-0.195
3.091
5.287
0.454
-6.814
0.00012
0.00001
-0.00015
56
-2.196
-0.195
3.090
5.273
0.453
-6.797
0.00012
0.00001
-0.00015
57
-2.195
-0.195
3.088
5.259
0.451
-6.780
0.00012
0.00001
-0.00016
58
-2.194
-0.195
3.086
5.246
0.450
-6.764
0.00013
0.00001
-0.00016
59
-2.193
-0.195
3.084
5.232
0.449
-6.747
0.00013
0.00001
-0.00016
60
-2.191
-0.194
3.082
5.219
0.448
-6.731
0.00013
0.00001
-0.00017
61
-2.190
-0.194
3.080
5.206
0.447
-6.716
0.00014
0.00001
-0.00017
62
-2.188
-0.194
3.078
5.194
0.446
-6.700
0.00014
0.00001
-0.00017
63
-2.187
-0.194
3.075
5.181
0.445
-6.685
0.00014
0.00001
-0.00018
64
-2.185
-0.194
3.073
5.169
0.444
-6.670
0.00014
0.00001
-0.00018
65
-2.183
-0.194
3.070
5.157
0.443
-6.655
0.00014
0.00001
-0.00018
66
-2.181
-0.193
3.067
5.145
0.442
-6.641
0.00015
0.00001
-0.00018
67
-2.179
-0.193
3.065
5.133
0.441
-6.627
0.00015
0.00001
-0.00019
68
-2.177
-0.193
3.061
5.121
0.440
-6.613
0.00015
0.00001
-0.00019
69
-2.175
-0.193
3.058
5.110
0.439
-6.599
0.00015
0.00001
-0.00019
70
-2.173
-0.193
3.055
5.099
0.438
-6.585
0.00015
0.00001
-0.00019
71
-2.170
-0.193
3.052
5.088
0.437
-6.571
0.00015
0.00001
-0.00019
72
-2.168
-0.192
3.049
5.077
0.436
-6.558
0.00016
0.00001
-0.00020
73
-2.166
-0.192
3.045
5.066
0.435
-6.545
0.00016
0.00001
-0.00020
74
-2.163
-0.192
3.042
5.055
0.434
-6.532
0.00016
0.00001
-0.00020
75
-2.161
-0.192
3.038
5.044
0.433
-6.519
0.00016
0.00001
-0.00020
76
-2.158
-0.191
3.034
5.034
0.432
-6.506
0.00016
0.00001
-0.00020
77
-2.156
-0.191
3.031
5.023
0.432
-6.493
0.00016
0.00001
-0.00020
78
-2.153
-0.191
3.027
5.013
0.431
-6.481
0.00016
0.00001
-0.00020
79
-2.150
-0.191
3.023
5.003
0.430
-6.468
0.00016
0.00001
-0.00021
80
-2.148
-0.190
3.019
4.993
0.429
-6.456
0.00016
0.00001
-0.00021
81
-2.145
-0.190
3.015
4.983
0.428
-6.444
0.00016
0.00001
-0.00021
82
-2.142
-0.190
3.011
4.973
0.427
-6.432
0.00017
0.00001
-0.00021
83
-2.140
-0.190
3.007
4.963
0.426
-6.420
0.00017
0.00001
-0.00021
84
-2.137
-0.189
3.003
4.953
0.426
-6.408
0.00017
0.00001
-0.00021
85
-2.134
-0.189
2.999
4.944
0.425
-6.396
0.00017
0.00001
-0.00021
86
-2.131
-0.189
2.995
4.934
0.424
-6.384
0.00017
0.00001
-0.00021
87
-2.128
-0.189
2.991
4.925
0.423
-6.373
0.00017
0.00001
-0.00021
88
-2.125
-0.188
2.987
4.915
0.422
-6.361
0.00017
0.00001
-0.00021
89
-2.122
-0.188
2.983
4.906
0.422
-6.350
0.00017
0.00001
-0.00021
90
-2.119
-0.188
2.978
4.897
0.421
-6.338
0.00017
0.00001
-0.00021
91
-2.116
-0.188
2.974
4.887
0.420
-6.327
0.00017
0.00001
-0.00021
92
-2.113
-0.187
2.970
4.878
0.419
-6.316
0.00017
0.00001
-0.00022
93
-2.110
-0.187
2.965
4.869
0.418
-6.305
0.00017
0.00001
-0.00022
94
-2.107
-0.187
2.961
4.860
0.418
-6.294
0.00017
0.00001
-0.00022
95
-2.104
-0.187
2.957
4.851
0.417
-6.282
0.00017
0.00001
-0.00022
96
-2.101
-0.186
2.952
4.842
0.416
-6.272
0.00017
0.00001
-0.00022
97
-2.098
-0.186
2.948
4.833
0.415
-6.261
0.00017
0.00001
-0.00022
98
-2.095
-0.186
2.943
4.824
0.415
-6.250
0.00017
0.00001
-0.00022
99
-2.092
-0.185
2.939
4.816
0.414
-6.239
0.00017
0.00001
-0.00022
100
-2.089
-0.185
2.934
4.807
0.413
-6.228
0.00017
0.00001
-0.00022
101
-2.086
-0.185
2.930
4.798
0.412
-6.218
0.00017
0.00001
-0.00022
102
-2.083
-0.185
2.925
4.789
0.412
-6.207
0.00017
0.00001
-0.00022
103
-2.080
-0.184
2.921
4.781
0.411
-6.196
0.00017
0.00001
-0.00022
104
-2.076
-0.184
2.916
4.772
0.410
-6.186
0.00017
0.00001
-0.00022
105
-2.073
-0.184
2.912
4.764
0.409
-6.175
0.00017
0.00001
-0.00022
106
-2.070
-0.183
2.907
4.755
0.409
-6.165
0.00017
0.00001
-0.00022
107
-2.067
-0.183
2.903
4.747
0.408
-6.155
0.00017
0.00001
-0.00022
108
-2.064
-0.183
2.898
4.738
0.407
-6.144
0.00017
0.00001
-0.00022
109
-2.061
-0.183
2.894
4.730
0.407
-6.134
0.00017
0.00001
-0.00022
110
-2.058
-0.182
2.889
4.722
0.406
-6.124
0.00017
0.00001
-0.00022
111
-2.054
-0.182
2.885
4.713
0.405
-6.113
0.00017
0.00001
-0.00022
112
-2.051
-0.182
2.880
4.705
0.404
-6.103
0.00017
0.00001
-0.00022
113
-2.048
-0.181
2.875
4.697
0.404
-6.093
0.00017
0.00001
-0.00022
114
-2.045
-0.181
2.871
4.688
0.403
-6.083
0.00017
0.00001
-0.00022
115
-2.042
-0.181
2.866
4.680
0.402
-6.073
0.00017
0.00001
-0.00022
116
-2.038
-0.181
2.862
4.672
0.402
-6.063
0.00017
0.00001
-0.00022
117
-2.035
-0.180
2.857
4.664
0.401
-6.053
0.00017
0.00001
-0.00022
118
-2.032
-0.180
2.853
4.656
0.400
-6.043
0.00017
0.00001
-0.00022
119
-2.029
-0.180
2.848
4.648
0.400
-6.033
0.00017
0.00001
-0.00022
120
-2.026
-0.179
2.843
4.640
0.399
-6.023
0.00017
0.00001
-0.00022
121
-2.022
-0.179
2.839
4.631
0.398
-6.013
0.00017
0.00001
-0.00022
122
-2.019
-0.179
2.834
4.623
0.398
-6.003
0.00017
0.00001
-0.00022
123
-2.016
-0.179
2.830
4.615
0.397
-5.993
0.00017
0.00001
-0.00022
124
-2.013
-0.178
2.825
4.607
0.396
-5.983
0.00017
0.00001
-0.00022
125
-2.010
-0.178
2.820
4.599
0.396
-5.974
0.00017
0.00001
-0.00022
126
-2.007
-0.178
2.816
4.592
0.395
-5.964
0.00017
0.00001
-0.00022
127
-2.003
-0.177
2.811
4.584
0.394
-5.954
0.00017
0.00001
-0.00022
128
-2.000
-0.177
2.807
4.576
0.393
-5.944
0.00017
0.00001
-0.00022
129
-1.997
-0.177
2.802
4.568
0.393
-5.935
0.00017
0.00001
-0.00022
130
-1.994
-0.177
2.797
4.560
0.392
-5.925
0.00017
0.00001
-0.00022
131
-1.991
-0.176
2.793
4.552
0.391
-5.915
0.00017
0.00001
-0.00022
132
-1.987
-0.176
2.788
4.544
0.391
-5.906
0.00017
0.00001
-0.00022
133
-1.984
-0.176
2.784
4.537
0.390
-5.896
0.00017
0.00001
-0.00021
134
-1.981
-0.175
2.779
4.529
0.389
-5.886
0.00017
0.00001
-0.00021
135
-1.978
-0.175
2.775
4.521
0.389
-5.877
0.00017
0.00001
-0.00021
136
-1.975
-0.175
2.770
4.513
0.388
-5.867
0.00017
0.00001
-0.00021
137
-1.972
-0.175
2.765
4.506
0.388
-5.858
0.00017
0.00001
-0.00021
138
-1.968
-0.174
2.761
4.498
0.387
-5.848
0.00017
0.00001
-0.00021
139
-1.965
-0.174
2.756
4.490
0.386
-5.839
0.00017
0.00001
-0.00021
140
-1.962
-0.174
2.752
4.483
0.386
-5.829
0.00017
0.00001
-0.00021
141
-1.959
-0.173
2.747
4.475
0.385
-5.820
0.00017
0.00001
-0.00021
142
-1.956
-0.173
2.743
4.467
0.384
-5.811
0.00017
0.00001
-0.00021
143
-1.953
-0.173
2.738
4.460
0.384
-5.801
0.00017
0.00001
-0.00021
144
-1.949
-0.173
2.734
4.452
0.383
-5.792
0.00017
0.00001
-0.00021
145
-1.946
-0.172
2.729
4.445
0.382
-5.782
0.00017
0.00001
-0.00021
146
-1.943
-0.172
2.725
4.437
0.382
-5.773
0.00017
0.00001
-0.00021
147
-1.940
-0.172
2.720
4.429
0.381
-5.764
0.00017
0.00001
-0.00021
148
-1.937
-0.171
2.716
4.422
0.380
-5.754
0.00017
0.00001
-0.00021
149
-1.934
-0.171
2.711
4.414
0.380
-5.745
0.00017
0.00001
-0.00021
150
-1.931
-0.171
2.707
4.407
0.379
-5.736
0.00016
0.00001
-0.00021
151
-1.927
-0.171
2.702
4.399
0.378
-5.727
0.00016
0.00001
-0.00021
152
-1.924
-0.170
2.698
4.392
0.378
-5.717
0.00016
0.00001
-0.00021
153
-1.921
-0.170
2.693
4.385
0.377
-5.708
0.00016
0.00001
-0.00021
154
-1.918
-0.170
2.689
4.377
0.377
-5.699
0.00016
0.00001
-0.00021
155
-1.915
-0.169
2.684
4.370
0.376
-5.690
0.00016
0.00001
-0.00021
156
-1.912
-0.169
2.680
4.362
0.375
-5.681
0.00016
0.00001
-0.00021
157
-1.909
-0.169
2.675
4.355
0.375
-5.672
0.00016
0.00001
-0.00021
158
-1.906
-0.169
2.671
4.347
0.374
-5.662
0.00016
0.00001
-0.00021
159
-1.903
-0.168
2.666
4.340
0.373
-5.653
0.00016
0.00001
-0.00021
160
-1.899
-0.168
2.662
4.333
0.373
-5.644
0.00016
0.00001
-0.00021
161
-1.896
-0.168
2.658
4.325
0.372
-5.635
0.00016
0.00001
-0.00021
162
-1.893
-0.167
2.653
4.318
0.372
-5.626
0.00016
0.00001
-0.00021
163
-1.890
-0.167
2.649
4.311
0.371
-5.617
0.00016
0.00001
-0.00021
164
-1.887
-0.167
2.644
4.304
0.370
-5.608
0.00016
0.00001
-0.00021
165
-1.884
-0.167
2.640
4.296
0.370
-5.599
0.00016
0.00001
-0.00021
166
-1.881
-0.166
2.636
4.289
0.369
-5.590
0.00016
0.00001
-0.00021
167
-1.878
-0.166
2.631
4.282
0.368
-5.581
0.00016
0.00001
-0.00021
168
-1.875
-0.166
2.627
4.275
0.368
-5.572
0.00016
0.00001
-0.00020
169
-1.872
-0.166
2.622
4.267
0.367
-5.563
0.00016
0.00001
-0.00020
170
-1.869
-0.165
2.618
4.260
0.367
-5.554
0.00016
0.00001
-0.00020
171
-1.866
-0.165
2.614
4.253
0.366
-5.545
0.00016
0.00001
-0.00020
172
-1.863
-0.165
2.609
4.246
0.365
-5.536
0.00016
0.00001
-0.00020
173
-1.860
-0.164
2.605
4.239
0.365
-5.527
0.00016
0.00001
-0.00020
174
-1.857
-0.164
2.601
4.231
0.364
-5.518
0.00016
0.00001
-0.00020
175
-1.854
-0.164
2.596
4.224
0.364
-5.510
0.00016
0.00001
-0.00020
176
-1.851
-0.164
2.592
4.217
0.363
-5.501
0.00016
0.00001
-0.00020
177
-1.848
-0.163
2.588
4.210
0.362
-5.492
0.00016
0.00001
-0.00020
178
-1.845
-0.163
2.583
4.203
0.362
-5.483
0.00016
0.00001
-0.00020
179
-1.842
-0.163
2.579
4.196
0.361
-5.474
0.00016
0.00001
-0.00020
180
-1.839
-0.163
2.575
4.189
0.361
-5.465
0.00016
0.00001
-0.00020
181
-1.836
-0.162
2.570
4.182
0.360
-5.457
0.00016
0.00001
-0.00020
182
-1.833
-0.162
2.566
4.175
0.359
-5.448
0.00016
0.00001
-0.00020
183
-1.830
-0.162
2.562
4.168
0.359
-5.439
0.00016
0.00001
-0.00020
184
-1.827
-0.161
2.558
4.161
0.358
-5.430
0.00016
0.00001
-0.00020
185
-1.824
-0.161
2.553
4.154
0.357
-5.422
0.00016
0.00001
-0.00020
186
-1.821
-0.161
2.549
4.147
0.357
-5.413
0.00016
0.00001
-0.00020
187
-1.818
-0.161
2.545
4.140
0.356
-5.404
0.00016
0.00001
-0.00020
188
-1.815
-0.160
2.541
4.133
0.356
-5.396
0.00016
0.00001
-0.00020
189
-1.812
-0.160
2.536
4.126
0.355
-5.387
0.00015
0.00001
-0.00020
190
-1.809
-0.160
2.532
4.119
0.355
-5.378
0.00015
0.00001
-0.00020
191
-1.806
-0.160
2.528
4.112
0.354
-5.370
0.00015
0.00001
-0.00020
192
-1.803
-0.159
2.524
4.105
0.353
-5.361
0.00015
0.00001
-0.00020
193
-1.800
-0.159
2.519
4.098
0.353
-5.352
0.00015
0.00001
-0.00020
194
-1.797
-0.159
2.515
4.091
0.352
-5.344
0.00015
0.00001
-0.00020
195
-1.794
-0.159
2.511
4.084
0.352
-5.335
0.00015
0.00001
-0.00020
196
-1.791
-0.158
2.507
4.077
0.351
-5.327
0.00015
0.00001
-0.00020
197
-1.788
-0.158
2.503
4.070
0.350
-5.318
0.00015
0.00001
-0.00020
198
-1.785
-0.158
2.498
4.063
0.350
-5.310
0.00015
0.00001
-0.00020
199
-1.782
-0.157
2.494
4.057
0.349
-5.301
0.00015
0.00001
-0.00020
200
-1.779
-0.157
2.490
4.050
0.349
-5.293
0.00015
0.00001
-0.00020
201
-1.776
-0.157
2.486
4.043
0.348
-5.284
0.00015
0.00001
-0.00019
202
-1.774
-0.157
2.482
4.036
0.347
-5.276
0.00015
0.00001
-0.00019
203
-1.771
-0.156
2.478
4.029
0.347
-5.267
0.00015
0.00001
-0.00019
204
-1.768
-0.156
2.474
4.023
0.346
-5.259
0.00015
0.00001
-0.00019
205
-1.765
-0.156
2.469
4.016
0.346
-5.250
0.00015
0.00001
-0.00019
206
-1.762
-0.156
2.465
4.009
0.345
-5.242
0.00015
0.00001
-0.00019
207
-1.759
-0.155
2.461
4.002
0.345
-5.233
0.00015
0.00001
-0.00019
208
-1.756
-0.155
2.457
3.996
0.344
-5.225
0.00015
0.00001
-0.00019
209
-1.753
-0.155
2.453
3.989
0.343
-5.217
0.00015
0.00001
-0.00019
210
-1.751
-0.155
2.449
3.982
0.343
-5.208
0.00015
0.00001
-0.00019
211
-1.748
-0.154
2.445
3.975
0.342
-5.200
0.00015
0.00001
-0.00019
212
-1.745
-0.154
2.441
3.969
0.342
-5.191
0.00015
0.00001
-0.00019
213
-1.742
-0.154
2.437
3.962
0.341
-5.183
0.00015
0.00001
-0.00019
214
-1.739
-0.154
2.433
3.955
0.341
-5.175
0.00015
0.00001
-0.00019
215
-1.736
-0.153
2.428
3.949
0.340
-5.166
0.00015
0.00001
-0.00019
216
-1.733
-0.153
2.424
3.942
0.339
-5.158
0.00015
0.00001
-0.00019
217
-1.731
-0.153
2.420
3.936
0.339
-5.150
0.00015
0.00001
-0.00019
218
-1.728
-0.153
2.416
3.929
0.338
-5.142
0.00015
0.00001
-0.00019
219
-1.725
-0.152
2.412
3.922
0.338
-5.133
0.00015
0.00001
-0.00019
220
-1.722
-0.152
2.408
3.916
0.337
-5.125
0.00015
0.00001
-0.00019
221
-1.719
-0.152
2.404
3.909
0.337
-5.117
0.00015
0.00001
-0.00019
222
-1.717
-0.152
2.400
3.903
0.336
-5.109
0.00015
0.00001
-0.00019
223
-1.714
-0.151
2.396
3.896
0.335
-5.100
0.00015
0.00001
-0.00019
224
-1.711
-0.151
2.392
3.889
0.335
-5.092
0.00015
0.00001
-0.00019
225
-1.708
-0.151
2.388
3.883
0.334
-5.084
0.00015
0.00001
-0.00019
226
-1.705
-0.151
2.384
3.876
0.334
-5.076
0.00015
0.00001
-0.00019
227
-1.703
-0.150
2.380
3.870
0.333
-5.068
0.00015
0.00001
-0.00019
228
-1.700
-0.150
2.376
3.863
0.333
-5.060
0.00014
0.00001
-0.00019
229
-1.697
-0.150
2.372
3.857
0.332
-5.051
0.00014
0.00001
-0.00019
230
-1.694
-0.150
2.368
3.850
0.332
-5.043
0.00014
0.00001
-0.00019
231
-1.691
-0.149
2.364
3.844
0.331
-5.035
0.00014
0.00001
-0.00019
232
-1.689
-0.149
2.360
3.837
0.330
-5.027
0.00014
0.00001
-0.00019
233
-1.686
-0.149
2.357
3.831
0.330
-5.019
0.00014
0.00001
-0.00019
234
-1.683
-0.149
2.353
3.825
0.329
-5.011
0.00014
0.00001
-0.00018
235
-1.680
-0.148
2.349
3.818
0.329
-5.003
0.00014
0.00001
-0.00018
236
-1.678
-0.148
2.345
3.812
0.328
-4.995
0.00014
0.00001
-0.00018
237
-1.675
-0.148
2.341
3.805
0.328
-4.987
0.00014
0.00001
-0.00018
238
-1.672
-0.148
2.337
3.799
0.327
-4.979
0.00014
0.00001
-0.00018
239
-1.669
-0.147
2.333
3.792
0.327
-4.971
0.00014
0.00001
-0.00018
240
-1.667
-0.147
2.329
3.786
0.326
-4.963
0.00014
0.00001
-0.00018
241
-1.664
-0.147
2.325
3.780
0.326
-4.955
0.00014
0.00001
-0.00018
242
-1.661
-0.147
2.321
3.773
0.325
-4.947
0.00014
0.00001
-0.00018
243
-1.658
-0.146
2.317
3.767
0.324
-4.939
0.00014
0.00001
-0.00018
244
-1.656
-0.146
2.314
3.761
0.324
-4.931
0.00014
0.00001
-0.00018
245
-1.653
-0.146
2.310
3.754
0.323
-4.923
0.00014
0.00001
-0.00018
246
-1.650
-0.146
2.306
3.748
0.323
-4.915
0.00014
0.00001
-0.00018
247
-1.648
-0.145
2.302
3.742
0.322
-4.907
0.00014
0.00001
-0.00018
248
-1.645
-0.145
2.298
3.736
0.322
-4.899
0.00014
0.00001
-0.00018
249
-1.642
-0.145
2.294
3.729
0.321
-4.891
0.00014
0.00001
-0.00018
250
-1.640
-0.145
2.291
3.723
0.321
-4.884
0.00014
0.00001
-0.00018
251
-1.637
-0.144
2.287
3.717
0.320
-4.876
0.00014
0.00001
-0.00018
252
-1.634
-0.144
2.283
3.710
0.320
-4.868
0.00014
0.00001
-0.00018
253
-1.632
-0.144
2.279
3.704
0.319
-4.860
0.00014
0.00001
-0.00018
254
-1.629
-0.144
2.275
3.698
0.319
-4.852
0.00014
0.00001
-0.00018
255
-1.626
-0.143
2.272
3.692
0.318
-4.844
0.00014
0.00001
-0.00018
256
-1.624
-0.143
2.268
3.686
0.317
-4.837
0.00014
0.00001
-0.00018
257
-1.621
-0.143
2.264
3.679
0.317
-4.829
0.00014
0.00001
-0.00018
258
-1.618
-0.143
2.260
3.673
0.316
-4.821
0.00014
0.00001
-0.00018
259
-1.616
-0.142
2.256
3.667
0.316
-4.813
0.00014
0.00001
-0.00018
260
-1.613
-0.142
2.253
3.661
0.315
-4.806
0.00014
0.00001
-0.00018
261
-1.610
-0.142
2.249
3.655
0.315
-4.798
0.00014
0.00001
-0.00018
262
-1.608
-0.142
2.245
3.649
0.314
-4.790
0.00014
0.00001
-0.00018
263
-1.605
-0.142
2.241
3.643
0.314
-4.782
0.00014
0.00001
-0.00018
264
-1.602
-0.141
2.238
3.636
0.313
-4.775
0.00014
0.00001
-0.00018
265
-1.600
-0.141
2.234
3.630
0.313
-4.767
0.00014
0.00001
-0.00018
266
-1.597
-0.141
2.230
3.624
0.312
-4.759
0.00014
0.00001
-0.00018
267
-1.595
-0.141
2.226
3.618
0.312
-4.752
0.00014
0.00001
-0.00018
268
-1.592
-0.140
2.223
3.612
0.311
-4.744
0.00014
0.00001
-0.00018
269
-1.589
-0.140
2.219
3.606
0.311
-4.736
0.00014
0.00001
-0.00017
270
-1.587
-0.140
2.215
3.600
0.310
-4.729
0.00014
0.00001
-0.00017
271
-1.584
-0.140
2.212
3.594
0.310
-4.721
0.00013
0.00001
-0.00017
272
-1.582
-0.139
2.208
3.588
0.309
-4.714
0.00013
0.00001
-0.00017
273
-1.579
-0.139
2.204
3.582
0.309
-4.706
0.00013
0.00001
-0.00017
274
-1.576
-0.139
2.201
3.576
0.308
-4.698
0.00013
0.00001
-0.00017
275
-1.574
-0.139
2.197
3.570
0.308
-4.691
0.00013
0.00001
-0.00017
276
-1.571
-0.139
2.193
3.564
0.307
-4.683
0.00013
0.00001
-0.00017
277
-1.569
-0.138
2.190
3.558
0.307
-4.676
0.00013
0.00001
-0.00017
278
-1.566
-0.138
2.186
3.552
0.306
-4.668
0.00013
0.00001
-0.00017
279
-1.564
-0.138
2.182
3.546
0.306
-4.661
0.00013
0.00001
-0.00017
280
-1.561
-0.138
2.179
3.540
0.305
-4.653
0.00013
0.00001
-0.00017
281
-1.558
-0.137
2.175
3.534
0.305
-4.646
0.00013
0.00001
-0.00017
282
-1.556
-0.137
2.171
3.528
0.304
-4.638
0.00013
0.00001
-0.00017
283
-1.553
-0.137
2.168
3.522
0.303
-4.631
0.00013
0.00001
-0.00017
284
-1.551
-0.137
2.164
3.516
0.303
-4.623
0.00013
0.00001
-0.00017
285
-1.548
-0.136
2.161
3.510
0.302
-4.616
0.00013
0.00001
-0.00017
286
-1.546
-0.136
2.157
3.504
0.302
-4.608
0.00013
0.00001
-0.00017
287
-1.543
-0.136
2.153
3.499
0.301
-4.601
0.00013
0.00001
-0.00017
288
-1.541
-0.136
2.150
3.493
0.301
-4.594
0.00013
0.00001
-0.00017
289
-1.538
-0.136
2.146
3.487
0.300
-4.586
0.00013
0.00001
-0.00017
290
-1.536
-0.135
2.143
3.481
0.300
-4.579
0.00013
0.00001
-0.00017
291
-1.533
-0.135
2.139
3.475
0.299
-4.571
0.00013
0.00001
-0.00017
292
-1.531
-0.135
2.135
3.469
0.299
-4.564
0.00013
0.00001
-0.00017
293
-1.528
-0.135
2.132
3.464
0.298
-4.557
0.00013
0.00001
-0.00017
294
-1.526
-0.134
2.128
3.458
0.298
-4.549
0.00013
0.00001
-0.00017
295
-1.523
-0.134
2.125
3.452
0.297
-4.542
0.00013
0.00001
-0.00017
296
-1.521
-0.134
2.121
3.446
0.297
-4.535
0.00013
0.00001
-0.00017
297
-1.518
-0.134
2.118
3.440
0.296
-4.527
0.00013
0.00001
-0.00017
298
-1.516
-0.134
2.114
3.435
0.296
-4.520
0.00013
0.00001
-0.00017
299
-1.513
-0.133
2.111
3.429
0.295
-4.513
0.00013
0.00001
-0.00017
300
-1.511
-0.133
2.107
3.423
0.295
-4.506
0.00013
0.00001
-0.00017
301
-1.508
-0.133
2.104
3.417
0.295
-4.498
0.00013
0.00001
-0.00017
302
-1.506
-0.133
2.100
3.412
0.294
-4.491
0.00013
0.00001
-0.00017
303
-1.503
-0.132
2.097
3.406
0.294
-4.484
0.00013
0.00001
-0.00017
304
-1.501
-0.132
2.093
3.400
0.293
-4.477
0.00013
0.00001
-0.00017
305
-1.498
-0.132
2.090
3.394
0.293
-4.469
0.00013
0.00001
-0.00016
306
-1.496
-0.132
2.086
3.389
0.292
-4.462
0.00013
0.00001
-0.00016
307
-1.493
-0.132
2.083
3.383
0.292
-4.455
0.00013
0.00001
-0.00016
308
-1.491
-0.131
2.079
3.377
0.291
-4.448
0.00013
0.00001
-0.00016
309
-1.489
-0.131
2.076
3.372
0.291
-4.441
0.00013
0.00001
-0.00016
310
-1.486
-0.131
2.072
3.366
0.290
-4.433
0.00013
0.00001
-0.00016
311
-1.484
-0.131
2.069
3.360
0.290
-4.426
0.00013
0.00001
-0.00016
312
-1.481
-0.130
2.065
3.355
0.289
-4.419
0.00013
0.00001
-0.00016
313
-1.479
-0.130
2.062
3.349
0.289
-4.412
0.00013
0.00001
-0.00016
314
-1.476
-0.130
2.058
3.344
0.288
-4.405
0.00013
0.00001
-0.00016
315
-1.474
-0.130
2.055
3.338
0.288
-4.398
0.00013
0.00001
-0.00016
316
-1.472
-0.130
2.052
3.332
0.287
-4.391
0.00012
0.00001
-0.00016
317
-1.469
-0.129
2.048
3.327
0.287
-4.384
0.00012
0.00001
-0.00016
318
-1.467
-0.129
2.045
3.321
0.286
-4.377
0.00012
0.00001
-0.00016
319
-1.464
-0.129
2.041
3.316
0.286
-4.369
0.00012
0.00001
-0.00016
320
-1.462
-0.129
2.038
3.310
0.285
-4.362
0.00012
0.00001
-0.00016
321
-1.460
-0.128
2.035
3.305
0.285
-4.355
0.00012
0.00001
-0.00016
322
-1.457
-0.128
2.031
3.299
0.284
-4.348
0.00012
0.00001
-0.00016
323
-1.455
-0.128
2.028
3.293
0.284
-4.341
0.00012
0.00001
-0.00016
324
-1.452
-0.128
2.024
3.288
0.283
-4.334
0.00012
0.00001
-0.00016
325
-1.450
-0.128
2.021
3.282
0.283
-4.327
0.00012
0.00001
-0.00016
326
-1.448
-0.127
2.018
3.277
0.282
-4.320
0.00012
0.00001
-0.00016
327
-1.445
-0.127
2.014
3.271
0.282
-4.313
0.00012
0.00001
-0.00016
328
-1.443
-0.127
2.011
3.266
0.282
-4.306
0.00012
0.00001
-0.00016
329
-1.441
-0.127
2.008
3.260
0.281
-4.300
0.00012
0.00001
-0.00016
330
-1.438
-0.127
2.004
3.255
0.281
-4.293
0.00012
0.00001
-0.00016
331
-1.436
-0.126
2.001
3.250
0.280
-4.286
0.00012
0.00001
-0.00016
332
-1.433
-0.126
1.998
3.244
0.280
-4.279
0.00012
0.00001
-0.00016
333
-1.431
-0.126
1.994
3.239
0.279
-4.272
0.00012
0.00001
-0.00016
334
-1.429
-0.126
1.991
3.233
0.279
-4.265
0.00012
0.00001
-0.00016
335
-1.426
-0.126
1.988
3.228
0.278
-4.258
0.00012
0.00001
-0.00016
336
-1.424
-0.125
1.984
3.222
0.278
-4.251
0.00012
0.00001
-0.00016
337
-1.422
-0.125
1.981
3.217
0.277
-4.244
0.00012
0.00001
-0.00016
338
-1.419
-0.125
1.978
3.212
0.277
-4.237
0.00012
0.00001
-0.00016
339
-1.417
-0.125
1.974
3.206
0.276
-4.231
0.00012
0.00001
-0.00016
340
-1.415
-0.124
1.971
3.201
0.276
-4.224
0.00012
0.00001
-0.00016
341
-1.412
-0.124
1.968
3.195
0.275
-4.217
0.00012
0.00001
-0.00016
342
-1.410
-0.124
1.965
3.190
0.275
-4.210
0.00012
0.00001
-0.00016
343
-1.408
-0.124
1.961
3.185
0.275
-4.203
0.00012
0.00001
-0.00016
344
-1.406
-0.124
1.958
3.179
0.274
-4.197
0.00012
0.00001
-0.00015
345
-1.403
-0.123
1.955
3.174
0.274
-4.190
0.00012
0.00001
-0.00015
346
-1.401
-0.123
1.951
3.169
0.273
-4.183
0.00012
0.00001
-0.00015
347
-1.399
-0.123
1.948
3.164
0.273
-4.176
0.00012
0.00001
-0.00015
348
-1.396
-0.123
1.945
3.158
0.272
-4.170
0.00012
0.00001
-0.00015
349
-1.394
-0.123
1.942
3.153
0.272
-4.163
0.00012
0.00001
-0.00015
350
-1.392
-0.122
1.938
3.148
0.271
-4.156
0.00012
0.00001
-0.00015
351
-1.390
-0.122
1.935
3.142
0.271
-4.149
0.00012
0.00001
-0.00015
352
-1.387
-0.122
1.932
3.137
0.270
-4.143
0.00012
0.00001
-0.00015
353
-1.385
-0.122
1.929
3.132
0.270
-4.136
0.00012
0.00001
-0.00015
354
-1.383
-0.122
1.926
3.127
0.270
-4.129
0.00012
0.00001
-0.00015
355
-1.380
-0.121
1.922
3.121
0.269
-4.123
0.00012
0.00001
-0.00015
356
-1.378
-0.121
1.919
3.116
0.269
-4.116
0.00012
0.00001
-0.00015
357
-1.376
-0.121
1.916
3.111
0.268
-4.109
0.00012
0.00001
-0.00015
358
-1.374
-0.121
1.913
3.106
0.268
-4.103
0.00012
0.00001
-0.00015
359
-1.371
-0.121
1.910
3.101
0.267
-4.096
0.00012
0.00001
-0.00015
360
-1.369
-0.120
1.906
3.095
0.267
-4.089
0.00012
0.00001
-0.00015
361
-1.367
-0.120
1.903
3.090
0.266
-4.083
0.00012
0.00001
-0.00015
362
-1.365
-0.120
1.900
3.085
0.266
-4.076
0.00012
0.00001
-0.00015
363
-1.362
-0.120
1.897
3.080
0.266
-4.070
0.00012
0.00001
-0.00015
364
-1.360
-0.120
1.894
3.075
0.265
-4.063
0.00012
0.00001
-0.00015
365
-1.358
-0.119
1.891
3.069
0.265
-4.057
0.00011
0.00001
-0.00015
366
-1.356
-0.119
1.887
3.064
0.264
-4.050
0.00011
0.00001
-0.00015
367
-1.354
-0.119
1.884
3.059
0.264
-4.043
0.00011
0.00001
-0.00015
368
-1.351
-0.119
1.881
3.054
0.263
-4.037
0.00011
0.00001
-0.00015
369
-1.349
-0.119
1.878
3.049
0.263
-4.030
0.00011
0.00001
-0.00015
370
-1.347
-0.118
1.875
3.044
0.262
-4.024
0.00011
0.00001
-0.00015
371
-1.345
-0.118
1.872
3.039
0.262
-4.017
0.00011
0.00001
-0.00015
372
-1.342
-0.118
1.869
3.034
0.262
-4.011
0.00011
0.00001
-0.00015
373
-1.340
-0.118
1.866
3.029
0.261
-4.004
0.00011
0.00001
-0.00015
374
-1.338
-0.118
1.862
3.024
0.261
-3.998
0.00011
0.00001
-0.00015
375
-1.336
-0.117
1.859
3.018
0.260
-3.991
0.00011
0.00001
-0.00015
376
-1.334
-0.117
1.856
3.013
0.260
-3.985
0.00011
0.00001
-0.00015
377
-1.332
-0.117
1.853
3.008
0.259
-3.979
0.00011
0.00001
-0.00015
378
-1.329
-0.117
1.850
3.003
0.259
-3.972
0.00011
0.00001
-0.00015
379
-1.327
-0.117
1.847
2.998
0.259
-3.966
0.00011
0.00001
-0.00015
380
-1.325
-0.116
1.844
2.993
0.258
-3.959
0.00011
0.00001
-0.00015
381
-1.323
-0.116
1.841
2.988
0.258
-3.953
0.00011
0.00001
-0.00015
382
-1.321
-0.116
1.838
2.983
0.257
-3.947
0.00011
0.00001
-0.00015
383
-1.318
-0.116
1.835
2.978
0.257
-3.940
0.00011
0.00001
-0.00015
384
-1.316
-0.116
1.832
2.973
0.256
-3.934
0.00011
0.00001
-0.00015
385
-1.314
-0.115
1.829
2.968
0.256
-3.927
0.00011
0.00001
-0.00015
386
-1.312
-0.115
1.826
2.963
0.256
-3.921
0.00011
0.00001
-0.00014
387
-1.310
-0.115
1.823
2.958
0.255
-3.915
0.00011
0.00001
-0.00014
388
-1.308
-0.115
1.820
2.953
0.255
-3.908
0.00011
0.00001
-0.00014
389
-1.306
-0.115
1.816
2.949
0.254
-3.902
0.00011
0.00001
-0.00014
390
-1.303
-0.115
1.813
2.944
0.254
-3.896
0.00011
0.00001
-0.00014
391
-1.301
-0.114
1.810
2.939
0.253
-3.889
0.00011
0.00001
-0.00014
392
-1.299
-0.114
1.807
2.934
0.253
-3.883
0.00011
0.00001
-0.00014
393
-1.297
-0.114
1.804
2.929
0.253
-3.877
0.00011
0.00001
-0.00014
394
-1.295
-0.114
1.801
2.924
0.252
-3.871
0.00011
0.00001
-0.00014
395
-1.293
-0.114
1.798
2.919
0.252
-3.864
0.00011
0.00001
-0.00014
396
-1.291
-0.113
1.795
2.914
0.251
-3.858
0.00011
0.00001
-0.00014
397
-1.289
-0.113
1.792
2.909
0.251
-3.852
0.00011
0.00001
-0.00014
398
-1.286
-0.113
1.789
2.904
0.250
-3.846
0.00011
0.00001
-0.00014
399
-1.284
-0.113
1.786
2.900
0.250
-3.839
0.00011
0.00001
-0.00014
400
-1.282
-0.113
1.784
2.895
0.250
-3.833
0.00011
0.00001
-0.00014
401
-1.280
-0.112
1.781
2.890
0.249
-3.827
0.00011
0.00001
-0.00014
402
-1.278
-0.112
1.778
2.885
0.249
-3.821
0.00011
0.00001
-0.00014
403
-1.276
-0.112
1.775
2.880
0.248
-3.815
0.00011
0.00001
-0.00014
404
-1.274
-0.112
1.772
2.875
0.248
-3.809
0.00011
0.00001
-0.00014
405
-1.272
-0.112
1.769
2.871
0.248
-3.802
0.00011
0.00001
-0.00014
406
-1.270
-0.112
1.766
2.866
0.247
-3.796
0.00011
0.00001
-0.00014
407
-1.268
-0.111
1.763
2.861
0.247
-3.790
0.00011
0.00001
-0.00014
408
-1.265
-0.111
1.760
2.856
0.246
-3.784
0.00011
0.00001
-0.00014
409
-1.263
-0.111
1.757
2.851
0.246
-3.778
0.00011
0.00001
-0.00014
410
-1.261
-0.111
1.754
2.847
0.245
-3.772
0.00011
0.00001
-0.00014
411
-1.259
-0.111
1.751
2.842
0.245
-3.766
0.00011
0.00001
-0.00014
412
-1.257
-0.110
1.748
2.837
0.245
-3.759
0.00011
0.00001
-0.00014
413
-1.255
-0.110
1.745
2.832
0.244
-3.753
0.00011
0.00001
-0.00014
414
-1.253
-0.110
1.742
2.828
0.244
-3.747
0.00011
0.00001
-0.00014
415
-1.251
-0.110
1.739
2.823
0.243
-3.741
0.00011
0.00001
-0.00014
416
-1.249
-0.110
1.737
2.818
0.243
-3.735
0.00011
0.00001
-0.00014
417
-1.247
-0.109
1.734
2.813
0.243
-3.729
0.00011
0.00001
-0.00014
418
-1.245
-0.109
1.731
2.809
0.242
-3.723
0.00011
0.00001
-0.00014
419
-1.243
-0.109
1.728
2.804
0.242
-3.717
0.00010
0.00001
-0.00014
420
-1.241
-0.109
1.725
2.799
0.241
-3.711
0.00010
0.00001
-0.00014
421
-1.239
-0.109
1.722
2.795
0.241
-3.705
0.00010
0.00001
-0.00014
422
-1.237
-0.109
1.719
2.790
0.241
-3.699
0.00010
0.00001
-0.00014
423
-1.235
-0.108
1.716
2.785
0.240
-3.693
0.00010
0.00001
-0.00014
424
-1.233
-0.108
1.714
2.781
0.240
-3.687
0.00010
0.00001
-0.00014
425
-1.231
-0.108
1.711
2.776
0.239
-3.681
0.00010
0.00001
-0.00014
426
-1.229
-0.108
1.708
2.771
0.239
-3.675
0.00010
0.00001
-0.00014
427
-1.227
-0.108
1.705
2.767
0.239
-3.669
0.00010
0.00001
-0.00014
428
-1.225
-0.108
1.702
2.762
0.238
-3.663
0.00010
0.00001
-0.00014
429
-1.223
-0.107
1.699
2.758
0.238
-3.657
0.00010
0.00001
-0.00014
430
-1.221
-0.107
1.697
2.753
0.237
-3.651
0.00010
0.00001
-0.00013
431
-1.219
-0.107
1.694
2.748
0.237
-3.646
0.00010
0.00001
-0.00013
432
-1.217
-0.107
1.691
2.744
0.237
-3.640
0.00010
0.00001
-0.00013
433
-1.215
-0.107
1.688
2.739
0.236
-3.634
0.00010
0.00001
-0.00013
434
-1.213
-0.106
1.685
2.735
0.236
-3.628
0.00010
0.00001
-0.00013
435
-1.211
-0.106
1.683
2.730
0.235
-3.622
0.00010
0.00001
-0.00013
436
-1.209
-0.106
1.680
2.725
0.235
-3.616
0.00010
0.00001
-0.00013
437
-1.207
-0.106
1.677
2.721
0.235
-3.610
0.00010
0.00001
-0.00013
438
-1.205
-0.106
1.674
2.716
0.234
-3.604
0.00010
0.00001
-0.00013
439
-1.203
-0.106
1.671
2.712
0.234
-3.599
0.00010
0.00001
-0.00013
440
-1.201
-0.105
1.669
2.707
0.233
-3.593
0.00010
0.00001
-0.00013
441
-1.199
-0.105
1.666
2.703
0.233
-3.587
0.00010
0.00001
-0.00013
442
-1.197
-0.105
1.663
2.698
0.233
-3.581
0.00010
0.00001
-0.00013
443
-1.195
-0.105
1.660
2.694
0.232
-3.575
0.00010
0.00001
-0.00013
444
-1.193
-0.105
1.657
2.689
0.232
-3.570
0.00010
0.00001
-0.00013
445
-1.191
-0.104
1.655
2.685
0.232
-3.564
0.00010
0.00001
-0.00013
446
-1.189
-0.104
1.652
2.680
0.231
-3.558
0.00010
0.00001
-0.00013
447
-1.187
-0.104
1.649
2.676
0.231
-3.552
0.00010
0.00001
-0.00013
448
-1.185
-0.104
1.646
2.671
0.230
-3.546
0.00010
0.00001
-0.00013
449
-1.183
-0.104
1.644
2.667
0.230
-3.541
0.00010
0.00001
-0.00013
450
-1.181
-0.104
1.641
2.662
0.230
-3.535
0.00010
0.00001
-0.00013
451
-1.179
-0.103
1.638
2.658
0.229
-3.529
0.00010
0.00001
-0.00013
452
-1.177
-0.103
1.636
2.653
0.229
-3.524
0.00010
0.00001
-0.00013
453
-1.175
-0.103
1.633
2.649
0.228
-3.518
0.00010
0.00001
-0.00013
454
-1.173
-0.103
1.630
2.645
0.228
-3.512
0.00010
0.00001
-0.00013
455
-1.172
-0.103
1.627
2.640
0.228
-3.506
0.00010
0.00001
-0.00013
456
-1.170
-0.103
1.625
2.636
0.227
-3.501
0.00010
0.00001
-0.00013
457
-1.168
-0.102
1.622
2.631
0.227
-3.495
0.00010
0.00001
-0.00013
458
-1.166
-0.102
1.619
2.627
0.227
-3.489
0.00010
0.00001
-0.00013
459
-1.164
-0.102
1.617
2.623
0.226
-3.484
0.00010
0.00001
-0.00013
460
-1.162
-0.102
1.614
2.618
0.226
-3.478
0.00010
0.00001
-0.00013
461
-1.160
-0.102
1.611
2.614
0.225
-3.472
0.00010
0.00001
-0.00013
462
-1.158
-0.102
1.609
2.609
0.225
-3.467
0.00010
0.00001
-0.00013
463
-1.156
-0.101
1.606
2.605
0.225
-3.461
0.00010
0.00001
-0.00013
464
-1.154
-0.101
1.603
2.601
0.224
-3.456
0.00010
0.00001
-0.00013
465
-1.152
-0.101
1.601
2.596
0.224
-3.450
0.00010
0.00001
-0.00013
466
-1.151
-0.101
1.598
2.592
0.224
-3.444
0.00010
0.00001
-0.00013
467
-1.149
-0.101
1.595
2.588
0.223
-3.439
0.00010
0.00001
-0.00013
468
-1.147
-0.101
1.593
2.583
0.223
-3.433
0.00010
0.00001
-0.00013
469
-1.145
-0.100
1.590
2.579
0.222
-3.428
0.00010
0.00001
-0.00013
470
-1.143
-0.100
1.587
2.575
0.222
-3.422
0.00010
0.00001
-0.00013
471
-1.141
-0.100
1.585
2.570
0.222
-3.417
0.00010
0.00001
-0.00013
472
-1.139
-0.100
1.582
2.566
0.221
-3.411
0.00010
0.00001
-0.00013
473
-1.137
-0.100
1.579
2.562
0.221
-3.406
0.00010
0.00001
-0.00013
474
-1.136
-0.100
1.577
2.558
0.221
-3.400
0.00010
0.00001
-0.00013
475
-1.134
-0.099
1.574
2.553
0.220
-3.395
0.00010
0.00001
-0.00013
476
-1.132
-0.099
1.572
2.549
0.220
-3.389
0.00010
0.00001
-0.00013
477
-1.130
-0.099
1.569
2.545
0.219
-3.384
0.00010
0.00001
-0.00013
478
-1.128
-0.099
1.566
2.541
0.219
-3.378
0.00010
0.00001
-0.00012
479
-1.126
-0.099
1.564
2.536
0.219
-3.373
0.00009
0.00001
-0.00012
480
-1.124
-0.099
1.561
2.532
0.218
-3.367
0.00009
0.00001
-0.00012
481
-1.123
-0.098
1.558
2.528
0.218
-3.362
0.00009
0.00001
-0.00012
482
-1.121
-0.098
1.556
2.524
0.218
-3.356
0.00009
0.00001
-0.00012
483
-1.119
-0.098
1.553
2.519
0.217
-3.351
0.00009
0.00001
-0.00012
484
-1.117
-0.098
1.551
2.515
0.217
-3.345
0.00009
0.00001
-0.00012
485
-1.115
-0.098
1.548
2.511
0.217
-3.340
0.00009
0.00001
-0.00012
486
-1.113
-0.098
1.546
2.507
0.216
-3.334
0.00009
0.00001
-0.00012
487
-1.112
-0.097
1.543
2.503
0.216
-3.329
0.00009
0.00001
-0.00012
488
-1.110
-0.097
1.540
2.498
0.216
-3.324
0.00009
0.00001
-0.00012
489
-1.108
-0.097
1.538
2.494
0.215
-3.318
0.00009
0.00001
-0.00012
490
-1.106
-0.097
1.535
2.490
0.215
-3.313
0.00009
0.00001
-0.00012
491
-1.104
-0.097
1.533
2.486
0.214
-3.308
0.00009
0.00001
-0.00012
492
-1.103
-0.097
1.530
2.482
0.214
-3.302
0.00009
0.00001
-0.00012
493
-1.101
-0.096
1.528
2.478
0.214
-3.297
0.00009
0.00001
-0.00012
494
-1.099
-0.096
1.525
2.474
0.213
-3.291
0.00009
0.00001
-0.00012
495
-1.097
-0.096
1.523
2.469
0.213
-3.286
0.00009
0.00001
-0.00012
496
-1.095
-0.096
1.520
2.465
0.213
-3.281
0.00009
0.00001
-0.00012
497
-1.093
-0.096
1.518
2.461
0.212
-3.275
0.00009
0.00001
-0.00012
498
-1.092
-0.096
1.515
2.457
0.212
-3.270
0.00009
0.00001
-0.00012
499
-1.090
-0.096
1.513
2.453
0.212
-3.265
0.00009
0.00001
-0.00012

Figure 7:  Slope of the Excess Demand Function

Data for Figure 7 immediately follows

Data for Figure 7

rho
slope of long run excess demand
slope of short run excess demand
-1.7000
0.0024
0.9787
-1.6990
0.0023
0.9749
-1.6980
0.0023
0.9711
-1.6970
0.0023
0.9673
-1.6960
0.0023
0.9634
-1.6950
0.0022
0.9596
-1.6940
0.0022
0.9557
-1.6930
0.0022
0.9519
-1.6920
0.0022
0.9480
-1.6910
0.0022
0.9442
-1.6900
0.0021
0.9403
-1.6890
0.0021
0.9365
-1.6880
0.0021
0.9326
-1.6870
0.0021
0.9287
-1.6860
0.0020
0.9249
-1.6850
0.0020
0.9210
-1.6840
0.0020
0.9171
-1.6830
0.0020
0.9133
-1.6820
0.0020
0.9094
-1.6810
0.0019
0.9055
-1.6800
0.0019
0.9016
-1.6790
0.0019
0.8977
-1.6780
0.0019
0.8938
-1.6770
0.0018
0.8899
-1.6760
0.0018
0.8860
-1.6750
0.0018
0.8821
-1.6740
0.0018
0.8782
-1.6730
0.0018
0.8743
-1.6720
0.0017
0.8704
-1.6710
0.0017
0.8665
-1.6700
0.0017
0.8626
-1.6690
0.0017
0.8587
-1.6680
0.0016
0.8547
-1.6670
0.0016
0.8508
-1.6660
0.0016
0.8469
-1.6650
0.0016
0.8429
-1.6640
0.0015
0.8390
-1.6630
0.0015
0.8351
-1.6620
0.0015
0.8311
-1.6610
0.0015
0.8272
-1.6600
0.0014
0.8232
-1.6590
0.0014
0.8193
-1.6580
0.0014
0.8153
-1.6570
0.0014
0.8114
-1.6560
0.0013
0.8074
-1.6550
0.0013
0.8034
-1.6540
0.0013
0.7995
-1.6530
0.0013
0.7955
-1.6520
0.0012
0.7915
-1.6510
0.0012
0.7876
-1.6500
0.0012
0.7836
-1.6490
0.0012
0.7796
-1.6480
0.0011
0.7756
-1.6470
0.0011
0.7716
-1.6460
0.0011
0.7676
-1.6450
0.0011
0.7636
-1.6440
0.0010
0.7596
-1.6430
0.0010
0.7556
-1.6420
0.0010
0.7516
-1.6410
0.0010
0.7476
-1.6400
0.0009
0.7436
-1.6390
0.0009
0.7396
-1.6380
0.0009
0.7356
-1.6370
0.0008
0.7315
-1.6360
0.0008
0.7275
-1.6350
0.0008
0.7235
-1.6340
0.0008
0.7195
-1.6330
0.0007
0.7154
-1.6320
0.0007
0.7114
-1.6310
0.0007
0.7073
-1.6300
0.0007
0.7033
-1.6290
0.0006
0.6993
-1.6280
0.0006
0.6952
-1.6270
0.0006
0.6911
-1.6260
0.0005
0.6871
-1.6250
0.0005
0.6830
-1.6240
0.0005
0.6790
-1.6230
0.0005
0.6749
-1.6220
0.0004
0.6708
-1.6210
0.0004
0.6667
-1.6200
0.0004
0.6627
-1.6190
0.0003
0.6586
-1.6180
0.0003
0.6545
-1.6170
0.0003
0.6504
-1.6160
0.0003
0.6463
-1.6150
0.0002
0.6422
-1.6140
0.0002
0.6381
-1.6130
0.0002
0.6340
-1.6120
0.0001
0.6299
-1.6110
0.0001
0.6258
-1.6100
0.0001
0.6217
-1.6090
0.0001
0.6176
-1.6080
0.0000
0.6135
-1.6070
0.0000
0.6093
-1.6060
-0.0001
0.6052
-1.6050
-0.0001
0.6010
-1.6040
-0.0002
0.5969
-1.6030
-0.0003
0.5927
-1.6020
-0.0003
0.5885
-1.6010
-0.0004
0.5843
-1.6000
-0.0004
0.5802
-1.5990
-0.0005
0.5760
-1.5980
-0.0006
0.5718
-1.5970
-0.0006
0.5676
-1.5960
-0.0007
0.5634
-1.5950
-0.0007
0.5592
-1.5940
-0.0008
0.5550
-1.5930
-0.0009
0.5508
-1.5920
-0.0009
0.5466
-1.5910
-0.0010
0.5424
-1.5900
-0.0010
0.5382
-1.5890
-0.0011
0.5339
-1.5880
-0.0012
0.5297
-1.5870
-0.0012
0.5255
-1.5860
-0.0013
0.5213
-1.5850
-0.0014
0.5170
-1.5840
-0.0014
0.5128
-1.5830
-0.0015
0.5086
-1.5820
-0.0015
0.5043
-1.5810
-0.0016
0.5001
-1.5800
-0.0017
0.4958
-1.5790
-0.0017
0.4916
-1.5780
-0.0018
0.4873
-1.5770
-0.0018
0.4831
-1.5760
-0.0019
0.4788
-1.5750
-0.0020
0.4745
-1.5740
-0.0020
0.4703
-1.5730
-0.0021
0.4660
-1.5720
-0.0022
0.4617
-1.5710
-0.0022
0.4575
-1.5700
-0.0023
0.4532
-1.5690
-0.0023
0.4489
-1.5680
-0.0024
0.4446
-1.5670
-0.0025
0.4403
-1.5660
-0.0025
0.4360
-1.5650
-0.0026
0.4317
-1.5640
-0.0027
0.4274
-1.5630
-0.0027
0.4231
-1.5620
-0.0028
0.4188
-1.5610
-0.0028
0.4145
-1.5600
-0.0029
0.4102
-1.5590
-0.0030
0.4058
-1.5580
-0.0030
0.4015
-1.5570
-0.0031
0.3972
-1.5560
-0.0032
0.3929
-1.5550
-0.0032
0.3885
-1.5540
-0.0033
0.3842
-1.5530
-0.0033
0.3798
-1.5520
-0.0034
0.3755
-1.5510
-0.0035
0.3711
-1.5500
-0.0035
0.3668
-1.5490
-0.0036
0.3624
-1.5480
-0.0037
0.3581
-1.5470
-0.0037
0.3537
-1.5460
-0.0038
0.3494
-1.5450
-0.0038
0.3450
-1.5440
-0.0039
0.3406
-1.5430
-0.0040
0.3362
-1.5420
-0.0040
0.3319
-1.5410
-0.0041
0.3275
-1.5400
-0.0042
0.3231
-1.5390
-0.0042
0.3187
-1.5380
-0.0043
0.3143
-1.5370
-0.0044
0.3099
-1.5360
-0.0044
0.3055
-1.5350
-0.0045
0.3011
-1.5340
-0.0045
0.2967
-1.5330
-0.0046
0.2923
-1.5320
-0.0047
0.2879
-1.5310
-0.0047
0.2834
-1.5300
-0.0048
0.2790
-1.5290
-0.0049
0.2746
-1.5280
-0.0049
0.2702
-1.5270
-0.0050
0.2657
-1.5260
-0.0051
0.2613
-1.5250
-0.0051
0.2568
-1.5240
-0.0052
0.2524
-1.5230
-0.0053
0.2480
-1.5220
-0.0053
0.2435
-1.5210
-0.0054
0.2390
-1.5200
-0.0054
0.2346
-1.5190
-0.0055
0.2301
-1.5180
-0.0056
0.2257
-1.5170
-0.0056
0.2212
-1.5160
-0.0057
0.2167
-1.5150
-0.0058
0.2122
-1.5140
-0.0058
0.2077
-1.5130
-0.0059
0.2033
-1.5120
-0.0060
0.1988
-1.5110
-0.0060
0.1943
-1.5100
-0.0061
0.1898
-1.5090
-0.0062
0.1853
-1.5080
-0.0062
0.1808
-1.5070
-0.0063
0.1763
-1.5060
-0.0064
0.1718
-1.5050
-0.0064
0.1672
-1.5040
-0.0065
0.1627
-1.5030
-0.0066
0.1582
-1.5020
-0.0066
0.1537
-1.5010
-0.0067
0.1492
-1.5000
-0.0068
0.1446
-1.4990
-0.0068
0.1401
-1.4980
-0.0069
0.1355
-1.4970
-0.0069
0.1310
-1.4960
-0.0070
0.1264
-1.4950
-0.0071
0.1219
-1.4940
-0.0071
0.1173
-1.4930
-0.0072
0.1128
-1.4920
-0.0073
0.1082
-1.4910
-0.0073
0.1036
-1.4900
-0.0074
0.0991
-1.4890
-0.0075
0.0945
-1.4880
-0.0075
0.0899
-1.4870
-0.0076
0.0853
-1.4860
-0.0077
0.0808
-1.4850
-0.0077
0.0762
-1.4840
-0.0078
0.0716
-1.4830
-0.0079
0.0670
-1.4820
-0.0079
0.0624
-1.4810
-0.0080
0.0578
-1.4800
-0.0081
0.0532
-1.4790
-0.0081
0.0485
-1.4780
-0.0082
0.0439
-1.4770
-0.0083
0.0393
-1.4760
-0.0083
0.0347
-1.4750
-0.0084
0.0300
-1.4740
-0.0085
0.0254
-1.4730
-0.0085
0.0208
-1.4720
-0.0086
0.0161
-1.4710
-0.0087
0.0115
-1.4700
-0.0087
0.0068
-1.4690
-0.0088
0.0022
-1.4680
-0.0089
-0.0025
-1.4670
-0.0089
-0.0071
-1.4660
-0.0090
-0.0118
-1.4650
-0.0091
-0.0165
-1.4640
-0.0092
-0.0211
-1.4630
-0.0092
-0.0258
-1.4620
-0.0093
-0.0305
-1.4610
-0.0094
-0.0352
-1.4600
-0.0094
-0.0399
-1.4590
-0.0095
-0.0445
-1.4580
-0.0096
-0.0492
-1.4570
-0.0096
-0.0539
-1.4560
-0.0097
-0.0586
-1.4550
-0.0098
-0.0633
-1.4540
-0.0098
-0.0681
-1.4530
-0.0099
-0.0728
-1.4520
-0.0100
-0.0775
-1.4510
-0.0100
-0.0822
-1.4500
-0.0101
-0.0869
-1.4490
-0.0102
-0.0917
-1.4480
-0.0102
-0.0964
-1.4470
-0.0103
-0.1011
-1.4460
-0.0104
-0.1059
-1.4450
-0.0104
-0.1106
-1.4440
-0.0105
-0.1154
-1.4430
-0.0106
-0.1201
-1.4420
-0.0107
-0.1249
-1.4410
-0.0107
-0.1297
-1.4400
-0.0108
-0.1344
-1.4390
-0.0109
-0.1392
-1.4380
-0.0109
-0.1440
-1.4370
-0.0110
-0.1488
-1.4360
-0.0111
-0.1535
-1.4350
-0.0111
-0.1583
-1.4340
-0.0112
-0.1631
-1.4330
-0.0113
-0.1679
-1.4320
-0.0113
-0.1727
-1.4310
-0.0114
-0.1775
-1.4300
-0.0115
-0.1823
-1.4290
-0.0116
-0.1871
-1.4280
-0.0116
-0.1920
-1.4270
-0.0117
-0.1968
-1.4260
-0.0118
-0.2016
-1.4250
-0.0118
-0.2064
-1.4240
-0.0119
-0.2113
-1.4230
-0.0120
-0.2161
-1.4220
-0.0120
-0.2209
-1.4210
-0.0121
-0.2258
-1.4200
-0.0122
-0.2306
-1.4190
-0.0122
-0.2355
-1.4180
-0.0123
-0.2403
-1.4170
-0.0124
-0.2452
-1.4160
-0.0125
-0.2501
-1.4150
-0.0125
-0.2549
-1.4140
-0.0126
-0.2598
-1.4130
-0.0127
-0.2647
-1.4120
-0.0127
-0.2696
-1.4110
-0.0128
-0.2745
-1.4100
-0.0129
-0.2794
-1.4090
-0.0130
-0.2842
-1.4080
-0.0130
-0.2891
-1.4070
-0.0131
-0.2941
-1.4060
-0.0132
-0.2990
-1.4050
-0.0132
-0.3039
-1.4040
-0.0133
-0.3088
-1.4030
-0.0134
-0.3137
-1.4020
-0.0135
-0.3186
-1.4010
-0.0135
-0.3236
-1.4000
-0.0136
-0.3285

Figure 8:  Existence of Equilibrium Paths: Path Comparison

Data for Figure 8 immediately follows

Data for Figure 8

Quarters
Output Home Path 1 (non-linear)
Output Home:
Path 2
(linear)
Consumption Home:
Path 1
(non-linear)
Consumption Home:
Path 2
(linear)
Investment Home:
Path 1
(non-linear)
Investment Home:
Path 2
(linear)
Consumption Home Relative to Foreign:
Path 1
(non-linear)
Consumption Home Relative to Foreign:
Path 2
(linear)
Real Exchange Rate Home:
Path 1
(non-linear)
Real Exchange Rate Home:
Path 2
(linear)
Trade Balance to GDP Ratio Home:
Path 1
(non-linear)
Trade Balance to GDP Ratio Home:
Path 2
(linear)
1
0.421
-0.207
-5.793
2.915
-12.596
5.917
-11.276
6.371
63.119
-22.479
-0.00127
0.00336
2
0.336
-0.171
-5.902
2.973
-11.943
6.163
-11.481
6.502
62.236
-22.257
-0.00263
0.00231
3
0.260
-0.134
-6.006
3.029
-11.685
6.027
-11.675
6.626
61.395
-22.043
-0.00229
0.00217
4
0.188
-0.099
-6.104
3.081
-11.438
5.897
-11.859
6.744
60.593
-21.838
-0.00196
0.00204
5
0.119
-0.066
-6.197
3.131
-11.201
5.772
-12.032
6.856
59.827
-21.640
-0.00166
0.00192
6
0.054
-0.034
-6.284
3.178
-10.975
5.653
-12.195
6.961
59.096
-21.450
-0.00136
0.00180
7
-0.008
-0.003
-6.367
3.223
-10.757
5.539
-12.350
7.062
58.398
-21.268
-0.00109
0.00169
8
-0.068
0.026
-6.445
3.265
-10.550
5.430
-12.496
7.156
57.731
-21.092
-0.00083
0.00159
9
-0.124
0.053
-6.519
3.305
-10.351
5.326
-12.633
7.246
57.094
-20.924
-0.00058
0.00148
10
-0.177
0.079
-6.589
3.343
-10.160
5.226
-12.763
7.331
56.484
-20.761
-0.00034
0.00139
11
-0.228
0.104
-6.655
3.378
-9.978
5.131
-12.885
7.411
55.900
-20.605
-0.00012
0.00129
12
-0.276
0.128
-6.717
3.412
-9.803
5.039
-13.001
7.487
55.342
-20.455
0.00009
0.00120
13
-0.322
0.150
-6.776
3.444
-9.636
4.952
-13.109
7.558
54.807
-20.310
0.00029
0.00112
14
-0.366
0.172
-6.831
3.474
-9.476
4.868
-13.212
7.626
54.294
-20.170
0.00048
0.00104
15
-0.408
0.192
-6.883
3.502
-9.323
4.788
-13.308
7.690
53.803
-20.036
0.00066
0.00096
16
-0.447
0.211
-6.932
3.529
-9.176
4.711
-13.399
7.750
53.332
-19.907
0.00083
0.00089
17
-0.485
0.230
-6.978
3.554
-9.035
4.638
-13.484
7.806
52.880
-19.782
0.00099
0.00082
18
-0.520
0.247
-7.021
3.578
-8.901
4.568
-13.563
7.859
52.446
-19.662
0.00114
0.00075
19
-0.554
0.264
-7.062
3.600
-8.772
4.500
-13.638
7.909
52.029
-19.546
0.00129
0.00069
20
-0.586
0.280
-7.100
3.621
-8.648
4.436
-13.709
7.956
51.628
-19.435
0.00143
0.00062
21
-0.617
0.295
-7.135
3.641
-8.530
4.374
-13.775
8.000
51.243
-19.327
0.00155
0.00057
22
-0.646
0.309
-7.169
3.660
-8.417
4.315
-13.836
8.041
50.873
-19.223
0.00168
0.00051
23
-0.673
0.323
-7.200
3.677
-8.308
4.259
-13.894
8.080
50.517
-19.122
0.00179
0.00046
24
-0.700
0.335
-7.229
3.693
-8.204
4.204
-13.947
8.116
50.174
-19.025
0.00190
0.00041
25
-0.724
0.348
-7.256
3.708
-8.104
4.152
-13.997
8.149
49.843
-18.932
0.00201
0.00036
26
-0.748
0.359
-7.282
3.723
-8.009
4.103
-14.044
8.181
49.525
-18.841
0.00210
0.00031
27
-0.770
0.370
-7.305
3.736
-7.917
4.055
-14.087
8.210
49.218
-18.753
0.00220
0.00027
28
-0.791
0.381
-7.327
3.748
-7.829
4.009
-14.127
8.237
48.922
-18.669
0.00228
0.00023
29
-0.812
0.391
-7.347
3.760
-7.745
3.965
-14.165
8.262
48.636
-18.587
0.00236
0.00019
30
-0.831
0.400
-7.366
3.770
-7.664
3.923
-14.199
8.285
48.360
-18.507
0.00244
0.00015
31
-0.849
0.409
-7.383
3.780
-7.586
3.883
-14.230
8.307
48.093
-18.430
0.00252
0.00012
32
-0.866
0.418
-7.399
3.789
-7.512
3.844
-14.259
8.326
47.835
-18.356
0.00258
0.00008
33
-0.882
0.426
-7.413
3.798
-7.440
3.807
-14.286
8.345
47.585
-18.284
0.00265
0.00005
34
-0.897
0.433
-7.427
3.805
-7.372
3.772
-14.310
8.361
47.344
-18.213
0.00271
0.00002
35
-0.912
0.441
-7.439
3.812
-7.306
3.738
-14.332
8.376
47.110
-18.145
0.00277
-0.00001
36
-0.926
0.447
-7.450
3.819
-7.243
3.705
-14.352
8.390
46.883
-18.079
0.00282
-0.00004
37
-0.939
0.454
-7.459
3.825
-7.182
3.673
-14.370
8.402
46.663
-18.015
0.00287
-0.00007
38
-0.951
0.460
-7.468
3.830
-7.123
3.643
-14.386
8.413
46.450
-17.953
0.00292
-0.00009
39
-0.963
0.466
-7.476
3.835
-7.067
3.614
-14.400
8.423
46.243
-17.892
0.00296
-0.00012
40
-0.974
0.471
-7.483
3.839
-7.013
3.586
-14.413
8.432
46.042
-17.833
0.00301
-0.00014
41
-0.984
0.477
-7.489
3.843
-6.961
3.559
-14.424
8.439
45.847
-17.776
0.00304
-0.00016
42
-0.994
0.482
-7.494
3.846
-6.911
3.533
-14.433
8.446
45.657
-17.720
0.00308
-0.00018
43
-1.003
0.486
-7.498
3.849
-6.863
3.509
-14.441
8.451
45.473
-17.666
0.00311
-0.00020
44
-1.012
0.491
-7.502
3.851
-6.817
3.485
-14.447
8.456
45.293
-17.613
0.00315
-0.00022
45
-1.020
0.495
-7.505
3.853
-6.772
3.462
-14.452
8.459
45.118
-17.561
0.00318
-0.00024
46
-1.028
0.499
-7.507
3.855
-6.729
3.439
-14.456
8.462
44.947
-17.510
0.00320
-0.00026
47
-1.035
0.502
-7.508
3.856
-6.688
3.418
-14.458
8.464
44.781
-17.461
0.00323
-0.00027
48
-1.042
0.506
-7.509
3.857
-6.648
3.397
-14.459
8.465
44.619
-17.413
0.00325
-0.00029
49
-1.049
0.509
-7.509
3.858
-6.609
3.378
-14.460
8.465
44.460
-17.366
0.00327
-0.00030
50
-1.055
0.512
-7.509
3.858
-6.572
3.358
-14.459
8.465
44.306
-17.320
0.00329
-0.00032
51
-1.061
0.515
-7.508
3.858
-6.536
3.340
-14.457
8.464
44.154
-17.275
0.00331
-0.00033
52
-1.066
0.518
-7.506
3.858
-6.502
3.322
-14.454
8.462
44.007
-17.231
0.00333
-0.00034
53
-1.071
0.521
-7.504
3.857
-6.468
3.305
-14.450
8.460
43.862
-17.187
0.00334
-0.00036
54
-1.076
0.523
-7.502
3.857
-6.436
3.288
-14.446
8.457
43.720
-17.145
0.00336
-0.00037
55
-1.080
0.525
-7.499
3.856
-6.405
3.272
-14.440
8.454
43.582
-17.104
0.00337
-0.00038
56
-1.084
0.527
-7.496
3.854
-6.374
3.257
-14.434
8.450
43.446
-17.063
0.00338
-0.00039
57
-1.088
0.529
-7.492
3.853
-6.345
3.242
-14.427
8.446
43.313
-17.023
0.00339
-0.00040
58
-1.091
0.531
-7.488
3.851
-6.317
3.227
-14.419
8.441
43.182
-16.984
0.00340
-0.00041
59
-1.094
0.533
-7.484
3.849
-6.289
3.213
-14.411
8.436
43.054
-16.945
0.00341
-0.00042
60
-1.097
0.534
-7.479
3.847
-6.263
3.199
-14.402
8.430
42.928
-16.907
0.00342
-0.00042
61
-1.100
0.536
-7.474
3.845
-6.237
3.186
-14.393
8.424
42.805
-16.870
0.00342
-0.00043
62
-1.103
0.537
-7.468
3.842
-6.212
3.173
-14.382
8.417
42.683
-16.833
0.00343
-0.00044
63
-1.105
0.539
-7.463
3.840
-6.188
3.161
-14.372
8.410
42.564
-16.797
0.00343
-0.00045
64
-1.107
0.540
-7.457
3.837
-6.164
3.149
-14.360
8.403
42.446
-16.762
0.00343
-0.00045
65
-1.109
0.541
-7.450
3.834
-6.141
3.137
-14.349
8.396
42.330
-16.727
0.00344
-0.00046
66
-1.111
0.542
-7.444
3.831
-6.119
3.126
-14.337
8.388
42.217
-16.692
0.00344
-0.00047
67
-1.113
0.543
-7.437
3.828
-6.097
3.115
-14.324
8.379
42.104
-16.658
0.00344
-0.00047
68
-1.114
0.543
-7.430
3.825
-6.076
3.104
-14.311
8.371
41.994
-16.625
0.00344
-0.00048
69
-1.115
0.544
-7.423
3.821
-6.056
3.094
-14.297
8.362
41.885
-16.592
0.00344
-0.00048
70
-1.117
0.545
-7.415
3.818
-6.036
3.083
-14.284
8.353
41.777
-16.559
0.00344
-0.00049
71
-1.118
0.545
-7.408
3.814
-6.016
3.073
-14.269
8.344
41.671
-16.527
0.00344
-0.00049
72
-1.118
0.546
-7.400
3.810
-5.997
3.064
-14.255
8.335
41.566
-16.495
0.00343
-0.00050
73
-1.119
0.546
-7.392
3.806
-5.979
3.054
-14.240
8.325
41.463
-16.463
0.00343
-0.00050
74
-1.120
0.547
-7.384
3.803
-5.961
3.045
-14.225
8.315
41.361
-16.432
0.00343
-0.00050
75
-1.120
0.547
-7.376
3.799
-5.943
3.036
-14.209
8.305
41.260
-16.401
0.00342
-0.00051
76
-1.121
0.547
-7.367
3.794
-5.926
3.027
-14.194
8.295
41.160
-16.371
0.00342
-0.00051
77
-1.121
0.548
-7.358
3.790
-5.909
3.019
-14.178
8.284
41.061
-16.341
0.00342
-0.00051
78
-1.121
0.548
-7.350
3.786
-5.892
3.010
-14.161
8.274
40.963
-16.311
0.00341
-0.00052
79
-1.121
0.548
-7.341
3.782
-5.876
3.002
-14.145
8.263
40.867
-16.281
0.00341
-0.00052
80
-1.121
0.548
-7.332
3.777
-5.860
2.994
-14.128
8.252
40.771
-16.252
0.00340
-0.00052
81
-1.121
0.548
-7.323
3.773
-5.845
2.986
-14.111
8.241
40.676
-16.223
0.00339
-0.00052
82
-1.121
0.548
-7.313
3.768
-5.830
2.979
-14.094
8.230
40.583
-16.194
0.00339
-0.00053
83
-1.121
0.548
-7.304
3.764
-5.815
2.971
-14.076
8.218
40.490
-16.166
0.00338
-0.00053
84
-1.120
0.548
-7.295
3.759
-5.800
2.964
-14.059
8.207
40.398
-16.137
0.00338
-0.00053
85
-1.120
0.548
-7.285
3.754
-5.786
2.956
-14.041
8.196
40.306
-16.109
0.00337
-0.00053
86
-1.119
0.548
-7.276
3.749
-5.772
2.949
-14.023
8.184
40.216
-16.081
0.00336
-0.00053
87
-1.119
0.548
-7.266
3.745
-5.758
2.942
-14.005
8.172
40.126
-16.054
0.00335
-0.00054
88
-1.118
0.547
-7.256
3.740
-5.744
2.935
-13.987
8.160
40.037
-16.026
0.00335
-0.00054
89
-1.118
0.547
-7.246
3.735
-5.731
2.929
-13.969
8.148
39.948
-15.999
0.00334
-0.00054
90
-1.117
0.547
-7.236
3.730
-5.718
2.922
-13.950
8.136
39.861
-15.972
0.00333
-0.00054
91
-1.116
0.547
-7.226
3.725
-5.705
2.915
-13.932
8.124
39.774
-15.945
0.00332
-0.00054
92
-1.115
0.546
-7.216
3.720
-5.692
2.909
-13.913
8.112
39.687
-15.918
0.00331
-0.00054
93
-1.115
0.546
-7.206
3.715
-5.679
2.903
-13.894
8.100
39.601
-15.891
0.00330
-0.00054
94
-1.114
0.546
-7.196
3.710
-5.667
2.896
-13.876
8.088
39.516
-15.865
0.00330
-0.00054
95
-1.113
0.545
-7.186
3.705
-5.654
2.890
-13.857
8.076
39.431
-15.839
0.00329
-0.00055
96
-1.112
0.545
-7.176
3.700
-5.642
2.884
-13.838
8.063
39.347
-15.812
0.00328
-0.00055
97
-1.111
0.545
-7.165
3.695
-5.630
2.878
-13.818
8.051
39.263
-15.786
0.00327
-0.00055
98
-1.110
0.544
-7.155
3.689
-5.619
2.872
-13.799
8.038
39.180
-15.761
0.00326
-0.00055
99
-1.109
0.544
-7.145
3.684
-5.607
2.866
-13.780
8.026
39.097
-15.735
0.00325
-0.00055
100
-1.107
0.543
-7.134
3.679
-5.596
2.861
-13.761
8.013
39.015
-15.709
0.00324
-0.00055
101
-1.106
0.543
-7.124
3.674
-5.584
2.855
-13.741
8.001
38.933
-15.684
0.00323
-0.00055
102
-1.105
0.542
-7.113
3.669
-5.573
2.849
-13.722
7.988
38.852
-15.658
0.00322
-0.00055
103
-1.104
0.542
-7.103
3.663
-5.562
2.844
-13.702
7.975
38.771
-15.633
0.00321
-0.00055
104
-1.103
0.541
-7.092
3.658
-5.551
2.838
-13.683
7.963
38.691
-15.608
0.00320
-0.00055
105
-1.101
0.541
-7.082
3.653
-5.540
2.833
-13.663
7.950
38.610
-15.583
0.00319
-0.00055
106
-1.100
0.540
-7.071
3.647
-5.529
2.827
-13.643
7.937
38.531
-15.558
0.00318
-0.00055
107
-1.099
0.539
-7.061
3.642
-5.518
2.822
-13.624
7.924
38.451
-15.533
0.00317
-0.00055
108
-1.097
0.539
-7.050
3.637
-5.508
2.816
-13.604
7.912
38.373
-15.508
0.00316
-0.00055
109
-1.096
0.538
-7.039
3.631
-5.497
2.811
-13.584
7.899
38.294
-15.484
0.00315
-0.00055
110
-1.095
0.538
-7.029
3.626
-5.487
2.806
-13.564
7.886
38.216
-15.459
0.00314
-0.00055
111
-1.093
0.537
-7.018
3.621
-5.477
2.801
-13.544
7.873
38.138
-15.434
0.00313
-0.00055
112
-1.092
0.536
-7.007
3.615
-5.466
2.796
-13.524
7.860
38.060
-15.410
0.00312
-0.00055
113
-1.090
0.536
-6.997
3.610
-5.456
2.791
-13.505
7.847
37.983
-15.386
0.00311
-0.00055
114
-1.089
0.535
-6.986
3.604
-5.446
2.786
-13.485
7.835
37.906
-15.361
0.00310
-0.00055
115
-1.088
0.535
-6.975
3.599
-5.436
2.781
-13.465
7.822
37.829
-15.337
0.00309
-0.00055
116
-1.086
0.534
-6.965
3.594
-5.426
2.776
-13.445
7.809
37.753
-15.313
0.00308
-0.00055
117
-1.085
0.533
-6.954
3.588
-5.416
2.771
-13.425
7.796
37.677
-15.289
0.00307
-0.00055
118
-1.083
0.533
-6.943
3.583
-5.406
2.766
-13.405
7.783
37.601
-15.265
0.00306
-0.00055
119
-1.082
0.532
-6.932
3.577
-5.397
2.761
-13.385
7.770
37.526
-15.241
0.00305
-0.00055
120
-1.080
0.531
-6.922
3.572
-5.387
2.756
-13.365
7.757
37.451
-15.218
0.00304
-0.00055
121
-1.079
0.531
-6.911
3.567
-5.377
2.751
-13.345
7.744
37.376
-15.194
0.00303
-0.00055
122
-1.077
0.530
-6.900
3.561
-5.368
2.746
-13.325
7.731
37.301
-15.170
0.00302
-0.00055
123
-1.075
0.529
-6.889
3.556
-5.358
2.742
-13.305
7.719
37.227
-15.146
0.00301
-0.00055
124
-1.074
0.528
-6.879
3.550
-5.349
2.737
-13.285
7.706
37.153
-15.123
0.00300
-0.00055
125
-1.072
0.528
-6.868
3.545
-5.339
2.732
-13.265
7.693
37.079
-15.099
0.00298
-0.00055
126
-1.071
0.527
-6.857
3.539
-5.330
2.728
-13.245
7.680
37.005
-15.076
0.00297
-0.00055
127
-1.069
0.526
-6.847
3.534
-5.321
2.723
-13.225
7.667
36.932
-15.053
0.00296
-0.00055
128
-1.068
0.526
-6.836
3.529
-5.312
2.718
-13.205
7.654
36.858
-15.029
0.00295
-0.00055
129
-1.066
0.525
-6.825
3.523
-5.302
2.714
-13.185
7.641
36.785
-15.006
0.00294
-0.00054
130
-1.064
0.524
-6.814
3.518
-5.293
2.709
-13.165
7.628
36.713
-14.983
0.00293
-0.00054
131
-1.063
0.523
-6.804
3.512
-5.284
2.705
-13.145
7.616
36.640
-14.960
0.00292
-0.00054
132
-1.061
0.523
-6.793
3.507
-5.275
2.700
-13.125
7.603
36.568
-14.936
0.00291
-0.00054
133
-1.060
0.522
-6.782
3.502
-5.266
2.695
-13.105
7.590
36.496
-14.913
0.00290
-0.00054
134
-1.058
0.521
-6.772
3.496
-5.257
2.691
-13.085
7.577
36.424
-14.890
0.00289
-0.00054
135
-1.056
0.521
-6.761
3.491
-5.248
2.686
-13.065
7.564
36.352
-14.867
0.00288
-0.00054
136
-1.055
0.520
-6.750
3.485
-5.239
2.682
-13.045
7.552
36.281
-14.844
0.00287
-0.00054
137
-1.053
0.519
-6.739
3.480
-5.230
2.678
-13.025
7.539
36.210
-14.822
0.00286
-0.00054
138
-1.051
0.518
-6.729
3.474
-5.221
2.673
-13.005
7.526
36.139
-14.799
0.00285
-0.00054
139
-1.050
0.518
-6.718
3.469
-5.212
2.669
-12.985
7.513
36.068
-14.776
0.00284
-0.00054
140
-1.048
0.517
-6.707
3.464
-5.204
2.664
-12.965
7.501
35.997
-14.753
0.00283
-0.00054
141
-1.047
0.516
-6.697
3.458
-5.195
2.660
-12.945
7.488
35.927
-14.731
0.00282
-0.00054
142
-1.045
0.515
-6.686
3.453
-5.186
2.656
-12.926
7.475
35.856
-14.708
0.00281
-0.00054
143
-1.043
0.515
-6.676
3.448
-5.177
2.651
-12.906
7.462
35.786
-14.685
0.00280
-0.00054
144
-1.042
0.514
-6.665
3.442
-5.169
2.647
-12.886
7.450
35.717
-14.663
0.00279
-0.00054
145
-1.040
0.513
-6.654
3.437
-5.160
2.643
-12.866
7.437
35.647
-14.640
0.00278
-0.00053
146
-1.038
0.512
-6.644
3.431
-5.151
2.638
-12.846
7.424
35.577
-14.618
0.00277
-0.00053
147
-1.037
0.512
-6.633
3.426
-5.143
2.634
-12.827
7.412
35.508
-14.595
0.00276
-0.00053
148
-1.035
0.511
-6.623
3.421
-5.134
2.630
-12.807
7.399
35.439
-14.573
0.00275
-0.00053
149
-1.033
0.510
-6.612
3.415
-5.125
2.625
-12.787
7.387
35.370
-14.550
0.00274
-0.00053
150
-1.032
0.509
-6.602
3.410
-5.117
2.621
-12.767
7.374
35.301
-14.528
0.00273
-0.00053
151
-1.030
0.509
-6.591
3.405
-5.108
2.617
-12.748
7.362
35.232
-14.506
0.00272
-0.00053
152
-1.028
0.508
-6.580
3.399
-5.100
2.613
-12.728
7.349
35.164
-14.484
0.00271
-0.00053
153
-1.027
0.507
-6.570
3.394
-5.091
2.608
-12.708
7.336
35.096
-14.461
0.00270
-0.00053
154
-1.025
0.506
-6.559
3.389
-5.083
2.604
-12.689
7.324
35.028
-14.439
0.00269
-0.00053
155
-1.023
0.506
-6.549
3.383
-5.075
2.600
-12.669
7.311
34.960
-14.417
0.00268
-0.00053
156
-1.022
0.505
-6.538
3.378
-5.066
2.596
-12.650
7.299
34.892
-14.395
0.00267
-0.00053
157
-1.020
0.504
-6.528
3.373
-5.058
2.592
-12.630
7.287
34.824
-14.373
0.00266
-0.00053
158
-1.019
0.503
-6.518
3.367
-5.049
2.587
-12.610
7.274
34.757
-14.351
0.00265
-0.00053
159
-1.017
0.502
-6.507
3.362
-5.041
2.583
-12.591
7.262
34.689
-14.329
0.00264
-0.00052
160
-1.015
0.502
-6.497
3.357
-5.033
2.579
-12.571
7.249
34.622
-14.307
0.00263
-0.00052
161
-1.014
0.501
-6.486
3.351
-5.024
2.575
-12.552
7.237
34.555
-14.285
0.00263
-0.00052
162
-1.012
0.500
-6.476
3.346
-5.016
2.571
-12.533
7.225
34.488
-14.263
0.00262
-0.00052
163
-1.010
0.499
-6.466
3.341
-5.008
2.567
-12.513
7.212
34.422
-14.241
0.00261
-0.00052
164
-1.009
0.499
-6.455
3.336
-5.000
2.563
-12.494
7.200
34.355
-14.219
0.00260
-0.00052
165
-1.007
0.498
-6.445
3.330
-4.991
2.558
-12.474
7.188
34.289
-14.198
0.00259
-0.00052
166
-1.005
0.497
-6.434
3.325
-4.983
2.554
-12.455
7.175
34.223
-14.176
0.00258
-0.00052
167
-1.004
0.496
-6.424
3.320
-4.975
2.550
-12.436
7.163
34.157
-14.154
0.00257
-0.00052
168
-1.002
0.496
-6.414
3.315
-4.967
2.546
-12.416
7.151
34.091
-14.133
0.00256
-0.00052
169
-1.001
0.495
-6.404
3.309
-4.959
2.542
-12.397
7.139
34.025
-14.111
0.00255
-0.00052
170
-0.999
0.494
-6.393
3.304
-4.951
2.538
-12.378
7.126
33.959
-14.089
0.00254
-0.00052
171
-0.997
0.493
-6.383
3.299
-4.942
2.534
-12.359
7.114
33.894
-14.068
0.00253
-0.00052
172
-0.996
0.493
-6.373
3.294
-4.934
2.530
-12.339
7.102
33.829
-14.046
0.00252
-0.00052
173
-0.994
0.492
-6.362
3.289
-4.926
2.526
-12.320
7.090
33.764
-14.025
0.00251
-0.00051
174
-0.992
0.491
-6.352
3.283
-4.918
2.522
-12.301
7.078
33.699
-14.003
0.00251
-0.00051
175
-0.991
0.490
-6.342
3.278
-4.910
2.518
-12.282
7.066
33.634
-13.982
0.00250
-0.00051
176
-0.989
0.490
-6.332
3.273
-4.902
2.514
-12.263
7.054
33.569
-13.960
0.00249
-0.00051
177
-0.987
0.489
-6.322
3.268
-4.894
2.510
-12.244
7.042
33.505
-13.939
0.00248
-0.00051
178
-0.986
0.488
-6.311
3.263
-4.886
2.506
-12.225
7.030
33.440
-13.918
0.00247
-0.00051
179
-0.984
0.487
-6.301
3.257
-4.878
2.502
-12.206
7.017
33.376
-13.896
0.00246
-0.00051
180
-0.983
0.487
-6.291
3.252
-4.870
2.498
-12.187
7.005
33.312
-13.875
0.00245
-0.00051
181
-0.981
0.486
-6.281
3.247
-4.862
2.494
-12.168
6.994
33.248
-13.854
0.00244
-0.00051
182
-0.979
0.485
-6.271
3.242
-4.854
2.490
-12.149
6.982
33.184
-13.833
0.00243
-0.00051
183
-0.978
0.484
-6.261
3.237
-4.846
2.486
-12.130
6.970
33.120
-13.811
0.00243
-0.00051
184
-0.976
0.484
-6.251
3.232
-4.838
2.482
-12.111
6.958
33.057
-13.790
0.00242
-0.00051
185
-0.975
0.483
-6.241
3.227
-4.830
2.478
-12.092
6.946
32.993
-13.769
0.00241
-0.00051
186
-0.973
0.482
-6.231
3.222
-4.822
2.474
-12.073
6.934
32.930
-13.748
0.00240
-0.00050
187
-0.971
0.481
-6.221
3.216
-4.815
2.470
-12.054
6.922
32.867
-13.727
0.00239
-0.00050
188
-0.970
0.481
-6.211
3.211
-4.807
2.466
-12.036
6.910
32.804
-13.706
0.00238
-0.00050
189
-0.968
0.480
-6.201
3.206
-4.799
2.462
-12.017
6.898
32.741
-13.685
0.00238
-0.00050
190
-0.967
0.479
-6.191
3.201
-4.791
2.458
-11.998
6.887
32.678
-13.664
0.00237
-0.00050
191
-0.965
0.478
-6.181
3.196
-4.783
2.454
-11.979
6.875
32.616
-13.643
0.00236
-0.00050
192
-0.963
0.478
-6.171
3.191
-4.775
2.450
-11.961
6.863
32.553
-13.622
0.00235
-0.00050
193
-0.962
0.477
-6.161
3.186
-4.768
2.447
-11.942
6.851
32.491
-13.601
0.00234
-0.00050
194
-0.960
0.476
-6.151
3.181
-4.760
2.443
-11.923
6.840
32.429
-13.580
0.00233
-0.00050
195
-0.959
0.475
-6.141
3.176
-4.752
2.439
-11.905
6.828
32.367
-13.560
0.00233
-0.00050
196
-0.957
0.475
-6.131
3.171
-4.744
2.435
-11.886
6.816
32.305
-13.539
0.00232
-0.00050
197
-0.955
0.474
-6.121
3.166
-4.737
2.431
-11.867
6.805
32.243
-13.518
0.00231
-0.00050
198
-0.954
0.473
-6.111
3.161
-4.729
2.427
-11.849
6.793
32.182
-13.497
0.00230
-0.00050
199
-0.952
0.473
-6.101
3.156
-4.721
2.423
-11.830
6.781
32.120
-13.477
0.00229
-0.00049
200
-0.951
0.472
-6.091
3.151
-4.713
2.420
-11.812
6.770
32.059
-13.456
0.00228
-0.00049
201
-0.949
0.471
-6.082
3.146
-4.706
2.416
-11.793
6.758
31.997
-13.435
0.00228
-0.00049
202
-0.948
0.470
-6.072
3.141
-4.698
2.412
-11.775
6.747
31.936
-13.415
0.00227
-0.00049
203
-0.946
0.470
-6.062
3.136
-4.690
2.408
-11.757
6.735
31.875
-13.394
0.00226
-0.00049
204
-0.944
0.469
-6.052
3.131
-4.683
2.404
-11.738
6.723
31.815
-13.373
0.00225
-0.00049
205
-0.943
0.468
-6.043
3.126
-4.675
2.400
-11.720
6.712
31.754
-13.353
0.00225
-0.00049
206
-0.941
0.467
-6.033
3.121
-4.668
2.397
-11.702
6.701
31.693
-13.332
0.00224
-0.00049
207
-0.940
0.467
-6.023
3.116
-4.660
2.393
-11.683
6.689
31.633
-13.312
0.00223
-0.00049
208
-0.938
0.466
-6.013
3.111
-4.652
2.389
-11.665
6.678
31.573
-13.292
0.00222
-0.00049
209
-0.937
0.465
-6.004
3.106
-4.645
2.385
-11.647
6.666
31.512
-13.271
0.00221
-0.00049
210
-0.935
0.465
-5.994
3.101
-4.637
2.381
-11.629
6.655
31.452
-13.251
0.00221
-0.00049
211
-0.934
0.464
-5.984
3.096
-4.630
2.378
-11.610
6.643
31.392
-13.230
0.00220
-0.00049
212
-0.932
0.463
-5.975
3.091
-4.622
2.374
-11.592
6.632
31.333
-13.210
0.00219
-0.00049
213
-0.930
0.462
-5.965
3.086
-4.615
2.370
-11.574
6.621
31.273
-13.190
0.00218
-0.00048
214
-0.929
0.462
-5.955
3.081
-4.607
2.366
-11.556
6.609
31.213
-13.170
0.00218
-0.00048
215
-0.927
0.461
-5.946
3.076
-4.599
2.362
-11.538
6.598
31.154
-13.149
0.00217
-0.00048
216
-0.926
0.460
-5.936
3.072
-4.592
2.359
-11.520
6.587
31.095
-13.129
0.00216
-0.00048
217
-0.924
0.460
-5.926
3.067
-4.584
2.355
-11.502
6.576
31.036
-13.109
0.00215
-0.00048
218
-0.923
0.459
-5.917
3.062
-4.577
2.351
-11.484
6.564
30.977
-13.089
0.00215
-0.00048
219
-0.921
0.458
-5.907
3.057
-4.570
2.348
-11.466
6.553
30.918
-13.069
0.00214
-0.00048
220
-0.920
0.457
-5.898
3.052
-4.562
2.344
-11.448
6.542
30.859
-13.049
0.00213
-0.00048
221
-0.918
0.457
-5.888
3.047
-4.555
2.340
-11.430
6.531
30.800
-13.029
0.00212
-0.00048
222
-0.917
0.456
-5.879
3.042
-4.547
2.336
-11.412
6.520
30.742
-13.009
0.00212
-0.00048
223
-0.915
0.455
-5.869
3.038
-4.540
2.333
-11.394
6.508
30.683
-12.989
0.00211
-0.00048
224
-0.914
0.455
-5.860
3.033
-4.532
2.329
-11.376
6.497
30.625
-12.969
0.00210
-0.00048
225
-0.912
0.454
-5.850
3.028
-4.525
2.325
-11.358
6.486
30.567
-12.949
0.00209
-0.00048
226
-0.911
0.453
-5.841
3.023
-4.518
2.322
-11.340
6.475
30.509
-12.929
0.00209
-0.00047
227
-0.909
0.452
-5.831
3.018
-4.510
2.318
-11.323
6.464
30.451
-12.909
0.00208
-0.00047
228
-0.908
0.452
-5.822
3.013
-4.503
2.314
-11.305
6.453
30.393
-12.889
0.00207
-0.00047
229
-0.906
0.451
-5.813
3.009
-4.496
2.310
-11.287
6.442
30.335
-12.869
0.00207
-0.00047
230
-0.905
0.450
-5.803
3.004
-4.488
2.307
-11.270
6.431
30.278
-12.849
0.00206
-0.00047
231
-0.903
0.450
-5.794
2.999
-4.481
2.303
-11.252
6.420
30.220
-12.830
0.00205
-0.00047
232
-0.902
0.449
-5.784
2.994
-4.474
2.299
-11.234
6.409
30.163
-12.810
0.00205
-0.00047
233
-0.900
0.448
-5.775
2.990
-4.466
2.296
-11.217
6.398
30.106
-12.790
0.00204
-0.00047
234
-0.899
0.447
-5.766
2.985
-4.459
2.292
-11.199
6.387
30.049
-12.770
0.00203
-0.00047
235
-0.897
0.447
-5.756
2.980
-4.452
2.289
-11.181
6.376
29.992
-12.751
0.00202
-0.00047
236
-0.896
0.446
-5.747
2.975
-4.445
2.285
-11.164
6.365
29.935
-12.731
0.00202
-0.00047
237
-0.894
0.445
-5.738
2.971
-4.437
2.281
-11.146
6.355
29.878
-12.712
0.00201
-0.00047
238
-0.893
0.445
-5.728
2.966
-4.430
2.278
-11.129
6.344
29.822
-12.692
0.00200
-0.00047
239
-0.891
0.444
-5.719
2.961
-4.423
2.274
-11.111
6.333
29.765
-12.672
0.00200
-0.00047
240
-0.890
0.443
-5.710
2.956
-4.416
2.270
-11.094
6.322
29.709
-12.653
0.00199
-0.00046
241
-0.888
0.443
-5.701
2.952
-4.409
2.267
-11.076
6.311
29.653
-12.633
0.00198
-0.00046
242
-0.887
0.442
-5.691
2.947
-4.401
2.263
-11.059
6.300
29.597
-12.614
0.00198
-0.00046
243
-0.885
0.441
-5.682
2.942
-4.394
2.260
-11.042
6.290
29.541
-12.595
0.00197
-0.00046
244
-0.884
0.441
-5.673
2.938
-4.387
2.256
-11.024
6.279
29.485
-12.575
0.00196
-0.00046
245
-0.882
0.440
-5.664
2.933
-4.380
2.252
-11.007
6.268
29.429
-12.556
0.00196
-0.00046
246
-0.881
0.439
-5.655
2.928
-4.373
2.249
-10.990
6.258
29.374
-12.536
0.00195
-0.00046
247
-0.879
0.438
-5.646
2.924
-4.366
2.245
-10.972
6.247
29.318
-12.517
0.00194
-0.00046
248
-0.878
0.438
-5.636
2.919
-4.358
2.242
-10.955
6.236
29.263
-12.498
0.00194
-0.00046
249
-0.877
0.437
-5.627
2.914
-4.351
2.238
-10.938
6.226
29.207
-12.479
0.00193
-0.00046
250
-0.875
0.436
-5.618
2.910
-4.344
2.235
-10.921
6.215
29.152
-12.459
0.00192
-0.00046
251
-0.874
0.436
-5.609
2.905
-4.337
2.231
-10.904
6.204
29.097
-12.440
0.00192
-0.00046
252
-0.872
0.435
-5.600
2.900
-4.330
2.227
-10.887
6.194
29.042
-12.421
0.00191
-0.00046
253
-0.871
0.434
-5.591
2.896
-4.323
2.224
-10.869
6.183
28.987
-12.402
0.00190
-0.00046
254
-0.869
0.434
-5.582
2.891
-4.316
2.220
-10.852
6.173
28.933
-12.383
0.00190
-0.00045
255
-0.868
0.433
-5.573
2.887
-4.309
2.217
-10.835
6.162
28.878
-12.363
0.00189
-0.00045
256
-0.866
0.432
-5.564
2.882
-4.302
2.213
-10.818
6.152
28.824
-12.344
0.00189
-0.00045
257
-0.865
0.432
-5.555
2.877
-4.295
2.210
-10.801
6.141
28.769
-12.325
0.00188
-0.00045
258
-0.864
0.431
-5.546
2.873
-4.288
2.206
-10.784
6.131
28.715
-12.306
0.00187
-0.00045
259
-0.862
0.430
-5.537
2.868
-4.281
2.203
-10.767
6.120
28.661
-12.287
0.00187
-0.00045
260
-0.861
0.430
-5.528
2.864
-4.274
2.199
-10.750
6.110
28.607
-12.268
0.00186
-0.00045
261
-0.859
0.429
-5.519
2.859
-4.267
2.196
-10.733
6.099
28.553
-12.249
0.00185
-0.00045
262
-0.858
0.428
-5.510
2.854
-4.260
2.192
-10.716
6.089
28.499
-12.231
0.00185
-0.00045
263
-0.856
0.428
-5.501
2.850
-4.253
2.189
-10.700
6.079
28.445
-12.212
0.00184
-0.00045
264
-0.855
0.427
-5.492
2.845
-4.246
2.185
-10.683
6.068
28.392
-12.193
0.00184
-0.00045
265
-0.854
0.426
-5.483
2.841
-4.239
2.182
-10.666
6.058
28.338
-12.174
0.00183
-0.00045
266
-0.852
0.426
-5.474
2.836
-4.232
2.178
-10.649
6.048
28.285
-12.155
0.00182
-0.00045
267
-0.851
0.425
-5.466
2.832
-4.225
2.175
-10.632
6.037
28.232
-12.136
0.00182
-0.00045
268
-0.849
0.424
-5.457
2.827
-4.218
2.171
-10.616
6.027
28.179
-12.118
0.00181
-0.00045
269
-0.848
0.424
-5.448
2.823
-4.212
2.168
-10.599
6.017
28.126
-12.099
0.00181
-0.00044
270
-0.847
0.423
-5.439
2.818
-4.205
2.165
-10.582
6.006
28.073
-12.080
0.00180
-0.00044
271
-0.845
0.422
-5.430
2.814
-4.198
2.161
-10.566
5.996
28.020
-12.062
0.00179
-0.00044
272
-0.844
0.422
-5.421
2.809
-4.191
2.158
-10.549
5.986
27.967
-12.043
0.00179
-0.00044
273
-0.842
0.421
-5.413
2.805
-4.184
2.154
-10.532
5.976
27.915
-12.024
0.00178
-0.00044
274
-0.841
0.420
-5.404
2.800
-4.177
2.151
-10.516
5.966
27.862
-12.006
0.00178
-0.00044
275
-0.840
0.420
-5.395
2.796
-4.171
2.147
-10.499
5.955
27.810
-11.987
0.00177
-0.00044
276
-0.838
0.419
-5.386
2.791
-4.164
2.144
-10.483
5.945
27.758
-11.969
0.00177
-0.00044
277
-0.837
0.418
-5.378
2.787
-4.157
2.141
-10.466
5.935
27.705
-11.950
0.00176
-0.00044
278
-0.835
0.418
-5.369
2.782
-4.150
2.137
-10.450
5.925
27.653
-11.932
0.00175
-0.00044
279
-0.834
0.417
-5.360
2.778
-4.143
2.134
-10.433
5.915
27.601
-11.913
0.00175
-0.00044
280
-0.833
0.416
-5.352
2.774
-4.137
2.130
-10.417
5.905
27.550
-11.895
0.00174
-0.00044
281
-0.831
0.416
-5.343
2.769
-4.130
2.127
-10.400
5.895
27.498
-11.876
0.00174
-0.00044
282
-0.830
0.415
-5.334
2.765
-4.123
2.124
-10.384
5.885
27.446
-11.858
0.00173
-0.00044
283
-0.828
0.414
-5.326
2.760
-4.116
2.120
-10.367
5.875
27.395
-11.840
0.00173
-0.00043
284
-0.827
0.414
-5.317
2.756
-4.110
2.117
-10.351
5.865
27.343
-11.821
0.00172
-0.00043
285
-0.826
0.413
-5.308
2.751
-4.103
2.113
-10.335
5.855
27.292
-11.803
0.00171
-0.00043
286
-0.824
0.412
-5.300
2.747
-4.096
2.110
-10.318
5.845
27.241
-11.785
0.00171
-0.00043
287
-0.823
0.412
-5.291
2.743
-4.090
2.107
-10.302
5.835
27.190
-11.766
0.00170
-0.00043
288
-0.822
0.411
-5.282
2.738
-4.083
2.103
-10.286
5.825
27.139
-11.748
0.00170
-0.00043
289
-0.820
0.410
-5.274
2.734
-4.076
2.100
-10.270
5.815
27.088
-11.730
0.00169
-0.00043
290
-0.819
0.410
-5.265
2.730
-4.070
2.097
-10.254
5.805
27.037
-11.712
0.00169
-0.00043
291
-0.818
0.409
-5.257
2.725
-4.063
2.093
-10.237
5.795
26.987
-11.694
0.00168
-0.00043
292
-0.816
0.409
-5.248
2.721
-4.056
2.090
-10.221
5.785
26.936
-11.676
0.00168
-0.00043
293
-0.815
0.408
-5.240
2.716
-4.050
2.087
-10.205
5.776
26.886
-11.658
0.00167
-0.00043
294
-0.813
0.407
-5.231
2.712
-4.043
2.083
-10.189
5.766
26.835
-11.640
0.00167
-0.00043
295
-0.812
0.407
-5.223
2.708
-4.037
2.080
-10.173
5.756
26.785
-11.621
0.00166
-0.00043
296
-0.811
0.406
-5.214
2.703
-4.030
2.077
-10.157
5.746
26.735
-11.603
0.00165
-0.00043
297
-0.809
0.405
-5.206
2.699
-4.023
2.073
-10.141
5.736
26.685
-11.585
0.00165
-0.00043
298
-0.808
0.405
-5.197
2.695
-4.017
2.070
-10.125
5.727
26.635
-11.568
0.00164
-0.00042
299
-0.807
0.404
-5.189
2.691
-4.010
2.067
-10.109
5.717
26.585
-11.550
0.00164
-0.00042
300
-0.805
0.403
-5.181
2.686
-4.004
2.063
-10.093
5.707
26.535
-11.532
0.00163
-0.00042
301
-0.804
0.403
-5.172
2.682
-3.997
2.060
-10.077
5.697
26.486
-11.514
0.00163
-0.00042
302
-0.803
0.402
-5.164
2.678
-3.991
2.057
-10.061
5.688
26.436
-11.496
0.00162
-0.00042
303
-0.801
0.402
-5.155
2.673
-3.984
2.054
-10.045
5.678
26.387
-11.478
0.00162
-0.00042
304
-0.800
0.401
-5.147
2.669
-3.978
2.050
-10.029
5.668
26.337
-11.460
0.00161
-0.00042
305
-0.799
0.400
-5.139
2.665
-3.971
2.047
-10.013
5.659
26.288
-11.443
0.00161
-0.00042
306
-0.797
0.400
-5.130
2.661
-3.965
2.044
-9.997
5.649
26.239
-11.425
0.00160
-0.00042
307
-0.796
0.399
-5.122
2.656
-3.958
2.041
-9.982
5.640
26.190
-11.407
0.00160
-0.00042
308
-0.795
0.398
-5.114
2.652
-3.952
2.037
-9.966
5.630
26.141
-11.389
0.00159
-0.00042
309
-0.793
0.398
-5.105
2.648
-3.945
2.034
-9.950
5.620
26.092
-11.372
0.00159
-0.00042
310
-0.792
0.397
-5.097
2.644
-3.939
2.031
-9.934
5.611
26.044
-11.354
0.00158
-0.00042
311
-0.791
0.397
-5.089
2.639
-3.932
2.028
-9.919
5.601
25.995
-11.336
0.00158
-0.00042
312
-0.789
0.396
-5.081
2.635
-3.926
2.024
-9.903
5.592
25.947
-11.319
0.00157
-0.00042
313
-0.788
0.395
-5.072
2.631
-3.920
2.021
-9.887
5.582
25.898
-11.301
0.00157
-0.00042
314
-0.787
0.395
-5.064
2.627
-3.913
2.018
-9.872
5.573
25.850
-11.284
0.00156
-0.00041
315
-0.786
0.394
-5.056
2.623
-3.907
2.015
-9.856
5.563
25.802
-11.266
0.00156
-0.00041
316
-0.784
0.393
-5.048
2.618
-3.900
2.011
-9.841
5.554
25.754
-11.249
0.00155
-0.00041
317
-0.783
0.393
-5.039
2.614
-3.894
2.008
-9.825
5.544
25.706
-11.231
0.00155
-0.00041
318
-0.782
0.392
-5.031
2.610
-3.888
2.005
-9.809
5.535
25.658
-11.214
0.00154
-0.00041
319
-0.780
0.392
-5.023
2.606
-3.881
2.002
-9.794
5.526
25.610
-11.196
0.00154
-0.00041
320
-0.779
0.391
-5.015
2.602
-3.875
1.999
-9.778
5.516
25.562
-11.179
0.00153
-0.00041
321
-0.778
0.390
-5.007
2.597
-3.869
1.995
-9.763
5.507
25.514
-11.162
0.00153
-0.00041
322
-0.776
0.390
-4.999
2.593
-3.862
1.992
-9.747
5.497
25.467
-11.144
0.00152
-0.00041
323
-0.775
0.389
-4.991
2.589
-3.856
1.989
-9.732
5.488
25.420
-11.127
0.00152
-0.00041
324
-0.774
0.388
-4.982
2.585
-3.850
1.986
-9.717
5.479
25.372
-11.110
0.00151
-0.00041
325
-0.773
0.388
-4.974
2.581
-3.843
1.983
-9.701
5.469
25.325
-11.092
0.00151
-0.00041
326
-0.771
0.387
-4.966
2.577
-3.837
1.980
-9.686
5.460
25.278
-11.075
0.00150
-0.00041
327
-0.770
0.387
-4.958
2.573
-3.831
1.976
-9.671
5.451
25.231
-11.058
0.00150
-0.00041
328
-0.769
0.386
-4.950
2.568
-3.825
1.973
-9.655
5.442
25.184
-11.041
0.00150
-0.00041
329
-0.767
0.385
-4.942
2.564
-3.818
1.970
-9.640
5.432
25.137
-11.024
0.00149
-0.00040
330
-0.766
0.385
-4.934
2.560
-3.812
1.967
-9.625
5.423
25.090
-11.007
0.00149
-0.00040
331
-0.765
0.384
-4.926
2.556
-3.806
1.964
-9.609
5.414
25.044
-10.989
0.00148
-0.00040
332
-0.764
0.384
-4.918
2.552
-3.800
1.961
-9.594
5.405
24.997
-10.972
0.00148
-0.00040
333
-0.762
0.383
-4.910
2.548
-3.793
1.957
-9.579
5.396
24.951
-10.955
0.00147
-0.00040
334
-0.761
0.382
-4.902
2.544
-3.787
1.954
-9.564
5.386
24.904
-10.938
0.00147
-0.00040
335
-0.760
0.382
-4.894
2.540
-3.781
1.951
-9.549
5.377
24.858
-10.921
0.00146
-0.00040
336
-0.759
0.381
-4.886
2.536
-3.775
1.948
-9.534
5.368
24.812
-10.904
0.00146
-0.00040
337
-0.757
0.381
-4.878
2.532
-3.769
1.945
-9.518
5.359
24.766
-10.887
0.00145
-0.00040
338
-0.756
0.380
-4.870
2.528
-3.762
1.942
-9.503
5.350
24.720
-10.870
0.00145
-0.00040
339
-0.755
0.379
-4.862
2.524
-3.756
1.939
-9.488
5.341
24.674
-10.853
0.00145
-0.00040
340
-0.754
0.379
-4.854
2.520
-3.750
1.936
-9.473
5.332
24.628
-10.836
0.00144
-0.00040
341
-0.752
0.378
-4.847
2.516
-3.744
1.933
-9.458
5.323
24.582
-10.820
0.00144
-0.00040
342
-0.751
0.378
-4.839
2.511
-3.738
1.930
-9.443
5.314
24.537
-10.803
0.00143
-0.00040
343
-0.750
0.377
-4.831
2.507
-3.732
1.926
-9.428
5.305
24.491
-10.786
0.00143
-0.00040
344
-0.749
0.376
-4.823
2.503
-3.726
1.923
-9.413
5.296
24.446
-10.769
0.00142
-0.00040
345
-0.747
0.376
-4.815
2.499
-3.720
1.920
-9.398
5.287
24.400
-10.752
0.00142
-0.00039
346
-0.746
0.375
-4.807
2.495
-3.714
1.917
-9.384
5.278
24.355
-10.736
0.00141
-0.00039
347
-0.745
0.375
-4.800
2.491
-3.707
1.914
-9.369
5.269
24.310
-10.719
0.00141
-0.00039
348
-0.744
0.374
-4.792
2.487
-3.701
1.911
-9.354
5.260
24.265
-10.702
0.00141
-0.00039
349
-0.742
0.373
-4.784
2.483
-3.695
1.908
-9.339
5.251
24.220
-10.686
0.00140
-0.00039
350
-0.741
0.373
-4.776
2.479
-3.689
1.905
-9.324
5.242
24.175
-10.669
0.00140
-0.00039
351
-0.740
0.372
-4.768
2.476
-3.683
1.902
-9.309
5.233
24.130
-10.652
0.00139
-0.00039
352
-0.739
0.372
-4.761
2.472
-3.677
1.899
-9.295
5.224
24.085
-10.636
0.00139
-0.00039
353
-0.737
0.371
-4.753
2.468
-3.671
1.896
-9.280
5.215
24.041
-10.619
0.00138
-0.00039
354
-0.736
0.370
-4.745
2.464
-3.665
1.893
-9.265
5.207
23.996
-10.603
0.00138
-0.00039
355
-0.735
0.370
-4.737
2.460
-3.659
1.890
-9.250
5.198
23.952
-10.586
0.00138
-0.00039
356
-0.734
0.369
-4.730
2.456
-3.653
1.887
-9.236
5.189
23.907
-10.570
0.00137
-0.00039
357
-0.733
0.369
-4.722
2.452
-3.647
1.884
-9.221
5.180
23.863
-10.553
0.00137
-0.00039
358
-0.731
0.368
-4.714
2.448
-3.641
1.881
-9.206
5.171
23.819
-10.537
0.00136
-0.00039
359
-0.730
0.368
-4.707
2.444
-3.635
1.878
-9.192
5.163
23.775
-10.520
0.00136
-0.00039
360
-0.729
0.367
-4.699
2.440
-3.629
1.875
-9.177
5.154
23.731
-10.504
0.00136
-0.00039
361
-0.728
0.366
-4.691
2.436
-3.623
1.872
-9.163
5.145
23.687
-10.487
0.00135
-0.00039
362
-0.727
0.366
-4.684
2.432
-3.618
1.869
-9.148
5.136
23.643
-10.471
0.00135
-0.00038
363
-0.725
0.365
-4.676
2.428
-3.612
1.866
-9.134
5.128
23.599
-10.455
0.00134
-0.00038
364
-0.724
0.365
-4.669
2.424
-3.606
1.863
-9.119
5.119
23.556
-10.438
0.00134
-0.00038
365
-0.723
0.364
-4.661
2.421
-3.600
1.860
-9.105
5.110
23.512
-10.422
0.00134
-0.00038
366
-0.722
0.364
-4.653
2.417
-3.594
1.857
-9.090
5.102
23.469
-10.406
0.00133
-0.00038
367
-0.721
0.363
-4.646
2.413
-3.588
1.854
-9.076
5.093
23.425
-10.390
0.00133
-0.00038
368
-0.719
0.362
-4.638
2.409
-3.582
1.851
-9.061
5.084
23.382
-10.373
0.00132
-0.00038
369
-0.718
0.362
-4.631
2.405
-3.576
1.848
-9.047
5.076
23.339
-10.357
0.00132
-0.00038
370
-0.717
0.361
-4.623
2.401
-3.570
1.845
-9.033
5.067
23.296
-10.341
0.00132
-0.00038
371
-0.716
0.361
-4.616
2.397
-3.565
1.842
-9.018
5.058
23.253
-10.325
0.00131
-0.00038
372
-0.715
0.360
-4.608
2.393
-3.559
1.839
-9.004
5.050
23.210
-10.309
0.00131
-0.00038
373
-0.713
0.360
-4.601
2.390
-3.553
1.836
-8.990
5.041
23.167
-10.293
0.00130
-0.00038
374
-0.712
0.359
-4.593
2.386
-3.547
1.833
-8.975
5.033
23.124
-10.277
0.00130
-0.00038
375
-0.711
0.358
-4.586
2.382
-3.541
1.830
-8.961
5.024
23.082
-10.261
0.00130
-0.00038
376
-0.710
0.358
-4.578
2.378
-3.536
1.827
-8.947
5.016
23.039
-10.245
0.00129
-0.00038
377
-0.709
0.357
-4.571
2.374
-3.530
1.824
-8.932
5.007
22.997
-10.229
0.00129
-0.00038
378
-0.707
0.357
-4.563
2.371
-3.524
1.821
-8.918
4.999
22.954
-10.213
0.00128
-0.00038
379
-0.706
0.356
-4.556
2.367
-3.518
1.819
-8.904
4.990
22.912
-10.197
0.00128
-0.00037
380
-0.705
0.356
-4.548
2.363
-3.512
1.816
-8.890
4.982
22.870
-10.181
0.00128
-0.00037
381
-0.704
0.355
-4.541
2.359
-3.507
1.813
-8.876
4.973
22.827
-10.165
0.00127
-0.00037
382
-0.703
0.354
-4.534
2.355
-3.501
1.810
-8.862
4.965
22.785
-10.149
0.00127
-0.00037
383
-0.702
0.354
-4.526
2.352
-3.495
1.807
-8.848
4.957
22.743
-10.133
0.00127
-0.00037
384
-0.700
0.353
-4.519
2.348
-3.490
1.804
-8.834
4.948
22.701
-10.117
0.00126
-0.00037
385
-0.699
0.353
-4.512
2.344
-3.484
1.801
-8.819
4.940
22.660
-10.101
0.00126
-0.00037
386
-0.698
0.352
-4.504
2.340
-3.478
1.798
-8.805
4.931
22.618
-10.086
0.00125
-0.00037
387
-0.697
0.352
-4.497
2.337
-3.472
1.795
-8.791
4.923
22.576
-10.070
0.00125
-0.00037
388
-0.696
0.351
-4.490
2.333
-3.467
1.793
-8.777
4.915
22.535
-10.054
0.00125
-0.00037
389
-0.695
0.351
-4.482
2.329
-3.461
1.790
-8.763
4.906
22.493
-10.038
0.00124
-0.00037
390
-0.694
0.350
-4.475
2.325
-3.455
1.787
-8.750
4.898
22.452
-10.023
0.00124
-0.00037
391
-0.692
0.349
-4.468
2.322
-3.450
1.784
-8.736
4.890
22.410
-10.007
0.00124
-0.00037
392
-0.691
0.349
-4.460
2.318
-3.444
1.781
-8.722
4.882
22.369
-9.991
0.00123
-0.00037
393
-0.690
0.348
-4.453
2.314
-3.438
1.778
-8.708
4.873
22.328
-9.976
0.00123
-0.00037
394
-0.689
0.348
-4.446
2.310
-3.433
1.775
-8.694
4.865
22.287
-9.960
0.00123
-0.00037
395
-0.688
0.347
-4.439
2.307
-3.427
1.772
-8.680
4.857
22.246
-9.945
0.00122
-0.00037
396
-0.687
0.347
-4.431
2.303
-3.422
1.770
-8.666
4.849
22.205
-9.929
0.00122
-0.00036
397
-0.685
0.346
-4.424
2.299
-3.416
1.767
-8.653
4.840
22.164
-9.913
0.00121
-0.00036
398
-0.684
0.346
-4.417
2.296
-3.410
1.764
-8.639
4.832
22.123
-9.898
0.00121
-0.00036
399
-0.683
0.345
-4.410
2.292
-3.405
1.761
-8.625
4.824
22.083
-9.882
0.00121
-0.00036
400
-0.682
0.344
-4.403
2.288
-3.399
1.758
-8.611
4.816
22.042
-9.867
0.00120
-0.00036
401
-0.681
0.344
-4.395
2.285
-3.394
1.756
-8.598
4.808
22.002
-9.852
0.00120
-0.00036
402
-0.680
0.343
-4.388
2.281
-3.388
1.753
-8.584
4.800
21.961
-9.836
0.00120
-0.00036
403
-0.679
0.343
-4.381
2.277
-3.383
1.750
-8.570
4.791
21.921
-9.821
0.00119
-0.00036
404
-0.678
0.342
-4.374
2.274
-3.377
1.747
-8.557
4.783
21.881
-9.805
0.00119
-0.00036
405
-0.676
0.342
-4.367
2.270
-3.371
1.744
-8.543
4.775
21.840
-9.790
0.00119
-0.00036
406
-0.675
0.341
-4.360
2.266
-3.366
1.741
-8.529
4.767
21.800
-9.775
0.00118
-0.00036
407
-0.674
0.341
-4.353
2.263
-3.360
1.739
-8.516
4.759
21.760
-9.759
0.00118
-0.00036
408
-0.673
0.340
-4.345
2.259
-3.355
1.736
-8.502
4.751
21.720
-9.744
0.00118
-0.00036
409
-0.672
0.340
-4.338
2.255
-3.349
1.733
-8.489
4.743
21.680
-9.729
0.00117
-0.00036
410
-0.671
0.339
-4.331
2.252
-3.344
1.730
-8.475
4.735
21.641
-9.714
0.00117
-0.00036
411
-0.670
0.339
-4.324
2.248
-3.338
1.728
-8.462
4.727
21.601
-9.698
0.00117
-0.00036
412
-0.669
0.338
-4.317
2.244
-3.333
1.725
-8.448
4.719
21.561
-9.683
0.00116
-0.00036
413
-0.667
0.337
-4.310
2.241
-3.328
1.722
-8.435
4.711
21.522
-9.668
0.00116
-0.00036
414
-0.666
0.337
-4.303
2.237
-3.322
1.719
-8.421
4.703
21.482
-9.653
0.00116
-0.00035
415
-0.665
0.336
-4.296
2.234
-3.317
1.717
-8.408
4.695
21.443
-9.638
0.00115
-0.00035
416
-0.664
0.336
-4.289
2.230
-3.311
1.714
-8.394
4.687
21.404
-9.623
0.00115
-0.00035
417
-0.663
0.335
-4.282
2.226
-3.306
1.711
-8.381
4.679
21.364
-9.608
0.00115
-0.00035
418
-0.662
0.335
-4.275
2.223
-3.300
1.708
-8.368
4.671
21.325
-9.592
0.00114
-0.00035
419
-0.661
0.334
-4.268
2.219
-3.295
1.706
-8.354
4.663
21.286
-9.577
0.00114
-0.00035
420
-0.660
0.334
-4.261
2.216
-3.290
1.703
-8.341
4.655
21.247
-9.562
0.00114
-0.00035
421
-0.659
0.333
-4.254
2.212
-3.284
1.700
-8.328
4.648
21.208
-9.547
0.00113
-0.00035
422
-0.658
0.333
-4.247
2.209
-3.279
1.697
-8.314
4.640
21.169
-9.532
0.00113
-0.00035
423
-0.656
0.332
-4.240
2.205
-3.273
1.695
-8.301
4.632
21.131
-9.518
0.00113
-0.00035
424
-0.655
0.332
-4.233
2.202
-3.268
1.692
-8.288
4.624
21.092
-9.503
0.00112
-0.00035
425
-0.654
0.331
-4.227
2.198
-3.263
1.689
-8.275
4.616
21.053
-9.488
0.00112
-0.00035
426
-0.653
0.331
-4.220
2.194
-3.257
1.686
-8.261
4.608
21.015
-9.473
0.00112
-0.00035
427
-0.652
0.330
-4.213
2.191
-3.252
1.684
-8.248
4.601
20.976
-9.458
0.00111
-0.00035
428
-0.651
0.329
-4.206
2.187
-3.247
1.681
-8.235
4.593
20.938
-9.443
0.00111
-0.00035
429
-0.650
0.329
-4.199
2.184
-3.241
1.678
-8.222
4.585
20.900
-9.428
0.00111
-0.00035
430
-0.649
0.328
-4.192
2.180
-3.236
1.676
-8.209
4.577
20.861
-9.414
0.00110
-0.00035
431
-0.648
0.328
-4.185
2.177
-3.231
1.673
-8.196
4.570
20.823
-9.399
0.00110
-0.00035
432
-0.647
0.327
-4.179
2.173
-3.225
1.670
-8.183
4.562
20.785
-9.384
0.00110
-0.00034
433
-0.646
0.327
-4.172
2.170
-3.220
1.668
-8.169
4.554
20.747
-9.369
0.00110
-0.00034
434
-0.645
0.326
-4.165
2.166
-3.215
1.665
-8.156
4.546
20.709
-9.355
0.00109
-0.00034
435
-0.644
0.326
-4.158
2.163
-3.210
1.662
-8.143
4.539
20.671
-9.340
0.00109
-0.00034
436
-0.642
0.325
-4.151
2.159
-3.204
1.660
-8.130
4.531
20.634
-9.325
0.00109
-0.00034
437
-0.641
0.325
-4.145
2.156
-3.199
1.657
-8.117
4.523
20.596
-9.311
0.00108
-0.00034
438
-0.640
0.324
-4.138
2.152
-3.194
1.654
-8.104
4.516
20.558
-9.296
0.00108
-0.00034
439
-0.639
0.324
-4.131
2.149
-3.189
1.652
-8.092
4.508
20.521
-9.281
0.00108
-0.00034
440
-0.638
0.323
-4.124
2.146
-3.183
1.649
-8.079
4.501
20.483
-9.267
0.00107
-0.00034
441
-0.637
0.323
-4.118
2.142
-3.178
1.646
-8.066
4.493
20.446
-9.252
0.00107
-0.00034
442
-0.636
0.322
-4.111
2.139
-3.173
1.644
-8.053
4.485
20.408
-9.238
0.00107
-0.00034
443
-0.635
0.322
-4.104
2.135
-3.168
1.641
-8.040
4.478
20.371
-9.223
0.00107
-0.00034
444
-0.634
0.321
-4.097
2.132
-3.163
1.638
-8.027
4.470
20.334
-9.209
0.00106
-0.00034
445
-0.633
0.321
-4.091
2.128
-3.157
1.636
-8.014
4.463
20.297
-9.194
0.00106
-0.00034
446
-0.632
0.320
-4.084
2.125
-3.152
1.633
-8.001
4.455
20.260
-9.180
0.00106
-0.00034
447
-0.631
0.320
-4.077
2.122
-3.147
1.631
-7.989
4.448
20.223
-9.165
0.00105
-0.00034
448
-0.630
0.319
-4.071
2.118
-3.142
1.628
-7.976
4.440
20.186
-9.151
0.00105
-0.00034
449
-0.629
0.319
-4.064
2.115
-3.137
1.625
-7.963
4.433
20.149
-9.137
0.00105
-0.00034
450
-0.628
0.318
-4.058
2.111
-3.132
1.623
-7.950
4.425
20.112
-9.122
0.00104
-0.00034
451
-0.627
0.318
-4.051
2.108
-3.126
1.620
-7.938
4.418
20.076
-9.108
0.00104
-0.00033
452
-0.626
0.317
-4.044
2.104
-3.121
1.617
-7.925
4.410
20.039
-9.094
0.00104
-0.00033
453
-0.625
0.317
-4.038
2.101
-3.116
1.615
-7.912
4.403
20.003
-9.079
0.00104
-0.00033
454
-0.624
0.316
-4.031
2.098
-3.111
1.612
-7.900
4.395
19.966
-9.065
0.00103
-0.00033
455
-0.622
0.316
-4.025
2.094
-3.106
1.610
-7.887
4.388
19.930
-9.051
0.00103
-0.00033
456
-0.621
0.315
-4.018
2.091
-3.101
1.607
-7.874
4.381
19.893
-9.037
0.00103
-0.00033
457
-0.620
0.315
-4.011
2.088
-3.096
1.605
-7.862
4.373
19.857
-9.022
0.00102
-0.00033
458
-0.619
0.314
-4.005
2.084
-3.091
1.602
-7.849
4.366
19.821
-9.008
0.00102
-0.00033
459
-0.618
0.314
-3.998
2.081
-3.086
1.599
-7.837
4.358
19.785
-8.994
0.00102
-0.00033
460
-0.617
0.313
-3.992
2.078
-3.081
1.597
-7.824
4.351
19.749
-8.980
0.00102
-0.00033
461
-0.616
0.313
-3.985
2.074
-3.075
1.594
-7.812
4.344
19.713
-8.966
0.00101
-0.00033
462
-0.615
0.312
-3.979
2.071
-3.070
1.592
-7.799
4.336
19.677
-8.952
0.00101
-0.00033
463
-0.614
0.312
-3.972
2.068
-3.065
1.589
-7.787
4.329
19.641
-8.937
0.00101
-0.00033
464
-0.613
0.311
-3.966
2.064
-3.060
1.587
-7.774
4.322
19.605
-8.923
0.00101
-0.00033
465
-0.612
0.311
-3.959
2.061
-3.055
1.584
-7.762
4.314
19.570
-8.909
0.00100
-0.00033
466
-0.611
0.310
-3.953
2.058
-3.050
1.581
-7.749
4.307
19.534
-8.895
0.00100
-0.00033
467
-0.610
0.310
-3.946
2.054
-3.045
1.579
-7.737
4.300
19.499
-8.881
0.00100
-0.00033
468
-0.609
0.309
-3.940
2.051
-3.040
1.576
-7.725
4.293
19.463
-8.867
0.00099
-0.00033
469
-0.608
0.309
-3.933
2.048
-3.035
1.574
-7.712
4.285
19.428
-8.853
0.00099
-0.00033
470
-0.607
0.308
-3.927
2.044
-3.030
1.571
-7.700
4.278
19.392
-8.839
0.00099
-0.00032
471
-0.606
0.308
-3.921
2.041
-3.025
1.569
-7.688
4.271
19.357
-8.826
0.00099
-0.00032
472
-0.605
0.307
-3.914
2.038
-3.020
1.566
-7.675
4.264
19.322
-8.812
0.00098
-0.00032
473
-0.604
0.307
-3.908
2.034
-3.015
1.564
-7.663
4.257
19.287
-8.798
0.00098
-0.00032
474
-0.603
0.306
-3.901
2.031
-3.011
1.561
-7.651
4.249
19.252
-8.784
0.00098
-0.00032
475
-0.602
0.306
-3.895
2.028
-3.006
1.559
-7.638
4.242
19.217
-8.770
0.00098
-0.00032
476
-0.601
0.305
-3.889
2.025
-3.001
1.556
-7.626
4.235
19.182
-8.756
0.00097
-0.00032
477
-0.600
0.305
-3.882
2.021
-2.996
1.554
-7.614
4.228
19.147
-8.743
0.00097
-0.00032
478
-0.599
0.304
-3.876
2.018
-2.991
1.551
-7.602
4.221
19.112
-8.729
0.00097
-0.00032
479
-0.598
0.304
-3.870
2.015
-2.986
1.549
-7.590
4.214
19.078
-8.715
0.00096
-0.00032
480
-0.597
0.303
-3.863
2.012
-2.981
1.546
-7.577
4.207
19.043
-8.701
0.00096
-0.00032
481
-0.596
0.303
-3.857
2.008
-2.976
1.544
-7.565
4.199
19.008
-8.688
0.00096
-0.00032
482
-0.595
0.302
-3.851
2.005
-2.971
1.541
-7.553
4.192
18.974
-8.674
0.00096
-0.00032
483
-0.594
0.302
-3.844
2.002
-2.966
1.539
-7.541
4.185
18.939
-8.660
0.00095
-0.00032
484
-0.593
0.301
-3.838
1.999
-2.961
1.536
-7.529
4.178
18.905
-8.647
0.00095
-0.00032
485
-0.592
0.301
-3.832
1.995
-2.957
1.534
-7.517
4.171
18.871
-8.633
0.00095
-0.00032
486
-0.591
0.300
-3.826
1.992
-2.952
1.531
-7.505
4.164
18.836
-8.619
0.00095
-0.00032
487
-0.590
0.300
-3.819
1.989
-2.947
1.529
-7.493
4.157
18.802
-8.606
0.00094
-0.00032
488
-0.589
0.299
-3.813
1.986
-2.942
1.526
-7.481
4.150
18.768
-8.592
0.00094
-0.00032
489
-0.588
0.299
-3.807
1.983
-2.937
1.524
-7.469
4.143
18.734
-8.579
0.00094
-0.00032
490
-0.587
0.299
-3.801
1.979
-2.932
1.522
-7.457
4.136
18.700
-8.565
0.00094
-0.00031
491
-0.586
0.298
-3.794
1.976
-2.928
1.519
-7.445
4.129
18.666
-8.552
0.00093
-0.00031
492
-0.585
0.298
-3.788
1.973
-2.923
1.517
-7.433
4.122
18.632
-8.538
0.00093
-0.00031
493
-0.584
0.297
-3.782
1.970
-2.918
1.514
-7.421
4.115
18.599
-8.525
0.00093
-0.00031
494
-0.583
0.297
-3.776
1.967
-2.913
1.512
-7.409
4.108
18.565
-8.511
0.00093
-0.00031
495
-0.582
0.296
-3.770
1.964
-2.908
1.509
-7.397
4.101
18.531
-8.498
0.00092
-0.00031
496
-0.581
0.296
-3.764
1.960
-2.904
1.507
-7.386
4.094
18.498
-8.484
0.00092
-0.00031
497
-0.580
0.295
-3.757
1.957
-2.899
1.504
-7.374
4.088
18.464
-8.471
0.00092
-0.00031
498
-0.580
0.295
-3.751
1.954
-2.894
1.502
-7.362
4.081
18.431
-8.458
0.00092
-0.00031
499
-0.579
0.294
-3.745
1.951
-2.889
1.500
-7.350
4.074
18.397
-8.444
0.00091
-0.00031

Figure 9:  Existence of Equilibrium Paths: Approximation Errors

Data for Figure 9 immediately follows

Data for Figure 9

Quarters
Risk Sharing Condition
(true solution)
Risk Sharing Condition
(linearized solution)
Euler Equation for Capital Home Country
(true solution)
Euler Equation for Capital Home Country
(linearized solution)
Euler Equation for Capital Foreign Country
(true solution)
Euler Equation for Capital Foreign Country
(linearized solution)
1
-4.2E-15
4.4E-03
-5.6E-17
3.2E-05
-2.2E-16
6.9E-05
2
-6.7E-16
4.1E-03
1.1E-16
3.0E-05
0.0E+00
6.4E-05
3
-4.3E-15
3.8E-03
5.6E-17
2.9E-05
0.0E+00
5.9E-05
4
1.7E-15
3.5E-03
-1.1E-16
2.7E-05
2.2E-16
5.4E-05
5
-8.9E-16
3.2E-03
1.7E-16
2.6E-05
1.1E-16
5.0E-05
6
1.1E-16
2.9E-03
-5.6E-17
2.4E-05
0.0E+00
4.6E-05
7
7.0E-15
2.7E-03
0.0E+00
2.3E-05
1.1E-16
4.3E-05
8
-4.4E-16
2.4E-03
-1.1E-16
2.2E-05
-2.2E-16
3.9E-05
9
2.3E-15
2.2E-03
5.6E-17
2.0E-05
5.6E-16
3.6E-05
10
-5.6E-16
2.0E-03
-5.6E-17
1.9E-05
-1.1E-16
3.3E-05
11
4.6E-15
1.8E-03
1.7E-16
1.8E-05
2.2E-16
3.0E-05
12
-2.1E-15
1.7E-03
-1.1E-16
1.7E-05
0.0E+00
2.8E-05
13
4.9E-15
1.5E-03
5.6E-17
1.6E-05
0.0E+00
2.5E-05
14
3.2E-15
1.3E-03
-5.6E-17
1.5E-05
3.3E-16
2.3E-05
15
2.2E-16
1.2E-03
1.1E-16
1.4E-05
-1.1E-16
2.1E-05
16
1.1E-16
1.1E-03
0.0E+00
1.3E-05
-2.2E-16
1.9E-05
17
8.0E-15
9.4E-04
-1.1E-16
1.2E-05
6.7E-16
1.7E-05
18
-1.1E-15
8.2E-04
-1.1E-16
1.1E-05
-4.4E-16
1.5E-05
19
3.1E-15
7.1E-04
5.6E-17
1.0E-05
1.1E-16
1.4E-05
20
2.0E-15
6.1E-04
1.1E-16
9.6E-06
2.2E-16
1.2E-05
21
-6.4E-15
5.1E-04
1.1E-16
8.8E-06
0.0E+00
1.0E-05
22
1.2E-14
4.2E-04
-2.8E-16
8.1E-06
3.3E-16
9.1E-06
23
-1.0E-15
3.3E-04
2.2E-16
7.4E-06
2.2E-16
7.8E-06
24
0.0E+00
2.6E-04
-1.7E-16
6.8E-06
0.0E+00
6.6E-06
25
1.7E-15
1.8E-04
0.0E+00
6.2E-06
-3.3E-16
5.4E-06
26
-1.4E-15
1.1E-04
5.6E-17
5.6E-06
2.2E-16
4.4E-06
27
-6.7E-16
4.6E-05
0.0E+00
5.0E-06
1.1E-16
3.3E-06
28
1.6E-15
-1.6E-05
-5.6E-17
4.5E-06
-3.3E-16
2.4E-06
29
-2.4E-15
-7.3E-05
1.1E-16
4.0E-06
1.1E-16
1.5E-06
30
3.2E-15
-1.3E-04
-1.1E-16
3.5E-06
0.0E+00
6.4E-07
31
-2.2E-16
-1.8E-04
0.0E+00
3.1E-06
-1.1E-16
-1.7E-07
32
-5.8E-15
-2.3E-04
0.0E+00
2.6E-06
0.0E+00
-9.2E-07
33
5.1E-15
-2.7E-04
5.6E-17
2.2E-06
-1.1E-16
-1.6E-06
34
3.0E-15
-3.1E-04
-1.1E-16
1.8E-06
0.0E+00
-2.3E-06
35
8.8E-15
-3.5E-04
0.0E+00
1.5E-06
5.6E-16
-2.9E-06
36
-5.3E-15
-3.9E-04
0.0E+00
1.1E-06
-4.4E-16
-3.5E-06
37
7.7E-15
-4.2E-04
1.7E-16
7.7E-07
4.4E-16
-4.1E-06
38
1.8E-15
-4.6E-04
0.0E+00
4.5E-07
-2.2E-16
-4.6E-06
39
8.5E-15
-4.9E-04
-5.6E-17
1.4E-07
3.3E-16
-5.1E-06
40
-1.3E-15
-5.2E-04
1.1E-16
-1.4E-07
-2.2E-16
-5.6E-06
41
6.2E-15
-5.4E-04
0.0E+00
-4.2E-07
0.0E+00
-6.0E-06
42
-3.8E-15
-5.7E-04
5.6E-17
-6.8E-07
-2.2E-16
-6.5E-06
43
1.7E-15
-5.9E-04
0.0E+00
-9.2E-07
0.0E+00
-6.9E-06
44
-7.8E-16
-6.1E-04
1.1E-16
-1.2E-06
-1.1E-16
-7.2E-06
45
7.2E-15
-6.3E-04
-1.1E-16
-1.4E-06
0.0E+00
-7.6E-06
46
1.9E-15
-6.5E-04
1.7E-16
-1.6E-06
2.2E-16
-7.9E-06
47
-1.2E-15
-6.7E-04
-1.1E-16
-1.8E-06
-4.4E-16
-8.2E-06
48
-1.9E-15
-6.9E-04
-5.6E-17
-2.0E-06
1.1E-16
-8.5E-06
49
5.3E-15
-7.1E-04
-5.6E-17
-2.2E-06
0.0E+00
-8.8E-06
50
3.8E-15
-7.2E-04
-1.1E-16
-2.3E-06
-1.1E-16
-9.1E-06
51
3.2E-15
-7.4E-04
5.6E-17
-2.5E-06
2.2E-16
-9.3E-06
52
5.3E-15
-7.5E-04
-5.6E-17
-2.6E-06
-1.1E-16
-9.6E-06
53
-1.3E-15
-7.6E-04
0.0E+00
-2.8E-06
4.4E-16
-9.8E-06
54
3.0E-15
-7.7E-04
-5.6E-17
-2.9E-06
-4.4E-16
-1.0E-05
55
6.3E-15
-7.8E-04
-1.7E-16
-3.0E-06
2.2E-16
-1.0E-05
56
3.9E-15
-7.9E-04
0.0E+00
-3.2E-06
1.1E-16
-1.0E-05
57
4.4E-15
-8.0E-04
-1.1E-16
-3.3E-06
1.1E-16
-1.1E-05
58
-3.4E-15
-8.1E-04
-1.7E-16
-3.4E-06
-4.4E-16
-1.1E-05
59
8.7E-15
-8.2E-04
5.6E-17
-3.5E-06
2.2E-16
-1.1E-05
60
-5.2E-15
-8.3E-04
5.6E-17
-3.6E-06
-2.2E-16
-1.1E-05
61
7.7E-15
-8.4E-04
-1.1E-16
-3.7E-06
0.0E+00
-1.1E-05
62
4.4E-15
-8.4E-04
1.7E-16
-3.8E-06
4.4E-16
-1.1E-05
63
2.1E-15
-8.5E-04
-2.8E-16
-3.8E-06
0.0E+00
-1.1E-05
64
1.8E-15
-8.5E-04
0.0E+00
-3.9E-06
4.4E-16
-1.2E-05
65
-2.2E-15
-8.6E-04
1.1E-16
-4.0E-06
-3.3E-16
-1.2E-05
66
4.7E-15
-8.6E-04
-5.6E-17
-4.0E-06
2.2E-16
-1.2E-05
67
1.9E-15
-8.7E-04
1.1E-16
-4.1E-06
-2.2E-16
-1.2E-05
68
4.7E-15
-8.7E-04
-1.7E-16
-4.2E-06
2.2E-16
-1.2E-05
69
5.6E-16
-8.8E-04
0.0E+00
-4.2E-06
2.2E-16
-1.2E-05
70
2.9E-15
-8.8E-04
1.1E-16
-4.3E-06
2.2E-16
-1.2E-05
71
2.8E-15
-8.8E-04
-1.7E-16
-4.3E-06
-1.1E-16
-1.2E-05
72
1.0E-14
-8.9E-04
1.1E-16
-4.4E-06
2.2E-16
-1.2E-05
73
3.4E-15
-8.9E-04
5.6E-17
-4.4E-06
-1.1E-16
-1.2E-05
74
5.6E-16
-8.9E-04
0.0E+00
-4.4E-06
0.0E+00
-1.2E-05
75
2.9E-15
-8.9E-04
-1.7E-16
-4.5E-06
3.3E-16
-1.2E-05
76
2.2E-15
-9.0E-04
0.0E+00
-4.5E-06
2.2E-16
-1.2E-05
77
4.9E-15
-9.0E-04
5.6E-17
-4.5E-06
0.0E+00
-1.2E-05
78
-1.0E-15
-9.0E-04
5.6E-17
-4.6E-06
0.0E+00
-1.2E-05
79
1.7E-15
-9.0E-04
-5.6E-17
-4.6E-06
-1.1E-16
-1.3E-05
80
3.1E-15
-9.0E-04
1.1E-16
-4.6E-06
2.2E-16
-1.3E-05
81
7.4E-15
-9.0E-04
-5.6E-17
-4.6E-06
1.1E-16
-1.3E-05
82
-3.1E-15
-9.0E-04
5.6E-17
-4.7E-06
1.1E-16
-1.3E-05
83
5.8E-15
-9.0E-04
-1.1E-16
-4.7E-06
-1.1E-16
-1.3E-05
84
-5.6E-16
-9.0E-04
0.0E+00
-4.7E-06
2.2E-16
-1.3E-05
85
2.8E-15
-9.0E-04
0.0E+00
-4.7E-06
-2.2E-16
-1.3E-05
86
5.1E-15
-9.0E-04
-1.1E-16
-4.7E-06
3.3E-16
-1.3E-05
87
4.0E-15
-9.0E-04
-5.6E-17
-4.7E-06
-1.1E-16
-1.3E-05
88
-3.3E-16
-9.0E-04
0.0E+00
-4.7E-06
2.2E-16
-1.3E-05
89
1.5E-14
-9.0E-04
-5.6E-17
-4.7E-06
2.2E-16
-1.3E-05
90
-7.8E-16
-9.0E-04
-5.6E-17
-4.7E-06
1.1E-16
-1.3E-05
91
2.8E-15
-9.0E-04
-2.2E-16
-4.8E-06
-2.2E-16
-1.3E-05
92
1.0E-15
-9.0E-04
0.0E+00
-4.8E-06
-1.1E-16
-1.3E-05
93
8.8E-15
-9.0E-04
0.0E+00
-4.8E-06
0.0E+00
-1.3E-05
94
-1.9E-15
-9.0E-04
1.1E-16
-4.8E-06
2.2E-16
-1.3E-05
95
8.5E-15
-9.0E-04
-1.7E-16
-4.8E-06
3.3E-16
-1.3E-05
96
-3.3E-15
-9.0E-04
5.6E-17
-4.8E-06
-2.2E-16
-1.3E-05
97
5.6E-16
-9.0E-04
-1.1E-16
-4.8E-06
0.0E+00
-1.3E-05
98
1.1E-14
-8.9E-04
-5.6E-17
-4.8E-06
2.2E-16
-1.3E-05
99
3.3E-16
-8.9E-04
-1.1E-16
-4.8E-06
0.0E+00
-1.3E-05
100
-5.6E-16
-8.9E-04
5.6E-17
-4.8E-06
-2.2E-16
-1.3E-05
101
6.3E-15
-8.9E-04
-1.1E-16
-4.8E-06
1.1E-16
-1.3E-05
102
-8.9E-16
-8.9E-04
5.6E-17
-4.8E-06
-1.1E-16
-1.3E-05
103
7.5E-15
-8.9E-04
-1.7E-16
-4.8E-06
0.0E+00
-1.3E-05
104
6.1E-15
-8.9E-04
-5.6E-17
-4.7E-06
0.0E+00
-1.3E-05
105
-1.0E-15
-8.8E-04
-1.1E-16
-4.7E-06
0.0E+00
-1.3E-05
106
6.0E-15
-8.8E-04
-5.6E-17
-4.7E-06
2.2E-16
-1.3E-05
107
3.9E-15
-8.8E-04
-5.6E-17
-4.7E-06
3.3E-16
-1.3E-05
108
3.3E-16
-8.8E-04
1.1E-16
-4.7E-06
-1.1E-16
-1.3E-05
109
2.7E-15
-8.8E-04
-1.7E-16
-4.7E-06
3.3E-16
-1.3E-05
110
2.6E-15
-8.8E-04
5.6E-17
-4.7E-06
0.0E+00
-1.3E-05
111
1.6E-15
-8.7E-04
0.0E+00
-4.7E-06
1.1E-16
-1.3E-05
112
2.9E-15
-8.7E-04
-1.1E-16
-4.7E-06
1.1E-16
-1.3E-05
113
6.7E-16
-8.7E-04
-1.1E-16
-4.7E-06
-1.1E-16
-1.3E-05
114
1.3E-14
-8.7E-04
1.1E-16
-4.7E-06
5.6E-16
-1.3E-05
115
1.7E-15
-8.7E-04
5.6E-17
-4.7E-06
3.3E-16
-1.3E-05
116
-1.7E-15
-8.6E-04
0.0E+00
-4.6E-06
-3.3E-16
-1.3E-05
117
1.1E-15
-8.6E-04
-5.6E-17
-4.6E-06
1.1E-16
-1.3E-05
118
2.6E-15
-8.6E-04
-5.6E-17
-4.6E-06
-1.1E-16
-1.2E-05
119
-3.6E-15
-8.6E-04
-5.6E-17
-4.6E-06
1.1E-16
-1.2E-05
120
6.1E-15
-8.6E-04
5.6E-17
-4.6E-06
-1.1E-16
-1.2E-05
121
5.3E-15
-8.5E-04
-5.6E-17
-4.6E-06
4.4E-16
-1.2E-05
122
-2.6E-15
-8.5E-04
0.0E+00
-4.6E-06
-2.2E-16
-1.2E-05
123
1.3E-14
-8.5E-04
-2.2E-16
-4.6E-06
2.2E-16
-1.2E-05
124
-5.2E-15
-8.5E-04
0.0E+00
-4.6E-06
-1.1E-16
-1.2E-05
125
-4.4E-15
-8.5E-04
-5.6E-17
-4.5E-06
-2.2E-16
-1.2E-05
126
2.2E-15
-8.4E-04
0.0E+00
-4.5E-06
0.0E+00
-1.2E-05
127
8.9E-16
-8.4E-04
5.6E-17
-4.5E-06
1.1E-16
-1.2E-05
128
4.8E-15
-8.4E-04
-5.6E-17
-4.5E-06
2.2E-16
-1.2E-05
129
5.0E-15
-8.4E-04
5.6E-17
-4.5E-06
1.1E-16
-1.2E-05
130
4.4E-15
-8.4E-04
-5.6E-17
-4.5E-06
0.0E+00
-1.2E-05
131
4.4E-15
-8.3E-04
5.6E-17
-4.5E-06
1.1E-16
-1.2E-05
132
-2.2E-16
-8.3E-04
0.0E+00
-4.5E-06
0.0E+00
-1.2E-05
133
1.8E-15
-8.3E-04
-1.1E-16
-4.4E-06
0.0E+00
-1.2E-05
134
4.1E-15
-8.3E-04
0.0E+00
-4.4E-06
-1.1E-16
-1.2E-05
135
-3.9E-15
-8.2E-04
1.1E-16
-4.4E-06
-1.1E-16
-1.2E-05
136
2.4E-15
-8.2E-04
-1.7E-16
-4.4E-06
0.0E+00
-1.2E-05
137
7.1E-15
-8.2E-04
5.6E-17
-4.4E-06
0.0E+00
-1.2E-05
138
3.9E-15
-8.2E-04
-2.2E-16
-4.4E-06
-1.1E-16
-1.2E-05
139
-2.0E-15
-8.2E-04
5.6E-17
-4.4E-06
-1.1E-16
-1.2E-05
140
-4.9E-15
-8.1E-04
2.2E-16
-4.4E-06
0.0E+00
-1.2E-05
141
-5.6E-16
-8.1E-04
2.2E-16
-4.3E-06
1.1E-16
-1.2E-05
142
-4.2E-15
-8.1E-04
0.0E+00
-4.3E-06
0.0E+00
-1.2E-05
143
3.2E-15
-8.1E-04
-2.2E-16
-4.3E-06
0.0E+00
-1.2E-05
144
5.9E-15
-8.0E-04
5.6E-17
-4.3E-06
0.0E+00
-1.2E-05
145
-4.2E-15
-8.0E-04
-1.7E-16
-4.3E-06
0.0E+00
-1.2E-05
146
-2.4E-15
-8.0E-04
-5.6E-17
-4.3E-06
0.0E+00
-1.2E-05
147
-2.7E-15
-8.0E-04
5.6E-17
-4.3E-06
-2.2E-16
-1.2E-05
148
3.6E-15
-8.0E-04
0.0E+00
-4.2E-06
2.2E-16
-1.2E-05
149
-3.7E-15
-7.9E-04
-5.6E-17
-4.2E-06
1.1E-16
-1.2E-05
150
9.5E-15
-7.9E-04
5.6E-17
-4.2E-06
1.1E-16
-1.2E-05
151
1.3E-15
-7.9E-04
-1.7E-16
-4.2E-06
1.1E-16
-1.2E-05
152
4.4E-15
-7.9E-04
1.1E-16
-4.2E-06
1.1E-16
-1.2E-05
153
4.0E-15
-7.8E-04
0.0E+00
-4.2E-06
2.2E-16
-1.2E-05
154
5.8E-15
-7.8E-04
0.0E+00
-4.2E-06
1.1E-16
-1.2E-05
155
1.4E-15
-7.8E-04
0.0E+00
-4.1E-06
-2.2E-16
-1.2E-05
156
3.1E-15
-7.8E-04
-5.6E-17
-4.1E-06
1.1E-16
-1.2E-05
157
-3.6E-15
-7.7E-04
1.1E-16
-4.1E-06
0.0E+00
-1.2E-05
158
7.9E-15
-7.7E-04
0.0E+00
-4.1E-06
3.3E-16
-1.2E-05
159
3.1E-15
-7.7E-04
-5.6E-17
-4.1E-06
1.1E-16
-1.2E-05
160
-2.3E-15
-7.7E-04
1.1E-16
-4.1E-06
0.0E+00
-1.1E-05
161
1.1E-14
-7.7E-04
-1.1E-16
-4.1E-06
0.0E+00
-1.1E-05
162
1.0E-15
-7.6E-04
1.1E-16
-4.0E-06
1.1E-16
-1.1E-05
163
-3.7E-15
-7.6E-04
5.6E-17
-4.0E-06
-2.2E-16
-1.1E-05
164
-1.2E-15
-7.6E-04
0.0E+00
-4.0E-06
1.1E-16
-1.1E-05
165
-2.2E-16
-7.6E-04
5.6E-17
-4.0E-06
0.0E+00
-1.1E-05
166
7.4E-15
-7.5E-04
5.6E-17
-4.0E-06
1.1E-16
-1.1E-05
167
3.3E-16
-7.5E-04
0.0E+00
-4.0E-06
-1.1E-16
-1.1E-05
168
-5.2E-15
-7.5E-04
1.7E-16
-4.0E-06
-1.1E-16
-1.1E-05
169
7.2E-15
-7.5E-04
-1.1E-16
-4.0E-06
3.3E-16
-1.1E-05
170
-2.2E-16
-7.5E-04
-5.6E-17
-3.9E-06
0.0E+00
-1.1E-05
171
5.4E-15
-7.4E-04
-1.1E-16
-3.9E-06
1.1E-16
-1.1E-05
172
6.0E-15
-7.4E-04
-1.1E-16
-3.9E-06
0.0E+00
-1.1E-05
173
1.4E-15
-7.4E-04
5.6E-17
-3.9E-06
1.1E-16
-1.1E-05
174
-6.0E-15
-7.4E-04
-5.6E-17
-3.9E-06
1.1E-16
-1.1E-05
175
5.1E-15
-7.4E-04
0.0E+00
-3.9E-06
-1.1E-16
-1.1E-05
176
6.9E-15
-7.3E-04
-1.7E-16
-3.9E-06
4.4E-16
-1.1E-05
177
3.6E-15
-7.3E-04
1.7E-16
-3.8E-06
1.1E-16
-1.1E-05
178
5.3E-15
-7.3E-04
0.0E+00
-3.8E-06
2.2E-16
-1.1E-05
179
1.4E-15
-7.3E-04
0.0E+00
-3.8E-06
0.0E+00
-1.1E-05
180
4.0E-15
-7.2E-04
0.0E+00
-3.8E-06
1.1E-16
-1.1E-05
181
-4.4E-16
-7.2E-04
-5.6E-17
-3.8E-06
1.1E-16
-1.1E-05
182
1.4E-15
-7.2E-04
1.1E-16
-3.8E-06
1.1E-16
-1.1E-05
183
1.4E-15
-7.2E-04
-1.1E-16
-3.8E-06
-2.2E-16
-1.1E-05
184
7.8E-16
-7.2E-04
0.0E+00
-3.7E-06
3.3E-16
-1.1E-05
185
2.2E-15
-7.1E-04
0.0E+00
-3.7E-06
-2.2E-16
-1.1E-05
186
-3.3E-15
-7.1E-04
1.7E-16
-3.7E-06
-1.1E-16
-1.1E-05
187
4.7E-15
-7.1E-04
-1.7E-16
-3.7E-06
0.0E+00
-1.1E-05
188
2.1E-15
-7.1E-04
5.6E-17
-3.7E-06
2.2E-16
-1.1E-05
189
-5.6E-16
-7.1E-04
-1.1E-16
-3.7E-06
-1.1E-16
-1.1E-05
190
-1.8E-15
-7.0E-04
5.6E-17
-3.7E-06
-1.1E-16
-1.1E-05
191
-3.3E-16
-7.0E-04
0.0E+00
-3.7E-06
-1.1E-16
-1.1E-05
192
4.4E-15
-7.0E-04
-1.1E-16
-3.6E-06
5.6E-16
-1.1E-05
193
2.2E-16
-7.0E-04
1.7E-16
-3.6E-06
0.0E+00
-1.1E-05
194
-5.6E-16
-6.9E-04
-1.1E-16
-3.6E-06
-2.2E-16
-1.1E-05
195
6.7E-16
-6.9E-04
-1.1E-16
-3.6E-06
2.2E-16
-1.1E-05
196
1.0E-14
-6.9E-04
5.6E-17
-3.6E-06
-2.2E-16
-1.1E-05
197
-5.0E-15
-6.9E-04
0.0E+00
-3.6E-06
-1.1E-16
-1.1E-05
198
5.6E-16
-6.9E-04
-1.7E-16
-3.6E-06
-2.2E-16
-1.1E-05
199
1.3E-14
-6.8E-04
0.0E+00
-3.6E-06
2.2E-16
-1.0E-05
200
-4.7E-15
-6.8E-04
0.0E+00
-3.5E-06
-1.1E-16
-1.0E-05
201
6.7E-16
-6.8E-04
-5.6E-17
-3.5E-06
0.0E+00
-1.0E-05
202
-1.1E-16
-6.8E-04
5.6E-17
-3.5E-06
0.0E+00
-1.0E-05
203
3.6E-15
-6.8E-04
0.0E+00
-3.5E-06
0.0E+00
-1.0E-05
204
2.7E-15
-6.7E-04
-5.6E-17
-3.5E-06
-1.1E-16
-1.0E-05
205
-2.6E-15
-6.7E-04
1.1E-16
-3.5E-06
3.3E-16
-1.0E-05
206
3.9E-15
-6.7E-04
-3.9E-16
-3.5E-06
-1.1E-16
-1.0E-05
207
-1.9E-15
-6.7E-04
2.2E-16
-3.5E-06
1.1E-16
-1.0E-05
208
1.6E-15
-6.7E-04
-5.6E-17
-3.4E-06
0.0E+00
-1.0E-05
209
5.6E-16
-6.6E-04
-2.2E-16
-3.4E-06
-2.2E-16
-1.0E-05
210
-3.8E-15
-6.6E-04
-5.6E-17
-3.4E-06
2.2E-16
-1.0E-05
211
6.0E-15
-6.6E-04
0.0E+00
-3.4E-06
0.0E+00
-1.0E-05
212
-3.1E-15
-6.6E-04
0.0E+00
-3.4E-06
-2.2E-16
-1.0E-05
213
2.7E-15
-6.6E-04
-5.6E-17
-3.4E-06
0.0E+00
-1.0E-05
214
3.1E-15
-6.5E-04
5.6E-17
-3.4E-06
0.0E+00
-1.0E-05
215
-1.3E-15
-6.5E-04
-5.6E-17
-3.4E-06
0.0E+00
-1.0E-05
216
6.6E-15
-6.5E-04
1.7E-16
-3.3E-06
1.1E-16
-1.0E-05
217
-4.6E-15
-6.5E-04
0.0E+00
-3.3E-06
0.0E+00
-1.0E-05
218
7.7E-15
-6.5E-04
0.0E+00
-3.3E-06
0.0E+00
-1.0E-05
219
3.6E-15
-6.4E-04
0.0E+00
-3.3E-06
0.0E+00
-1.0E-05
220
-2.1E-15
-6.4E-04
0.0E+00
-3.3E-06
0.0E+00
-1.0E-05
221
-7.9E-15
-6.4E-04
-5.6E-17
-3.3E-06
-1.1E-16
-9.9E-06
222
2.4E-15
-6.4E-04
1.1E-16
-3.3E-06
0.0E+00
-9.9E-06
223
3.0E-15
-6.4E-04
-5.6E-17
-3.3E-06
-1.1E-16
-9.9E-06
224
2.2E-15
-6.4E-04
0.0E+00
-3.3E-06
3.3E-16
-9.9E-06
225
-1.7E-15
-6.3E-04
1.7E-16
-3.2E-06
0.0E+00
-9.9E-06
226
4.4E-15
-6.3E-04
-1.7E-16
-3.2E-06
1.1E-16
-9.8E-06
227
4.1E-15
-6.3E-04
1.1E-16
-3.2E-06
0.0E+00
-9.8E-06
228
6.3E-15
-6.3E-04
-5.6E-17
-3.2E-06
1.1E-16
-9.8E-06
229
6.2E-15
-6.3E-04
-1.1E-16
-3.2E-06
3.3E-16
-9.8E-06
230
-4.2E-15
-6.2E-04
1.7E-16
-3.2E-06
-3.3E-16
-9.7E-06
231
2.9E-15
-6.2E-04
0.0E+00
-3.2E-06
2.2E-16
-9.7E-06
232
2.1E-15
-6.2E-04
0.0E+00
-3.2E-06
2.2E-16
-9.7E-06
233
6.3E-15
-6.2E-04
-1.1E-16
-3.2E-06
1.1E-16
-9.7E-06
234
1.0E-14
-6.2E-04
-1.1E-16
-3.1E-06
-1.1E-16
-9.6E-06
235
5.6E-16
-6.1E-04
1.1E-16
-3.1E-06
0.0E+00
-9.6E-06
236
2.1E-15
-6.1E-04
-1.1E-16
-3.1E-06
2.2E-16
-9.6E-06
237
6.0E-15
-6.1E-04
1.1E-16
-3.1E-06
0.0E+00
-9.6E-06
238
1.3E-15
-6.1E-04
5.6E-17
-3.1E-06
0.0E+00
-9.5E-06
239
7.3E-15
-6.1E-04
-2.2E-16
-3.1E-06
1.1E-16
-9.5E-06
240
-4.7E-15
-6.1E-04
5.6E-17
-3.1E-06
0.0E+00
-9.5E-06
241
4.1E-15
-6.0E-04
0.0E+00
-3.1E-06
0.0E+00
-9.5E-06
242
-2.1E-15
-6.0E-04
-1.1E-16
-3.1E-06
2.2E-16
-9.4E-06
243
4.2E-15
-6.0E-04
-5.6E-17
-3.0E-06
1.1E-16
-9.4E-06
244
5.3E-15
-6.0E-04
-1.1E-16
-3.0E-06
0.0E+00
-9.4E-06
245
4.1E-15
-6.0E-04
1.7E-16
-3.0E-06
3.3E-16
-9.4E-06
246
-3.1E-15
-5.9E-04
1.7E-16
-3.0E-06
-2.2E-16
-9.4E-06
247
7.2E-15
-5.9E-04
-2.2E-16
-3.0E-06
1.1E-16
-9.3E-06
248
-3.7E-15
-5.9E-04
5.6E-17
-3.0E-06
0.0E+00
-9.3E-06
249
-5.7E-15
-5.9E-04
0.0E+00
-3.0E-06
-1.1E-16
-9.3E-06
250
-1.2E-15
-5.9E-04
-1.1E-16
-3.0E-06
2.2E-16
-9.3E-06
251
8.1E-15
-5.9E-04
-2.2E-16
-3.0E-06
-1.1E-16
-9.2E-06
252
7.8E-16
-5.8E-04
5.6E-17
-2.9E-06
-1.1E-16
-9.2E-06
253
-4.0E-15
-5.8E-04
-5.6E-17
-2.9E-06
1.1E-16
-9.2E-06
254
1.1E-16
-5.8E-04
1.7E-16
-2.9E-06
-1.1E-16
-9.2E-06
255
8.0E-15
-5.8E-04
-5.6E-17
-2.9E-06
2.2E-16
-9.1E-06
256
-1.8E-15
-5.8E-04
0.0E+00
-2.9E-06
1.1E-16
-9.1E-06
257
2.8E-15
-5.7E-04
-1.1E-16
-2.9E-06
-3.3E-16
-9.1E-06
258
7.8E-15
-5.7E-04
0.0E+00
-2.9E-06
2.2E-16
-9.1E-06
259
1.0E-15
-5.7E-04
-5.6E-17
-2.9E-06
-1.1E-16
-9.1E-06
260
3.1E-15
-5.7E-04
-5.6E-17
-2.9E-06
0.0E+00
-9.0E-06
261
-7.8E-16
-5.7E-04
2.2E-16
-2.9E-06
-2.2E-16
-9.0E-06
262
2.9E-15
-5.7E-04
-3.3E-16
-2.8E-06
0.0E+00
-9.0E-06
263
4.4E-16
-5.6E-04
2.2E-16
-2.8E-06
2.2E-16
-9.0E-06
264
5.4E-15
-5.6E-04
-1.7E-16
-2.8E-06
0.0E+00
-8.9E-06
265
7.4E-15
-5.6E-04
-1.7E-16
-2.8E-06
3.3E-16
-8.9E-06
266
1.1E-16
-5.6E-04
1.1E-16
-2.8E-06
-3.3E-16
-8.9E-06
267
1.1E-15
-5.6E-04
-1.7E-16
-2.8E-06
1.1E-16
-8.9E-06
268
-1.1E-15
-5.6E-04
5.6E-17
-2.8E-06
1.1E-16
-8.9E-06
269
6.7E-15
-5.5E-04
0.0E+00
-2.8E-06
2.2E-16
-8.8E-06
270
9.9E-15
-5.5E-04
-1.7E-16
-2.8E-06
0.0E+00
-8.8E-06
271
0.0E+00
-5.5E-04
0.0E+00
-2.8E-06
-3.3E-16
-8.8E-06
272
3.3E-15
-5.5E-04
-5.6E-17
-2.7E-06
3.3E-16
-8.8E-06
273
1.9E-15
-5.5E-04
1.7E-16
-2.7E-06
0.0E+00
-8.7E-06
274
3.0E-15
-5.5E-04
-1.7E-16
-2.7E-06
3.3E-16
-8.7E-06
275
3.7E-15
-5.4E-04
-5.6E-17
-2.7E-06
1.1E-16
-8.7E-06
276
-6.4E-15
-5.4E-04
1.1E-16
-2.7E-06
-3.3E-16
-8.7E-06
277
6.1E-15
-5.4E-04
1.1E-16
-2.7E-06
2.2E-16
-8.7E-06
278
-2.2E-15
-5.4E-04
-5.6E-17
-2.7E-06
0.0E+00
-8.6E-06
279
2.1E-15
-5.4E-04
1.1E-16
-2.7E-06
-1.1E-16
-8.6E-06
280
4.7E-15
-5.4E-04
0.0E+00
-2.7E-06
1.1E-16
-8.6E-06
281
0.0E+00
-5.3E-04
-1.7E-16
-2.7E-06
-1.1E-16
-8.6E-06
282
2.6E-15
-5.3E-04
0.0E+00
-2.7E-06
1.1E-16
-8.6E-06
283
2.0E-15
-5.3E-04
0.0E+00
-2.6E-06
-1.1E-16
-8.5E-06
284
5.8E-15
-5.3E-04
0.0E+00
-2.6E-06
0.0E+00
-8.5E-06
285
7.8E-15
-5.3E-04
-1.7E-16
-2.6E-06
0.0E+00
-8.5E-06
286
-2.2E-16
-5.3E-04
1.1E-16
-2.6E-06
1.1E-16
-8.5E-06
287
2.0E-15
-5.2E-04
-5.6E-17
-2.6E-06
0.0E+00
-8.4E-06
288
-2.3E-15
-5.2E-04
5.6E-17
-2.6E-06
1.1E-16
-8.4E-06
289
7.3E-15
-5.2E-04
1.1E-16
-2.6E-06
-1.1E-16
-8.4E-06
290
-1.9E-15
-5.2E-04
-1.7E-16
-2.6E-06
0.0E+00
-8.4E-06
291
0.0E+00
-5.2E-04
1.1E-16
-2.6E-06
0.0E+00
-8.4E-06
292
4.0E-15
-5.2E-04
-1.1E-16
-2.6E-06
-1.1E-16
-8.3E-06
293
6.3E-15
-5.2E-04
-5.6E-17
-2.6E-06
0.0E+00
-8.3E-06
294
8.1E-15
-5.1E-04
-5.6E-17
-2.5E-06
1.1E-16
-8.3E-06
295
-2.8E-15
-5.1E-04
5.6E-17
-2.5E-06
0.0E+00
-8.3E-06
296
7.1E-15
-5.1E-04
-5.6E-17
-2.5E-06
-2.2E-16
-8.3E-06
297
1.2E-15
-5.1E-04
-1.1E-16
-2.5E-06
0.0E+00
-8.2E-06
298
-2.0E-15
-5.1E-04
0.0E+00
-2.5E-06
0.0E+00
-8.2E-06
299
-2.7E-15
-5.1E-04
-5.6E-17
-2.5E-06
-2.2E-16
-8.2E-06
300
2.3E-15
-5.0E-04
5.6E-17
-2.5E-06
-2.2E-16
-8.2E-06
301
1.6E-15
-5.0E-04
-5.6E-17
-2.5E-06
-1.1E-16
-8.1E-06
302
-4.4E-15
-5.0E-04
1.7E-16
-2.5E-06
-1.1E-16
-8.1E-06
303
3.4E-15
-5.0E-04
-5.6E-17
-2.5E-06
1.1E-16
-8.1E-06
304
-7.8E-16
-5.0E-04
-1.1E-16
-2.5E-06
0.0E+00
-8.1E-06
305
-3.0E-15
-5.0E-04
5.6E-17
-2.4E-06
-4.4E-16
-8.1E-06
306
5.0E-15
-5.0E-04
5.6E-17
-2.4E-06
-1.1E-16
-8.0E-06
307
1.0E-14
-4.9E-04
-1.7E-16
-2.4E-06
1.1E-16
-8.0E-06
308
-4.9E-15
-4.9E-04
5.6E-17
-2.4E-06
3.3E-16
-8.0E-06
309
2.3E-15
-4.9E-04
-5.6E-17
-2.4E-06
-2.2E-16
-8.0E-06
310
2.8E-15
-4.9E-04
0.0E+00
-2.4E-06
1.1E-16
-8.0E-06
311
6.9E-15
-4.9E-04
-5.6E-17
-2.4E-06
2.2E-16
-7.9E-06
312
1.1E-15
-4.9E-04
0.0E+00
-2.4E-06
2.2E-16
-7.9E-06
313
1.1E-14
-4.8E-04
-1.1E-16
-2.4E-06
-2.2E-16
-7.9E-06
314
5.6E-16
-4.8E-04
1.1E-16
-2.4E-06
0.0E+00
-7.9E-06
315
-5.2E-15
-4.8E-04
5.6E-17
-2.4E-06
2.2E-16
-7.9E-06
316
-7.1E-15
-4.8E-04
-1.1E-16
-2.4E-06
0.0E+00
-7.8E-06
317
3.0E-15
-4.8E-04
-1.1E-16
-2.3E-06
1.1E-16
-7.8E-06
318
-1.7E-15
-4.8E-04
5.6E-17
-2.3E-06
-2.2E-16
-7.8E-06
319
2.3E-15
-4.8E-04
-1.7E-16
-2.3E-06
1.1E-16
-7.8E-06
320
4.0E-15
-4.7E-04
0.0E+00
-2.3E-06
1.1E-16
-7.8E-06
321
3.0E-15
-4.7E-04
-5.6E-17
-2.3E-06
0.0E+00
-7.7E-06
322
2.8E-15
-4.7E-04
-5.6E-17
-2.3E-06
1.1E-16
-7.7E-06
323
-1.2E-15
-4.7E-04
0.0E+00
-2.3E-06
0.0E+00
-7.7E-06
324
5.3E-15
-4.7E-04
0.0E+00
-2.3E-06
-1.1E-16
-7.7E-06
325
-4.0E-15
-4.7E-04
-5.6E-17
-2.3E-06
-1.1E-16
-7.7E-06
326
2.2E-16
-4.7E-04
5.6E-17
-2.3E-06
0.0E+00
-7.6E-06
327
4.8E-15
-4.6E-04
0.0E+00
-2.3E-06
2.2E-16
-7.6E-06
328
-4.7E-15
-4.6E-04
-1.1E-16
-2.3E-06
0.0E+00
-7.6E-06
329
7.1E-15
-4.6E-04
-1.7E-16
-2.2E-06
4.4E-16
-7.6E-06
330
4.7E-15
-4.6E-04
0.0E+00
-2.2E-06
0.0E+00
-7.6E-06
331
-1.9E-15
-4.6E-04
-5.6E-17
-2.2E-06
2.2E-16
-7.5E-06
332
5.0E-15
-4.6E-04
5.6E-17
-2.2E-06
-1.1E-16
-7.5E-06
333
3.3E-15
-4.6E-04
-1.1E-16
-2.2E-06
-2.2E-16
-7.5E-06
334
4.4E-16
-4.5E-04
1.7E-16
-2.2E-06
2.2E-16
-7.5E-06
335
3.1E-15
-4.5E-04
-5.6E-17
-2.2E-06
0.0E+00
-7.5E-06
336
2.3E-15
-4.5E-04
-5.6E-17
-2.2E-06
1.1E-16
-7.4E-06
337
8.9E-16
-4.5E-04
1.7E-16
-2.2E-06
1.1E-16
-7.4E-06
338
4.3E-15
-4.5E-04
1.1E-16
-2.2E-06
3.3E-16
-7.4E-06
339
3.8E-15
-4.5E-04
-1.1E-16
-2.2E-06
0.0E+00
-7.4E-06
340
-2.1E-15
-4.5E-04
-5.6E-17
-2.2E-06
1.1E-16
-7.4E-06
341
2.0E-15
-4.4E-04
1.1E-16
-2.2E-06
0.0E+00
-7.3E-06
342
-2.9E-15
-4.4E-04
0.0E+00
-2.1E-06
2.2E-16
-7.3E-06
343
1.7E-15
-4.4E-04
-1.1E-16
-2.1E-06
0.0E+00
-7.3E-06
344
3.7E-15
-4.4E-04
-1.1E-16
-2.1E-06
1.1E-16
-7.3E-06
345
5.6E-16
-4.4E-04
1.7E-16
-2.1E-06
2.2E-16
-7.3E-06
346
-4.2E-15
-4.4E-04
0.0E+00
-2.1E-06
-2.2E-16
-7.3E-06
347
5.4E-15
-4.4E-04
1.1E-16
-2.1E-06
2.2E-16
-7.2E-06
348
-1.1E-16
-4.4E-04
-5.6E-17
-2.1E-06
1.1E-16
-7.2E-06
349
-2.2E-15
-4.3E-04
5.6E-17
-2.1E-06
-1.1E-16
-7.2E-06
350
1.2E-15
-4.3E-04
-1.1E-16
-2.1E-06
0.0E+00
-7.2E-06
351
5.9E-15
-4.3E-04
1.1E-16
-2.1E-06
2.2E-16
-7.2E-06
352
3.0E-15
-4.3E-04
-2.2E-16
-2.1E-06
0.0E+00
-7.1E-06
353
2.1E-15
-4.3E-04
1.7E-16
-2.1E-06
0.0E+00
-7.1E-06
354
9.2E-15
-4.3E-04
0.0E+00
-2.1E-06
1.1E-16
-7.1E-06
355
-7.3E-15
-4.3E-04
0.0E+00
-2.1E-06
-1.1E-16
-7.1E-06
356
8.5E-15
-4.2E-04
-5.6E-17
-2.0E-06
5.6E-16
-7.1E-06
357
-3.2E-15
-4.2E-04
0.0E+00
-2.0E-06
-4.4E-16
-7.0E-06
358
4.0E-15
-4.2E-04
1.1E-16
-2.0E-06
1.1E-16
-7.0E-06
359
3.8E-15
-4.2E-04
0.0E+00
-2.0E-06
0.0E+00
-7.0E-06
360
8.1E-15
-4.2E-04
-1.7E-16
-2.0E-06
0.0E+00
-7.0E-06
361
-1.1E-15
-4.2E-04
1.1E-16
-2.0E-06
0.0E+00
-7.0E-06
362
4.3E-15
-4.2E-04
-5.6E-17
-2.0E-06
1.1E-16
-7.0E-06
363
1.3E-14
-4.2E-04
-1.7E-16
-2.0E-06
4.4E-16
-6.9E-06
364
-2.1E-15
-4.1E-04
0.0E+00
-2.0E-06
-1.1E-16
-6.9E-06
365
3.7E-15
-4.1E-04
5.6E-17
-2.0E-06
0.0E+00
-6.9E-06
366
-2.4E-15
-4.1E-04
-1.1E-16
-2.0E-06
-2.2E-16
-6.9E-06
367
2.2E-15
-4.1E-04
0.0E+00
-2.0E-06
1.1E-16
-6.9E-06
368
2.6E-15
-4.1E-04
-5.6E-17
-2.0E-06
0.0E+00
-6.8E-06
369
-1.1E-16
-4.1E-04
-5.6E-17
-2.0E-06
-1.1E-16
-6.8E-06
370
4.6E-15
-4.1E-04
0.0E+00
-1.9E-06
2.2E-16
-6.8E-06
371
-3.8E-15
-4.1E-04
0.0E+00
-1.9E-06
-1.1E-16
-6.8E-06
372
-3.3E-16
-4.0E-04
-5.6E-17
-1.9E-06
2.2E-16
-6.8E-06
373
2.2E-15
-4.0E-04
1.7E-16
-1.9E-06
1.1E-16
-6.8E-06
374
5.6E-15
-4.0E-04
-2.2E-16
-1.9E-06
-2.2E-16
-6.7E-06
375
3.8E-15
-4.0E-04
-5.6E-17
-1.9E-06
2.2E-16
-6.7E-06
376
5.3E-15
-4.0E-04
-5.6E-17
-1.9E-06
-1.1E-16
-6.7E-06
377
2.2E-16
-4.0E-04
5.6E-17
-1.9E-06
0.0E+00
-6.7E-06
378
2.6E-15
-4.0E-04
-5.6E-17
-1.9E-06
1.1E-16
-6.7E-06
379
8.5E-15
-4.0E-04
-5.6E-17
-1.9E-06
1.1E-16
-6.7E-06
380
4.7E-15
-3.9E-04
5.6E-17
-1.9E-06
2.2E-16
-6.6E-06
381
2.8E-15
-3.9E-04
0.0E+00
-1.9E-06
0.0E+00
-6.6E-06
382
8.0E-15
-3.9E-04
0.0E+00
-1.9E-06
1.1E-16
-6.6E-06
383
-5.9E-15
-3.9E-04
1.7E-16
-1.9E-06
-1.1E-16
-6.6E-06
384
6.1E-15
-3.9E-04
-2.2E-16
-1.9E-06
-1.1E-16
-6.6E-06
385
5.3E-15
-3.9E-04
1.1E-16
-1.8E-06
2.2E-16
-6.5E-06
386
-7.5E-15
-3.9E-04
-5.6E-17
-1.8E-06
2.2E-16
-6.5E-06
387
7.8E-16
-3.9E-04
1.7E-16
-1.8E-06
0.0E+00
-6.5E-06
388
1.7E-15
-3.8E-04
-1.7E-16
-1.8E-06
-2.2E-16
-6.5E-06
389
2.8E-15
-3.8E-04
1.1E-16
-1.8E-06
0.0E+00
-6.5E-06
390
1.1E-14
-3.8E-04
-2.2E-16
-1.8E-06
1.1E-16
-6.5E-06
391
-2.4E-15
-3.8E-04
1.7E-16
-1.8E-06
1.1E-16
-6.4E-06
392
2.6E-15
-3.8E-04
5.6E-17
-1.8E-06
0.0E+00
-6.4E-06
393
5.1E-15
-3.8E-04
-1.7E-16
-1.8E-06
0.0E+00
-6.4E-06
394
7.8E-16
-3.8E-04
-1.1E-16
-1.8E-06
0.0E+00
-6.4E-06
395
-5.1E-15
-3.8E-04
2.2E-16
-1.8E-06
1.1E-16
-6.4E-06
396
4.2E-15
-3.8E-04
1.7E-16
-1.8E-06
0.0E+00
-6.4E-06
397
-7.8E-16
-3.7E-04
0.0E+00
-1.8E-06
0.0E+00
-6.3E-06
398
5.6E-15
-3.7E-04
0.0E+00
-1.8E-06
0.0E+00
-6.3E-06
399
-2.7E-15
-3.7E-04
-5.6E-17
-1.8E-06
-1.1E-16
-6.3E-06
400
-2.3E-15
-3.7E-04
-1.1E-16
-1.8E-06
-1.1E-16
-6.3E-06
401
8.9E-16
-3.7E-04
-2.2E-16
-1.7E-06
0.0E+00
-6.3E-06
402
-6.9E-15
-3.7E-04
1.1E-16
-1.7E-06
-1.1E-16
-6.3E-06
403
4.8E-15
-3.7E-04
0.0E+00
-1.7E-06
-1.1E-16
-6.2E-06
404
3.3E-15
-3.7E-04
-1.7E-16
-1.7E-06
0.0E+00
-6.2E-06
405
3.2E-15
-3.7E-04
-1.1E-16
-1.7E-06
5.6E-16
-6.2E-06
406
1.8E-15
-3.6E-04
5.6E-17
-1.7E-06
0.0E+00
-6.2E-06
407
2.7E-15
-3.6E-04
5.6E-17
-1.7E-06
0.0E+00
-6.2E-06
408
-5.2E-15
-3.6E-04
5.6E-17
-1.7E-06
0.0E+00
-6.2E-06
409
-2.1E-15
-3.6E-04
5.6E-17
-1.7E-06
0.0E+00
-6.1E-06
410
4.6E-15
-3.6E-04
-5.6E-17
-1.7E-06
1.1E-16
-6.1E-06
411
2.2E-16
-3.6E-04
-5.6E-17
-1.7E-06
-1.1E-16
-6.1E-06
412
-6.7E-16
-3.6E-04
0.0E+00
-1.7E-06
0.0E+00
-6.1E-06
413
4.2E-15
-3.6E-04
0.0E+00
-1.7E-06
2.2E-16
-6.1E-06
414
0.0E+00
-3.6E-04
-5.6E-17
-1.7E-06
1.1E-16
-6.1E-06
415
2.3E-15
-3.5E-04
5.6E-17
-1.7E-06
-4.4E-16
-6.0E-06
416
1.0E-14
-3.5E-04
-2.2E-16
-1.7E-06
4.4E-16
-6.0E-06
417
-5.2E-15
-3.5E-04
5.6E-17
-1.7E-06
-1.1E-16
-6.0E-06
418
8.1E-15
-3.5E-04
-1.7E-16
-1.6E-06
-2.2E-16
-6.0E-06
419
3.4E-15
-3.5E-04
0.0E+00
-1.6E-06
1.1E-16
-6.0E-06
420
-5.4E-15
-3.5E-04
1.1E-16
-1.6E-06
1.1E-16
-6.0E-06
421
-1.4E-15
-3.5E-04
0.0E+00
-1.6E-06
1.1E-16
-5.9E-06
422
-2.6E-15
-3.5E-04
5.6E-17
-1.6E-06
-3.3E-16
-5.9E-06
423
3.3E-16
-3.5E-04
5.6E-17
-1.6E-06
0.0E+00
-5.9E-06
424
-7.8E-16
-3.4E-04
0.0E+00
-1.6E-06
0.0E+00
-5.9E-06
425
5.1E-15
-3.4E-04
5.6E-17
-1.6E-06
0.0E+00
-5.9E-06
426
4.0E-15
-3.4E-04
0.0E+00
-1.6E-06
-1.1E-16
-5.9E-06
427
4.6E-15
-3.4E-04
5.6E-17
-1.6E-06
-1.1E-16
-5.9E-06
428
-3.3E-15
-3.4E-04
-1.1E-16
-1.6E-06
3.3E-16
-5.8E-06
429
6.9E-15
-3.4E-04
5.6E-17
-1.6E-06
-1.1E-16
-5.8E-06
430
3.6E-15
-3.4E-04
-2.2E-16
-1.6E-06
1.1E-16
-5.8E-06
431
6.3E-15
-3.4E-04
-1.1E-16
-1.6E-06
0.0E+00
-5.8E-06
432
-7.5E-15
-3.4E-04
5.6E-17
-1.6E-06
-4.4E-16
-5.8E-06
433
4.8E-15
-3.3E-04
-2.2E-16
-1.6E-06
2.2E-16
-5.8E-06
434
1.7E-15
-3.3E-04
-5.6E-17
-1.6E-06
-2.2E-16
-5.7E-06
435
-3.4E-15
-3.3E-04
1.1E-16
-1.6E-06
0.0E+00
-5.7E-06
436
-3.3E-15
-3.3E-04
5.6E-17
-1.5E-06
2.2E-16
-5.7E-06
437
-7.2E-15
-3.3E-04
5.6E-17
-1.5E-06
-1.1E-16
-5.7E-06
438
5.0E-15
-3.3E-04
0.0E+00
-1.5E-06
1.1E-16
-5.7E-06
439
-4.6E-15
-3.3E-04
0.0E+00
-1.5E-06
-1.1E-16
-5.7E-06
440
5.2E-15
-3.3E-04
-1.1E-16
-1.5E-06
0.0E+00
-5.6E-06
441
4.4E-16
-3.3E-04
0.0E+00
-1.5E-06
1.1E-16
-5.6E-06
442
6.9E-15
-3.3E-04
-5.6E-17
-1.5E-06
-2.2E-16
-5.6E-06
443
5.6E-16
-3.2E-04
-5.6E-17
-1.5E-06
-1.1E-16
-5.6E-06
444
-3.9E-15
-3.2E-04
1.7E-16
-1.5E-06
2.2E-16
-5.6E-06
445
1.4E-14
-3.2E-04
-3.3E-16
-1.5E-06
2.2E-16
-5.6E-06
446
2.0E-15
-3.2E-04
0.0E+00
-1.5E-06
-2.2E-16
-5.6E-06
447
-6.6E-15
-3.2E-04
1.1E-16
-1.5E-06
2.2E-16
-5.5E-06
448
-6.7E-16
-3.2E-04
-1.1E-16
-1.5E-06
-3.3E-16
-5.5E-06
449
2.6E-15
-3.2E-04
0.0E+00
-1.5E-06
0.0E+00
-5.5E-06
450
3.4E-15
-3.2E-04
0.0E+00
-1.5E-06
0.0E+00
-5.5E-06
451
1.4E-14
-3.2E-04
-1.1E-16
-1.5E-06
1.1E-16
-5.5E-06
452
-4.0E-15
-3.2E-04
-1.1E-16
-1.5E-06
-2.2E-16
-5.5E-06
453
9.4E-15
-3.1E-04
-1.7E-16
-1.5E-06
1.1E-16
-5.5E-06
454
1.7E-15
-3.1E-04
1.1E-16
-1.5E-06
1.1E-16
-5.4E-06
455
-5.9E-15
-3.1E-04
5.6E-17
-1.4E-06
-2.2E-16
-5.4E-06
456
8.3E-15
-3.1E-04
5.6E-17
-1.4E-06
0.0E+00
-5.4E-06
457
-3.7E-15
-3.1E-04
5.6E-17
-1.4E-06
-2.2E-16
-5.4E-06
458
6.9E-15
-3.1E-04
0.0E+00
-1.4E-06
2.2E-16
-5.4E-06
459
2.3E-15
-3.1E-04
-1.7E-16
-1.4E-06
1.1E-16
-5.4E-06
460
6.7E-16
-3.1E-04
0.0E+00
-1.4E-06
-2.2E-16
-5.3E-06
461
3.1E-15
-3.1E-04
5.6E-17
-1.4E-06
0.0E+00
-5.3E-06
462
1.4E-15
-3.1E-04
-1.1E-16
-1.4E-06
1.1E-16
-5.3E-06
463
8.9E-16
-3.0E-04
-5.6E-17
-1.4E-06
2.2E-16
-5.3E-06
464
2.1E-15
-3.0E-04
-5.6E-17
-1.4E-06
-3.3E-16
-5.3E-06
465
1.8E-15
-3.0E-04
-1.1E-16
-1.4E-06
3.3E-16
-5.3E-06
466
-3.4E-15
-3.0E-04
0.0E+00
-1.4E-06
-2.2E-16
-5.3E-06
467
1.1E-15
-3.0E-04
1.1E-16
-1.4E-06
0.0E+00
-5.2E-06
468
7.8E-16
-3.0E-04
-5.6E-17
-1.4E-06
-3.3E-16
-5.2E-06
469
-5.6E-16
-3.0E-04
0.0E+00
-1.4E-06
1.1E-16
-5.2E-06
470
4.0E-15
-3.0E-04
-5.6E-17
-1.4E-06
-1.1E-16
-5.2E-06
471
8.9E-16
-3.0E-04
-5.6E-17
-1.4E-06
-1.1E-16
-5.2E-06
472
-4.3E-15
-3.0E-04
5.6E-17
-1.4E-06
1.1E-16
-5.2E-06
473
-1.1E-15
-3.0E-04
-5.6E-17
-1.4E-06
2.2E-16
-5.2E-06
474
-1.1E-16
-2.9E-04
-1.1E-16
-1.4E-06
1.1E-16
-5.1E-06
475
0.0E+00
-2.9E-04
0.0E+00
-1.3E-06
0.0E+00
-5.1E-06
476
-3.0E-15
-2.9E-04
1.1E-16
-1.3E-06
2.2E-16
-5.1E-06
477
5.6E-15
-2.9E-04
-1.7E-16
-1.3E-06
0.0E+00
-5.1E-06
478
-1.1E-15
-2.9E-04
5.6E-17
-1.3E-06
0.0E+00
-5.1E-06
479
3.4E-15
-2.9E-04
5.6E-17
-1.3E-06
0.0E+00
-5.1E-06
480
7.8E-16
-2.9E-04
0.0E+00
-1.3E-06
-1.1E-16
-5.1E-06
481
-3.2E-15
-2.9E-04
1.1E-16
-1.3E-06
3.3E-16
-5.1E-06
482
5.9E-15
-2.9E-04
-1.7E-16
-1.3E-06
0.0E+00
-5.0E-06
483
-4.4E-16
-2.9E-04
-5.6E-17
-1.3E-06
-1.1E-16
-5.0E-06
484
3.0E-15
-2.9E-04
5.6E-17
-1.3E-06
2.2E-16
-5.0E-06
485
5.6E-16
-2.8E-04
-1.1E-16
-1.3E-06
-2.2E-16
-5.0E-06
486
-3.8E-15
-2.8E-04
5.6E-17
-1.3E-06
2.2E-16
-5.0E-06
487
4.7E-15
-2.8E-04
-5.6E-17
-1.3E-06
0.0E+00
-5.0E-06
488
3.3E-16
-2.8E-04
5.6E-17
-1.3E-06
3.3E-16
-5.0E-06
489
-5.6E-16
-2.8E-04
0.0E+00
-1.3E-06
-1.1E-16
-4.9E-06
490
-2.0E-15
-2.8E-04
5.6E-17
-1.3E-06
-2.2E-16
-4.9E-06
491
2.9E-15
-2.8E-04
-1.1E-16
-1.3E-06
0.0E+00
-4.9E-06
492
2.1E-15
-2.8E-04
-5.6E-17
-1.3E-06
0.0E+00
-4.9E-06
493
-2.9E-15
-2.8E-04
-5.6E-17
-1.3E-06
1.1E-16
-4.9E-06
494
8.9E-16
-2.8E-04
0.0E+00
-1.3E-06
2.2E-16
-4.9E-06
495
1.1E-15
-2.8E-04
5.6E-17
-1.3E-06
1.1E-16
-4.9E-06
496
2.8E-15
-2.8E-04
-1.1E-16
-1.3E-06
3.3E-16
-4.8E-06
497
-1.1E-16
-2.7E-04
0.0E+00
-1.3E-06
0.0E+00
-4.8E-06
498
4.0E-15
-2.7E-04
5.6E-17
-1.2E-06
2.2E-16
-4.8E-06
499
-3.0E-15
-2.7E-04
0.0E+00
-1.2E-06
-1.1E-16
-4.8E-06

A  Appendix: Derivation of the Short- and Long-Run Excess Demand Function

Preliminaries   To derive the slope of the short- and long-run excess demand function with respect to the relative price, $ \frac{\partial z_{2t}}{\partial\bar{q}_{t}}$, the following derivations will be of help. Let $ dx_{t}$ denotes the absolute deviation of variable $ x$ from its steady state value. Trade is assumed to be balanced in the steady state.

Linearizing equations (18) and (19) delivers expressions for $ c_{12}$ and $ c_{22}$

$\displaystyle \frac{1}{c_{12}}dc_{12t}$ $\displaystyle =\left\{ \frac{\rho}{\rho-1}\frac{\Phi _{1}^{\prime}\left( \bar{q}\right) \bar{q}}{\Phi_{1}\left( \bar{q}\right) } +\frac{1}{\rho-1}\right\} \frac{1}{\bar{q}}d\bar{q}_{t}+\frac{1}{y_{1}} dy_{1t}$    
  $\displaystyle +\frac{1}{y_{1}\Phi_{1}\left( \bar{q}\right) }\left[ db_{1t-1}-\beta db_{1t}\right] ,$ (32)


$\displaystyle \frac{1}{c_{22}}dc_{22t}$ $\displaystyle =\frac{\rho}{\rho-1}\frac{\Phi_{2}^{\prime}\left( \bar{q}\right) \bar{q}}{\Phi_{2}\left( \bar{q}\right) }\frac{1}{\bar{q} }d\bar{q}_{t}+\frac{1}{y_{2}}dy_{2t}-\frac{1}{\bar{q}\Phi_{1}\left( \bar {q}\right) y_{2}}\left[ db_{1t-1}-\beta db_{1t}\right] .$ (33)

Furthermore, the production function of firms (equation 12) implies

$\displaystyle \frac{1}{y_{i}}dy_{it}=\omega_{li}\frac{1}{l_{i}}dl_{it}+\omega_{ki}\frac {1}{k_{i}}dk_{it-1},$ (34)

and the capital accumulation constraint (equation 8) delivers

$\displaystyle \frac{1}{i_{i}}di_{it}=\frac{1}{\delta}\frac{1}{k_{i}}dk_{it}-\frac{1-\delta }{\delta}\frac{1}{k_{i}}dk_{it-1}.$ (35)

From the household's optimal allocation between consumption and leisure, $ \frac{U_{l}\left( c_{i},l_{i}\right) }{U_{c}\left( c_{i},l_{i}\right) }=-\Phi_{i}\left( \bar{q}\right) w_{i}$ , and the utility function (23), the labor supply can be approximated by

$\displaystyle \frac{1}{l_{i}}dl_{it}=\frac{1}{1+\chi}\frac{\Phi_{i}^{\prime}\left( \bar {q}\right) \bar{q}}{\Phi_{i}\left( \bar{q}\right) }\frac{1}{\bar{q}} d\bar{q}_{t}+\frac{1}{1+\chi}\frac{1}{y_{i}}dy_{it}-\frac{\sigma}{1+\chi} \frac{1}{c_{i}}dc_{it}.$ (36)

Combining equations (32) to (36) the output deviations can be expressed as

$\displaystyle \frac{1}{y_{1}}dy_{1t}$ $\displaystyle =\tau_{\bar{q}1}\frac{\Phi_{1}^{\prime}\left( \bar{q}\right) \bar{q}}{\Phi_{1}\left( \bar{q}\right) }\frac{1}{\bar{q} }d\bar{q}_{t}-\tau_{b1}\frac{1}{\Phi_{1}\left( \bar{q}\right) y_{1}}\left[ db_{1t-1}-\beta db_{1t}\right] +\tau_{i1}\frac{1}{i_{1}}di_{1t}+\tau _{k1}\frac{1}{k_{1}}k_{1t-1},$
$\displaystyle \frac{1}{y_{2}}dy_{2t}$ $\displaystyle =\tau_{\bar{q}2}\frac{\Phi_{2}^{\prime}\left( \bar{q}\right) \bar{q}}{\Phi_{2}\left( \bar{q}\right) }\frac{1}{\bar{q} }d\bar{q}_{t}+\tau_{b2}\frac{1}{\Phi_{1}\left( \bar{q}\right) \bar{q}y_{2} }\left[ db_{1t-1}-\beta db_{1t}\right] +\tau_{i2}\frac{1}{i_{2}}di_{2t} +\tau_{k2}\frac{1}{k_{2}}k_{2t-1},$

where

$\displaystyle \tau_{\bar{q}j}=\frac{\frac{\omega_{lj}}{1+\chi}\left( 1-\sigma\frac{\Phi _{j}\left( \bar{q}\right) y_{j}}{c_{j}}\right) }{1-\frac{\omega_{lj} }{1+\chi}\left( 1-\sigma\frac{\Phi_{j}\left( \bar{q}\right) y_{j}}{c_{j} }\right) }$    , $\displaystyle \tau_{bj}=\frac{\frac{\omega_{lj}}{1+\chi}\sigma \frac{\Phi_{j}\left( \bar{q}\right) y_{j}}{c_{j}}}{1-\frac{\omega_{lj} }{1+\chi}\left( 1-\sigma\frac{\Phi_{j}\left( \bar{q}\right) y_{j}}{c_{j} }\right) }$    ,
$\displaystyle \tau_{kj}=\frac{\omega_{kj}}{1-\frac{\omega_{lj}}{1+\chi}\left( 1-\sigma \frac{\Phi_{j}\left( \bar{q}\right) y_{j}}{c_{j}}\right) }$    , $\displaystyle \tau_{ij}=\frac{\frac{\omega_{lj}}{1+\chi}\sigma\left( \frac{\Phi_{j}\left( \bar{q}\right) y_{j}}{c_{j}}-1\right) }{1-\frac{\omega_{lj}}{1+\chi}\left( 1-\sigma\frac{\Phi_{j}\left( \bar{q}\right) y_{j}}{c_{j}}\right) }$    ,

for j = 1, 2.


Slope of the Excess Demand Function   Excess demand for good 2 is given by $ z_{2}\left( s^{t}\right) =c_{12}\left( s^{t}\right) +c_{22}\left( s^{t}\right) -y_{2}\left( s^{t}\right) $ with $ z_{2}\left( s^{t}\right) =0$ in equilibrium. Linearization of this relationship around a steady state delivers

$\displaystyle dz_{2}=dc_{12t}+dc_{22t}-dy_{2t}. $

Substituting in expressions (32) and (33) and using the facts that $ y_{2}=c_{12}+c_{22}$, $ \bar{q}c_{12}=c_{21}$, $ \frac{\Phi_{1}^{\prime}\left( \bar{q}\right) \bar{q}}{\Phi_{1}\left( \bar{q}\right) }=-\frac{\bar{q}c_{12}}{y_{1}}$ , and $ \frac{\Phi_{2}^{\prime}\left( \bar{q}\right) \bar{q}}{\Phi_{2}\left( \bar{q}\right) }=\frac{c_{21}}{\bar{q}y_{2}}$ in any steady state with balanced trade

$\displaystyle \frac{1}{c_{12}}dz_{2}$ $\displaystyle =\left[ -\left( 1+\frac{1}{1-\rho}\frac{c_{11} }{c_{21}}\right) \frac{c_{21}}{y_{1}}+\left( 1-\frac{1}{1-\rho}\right) \frac{c_{22}}{c_{12}}\frac{c_{12}}{y_{2}}\right] \frac{1}{\bar{q}}d\bar {q}_{t}$
  $\displaystyle -\frac{1}{\bar{q}\Phi_{1}\left( \bar{q}\right) c_{12}}\left( 1-\frac{c_{21}}{y_{1}}-\frac{c_{12}}{y_{2}}\right) \left[ db_{1t-1}-\beta db_{1t}\right]$
  $\displaystyle +\frac{1}{y_{1}}dy_{1t}-\frac{1}{y_{2}}dy_{2t}.$

and substituting in the approximations for output

$\displaystyle \frac{1}{c_{12}}dz_{2}$ $\displaystyle =\left[ -\left( 1+\frac{1}{1-\rho}\frac{c_{11} }{c_{21}}+\tau_{\bar{q}1}\right) \frac{c_{21}}{y_{1}}+\left( \left( 1-\frac{1}{1-\rho}\right) \frac{c_{22}}{c_{12}}-\tau_{\bar{q}2}\right) \frac{c_{12}}{y_{2}}\right] \frac{1}{\bar{q}}d\bar{q}_{t}$    
  $\displaystyle -\frac{1}{\bar{q}\Phi_{1}\left( \bar{q}\right) c_{12}}\left( 1-\left( 1-\tau_{b1}\right) \frac{c_{21}}{y_{1}}-\left( 1-\tau_{b2}\right) \frac{c_{12}}{y_{2}}\right) \left[ db_{1t-1}-\beta db_{1t}\right]$    
  $\displaystyle +\frac{\tau_{i1}}{i_{1}}di_{1t}-\frac{\tau_{i2}}{i_{2}}di_{2t}+\frac {\tau_{k1}}{k_{1}}k_{1t-1}-\frac{\tau_{k2}}{k_{2}}k_{2,t-1}.$ (37)

In the case of a static endowment economy as in Section 2, $ \omega_{li}=0$ and $ sign\left( \frac{\partial z_{2t}}{\partial\bar{q}_{t}}\right) $ is given by the sign of $ \left[ -\left( 1+\frac{1}{1-\rho}\frac{c_{11}}{c_{21}}\right) \frac{c_{21}}{y_{1} }+\left( \left( 1-\frac{1}{1-\rho}\right) \frac{c_{22}}{c_{12}}\right) \frac{c_{12}}{y_{2}}\right] $ .25 For the above calibration, the steady state allocations and prices in the equilibrium with $ \bar{q} =1$, do not depend on the value of the trade elasticity of substitution $ \varepsilon= \frac {1}{1-\rho}$ . Therefore, it can easily be seen that the slope of the excess demand function becomes positive if $ \varepsilon$ is sufficiently low and multiple equilibria appear.

In the dynamic production economy with flexible labor and capital, additional terms determine $ sign\left( \frac{\partial z_{2t} }{\partial\bar{q}_{t}}\right) $ . With flexible labor $ \tau_{\bar{q}1}$ and $ \tau_{\bar{q}2}$ are different from zero and the threshold value of $ \rho$ for which $ \frac{\partial z_{2t}}{\partial\bar{q}_{t}}$ switches sign can be higher or lower depending on the relative magnitudes of the remaining parameters. The contemporaneous choices for investment (or capital) and bond holdings also affect the relative price through the equilibrium requirement of zero excess demand. Since bond holdings, foreign and domestic capital are the three endogenous state variables of the model, $ di_{1t}$, $ di_{2t}$, $ db_{t}$, and $ \bar{q_{t}}$ can be expressed as functions of $ db_{1t-1}$, $ dk_{1t-1}$, and $ dk_{2t-1}$.26

To obtain the sign of $ \frac{\partial z_{2t}}{\partial\bar{q} _{t}}$ it is key to rewrite the decision rules for $ di_{1t}$, $ di_{2t}$, $ db_{t}$ in terms of $ \bar{q_{t}}$ using the decision rule for $ \bar{q_{t}}$ and substitute the results into (37). Let $ D(x,y)$ denote the coefficient on the state variable $ x$ in the (linear) decision rule for variable $ y$. The sign of $ \frac{\partial z_{2t}}{\partial\bar{q}_{t}}$ is positive in the short run if

  $\displaystyle -\left( 1+\frac{1}{1-\rho}\frac{c_{11}}{c_{21}}+\tau_{\bar{q}1}\right) \frac{c_{21}}{y_{1}}+\left( \left( 1-\frac{1}{1-\rho}\right) \frac{c_{22} }{c_{12}}-\tau_{d\bar{q}2}\right) \frac{c_{12}}{y_{2}}$    
  $\displaystyle -\frac{1-\left( 1-\tau_{b1}\right) \frac{c_{21}}{y_{1}}-\left( 1-\tau_{b2}\right) \frac{c_{12}}{y_{2}}}{\bar{q}\Phi_{1}\left( \bar {q}\right) c_{12}} \beta\frac{D(b,b)}{D(d,\bar{q})}$    
  $\displaystyle + \frac{\tau_{i1}}{i_{1}}\frac{D(b,i_{1})}{D(d,\bar{q})}-\frac{\tau_{i2} }{i_{2}}\frac{D(b,i_{2})}{D(d,\bar{q})} < 0.$ (38)

In the short run the capital stock is fixed and bond holdings effect the relative price through their reallocative effects of purchasing power.27

By contrast, the sign of $ \frac{\partial z_{2t}}{\partial\bar {q}_{t}}$ for the long run is affected by the full flexibility of the capital stock in the long run. At the same time, bond holdings are restricted to be zero. Hence, $ sign\left( \frac{\partial z_{2t}}{\partial\bar{q}_{t}}\right) >0$ if

  $\displaystyle -\left( 1+\frac{1}{1-\rho}\frac{c_{11}}{c_{21}}+\tau_{\bar{q}1}\right) \frac{c_{21}}{y_{1}}+\left( \left( 1-\frac{1}{1-\rho}\right) \frac{c_{22} }{c_{12}}-\tau_{d\bar{q}2}\right) \frac{c_{12}}{y_{2}}$    
  $\displaystyle + (\tau_{i1}+ \tau_{k1})\omega_{l1}\frac{1+ \chi}{ \chi+ \sigma} -(\tau_{i2} + \tau_{k2}) \omega_{l2} \frac{1+ \chi}{ \chi+ \sigma} < 0.$ (39)

While the slope of the excess demand function is the same in the short and the long run for an endowment economy, equations (38) and (39) reveal that these slopes can be very different in a model with endogenous capital an international bond holdings. Figure 7 plots expressions (38) and (39) as functions of $ \rho$ at the steady state with $ \bar{q} = 1$ in the model with endogenous discounting.


Footnotes

*  Telephone (202) 452 3796. E-mail [email protected]Return to text

**  I thank Roc Armenter, Christopher Gust, Jonathan Heathcote, and Ricardo Nunes for valuable comments and discussion. I am also grateful to an anonymous associate editor whose suggestions greatly improved this paper. Previously, the paper circulated under the title "Closing Open Economy Models". The views expressed in this paper are solely the responsibility of the author and should not be interpreted as reflecting the views of the Board of Governors of the Federal Reserve System or of any other person associated with the Federal Reserve System. Return to text

1.   See Kehoe (1991). Return to text

2.   The equilibrium multiplicity discussed in this paper does not stem from equilibrium indeterminacy as in Benhabib and Farmer (1994). Return to text

3.   By mirroring I mean that good 1 (2) enters the utility function of agents in country 1 the same way that good 2 (1) enters the utility function of agents in country 2. The same holds true for agents' endowments with goods 1 and 2. Return to text

4.   There is a large literature on sunspot equilibria. Most prominent are the seminal contributions of Cass and Shell (1983) and Azariadis (1981). Return to text

5.   Corsetti et al (2008), Thoenissen (2008), and de Walque et al (2005) emphasize that there is a critical value of the elasticity of substitution for which the real exchange rate becomes very volatile. At least in the context of the simple model presented in this paper, it can be shown that such a critical point coincides with the appearance of multiple equilibria. Return to text

6.   Mas-Colell, Whinston, and Green (1995) and Kehoe (1991) provide an excellent treatment of general equilibrium analysis. Return to text

7.   See Kehoe (1980) for a discussion of the index theorem. Return to text

8.   The parameter values underlying Figure 1 are summarized in Table 1 and discussed in Section 4.3. Return to text

9.   For the chosen parametrization of the model it is easily shown that for ε < 0.425 there are multiple equilibria and that the equilibrium is unique for ε > 0.425. For ε = 0.425, however, there is a continuum of equilibria as the slope of the excess demand function is zero at $ \bar{q} = 1$. See also Appendix A. Return to text

10.   See in particular Cass and Shell (1983). Chiappori and Guesnerie provide an excellent introduction to the topic. Return to text

11.   This modelling strategy leads to (indentical) home-bias in consumption and investment $ \left( \alpha_{ii}\geq\alpha_{ij,}i\neq j\right) $. An alternative yet equivalent strategy in this model is to introduce trading costs of the iceberg type. Return to text

12.   In this model financial markets are complete only if they also provide insurance against the possible equilibrium multiplicity that I am about to discuss. See also Section 6. Return to text

13.   See Mendoza (1991), Corsetti et al (2008), and Schmitt-Grohe and Uribe (2003) for applications of this concept. Preferences with intertemporal dependences were introduced by Uzawa (1968) and the concept has been extended and clarified by Epstein (1983, 1987). Return to text

14.   This problem is similar to the non-stationarity problem in linearized models with incomplete markets. Endogenous discounting and convex portfolio costs are only two possibilities to address the non-stationarity problem. See Schmitt-Grohé and Uribe (2003), Kim and Kose (2003), and Boileau and Normandin (2005) to obtain a complete overview about this topic. An interesting approach using a perpetual youth model is due to Ghironi (2003). Return to text

15.   If solving a fully stochastic version of the model, the second assumption can be omitted. In ongoing research I analyze equilibrium multiplicity in an endowment economy with borrowing constraints and sunspot shocks. Return to text

16.   As in static general equilibrium theory, little is known about the number of equilibria in a model unless uniqueness is proven. Return to text

17.   Absent home bias in consumption the equilibrium is always unique in the symmetric economy. Return to text

18.   In Appendix A, I provide more details on the derivation of this threshold value. See also the discussion in Section 5.2.2. Return to text

19.   In fact, Crosetti et al (2008) do not consider the case of multiple equilibria as they restrict attention to the solution obtained by log-linearizing the model around its symmetric deterministic steady state. See also footnote 7 of their work. Return to text

20.   In particular, see the exposition in Section 3 of Corsetti et al (2008). In most of their analysis the authors focus on the case of a low trade elasticity of substitution. However, they also identify a case of negative transmission for a high trade elasticity of substitution that is unrelated to the analysis presented in this paper. Return to text

21.   The exact value for which $ \frac{\partial \tilde{q}_{t}}{\partial b_{1t-1}}$ switches sign depends on the second assumption in Section 4.1. With convex portfolio costs the sign switch occurs at ρ = -1.53. It can be shown that for -1.65 < ρ < -1.53 there are at least three equilibrium paths each converging to the unique steady state with $ \bar{q}=1$ in response to a technology shock. Obviously, this situation is somewhat of a knife-edge case, as the steady state with $ \bar{q}=1$ becomes unstable for ρ < -1.65 and the uniqueness of the equilibrium for ρ > -1.53. Return to text

22.   Benigno and Thoenissen (2008) and de Walque et al (2005) do not assume that the agents' discount factors are endogenous to invoke stationarity of the net foreign assets. Benigno and Thoenissen (2008) assume convex portfolio costs, whereas de Walque et al (2005) do not invoke stationarity at all. Nevertheless, the finding about the slope of the short-run excess demand function and the volatility of the real exchange rate fully applies to their models. Return to text

23.   If the positive shock to technology occurs in the home country, only path 3 exists. Similar logic applies to negative technology shocks. Return to text

24.   Corsetti and Dedola (2005) mention the possibility of multiple in such a framework. The working paper version of that paper provides some analysis of the steady state case. Return to text

25.   In the endowment economy, the contemporaneous decision on bond holdings does not affect the slope of the excess demand function in the short run. This is different from the economy with endogenous capital. Return to text

26.   The decision rules for the endogenous variables in terms of the state variables can be found by using standard techniques for solving linearized rational expectations models. Return to text

27.   The policy functions depend on the assumption that induces a stationary net foreign asset position. Hence, the exact value of the threshold and the occurance of multiple equilibria differ between the model with endogenous discounting and the model with convex portfolio costs. Return to text


This version is optimized for use by screen readers. Descriptions for all mathematical expressions are provided in LaTex format. A printable pdf version is available. Return to text

Home | Economic research and data | Publications and education resources
Accessibility | Contact us
Last update: July 8, 2008