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Abstract

Highly productive U.S. cities are characterized by high housing prices, low housing stock
growth, and restrictive land-use regulations (e.g., San Francisco). While new residents would
benefit from housing stock growth in cities with highly productive firms, existing residents
justify strict local land-use regulations on the grounds of congestion and other costs of fur-
ther development. This paper assesses the welfare implications of these local regulations
for income, congestion, and urban sprawl within a general-equilibrium model with endoge-
nous regulation. In the model, households choose from locations that vary exogenously by
productivity and endogenously according to local externalities of congestion and sharing. Ex-
isting residents address these externalities by voting for regulations that limit local housing
density. In equilibrium, these regulations bind and house prices compensate for differences
across locations. Relative to the planner’s optimum, the decentralized model generates spa-
tial misallocation whereby high-productivity locations are settled at too-low densities. The
model admits a straightforward calibration based on observed population density, expen-
diture shares on consumption and local services, and local incomes. Welfare and output
would be 1.4% and 2.1% higher, respectively, under the planner’s allocation. Abolishing
zoning regulations entirely would increase GDP by 6%, but lower welfare by 5.9% because
of greater congestion.

∗Email: devin.bunten@frb.gov. I am deeply indebted to the support of Leah Boustan, Matt Kahn,
and Pierre-Olivier Weill. I would also like to thank Dora Costa, Pablo Fajgelbaum, Walker Hanlon, and
other participants in the economic history and macroeconomics proseminars at UCLA. This research was
supported by Award Number T32AG033533 from the National Institute on Aging. The content is solely the
responsibility of the author and does not necessarily represent the official views of the National Institute on
Aging or the National Institutes of Health. The analysis and conclusions set forth are those of the author
and do not indicate concurrence by other members of the research staff of the Federal Reserve System or the
Board of Governors. The title of this paper was inspired by Yglesias (2012). For the most recent version,
see www.devinbunten.com/jmp.
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1 Introduction

Neighborhoods in productive, high-rent regions have very strict controls on housing develop-
ment and very limited new housing construction. Home to Silicon Valley, the San Francisco
Bay Area is the most productive and most expensive metropolitan region in the country, and
yet new housing construction has been very slow, especially in contrast to less-productive
large cities like Houston, Texas.1 The evidence suggests that this slow-growth environment
results from locally determined regulatory constraints.2 Existing residents justify these con-
straints by appealing to the costs of new development, including increased vehicle traffic
and other types of congestion, and claim that they see few, if any, of the benefits from new
development.3 However, the effects of local regulation extend beyond the local regulating au-
thorities: regions with highly regulated municipalities experience less-elastic housing supply
(Glaeser et al., 2006; Saiz, 2010).4

This paper takes seriously their concerns while assessing quantitatively the aggregate welfare
costs of local land-use regulation. To do so, I build a spatial equilibrium model of housing,
location choice, and endogenous regulation. To motivate households’ preference for zoning, I
introduce local externalities of agglomeration (e.g., residents can share fixed-cost infrastruc-
ture or a diversity of restaurants) and congestion (e.g., traffic or limited on-street parking)
to a standard model featuring locations with heterogeneous productivity. In line with the
externalities under study, I identify these locations with neighborhoods.5 Existing residents
address these externalities by establishing zoning laws that limit development within their
location. The tradeoff between agglomeration and congestion ensures that households pre-
fer a positive but limited number of co-residents. Compared with the utilitarian planner’s
allocation, high-productivity locations are developed less intensively, low-productivity loca-

1The gross domestic product per capita in the Bay Area of over $92,000 for 2014 is higher than that of
all countries outside of the tiny banking center Luxembourg. Even for workers in non-tech sectors, wages in
the region are higher than elsewhere in the United States: median earnings for those with just a high school
diploma are 12% higher.

As of the 2014 American Community Survey one-year estimates, the Metropolitan Statistical Areas cen-
tered on San Jose, San Francisco, and Santa Cruz have median home values of $735,400, $657,300, and
$615,200, respectively.

The region of 6.1 million people permitted just 19,174 new housing units in 2015, consistent with a
housing-stock growth rate of 0.79% annually. For comparison, similar-sized but lower-wage Houston and
Atlanta grew at 2.3% and 1.4%, respectively. These comparisons are visualized in Figure 3 in the appendix.

2This point is made by Glaeser and Gyourko (2002, 2003) and Glaeser et al. (2006), among others.
3For example, the group Livable Boulder supports a ballot initiative that it argues will “ensure that

City levels of service are not diminished by new development” due to concerns about “huge buildings,
blocked views of the mountains, more congestion, proposals to change the unique character of many
Boulder neighborhoods” (http://livableboulder.org/initiatives-proposed-by-livable-boulder/
initiative-development-shall-pay-its-own-way/ and http://livableboulder.org/).

4That regulations are determined locally—at the level of a neighborhood, city district, or municipality—is
argued by Hills and Schleicher (2011, 2014), Schleicher (2013), and Monkkonen and Quigley (2008).

5Neighborhood productivity differences within and across cities arise from differential access to employ-
ment opportunities, transportation networks, or productive amenities.
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tions are developed more intensively, and too many (low-productivity) locations are opened
in the local-zoning equilibrium. Implementing the planner’s allocation would increase gross
domestic product (GDP) by 2.1% and welfare by 1.4%.

The key model components—fixed costs, congestion, and endogenous local regulation—are
grounded in empirical evidence. The fixed cost of infrastructure and local services can
explain the sharp edge of development visible in metropolitan areas, in contrast with the
predictions of the standard monocentric city model of a smooth gradient approaching zero
density at the fringe.6 Local congestion resulting from fixed quantities of street parking,
from limited space for children’s play, and from concerns about sunshine, shadows, and wind
permeate antidevelopment discourse.7 Finally, zoning laws in U.S. cities are the results of
neighborhood or municipal (and not metropolitan) political processes (Hills and Schleicher,
2014; Monkkonen and Quigley, 2008).8

I model a large set of locations analogous to the neighborhoods or municipalities of the
national economy. Opening a location to settlement necessitates payment of a fixed cost
that can be shared more broadly by increasing the number of residents: agglomeration.
Households in a location experience congestion as disutility from the addition of further co-
residents. The forces of agglomeration and congestion constitute the endogenous amenities
provided by a location. In light of those forces, local residents choose zoning laws that restrict
the maximum number of housing units that can be built by a competitive construction
sector. Distributions of house prices, zoning laws, and household location choices are jointly
determined in equilibrium. Households are ex ante homogeneous and fully mobile, and so
house prices adjust to ensure that households are indifferent between all occupied locations.
In equilibrium, productive locations have binding zoning restrictions that cause house prices
to become significantly higher than the marginal cost of construction, an empirical finding
documented in Glaeser and Gyourko (2002, 2003), Glaeser et al. (2005a,b), Cheshire and
Hilber (2008), and Koster et al. (2012).

I use this model to analyze the welfare implications of local zoning laws by comparing the
equilibrium allocation with the optimal allocation chosen by a constrained planner.9 When
choosing the intensity of development within a location, the planner considers the local forces
of agglomeration and congestion as well as the value of placing the marginal household in a
location of higher or lower productivity. When passing zoning laws, households consider only
the local amenity forces and thus restrict development too heavily in productive locations.

6For a graphic example, see Figure 4 in the appendix.
7A recent example from a zoning debate in Santa Monica, California is described at http://smdp.com/

santa-monica-beach-town-dingbat-city/147819.
8Relatedly, Aura and Davidoff (2008) argue that housing and land demand elasticities imply that any

particular municipality would be unable to increase supply sufficiently to move down housing demand curves
to lower prices. Conversely, municipal (or neighborhood) governments are limited in their ability to act as
monopolists and raise prices by simply restricting supply. That they restrict development anyway suggests
they are motivated by concerns like local externalities.

9The planner is constrained in that it maximizes welfare subject to a spatial equilibrium constraint:
identical households must receive identical utility, regardless of location.
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This underdevelopment induces sprawl : the opening of too many unproductive locations,
consistent with, e.g., Fischel (1999). I further show that the planner’s allocation can be
implemented through a zoning reform whereby residents choose all zoning laws at the national
level.

The model enables a straightforward calibration. I calibrate the utility function to the share
of household expediture going to non-local goods excluding housing and local services. For
the local sharing parameter, I calibrate to the share of spending on local services. The
congestion cost curvature is chosen to match the average population density of urban census
tracts.10 For location productivity, I use census-tract income data, adjusted for average
household observable characteristics (Hsieh and Moretti, 2015). I calibrate construction-
sector productivity to match the ratio of price to construction costs in high-price locations
like New York and San Francisco where the effects of zoning laws have been well studied (see
Glaeser et al., 2005b).

The model provides a unified framework for addressing the costs and benefits of reforming
local zoning policy by implementing the optimal allocation. Avent (2011) and Hsieh and
Moretti (2015) argue that these local growth patterns have been quite costly for national
growth, while incumbent residents argue that new development would itself be costly. My
main exercise is to quantify these costs while also accounting for the changes to endogenous
amenities resulting from the planner’s allocation. The planner’s allocation raises welfare
and GDP by 1.4% and 2.1%, respectively. The more intensive development of productive
locations necessary to increase GDP would also increase the congestion disamenity received
by the residents of these regions. The median resident experiences an increase in density
of 3.6%; increases of as much as 10–15% are experienced by the most productive locations.
More intensive development reduces the total number of locations opened to development
by 3%. The planner’s allocation thus features less sprawl, with less fixed-cost expenditure
and commensurately higher consumption.

A second exercise offers a quantitative assessment of an alternative policy: zoning abolition,
wherein developers are free to build housing without constraint.11 This policy results in
overbuilding in high-productivity areas, as construction firms do not internalize congestion
effects. Model GDP increases by 6%, but increased congestion causes welfare to decline by
5.9%. The additional output arises because with the constant-returns production technology,
productive regions like San Francisco see population inflows of 50% or more. The policy
implication is that zoning should be relaxed but not abolished in productive locations.

Treating zoning as endogenous enables the inference of welfare losses from zoning in the
absence of detailed data on the wedges between housing prices and marginal costs of con-
struction at the location level. Were such data available the wedges could be treated as

10While the parameter governs the shape of the congestion cost function, in equilibrium it has a first-order
effect on the optimal zoning laws and thus on average density. The approach is similar to the tradition of
using wage shares to calibrate labor and capital exponents in a production function: in equilibrium, these
shape parameters have first-order effects on levels.

11This option is implicitly studied by Hsieh and Moretti, who find that output would increase by 13.5%.
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exogenous and the welfare costs of zoning would be the costs of moving the wedges from
their observed to their optimal level. In principle, observed density could be used to proxy
for underlying regulations. The relationship between productivity and zoned density, how-
ever, is confounded in the data by factors like exogenous amenities—which make land more
expensive and increase density—and long-lived investments, both in building stock and in
infrastructure such as subway networks. Instead of attempting to account precisely for these
myriad forces, I model zoning as an equilibrium object, infer the unobserved wedge from
the model, and calculate the loss in welfare accordingly. The key qualitative prediction of
this model is that, in high-productivity areas, density does not rise fast enough relative to
productivity.

Endogenous zoning has a further benefit: it offers predictions on the likely outcomes of dif-
ferent zoning and housing policy reforms. For example, policies that ignore the endogeneity
of zoning may be unable to meet their stated goals. The federal government provides large
housing subsidies throughout the income distribution, and increased subsidies may appear to
offer an outlet for reducing the burden of high costs in expensive cities. Within the specified
model, a housing subsidy would increase household willingness to pay in expensive areas.
However, endogenous zoning driven by existing residents will not respond to these subsidies
by creating more supply, and so the policy will not have the intended effect of making housing
more affordable, nor will it stimulate additional supply in zoning-constrained locations.

Additionally, the model provides guidance for the outcomes of direct zoning reforms. Can
a single location allow more development—increasing housing supply—and hope to bring
down prices? Consider an infinitesimal neighborhood in the model that relaxes its zon-
ing restriction and allows more development. The outside option—the value of locating
elsewhere—will be unaffected, as a single location is insufficient to move the price gradient.
Instead, house prices in the neighborhood will decline only to the extent that additional
development makes congestion worse. This reasoning echoes the complaints of homeowners
who fear new development will hurt their house values.12

Finally, could a successful upzoning, whereby a set of productive locations increase the zoned
capacity or even abolish zoning restrictions, harm landowners in less productive locales?
Suppose that an entire productive region—perhaps a city or a state—chooses to allow more
intensive development. Many new households will flow in, abandoning the less productive lo-
cations they once occupied. For the least productive locations, the initial population outflows
will make the fixed costs too burdensome, and all households will choose to leave. If profits
from the development of a location are tied to that location, perhaps via homeownership,
then residents of less productive locations may lose out from this policy reform.

12For example, this claim is offered by an advocate for a moratorium on develop-
ment in the Mission District of San Francisco here: https://medium.com/@danancona/

putting-market-fundamentalism-on-hold-432ecf1aab3c.

5

https://medium.com/@danancona/putting-market-fundamentalism-on-hold-432ecf1aab3c
https://medium.com/@danancona/putting-market-fundamentalism-on-hold-432ecf1aab3c


1.1 Related Literature

This paper draws on work that has established a strong relationship between zoning and
the elasticity of housing supply (Fischel, 1999; Mayer and Somerville, 2000; Glaeser and
Gyourko, 2002; Glaeser et al., 2005a,b; Saiz, 2010; Koster et al., 2012; Turner et al., 2014).13

This literature has shown that zoning laws restrict the supply response to high house prices,
and that cities that do zone restrictively have systematically higher housing prices. Following
this literature, zoning laws in this paper shape local amenities (cf. Turner et al., 2014) and
regional housing supply (cf. Fischel, 1999; Mayer and Somerville, 2000).

Several authors in diverse contexts have modeled zoning as an endogenous outcome of polit-
ical processes (Hamilton, 1975; Fischel, 1987; Monkkonen and Quigley, 2008; Fischel, 2009;
Hilber and Robert-Nicoud, 2013; Ortalo-Magné and Prat, 2014; Hills and Schleicher, 2011;
Schleicher, 2013; Hills and Schleicher, 2014; Fischel, 2015). I implement the findings of,
e.g., Fischel (2009) and Hills and Schleicher (2011) that zoning laws are actively deter-
mined by highly engaged utility-maximizing households at the local level—municipalities,
neighborhoods, or even direct neighbors.14 In some contexts, zoning enables households to
implement the planner’s allocation, usually by resolving problems of free-riding on local ex-
penditure. I complement this literature by embedding a set of heterogeneous locations into a
general-equilibrium model so that zoning is locally optimal but has aggregate external costs.
Incorporating the endogeneity of local zoning enables a welfare calculation in the absence of
detailed local data and also reflects the consensus of the literature.

My work builds on Hsieh and Moretti (2015), who also link strict zoning and changes in ag-
gregate output. They study the productivity effects of wage dispersion across metropolitan
areas in a Rosen-Roback model and attribute the increase in this dispersion (and resulting
loss in output) to a decrease in the elasticity of housing supply. From this basis, I introduce
local externalities and calculate welfare losses from zoning relative to the planner’s optimum,
in addition to output losses from spatial misallocation. My paper differs in terms of the eco-
nomic interpretation of zoning: here, it is an endogenous limit on neighborhood development
instead of a change in the elasticity of metropolitan housing supply. As noted, this endo-
geneity serves two purposes: it enables me to infer the costs of welfare in the absence of
location-specific data on marginal costs and housing prices, and it allows me to study the
likely local outcomes of different policy reforms.

This paper is related to others that study the conditions under which zoning laws and
other local government interventions may be theoretically optimal (Stull, 1974; Hamilton,
1975; Henderson, 1991; Hochman et al., 1995; Rossi-Hansberg, 2004; Calabrese et al., 2007;
Chen and Lai, 2008; Allen et al., 2015). These papers focus on a variety of externalities to
motivate zoning, including nuisance, production, and free-riding interactions from which I
abstract. Of course, the optimal zoning scheme depends on the nature of the externalities

13Gyourko and Molloy (2014) present an in-depth review of the economics of housing regulation.
14Lawsuits seeking to halt development in the name of various ills are increasingly common (Ganong and

Shoag, 2013).
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under consideration. Similarly to some of these papers, I characterize the zoning regime
consistent with maximizing welfare given the externalities studied. This paper also addresses
the optimal distribution of population between communities that share local public goods
(Flatters et al., 1974; Arnott and Stiglitz, 1979; Hochman et al., 1995). Like Hochman et al.
(1995), I find that jurisdictions that are well positioned to deal with one externality may not
be optimal in the presence of other inter-location effects.

More broadly, this paper relates to others that study the spatial determinants of aggregate
productivity and welfare (Albouy, 2012; Desmet and Rossi-Hansberg, 2013; Allen and Arko-
lakis, 2014; Behrens et al., 2014; Eeckhout and Guner, 2015; Morales et al., 2015; Hsieh
and Moretti, 2015). I also account for the joint spatial distributions of household location
choices, incomes, and housing prices while incorporating the effects of zoning regulations.
As such, the paper relates to Glaeser et al. (2005a), Van Nieuwerburgh and Weill (2010),
Gyourko et al. (2013), and Diamond (2016), among others.

The rest of the paper is organized as follows. Section 2 presents the model and the analytic
results. Section 3 calibrates a quantitative version of the model to match features of the
data. Section 4 quantitatively analyzes the welfare costs of local zoning and the no-zoning
counterfactual relative to the planner’s optimal allocation. Section 5 concludes.

2 Model

This section describes the model. I begin by outlining the environment. I then study the
determination of equilibrium in three steps. First, I study the local equilibrium that results
from the actions of households and firms, which take as given the local zoning rules as well
as the endogenous outside option and level of profit. Second, I study the local zoning choice
of initial residents. The zoning law restricts the level of housing production available to
construction firms. Third, I study the economy-wide general spatial equilibrium in which
the aggregate variables are determined: the endogenous outside-option level of utility and
aggregate profits of construction firms.

Environment The spatial environment consists of a mass of locations of measure 1 with
productivity indexed by x ∈ [0, 1]. These locations represent the set of potential neighbor-
hoods in the entire economy. The neighborhood with x = 1 is the most productive in the
country, e.g., downtown San Francisco. Locations with x less than but close to 1 include less
productive locations in the same area—for instance, Oakland, a train ride from downtown
San Francisco. A similar x could also correspond to the best locations in less productive
regions, like downtown Denver. Locations with x close to zero would be at the far fringes of
metro areas: either a short commute to an unproductive job or a very long commute to a
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better job.15

Production takes place at each location according to a linear production function. Produc-
tivity is given by a continuous function y(x) with y(0) = y, y′(x) > 0, and y(1) = ȳ. Each
location begins empty and available for settlement by a measure 1 of households, whose
preferences are described later. Opening a location to urban settlement requires a fixed cost
F . The set of locations that are open in equilibrium is an endogenous outcome.16

I now turn to the description of agents and their maximization problems.

2.1 Local Equilibrium

2.1.1 Household and Construction Firm Problems

The economy consists of three types of agents. First, there is a measure 1 of households that
choose location and consumption to maximize utility, taking as given location-specific rents,
population, and the endogenous outside option (i.e., the maximum attainable utility from
making the optimal choice of location).

Second, there is a representative construction firm that chooses the housing production level
to maximize profits at each location, taking as given rents and the local zoning law. I
represent a zoning law as a maximum allowable number of housing units.17

Third, some locations begin with a measure 0 of initial residents. The initial residents choose
local zoning laws and consumption to maximize utility while taking as given a pre-fixed
initial rent.18 Initial residents have rational expectations about the equilibrium choices that

15Unlike the static model of this paper, cities are dynamic. However, the locations of business districts,
transportation networks, natural geographic features, and ethnic enclaves evolve on the scale of decades or
longer. New York’s Second Avenue subway opened in 2017, decades after planning began in the 1930s. San
Francisco’s Chinatown has remained a destination for Chinese immigrants since the 1800s, and Downtown
Boston sits on the original city site from 1630. The model takes as fixed medium- or long-term factors such
as these that may affect productivity or other parameters.

16As a technical matter, it is possible that fixed and construction costs are sufficiently large that there is no
feasible distribution of households under which total output is sufficient to cover these costs. In that case, the
economy can be thought of as agricultural : no fixed costs are paid, and each location is occupied by a solitary
household that produces yA < y. In the urban equilibrium, fewer locations will be opened. A final case is
that the endogenous outside option of the urban economy is equal to the utility earned from agricultural
production, in which case some locations would remain agricultural. Restricting yA to be sufficiently small
effectively rules out this equilibrium.

17As each household consumes a single housing unit, the choice of zoning law restricts both the number
of housing units and the number of households.

18The initial rent can be thought of as the fixed mortgage payment of an existing homeowner, which does
not fluctuate based on local rental conditions. It can also be thought of as rent control, where the price
cannot legally be raised on existing tenants. Rent control is a common policy tool in expensive rental markets
like San Francisco.
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households and firms will make given the zoning law. In locations with no initial residents,
construction firms maximize profits without constraint.

I proceed by defining the problems of the household and the construction firm and then
the neighborhood equilibrium given zoning laws. Then I define the problem of the initial
residents and their equilibrium choices of zoning law.

Household Problem A household in location x has preferences summarized by the utility
function

u(c(x))− v(n(x)).

The function u(·) represents preferences over consumption, c(x). The function v(·) represents
a congestion externality that depends on the neighborhood population, n(x). Utility from
consumption is twice continuously differentiable and concave: u′(c) > 0 and u′′(c) ≤ 0. The
congestion externality v(·) is bounded below, increasing, twice continuously differentiable,
and convex: v′(n) > 0 and v′′(n) ≥ 0. Without loss of generality, I assume that v(0) = 0.

The household faces budget constraint

c(x) = y(x) + Π− F

n(x)
− p(x),

where y(x) and p(x) represent the location-specific income and house price. Consumption is
written as c(x). Households own a diversified portfolio of construction firms in all locations,
and Π is the location-independent transfer of construction-sector profits from the national
economy. The fixed cost F is shared equally among all residents.

Households take as given local prices p(x), total profits Π, and their endogenous outside
option ū. Households are freely mobile and choose location x and consumption c(x) to
maximize utility subject to the budget constraint.

Construction Firm Problem Construction firms choose the development intensity nf (x)
to maximize profits at each location subject to a local zoning constraint n̄(x). There is no
pre-existing housing stock in any location. Taking the price p(x) as given, the firm problem
in location x is

max
nf (x)

Π(x) = p(x)nf (x)−
(
nf (x)

Z

)2

subject to zoning constraint
nf (x) ≤ n̄ (x) .

It is natural to think that construction costs within a location are convex due to the costs
associated with building taller and denser structures. Construction firms earn positive profits

9



from locations with positive construction. Profits are aggregated across all locations and
redistributed equally to all households.19

2.1.2 Local Spatial Equilibrium

Consider a fixed n̄(x), a fixed ū, and a fixed Π. I define a local spatial equilibrium for location
x to be a house price p∗(x) and local population n∗(x) such that households and firms solve
their respective problems with households consuming their budget, the local housing market
clears, and spatial equilibrium must hold. That is,

(1) u

(
y(x) + Π− F

n∗(x)
− p∗(x)

)
− v (n∗(x)) ≤ ū,

with equality if n∗(x) > 0. Housing market clearing implies nf (x) = n∗(x). Using this result,
the firm’s problem yields a complementary slackness condition that states that either the
zoning constraint binds or price is equal to the marginal cost of construction:

(2)
(
p∗(x)− 2n∗(x)/Z2

)
[n̄(x)− n∗(x)] = 0.

The firm must also abide by the zoning constraint:

(3) n∗(x) ≤ n̄(x).

A local spatial equilibrium in location x is a pair {n∗(x), p∗(x)} satisfying Equations (1)),
(2)), and (3).

Housing Equilibrium Selection The existence of a fixed cost creates complementarities
in household location decisions: if some households go to a location, the fixed cost can
be shared more broadly and the location becomes more attractive to other households.
This complementarity implies that there can be multiple equilibria. Finally, the congestion
externality implies that eventually an additional household will lower the utility of existing
households as the congestion costs outweigh the sharing benefits. I show that there are up
to three pairs of equilibrium population n∗(x) and price p∗(x) that may satisfy the definition
of an equilibrium. Figure 1 characterizes graphically the set of potential equilibria. The
optimal location curve, labeled OL(n, x), shows the set of (n, p) points consistent with the
household’s maximizing choices and is defined as follows:

(4) OL (n, x) =

{
y(x) + Π− F

n
− u−1 (v (n) + ū) if n > 0

[0,∞] if n = 0.

19The cost function is equivalent to a housing production function that is Cobb-Douglas in building
materials and land, with a coefficient of 1

2 on each term. Under this alternative production function, the
profit redistribution outlined here corresponds to an assumption that each household owns a diversified
portfolio of land. This share is within the range of estimates provided by Albouy and Ehrlich (2012).
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The curve labeled MC (n) corresponds to the marginal cost of construction and is indepen-
dent of location:

(5) MC (n) = 2 n/Z2.

Proposition 1. The portion of the OL (n, x) curve with n(x) > 0 is strictly concave, is hump
shaped, and intersects the MC (n) curve twice, not at all, or once at a point of tangency.

Proof. See the appendix.

MC(n)

OL(n, x)

nL(x) nH(x)
0 n

OL(n, x)/MC(n)

Figure 1: Marginal cost (MC(n)) and indifference (OL(n, x)) curves. Note that the OL(n, x)
curve includes the entire vertical axis above 0. The set of points potentially consistent with
equilibrium, for which OL(n, x) > MC(n), is the closed interval (nL(x), nH(x)) and the
point 0.

If the zoning constraint lies to the right of nH(x)—the upper intersection of MC(n) and
OL(n, x)—then both nH(x) and nL(x) are consistent with equilibrium. If the zoning con-
straint lies within the interval (nL(x), nH(x)), then both nL(x)—the lower intersection—and
n̄(x) are consistent with equilibrium. If the zoning constraint lies to the left of nL(x), then
the origin is the sole equilibrium. There is always an equilibrium at the origin: households
and firms may expect a p∗(x) = 0 and n∗(x) = 0 and see these expectations fulfilled.
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If there are multiple equilibria, I select the one with the largest population.20 This equi-
librium selection has two virtues. First, it abstracts from coordination failures where both
households and firms expect the location to be empty, and so it remains empty. Second,
it is stable in the sense of economic geography models, i.e., a small deviation of population
does not induce population movements that lead the location to a different equilibrium (see
Krugman, 1991). This selection criterion rules out nL(x) as an equilibrium population, as
it would be unstable.21 Concretely, both households and construction firms expect that all
locations will be settled at the highest-population equilibrium.

The equilibrium population n∗(x) and price p∗(x) consistent with this selection criterion for
a given zoning law n̄(x) are

(6) {n∗(x), p∗(x)} =


{0, 0} if MC (n) > OL (n, x)∀ n ∈ (0, n̄(x)]
{n̄(x), OL (n, x)} if n̄(x) ∈ [nL(x), nH(x)]
{nH(x),MC (n)} if n̄(x) > nH(x).

In the first case, there is no intensity of development n(x) that abides by the zoning constraint
and that delivers utility of at least ū, which could happen for a given x if n̄(x) < nL(x) or if
OL (n, x) < MC (n) for every n(x) > 0. In the second case, the zoning constraint binds, and
the equilibrium price is consistent with household spatial equilibrium. In the third case, the
zoning constraint does not bind, and the equilibrium price is consistent with both household
spatial equilibrium and (unconstrained) profit maximization.

2.1.3 Locally Optimal Zoning Choice

This section describes the determination of zoning laws within a location.

I assume that some locations have a measure 0 of initial residents who choose the zoning
regulation, while some locations have no initial residents and are thus unregulated. The
set of inhabited locations will be endogenized later. Formally, they can choose the zoning
constraint n̄(x); as Equation (6) makes clear, the choice of zoning law affects the local
equilibrium.

For the subset of locations with no initial residents, the zoning law is effectively infinite:
n̄(x) = ∞. The equilibrium population in such locations is given by Equation (6): it will
be {nH(x),MC (n)} if the OL(n, x) and MC(n) curves intersect and {0, 0} if the OL(n, x)
curve is strictly lower than the MC(n) curve for all positive populations.

20Note that this supremum is taken over a closed and bounded set. By continuity of the utility and
construction cost functions, the supremum of the set of points consistent with equilibrium is, itself, a member
of this set.

21In the case where nL(x) = nH(x), nL(x) satisfies the equilibrium selection process and is stable. See the
appendix for details on equilibrium stability.
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Locations with initial residents The measure 0 of initial residents have identical pref-
erences and productivity as the households described earlier, but they differ in two respects.
First, the initial residents of location x face a fixed rent p0(x). I take this rent as given for
now and will endogenize it later. Second, they choose the zoning constraint n̄(x) that limits
the maximum level of development within their location. The initial residents have rational
expectations about the consequences of their zoning choice. Namely, they anticipate that
a zoning constraint n̄(x) will induce the local spatial equilibrium of Equation (6). Like the
households described above, the initial residents take as given the endogenous outside option
ū and the level of aggregate profits Π.

Let θ (n̄(x); ū,Π) = n∗(x) denote the population n∗(x) from Equation (6) given a zoning
constraint n̄(x) and aggregate variables ū and Π. The initial residents solve the following
maximization problem:

max
{c0(x),n̄(x)}

u (c0(x))− v (θ (n̄(x); ū,Π)) .

subject to

c0(x) = y(x) + Π− F

θ (n̄(x); ū,Π)
− p0(x)

We can rewrite the maximization problem in a more convenient form. Initial residents in
location x act as if they were directly choosing the local population given ū and Π, subject
to a household participation constraint.

Proposition 2. Consider an arbitrary x for which there exists n with OL(n, x) ≥ MC(n).
For this x, the locally optimal zoning constraint solves

(7) max
{c0(x),n̄(x)}

u(c0(x))− v(n̄(x))

subject to the budget constraint

(8) p0(x) + c0(x) +
F

n̄(x)
= y(x) + Π

and the participation constraint

(9) u

(
y(x) + Π− F

n̄(x)
− 2n̄(x)/Z2

)
− v (n̄(x)) ≥ ū.

Proof. See the appendix.

Note that the participation constraint is a function of the marginal cost of housing rather
than its equilibrium price. The participation constraint is satisfied if and only if n̄(x) ∈
[nL(x), nH(x)] as defined above. If the participation constraint is non-binding, Equation
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(6) states that equilibrium population n∗(x) will equal the initial resident choice n̄(x). The
logic of the constraint is as follows: for n̄(x) < nL(x), the equilibrium population will be
0. However, the initial residents strictly prefer to share the fixed cost F with a positive
population, and so they will not choose n̄(x) < nL(x). If they choose n̄(x) > nH(x), the
equilibrium population will be nH(x), and so limiting the initial resident choice to being
below nH(x) does not restrict their potential payoffs.

In general, the participation constraint may or may not bind. If the participation constraint
does not bind, then the zoning constraint will bind in the local equilibrium: the equilibrium
house price is above the firm’s marginal cost. If the participation constraint does bind, then
the zoning constraint does not bind: the house price is equal to marginal cost.

When the participation constraint does not bind, the initial resident choice of zoning choice
is the n̄(x) that solves

(10) u′
(
y(x) + Π− F

n̄(x)
− p0(x)

)
F

n̄(x)2
− v′ (n̄(x)) = 0.

The first term is the marginal benefit of sharing the fixed cost F more broadly.22 The second
term is the marginal cost of congestion. As u is concave and v convex, the expression is
strictly decreasing and the n̄(x) that solves the equation is unique.23

When the participation constraint binds, the initial resident’s optimal zoning choice is, by
definition, not in the interior of the set of points consistent with the participation constraint.
By concavity of the initial resident problem, the zoning choice in these cases is given by the
endpoint of the set that offers greater utility to the initial residents:

(11) arg max
n̄(x)∈{nL(x),nH(x)}

u

(
y(x) + Π− F

n̄(x)
− p0(x)

)
− v (n̄(x)) .

2.2 General Spatial Equilibrium

Define a stable general spatial equilibrium in this economy to be an endogenous outside
option ū, a level of profit Π, a set of open locations X , local populations n∗(x), local prices
p∗(x), and zoning laws n̄(x) such that the zoning choices n̄(x) and local equilibrium outcomes

22The constraint states that the utility delivered by the location with house price equal to marginal cost
is greater than or equal to ū. If the constraint is non-binding, then Equation (6) states that the equilibrium
house price will be greater than marginal cost.

23As there is a measure 0 of initial residents, an inflow of n̄(x) households ensures that the new households
will be the majority of the community. This feature of the model raises the question of whether they would
seek ex post to hold a new vote and modify the zoning law. However, the new residents would not have a
strong preference to modify the law. Given an outside option ū, households expect that rents will adjust to
make them indifferent across locations regardless of their vote. As such, households do not strictly prefer any
alternative zoning law for their location. The pre-fixed rent of the initial residents eliminates this feedback
mechanism.
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{p∗(x), n∗(x)} solve household, firm, and initial resident problems and are consistent with
the population constraint

(12)

∫ 1

0

n∗(x)dx = 1,

with the definition of profits

(13) Π =

∫ 1

0

[
p∗(x)n∗(x)−

(
n∗(x)

Z

)2
]
dx,

with the definition of X

(14) x ∈ X ⇐⇒ n∗(x) > 0,

and with the stability condition

(15) p∗(x) = p0(x) ∀ x ∈ [0, 1] .

The stability condition imposes restrictions on the prices faced by initial residents. This
natural restriction is informed by a notion of dynamic stability and enables the static model
to approximate the steady state of a corresponding dynamic overlapping generations model,
wherein a subset of agents inherit a fixed rent from the previous period’s equilibrium.

2.2.1 Characterization of General Equilibrium

I proceed by characterizing the triplet {ū,Π,X} as well as optimal zoning n̄(x), local popu-
lation n∗(x), and price gradient p∗(x) consistent with general equilibrium. Focusing on the
stable equilibrium described earlier, I consider the natural restriction that p0(x) = p(x). Two
preliminary results will be useful in characterizing the general equilibrium.

Proposition 3. The set of occupied locations X is [x, 1] for some threshold location x. For
the threshold location x, the OL(n, x) and MC(n) curves are tangent at a unique level of
population that depends on ū.

Proof. See the appendix.

This tangency condition proves useful for pinning down the price and population gradients.
The intuition for tangency is as follows: from Proposition 1, the two curves cross twice, once
with tangency, or not at all. For a given location x, if they do not cross, then the location
must be unoccupied: no level of population can deliver utility ū. If they do cross or meet
with tangency, then n∗(x) must be strictly positive. Otherwise, there would be no initial
residents and thus no zoning constraint, and so developers would find it optimal to build
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(and households to settle) to the local equilibrium population of nH(x). Thus, x must be in
X for all locations where the OL(n, x) curve meets the MC(n).

The tangency of OL(n, x) and MC(n) at the threshold location x also implies equality
between OL(n, x) and MC(n). Thus, Proposition 1 offers two additional conditions that
will be used to pin down the price and population gradients. First, tangency implies

(16)
F

n∗(x)2
−
[
u−1
]′

(v (n∗(x)) + ū)× v′ (n∗(x)) = 2/Z2.

Second, equality implies

(17) p(x) = 2n(x)/Z2.

The first condition pins down the threshold population n∗(x) as a function of ū. The second
condition pins down the price at the threshold as a function of this population.
Lemma 1. Define n̄ to be the population that maximizes the OL (n, x) curve. Given outside
option ū, the level of population n̄ is unique and independent of location.

Proof. See the appendix.

Lemma 2. Define location x̂ (ū,Π) as follows:

x̂ (ū,Π) =

{
x s.t. OL (N (ū), x̂) = MC (N (ū)) if OL (N (ū), 1) ≥MC (N (ū))
1 otherwise.

Then x̂ (ū,Π) is unique and in the range [x, 1].

Proof. See the appendix.

Proposition 4. In a stable general equilibrium, the following characterizes the local equilib-
rium populations and optimal zoning. For all locations x > x̂, n∗(x) = n̄(x) = N (ū). For
all locations x ∈ [x, x̂], the population n∗(x) and optimal zoning n̄(x) are given by the upper
intersection of the OL (n, x) and MC (n) curves. For all x ≥ x, p∗(x) is given by the value
of the OL (n, x) curve evaluated at n∗(x).

Proof. See the appendix.

The OL (n, x) curve reflects the willingness to pay for a location as a function of its pop-
ulation: if a mix of congestion and sharing offers a higher level of utility, households are
willing to pay more. As p0(x) = p(x) in the stable equilibrium, initial resident utility is max-
imized where the willingness to pay is maximized: at the peak of the OL(n, x) curve. As
the productivity y(x) shifts the OL (n, x) curve only vertically, the preferred zoning choice
is independent of location. Hence, for locations with x > x̂, zoning laws bind in equilibrium
at the population N (ū).

16



0 n

OL(n, x)/MC(n)

OL(n, x)
OL (n, x ∈ (x, x̂))
OL(n, x̂)
OL ((n, x ∈ (x̂, 1))

OL(n, 1)

MC(n)

N (ū)

Figure 2: Optimal location OL(n, x) curves for threshold occupied location x, x̂, and other
locations with the marginal cost MC(n) curve. The lowest curve, OL(n, x), is the threshold
location and its equilibrium population will be given by the point of tangency with the
MC(n) curve. For the next curve, the equilibrium population is given by the intersection
on the right. For the top three curves, the initial resident zoning choice and equilibrium
population is given by N (ū). Note that all of the OL(n, x) curves reach their peak at N (ū);
the equilibrium population at each location is as close to this as possible subject to ensuring
that OL(n, x) ≥MC(n).
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For locations x ≤ x̂, the level of population N (ū) preferred by the initial residents is incon-
sistent with local equilibrium: the price that would induce households to settle at population
N (ū) is too low to induce construction firms to build N (ū) units of housing. Vice versa, any
price high enough to induce firms to build N (ū) will be higher than households are willing to
pay, given local wages y(x). In this case, the equilibrium population adjusts downward: the
house price falls, marginal costs fall, and so long as x ≥ x, the location settles at a smaller
equilibrium population. Because the initial resident problem is concave, the participation
constraint binds and the local equilibrium population (and optimal zoning law) is the upper
intersection of the OL (n, x) and MC (n) curves. This case is shown in Figure 2.

Characterization of aggregate variables: ū and Π. As noted, the equilibrium levels
of population n∗(x) and prices p∗(x) described in Proposition 4 are consistent with the local
equilibrium, optimal zoning, and stable equilibrium conditions for a given pair {ū,Π}. The
general equilibrium ū and Π are the pair for which the local equilibria n∗(x) and p∗(x) and
locations x and x̂ described earlier are consistent with the population constraint and profit
definition.

The threshold conditions from Proposition 3 implicitly define the threshold location x as a
function of ū and Π: x(ū,Π). The profit definitions states

Π =

∫
X

(
p∗(x)n∗(x)−

(
n∗(x)

Z

)2
)
dx.

Substituting the equilibrium conditions, this equation becomes
(18)

Π =

∫ x̂(ū,Π)

x(ū,Π)

(
nH(x)

Z

)2

dx+

(∫ 1

x̂(ū,Π)

y(x)dx+ Π− F

N (ū)
− u−1 (v(N (ū)) + ū)

)
N (ū)−

(
N (ū)

Z

)2

.

From above, nH(x) is the upper intersection of the OL(n, x) and MC(n) curves and is pinned
down as a function of Π and ū. From the population constraint,

(19) 1 =

∫ x̂(ū,Π)

x(ū,Π)

nH(x)dx+

∫ 1

x̂(ū,Π)

N (ū) dx.

The characterization of a stable general equilibrium is completed by an outside option ū
and a profit Π that solve Equations (18) and (19). I do not yet have a formal existence
proof. However, given functional forms for u(c) and v(n), it is straightforward to solve the
equations and characterize the equilibrium numerically.

2.2.2 Qualitative Predictions

The model can be used to generate a set of empirical predictions regarding density, house
prices, and marginal costs. Regarding density, the model predicts that the equilibrium
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density will be uncorrelated with local productivity for locations where zoning is binding.
For all tracts, it should be positive. For the set of urban census tracts, the correlation between
income and density is −0.02. Adjusting for skill differences, in a process to be detailed later
in the paper, moves the correlation to 0.02. After adjusting for county-level averages—
which may result from common investments in infrastructure, or exogenous amenities—the
correlation moves to 0.07. These findings are consistent with the model.

The model predicts that house prices will perfectly offset productivity differences in locations
with binding zoning. Of course, housing prices respond to many factors not included in the
model, so the the correlation is unlikely to be perfect. To test this prediction, I compute a
residual house price by regressing tract-level housing costs on the same observable charac-
teristics that I use to adjust income. I then correlate this measure with tract-level income,
adjusted for observable characteristics. The correlation is 0.42 for owner-occupied housing
costs and 0.38 for rental costs. These correlations are not inconsistent with the model. In
addition to the aforementioned exogenous amenities, unmodeled forces that may affect this
relationship include the quality of the housing stock, length of ownership for homeowners,
and housing subsidies or rent-control laws.

Finally, the model predicts that marginal costs will be constant across locations with binding
zoning. Together, these last two predictions imply that house prices in the most expensive
locations will be well above marginal costs of construction. This prediction is well supported
by the literature (e.g., Glaeser et al., 2005a).

2.3 Optimality: The Constrained Planner’s Problem

To provide a welfare benchmark with which to contrast the zoning equilibrium, this section
describes the problem of a constrained planner. The planner chooses the set X of locations
to open, allocates population n(x) among these locations, and allocates consumption c(x)
to households in order to maximize welfare. The planner is free to transfer output across
locations. The planner faces standard population and aggregate resource constraints as well
as a spatial equilibrium constraint. This final constraint restricts the planner to choosing
allocations that deliver identical utility to each household regardless of location; in this
sense, the planner is constrained. The spatial equilibrium condition implies that the welfare
criterion to be maximized is simply ū. The set of locations to open can be simplified to the
choice of a threshold location x.24

The planner’s problem is thus given by the following:

max
{ū,c(x),n(x),x}

ū

24The planner will never choose to open location x1 if location x2 > x1 has not already been opened.
Hence, choosing the set X from within the set of locations [0, 1] amounts to choosing the lowest-productivity
location to open: x.
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subject to the spatial equilibrium constraint

u (c(x))− v (n(x)) = ū ∀ x ∈ [x, 1] ,

the population constraint ∫ 1

x=x

n(x)dx = 1,

and the aggregate resource constraint∫ 1

x=x

[
(y(x)− c(x))n(x)− F −

(
n(x)

Z

)2
]
dx = 0.

The population n(x) can be thought of as the intensive margin of development, while x is
the extensive margin of development. Note that each opened location is subject to a spatial
equilibrium condition. Given the choice of intensive margin n(x), the location-specific spatial
equilibrium constraints ensure the planner engages in transfers of output such that household
consumption offsets the level of congestion and each household receives utility ū.

The Lagrangian associated with the problem is as follows:

L = ū+

∫ 1

x=x

λ(x) [u (c(x))− v (n(x))− ū] dx+ µ

[
1−

∫ 1

x=x

n(x)dx

]
(20)

+ Λ

∫ 1

x=x

[
(y(x)− c(x))n(x)− F −

(
n(x)

Z

)2
]
dx.

Here, λ(x) is the Lagrange multiplier on the spatial equilibrium constraint at location x,
µ is the multiplier on the population constraint, and Λ is the multiplier on the resource
constraint. Taking first-order conditions for n(x) and c(x) and rearranging, the planner
weighs the following objects against one another when choosing the intensive margin of
development n(x):

(21) Λ
[
y(x)− c(x)− 2n(x)/Z2

]
− Λn(x)

v′(n(x))

u′(c(x))
− µ = 0.

The first term is the shadow resource value of the marginal household; the second term is
the shadow cost of congestion, in terms of resources; and the third term is the shadow cost
of having one fewer household to allocate elsewhere. The marginal household in a location
adds output—net of consumption and the construction cost—but also increases congestion
for the n(x) households already there.

To recall, the first-order condition for the choice of local zoning was

F

n(x)
− n(x)

v′(n(x))

u′(c(x))
= 0.
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Both the planner and the initial residents consider the role of the congestion externality.
While the initial residents weigh this externality against the value of sharing the local fixed
cost more broadly, the planner weighs it against the resource value of allocating a marginal
household to location x and the shadow value of the binding population constraint. The
first term in Equation (21) represents the net output of allocating a marginal household
to location x. Under the flat gradient that arises from the local zoning equilibrium, the
marginal value would be higher in productive locations. The planner will thus allocate more
households to such locations. This is the key intensive-margin wedge between the optimal
solution and the allocation with local zoning.

While initial residents ignore aggregate effects, they do consider the marginal value of sharing
the fixed cost more broadly. The planner ignores this margin: the fixed cost is paid when the
location was opened and should not affect the intensive margin. This is the second wedge
between the optimal solution and the allocation with local zoning. In short, the initial
residents ignore the aggregate effects of their choice to restrict housing supply.25

The planner instead considers the fixed cost F at the extensive margin. As shown in Equation
(22), the planner weighs the net output of opening the marginal location x against the shadow
value of assigning n(x) households to this location.

(22) Λ

[
n(x) (y(x)− c(x))−

(
n(x)

Z

)2

− F

]
− n(x)µ = 0.

Recall that in the local zoning allocation outlined previously, the location in which the
OL(n, x) and MC(n) curves are tangent becomes the threshold. Restating, this condition
was met where

F

n∗(x)2
−
[
u−1
]′

(v (n∗(x)) + ū)× v′ (n∗(x)) = 2/Z2.

This location arises through the general spatial equilibrium rather than as the explicit choice
of any agent. In choosing the optimal threshold, the planner weighs the value and costs of
opening a marginal location. The differential outcomes for the threshold x highlight an
additional externality generated by the initial resident choice of local zoning: restrictive
zoning ensures that too many locations are opened in equilibrium, necessitating the payment
of fixed costs to open locations that would not be paid under the optimal allocation.

25As noted previously, the model takes as fixed medium- or long-term factors that may affect productivity
or other parameters. To the extent that implementation of the planner’s allocation may shape, for instance,
medium-term investments in transportation infrastructure, this counterfactual may underestimate the gains
from zoning reform. Similarly, if metropolitan agglomeration involves positive externalities that effect the
growth as well as the level of metropolitan productivity—due for example to externalities of human capital
(Moretti, 2004), matching (Overman and Puga, 2010), or entrepreneurship (Bunten et al., 2015)—then the
static model will again underestimate the gains.
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2.3.1 Decentralization: Socially Optimal Zoning

The planner’s allocation can be decentralized through the adoption of an alternative zoning
regime. In this decentralization, the full measure 1 of households votes on the set X of
locations to open and the gradient of zoning laws n̄(x) for each location x in X . In so doing,
households have rational expectations over the spatial equilibrium induced by the choices
they make. Households therefore choose zoning laws n̄(x) and the set of opened locations X
to maximize the endogenous outside option ū. Households choose these laws subject to the
population constraint and to the local and general spatial equilibria conditions.

Proposition 5. The utility-maximizing choices for the set of opened locations X and the
set of zoning laws n̄(x) are identical to those chosen by the planner. The equilibrium price
gradient and aggregate profits implement the planner’s choice of consumption. This set of
instruments allows households to fully implement the planner’s allocation.

Proof. See the appendix.

Intuitively, households have the option of choosing the same zoning as the planner and will
do so. Prices will adjust such that households are indifferent across all locations. With
identical population across locations as the planner’s allocation, total output and aggregate
construction and fixed costs are also identical. By resource balance, aggregate consumption
must also be identical. By spatial equilibrium, consumption must make households indiffer-
ent between locations, and therefore equilibrium consumption is identical to the planner’s
allocation. The zoning laws and set of opened locations chosen by households in this prob-
lem can therefore be described as socially optimal zoning, as opposed to the locally optimal
zoning described previously.

The profits paid to households are a crucial mechanism for ensuring that this spatial equi-
librium will also be consistent with construction firm behavior. Note that household spatial
equilibrium pins down relative prices, but not levels. Because profits are distributed to house-
holds regardless of location, an increase of ε in the absolute level of prices at each location
leads to an increase in household profits by ε. This increase leaves household consumption
identical. This mechanism ensures that there exists a price gradient consistent with local
equilibrium from the firm perspective.

3 Calibration

3.1 Data

Four key model components must be calibrated: the magnitude of the local fixed cost,
the shape of utility from consumption, the disutility of congestion, and the distribution
of location-specific productivity. This section describes the moments in the data that the
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calibration seeks to match. In matching the moments, I take the set of urban U.S. census
tracts to be the empirical counterpart of model locations.

For the utility of consumption, I consider u(c) = c. Linear utility follows related papers
(Van Nieuwerburgh and Weill, 2010; Davis and Dingel, 2014).

For the disutility of congestion, I consider v(n) = γnη. To calibrate γ, I match the fraction
of income spent on consumption goods as measured in the Consumer Expenditure Survey
of the Bureau of Labor Statistics. As γ controls the relative utility weights of consumption
and congestion, a higher γ will induce households to open more locations and spend more
on housing and fixed costs rather than consumption. To ensure the model concept is well
matched to its empirical counterpart, I calibrate the consumption share of income to spending
on tradable goods. These spending shares range from 52 to 61% for different income deciles
and average 58% overall.

As noted previously, an alternative interpretation of the local fixed cost has residents gaining
utility from a greater diversity of monopolistically competitive local services, each of which is
subject to a fixed cost.26 Using this interpretation, I calibrate the fixed cost F to match the
share of consumer spending on local services. In particular, I use the Consumer Expenditure
Survey categories for food away from home, personal services, medical services, and fees and
admissions. These spending shares range from 7 to 10% for different income deciles and
average 8.5% overall.

I calibrate the congestion shape parameter η to match the average population density of
urban census tracts, as identified by the Census Bureau for 2010. Given the functional form
assumptions, the local equilibrium population for locations with binding zoning is given by

n =

(
F

γ η

)1/(1+η)

.

As the zoning law will bind for a substantial fraction of locations, the shape parameter η
has a first-order effect on average population density.27 Intuitively, too low a congestion cost
would cause households to live at too-high densities in productive locations, compared with
the data.28

I calibrate construction firm productivity to match the ratio of price per square foot to cost
per square foot in the most productive places: Manhattan, San Francisco, or Silicon Valley.
For this exercise, I recorded the average price per square foot from Zillow and the average

26In a local services model, expenditure will be precisely F/n(x) if the elasticity of substitution between
local service firms is 1 or if aggregated local services enter the utility function linearly, such that u(c, S) =
c + S, where S is a constant elasticity of substitution aggregator of local services. More generally, local
expenditure will be F/n(x)σ, where σ is the elasticity of substitution between local services.

27The intuition is similar in spirit to using wage shares to calibrate the labor and capital exponents in a
production function: in equilibrium, the parameters can have first-order effects on levels.

28Note that it is not necessary to take a stand on the precise productivity of non-urban locations, whose
measured incomes may not be a good guide to those earned by new households. It is sufficient to assume
that non-urban households have lower productivity than those occupied at urban population levels.
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Param Value Description Model Target Data Model
γ 1/215 Congestion weight Consumption sh. of expend 52%–61% 55%
F 0.1265 Fixed cost Local services sh. of expend 7%-10% 7.8%
η 7 Congestion curvature Ave. urban density 5,100/sq mi 5,900/sq mi

Z 2.7 Construction prod. p/MC in best locations 5.2–5.8 5.6

Table 1: The classification of tracts as urban follows the Census Bureau’s 2010 classification. The
consumption share of expenditure is taken from the Consumer Expenditure Survey for 2012, and
is equal to consumption net of spending on housing and local services. The price-to-marginal cost
ratio follows the approach of Glaeser et al. (2005a).

cost per square foot from RS Means. The prices and costs are reported at the level of counties
and, in some instances, for subcounty regions.

The distribution of income is taken from census-tract median incomes, adjusted for observ-
ables in a process that follows Hsieh and Moretti (2015). I take individual-level data from
the Integrated Public Use Microdata Series on income, education, race, and gender (Ruggles
et al., 2015). I then run a regression using the following equation:

yi = Xiβ + εi,

where yi is the income of individual i and Xi is the vector of observable characteristics. I
then take the estimate of β and calculate the residual income ỹ of each tract `:

ỹ` = y` −X`β,

where y` is the measured average income per worker and X` is the fraction of the tract with
the given observable characteristics.

Table 1 summarizes the calibration targets and the model fit. For three of the four pa-
rameters, the calibrated parameter is within the range from the data. The search of the
parameter space failed to find a set of values for which the density was closer to the data
while maintaining consistency with the other parameters. At the same time, it is plausible
that households have reasons beyond productivity for choosing locations.

4 Quantitative Results

The key quantitative question this paper addresses is, what are the welfare costs of locally
determined zoning laws? In the baseline calibration, implementing the planner’s allocation
would increase welfare by 1.4%. Consumption would increase by 2.4% and GDP by 2.1%,
but increased congestion would mitigate these gains.29 The planner would close the 3%
lowest-productivity locations, and population density at the 95th percentile location would

29Recall that utility is quasilinear, so the welfare and consumption figures can be compared meaningfully.
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Relative Outcome Planner Market Upzoning
Welfare 1.4% -5.9% -2.0%
GDP 2.1% 6.0% 2.0%
Consumption 2.4% 5.6% 2.1%
Median Rent 2.9% -16% -1.8%

Table 2: All results are relative to the main zoning results. The planner results give the gains from
moving to the optimal allocation. The market results give the counterfactual with no zoning laws.
The upzoning results give the counterfactual with no zoning laws in the 5% highest-productivity
locations.

increase by 18%. The density at the median location would increase by 2%. These results
are summarized in Table 2, along with results from two additional counterfactuals.

The first counterfactual, labeled Market in the table, corresponds to an allocation with no
zoning in which construction firms are free to build without constraint. In the language
of the model, the equilibrium for each location is the upper intersection of the OL(n, x)
and MC(x) curves. This counterfactual corresponds to that studied by Hsieh and Moretti
(2015), and I find an increase in GDP of 6%, half of the 13.5% that they report. Part of the
difference may be due to the presence in this model of congestion externalities, which limit
the willingness of households to crowd into productive locations. Moreover, the estimates
are of the same order of magnitude despite using different methodologies.

While the GDP increase from zoning abolition is substantial, the increase in congestion is
sizable as well. The median location sees an increase in population density of 15%, and the
increase is almost 50% at the 95th percentile. Accordingly, welfare declines by almost 6%,
despite the large increase in consumption. This result suggests that the productivity gains
to zoning abolition put forth by Hsieh and Moretti (2015) will not, in fact, increase welfare.

The second counterfactual, labeled Upzoning in the table, corresponds to an allocation with
no zoning in locations with the productivity greater than the 95th percentile. As census
tracts average about 4,000 inhabitants, these locations are home to approximately 10 million
residents. For scale, the San Francisco Bay Area is home to 5 million urban residents. Under
this allocation, GDP increases by 2% while welfare declines by 2%. This result contrasts with
that of Hsieh and Moretti (2015), who find large productivity gains of 9.5% from increasing
the population of the best cities.

The median rent, also in Table 2, provides insight into the changing tradeoffs with each
reform. Three key forces determine the median rent: the productivity of the median res-
ident, the congestion faced by the median resident, and the outside option ū. Under the
decentralized version of the planner’s allocation, house prices increase by 3% for the me-
dian household. Each location is a little more crowded—and so rents for each location fall,
between 1% and 5%—but the median household is now in a more productive location, and
thus its rent increases. The market equilibrium also sees the median household in a more
productive location, but this location is now much more crowded. Correspondingly, rents
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fall by 16%. Finally, in the upzoning case, the median household is in a more productive
location with the same level of congestion. However, it is slightly worse off, and so it is
unwilling to bid as much for housing, and rents fall.

Given the calibrated parameters, the main policy implication of the model is to allow zoning
laws to be chosen at a higher geographic level—preferably, the national level. This policy
change would ensure that the productivity effects of zoning laws are internalized and would
enable the implementation of the planner’s optimal allocation.30

The fundamental role of congestion in shaping preferences and outcomes points toward a sec-
ond policy implication beyond implementing the planner’s regime: introducing reforms that
could lower the cost of congestion to the neighborhood. Understanding the specific compo-
nent of congestion that drives externalities will identify the appropriate form of mitigation.
If neighborhood congestion is driven by vehicle traffic, then perhaps rapid transit would
enable more-dense development by reducing the costs of congestion imposed by new devel-
opment. Congestion-mitigation efforts like transit can be quite costly, and within a context
of spatial equilibrium, the benefits would be felt widely. As with local zoning, the current
transit-planning regime may not take into consideration the general equilibrium effects of
transit.

Distributional Outcomes Abolishing zoning—whether nationally or just in the highest-
productivity locations—cannot improve welfare under this calibration. This fact is driven
in part by the curvature to the cost of congestion: increasing the intensity of development
in productive places is simply too costly in terms of welfare. A second factor that plays
an important role is the assumption that profits are shared equally among all households.
When restrictive zoning drives up house prices in productive locations, the profits earned
are redistributed across all locations. To understand the role played by this assumption, I
now introduce a second calibration, wherein construction-sector profits are not returned to
households. This calibration mirrors the traditional urban economics assumption of absentee
landlords, who collect rent but do not otherwise interact with households.31

Table 3 shows the analogous results under this model.32 Here, the gains to GDP are similar
to those before, and the losses to welfare of zoning abolition are even greater. However, the
change to welfare discounting profits—i.e., the welfare of the typical household—is positive.
This exercise highlights the key role played by construction profits: residents of productive

30It is worth noting that under a national choice of housing supply, a home-owning household could see
an incentive to restrict housing supply in order to raise the value of its asset—akin to the choice studied by
Ortalo-Magné and Prat (2014).

31Eeckhout and Guner (2015) perform a similar exercise and identify absentee landlords with the concen-
trated landholdings of the 1% wealthiest households. They suppose that the planner values a fraction of
housing sector profits that is distributed to households, but not the fraction distributed to absentee landlords.

32For these results, I have recalibrated the model so that the new model-defined moments are consistent
with the data. The consumption share is 54%, the local service share is 7.7%, the construction-sector markup
is 7.4%, and 88% of locations in the data are opened.
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Relative Outcome Planner Market Upzoning
Welfare 1.5% -10% -3.2%
Welfare ex profits 7.3% 23% 3.7%
GDP 2.6% 6.3% 1.9%
Consumption 9.3% 50% 12%
Median Rent -5.3% -42% -2.1%

Table 3: All results are relative to the main zoning results, and all results ignore the welfare
derived from profits—this allows the welfare gains discounting profits from the market allocation
to exceed those from the planner’s. The planner results give the gains from moving to the optimal
allocation. The market results give the counterfactual with no zoning laws. The upzoning results
give the counterfactual with no zoning laws in the 5% highest-productivity locations.

places do not actually enjoy the high productivity—they simply pay higher rents. When these
profits are shared broadly, these rents are redistributed so that all households, regardless of
location, share the output of high-productivity locations. When these profits are not shared
broadly, households in less productive locations have more to gain from zoning abolition
because moving into a productive location earns them significantly more consumption.

4.1 Empirical Implications and Extensions

The model focuses on just two of potentially many local externalities. Numerous facets of
the model lend themselves to further empirical validation. Similarly, the simple model can
be extended with greater heterogeneity, including of household productivity, of locational or
household preferences over congestion costs and fixed costs, and of locational amenities.

Within the model, existing residents choose zoning regulations to maximize their amenity
mix, trading sharing externalities against congestion. In doing so, they also maximize the
rents that new households are willing to pay: maximizing amenities and maximizing land
values are identical. However, local ownership of land (e.g., in the form of homeownership)
may break this felicitous duality as landowners could seek to restrict the supply of new
housing, a close substitute for their own asset. Empirically, it may be possible to distinguish
between these intents by using evidence from surveys or by identifying preferences over
regulations that would increase supply but have a positive effect on local amenities (or vice
versa).

Local variation in model parameters could be tested to examine the strength of their re-
lationship to equilibrium outcomes. For instance, the fixed costs of development may be
higher in regions that are more arid, or prone to extreme weather, due to the costs of nec-
essary infrastructure. New development in the arid fringe of Los Angeles is quite dense by
the standards of new development in rainier eastern cities like Atlanta. All else being equal,
do locations with higher fixed costs see higher-density development, as the model would
predict?
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Similarly, some locations have seen dramatic changes to their productivity, but homeowners—
like the initial residents of the model—do not see any immediate change in their costs. Out-
side of general equilibrium, locations with low initial prices p0(x) relative to productivity
y(x) should see lower densities and higher house prices than locations with similar initial
prices but lower productivity. Anecdotally, Palo Alto—a key center of innovation in the San
Francisco area—has grown from a population of 55,225 in 1980 to 64,403 in 2010, over a time
when house prices (but not quantities) have increased substantially. Part of this stagnation
of quantities could be explained by the effects of durable capital where the value of an exist-
ing house limits the net returns of new construction (see Siodla, 2015), but as many newly
purchased homes are torn down or remodeled, there may be a role for zoning constraints as
well.

In Boulder, Colorado, a measure on the ballot in the fall of 2015 would have empowered
dozens of local neighborhood groups with an easy path to halting unwanted development,
within a city of just 100,000 residents. The outcome and voting patterns in the election could
help to test model predictions. In particular, the model assumes locations are sufficiently
small that residents can ignore the aggregate effects of their zoning decisions. Regulatory
changes at higher levels of government are more likely to affect aggregate variables, such
as the threshold occupied location. Residents who stand to benefit more from changes to
aggregate variables would be more likely to oppose the measure. Renters, the young, and
new arrivals may be more likely to benefit from aggregate changes within Boulder, relative
to longtime homeowners with substantial equity dependent on the status quo.

4.1.1 Potential Extensions

This paper focuses on the links between productivity, house prices, and population density.
This section briefly presents a set of potential extensions that would complicate these rela-
tionships and an overview of their likely effects on model outcomes. I consider heterogeneity
of the congestion parameter η and the construction productivity Z, a consumption amenity,
and worker skill heterogeneity.

Congestion costs Long-lived investments in transportation networks and other aspects
of the built environment have drastically lowered the congestion cost of the average resident
in some cities.33 The types of investments that seem to matter most are well- known: every
U.S. census tract with a population density greater than 100,000 people per square mile sits
atop a heavy-rail rapid transit line. Such neighborhoods are confined to five metropolitan
areas: New York, San Francisco, Los Angeles, Boston, and Chicago. Among census tracts
with density above 50,000, almost all are in the aforementioned cities, others with heavy-rail
mass transit like Philadelphia and Washington, or the beach cities of Miami and Honolulu.

33Boustan et al. (2013) provide more background on historical investments and urbanization in U.S. cities.
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The remainder are single tracts adjacent to universities, where students are expected (or
choose, to save money) to share rooms.

Incorporating heterogeneity of the congestion parameter η would yield a model wherein
some locations—presumably through historical processes left unmodeled—could have a much
greater equilibrium population than other locations. At the cost of simplicity, this exten-
sion would yield some benefits. First, it would incorporate local population density data,
currently unused. Accordingly, such a calibration would pin down the set of ηi more pre-
cisely than is possible with the current national average approach. The counterfactual would
thus be improved by taking account of the differential potential of, e.g., Silicon Valley and
New York City to add population, given the current realities of long-lived transportation
infrastructure.

Construction productivity The cost of construction varies extensively throughout the
country, even for a single building typology (R.S. Means Company, 2014). In general, per
unit costs of a given building type appear higher in more productive and more expensive
locations. Accounting for these differences would shrink the welfare costs of local zoning by
increasing the marginal cost of reallocating households to more-productive locations.

Consumption amenity As noted earlier, Miami and Honolulu are represented among the
set of cities featuring high-density census tracts. Of course, cities with amenable climates
are well-known as being among the most expensive, a fact at the heart of the Rosen (1979)
and Roback (1982) model. These facts can be reconciled by adapting their model to this
environment by including a local consumption amenity a(x) in the utility function such that
utility is given as

a(x)× c(x)− γn(x)η.

In this case, equilibrium prices and populations will be greater in high-amenity locations.
If utility is multiplicative across both terms or additive, then equilibrium prices will be
higher in high-amenity locations but population will be unaffected by the amenity.34 As
with heterogeneous congestion costs, heterogeneity of amenities would enable a calibrated
model to incorporate more data and to produce a more subtle counterfactual. Doing so
would, however, introduce an additional assumption: any new households introduced to a
location value the amenity identically to those who were already there. In the case of income,
it is straightforward to control for observable characteristics. For amenities, this assumption
would be somewhat stronger.

34An amenity that is multiplicative on the congestion term alone will also increase equilibrium prices and
populations in high-amenity locations. This kind of amenity would be equivalent to introducing heteroge-
neous costs of congestion γ(x), with the interpretation that high-amenity locations are those with low costs
of congestion—although in this case, the curvature of the congestion function η would be identical across
locations.
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Skill heterogeneity As noted, the income measure used in the calibration is the resid-
ual income after controlling for variation in observable characteristics, including educational
attainment, race, and gender. Another extension of the model would account for unob-
servable variation in types by introducing a distribution of worker types and calibrating
that distribution to the differential gradients of income and prices across locations, as in
Van Nieuwerburgh and Weill (2010). Assuming complementarities between households and
locations, this extension would tend to reduce the estimated losses of local zoning: when the
planner moves an additional household to a high-productivity location, that household sees
a smaller boost to its productivity than a naive calculation would imply.

Similarly, the model could be extended to include differential preferences over congestion:
perhaps some households are more or less bothered by adding more neighbors. For instance,
households with children might be more sensitive to congestion, even conditioning on income
and dwelling size. This extension could refine the estimates of welfare gains from adding
density to productive locations.

5 Conclusion

This paper provides a unified framework to address the local and aggregate welfare ef-
fects of local land-use regulation. It provides empirically grounded externalities that incent
households to pass restrictive zoning laws that prevent new housing development at the
neighborhood level. In their endogenous choice of zoning, households rationally ignore the
aggregate implications that arise from location heterogeneity. Households thus bid up the
price of artificially scarce housing in productive locations so that prices exceed the marginal
costs of construction.

The endogeneity of zoning plays a critical role in overcoming the lack of sufficient data to
identify the wedge between house price and marginal cost at the neighborhood level. A
calibrated version of the model is used to perform a welfare calculation: how large are the
aggregate losses to welfare from local zoning relative to the planner’s optimum? The model
provides an interpretation of these welfare costs without measuring these wedges directly.
In the preferred calibration, welfare could be raised 1.4% by implementing the planner’s
allocation. Aggregate output would be raised 2.1%: one-third of the gains to output are
negated by the increased congestion felt by residents of productive locations.
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A Additional Figures

Figure 3: Plot of housing prices and increases in the quantity of housing units in selected
counties. In descending order, the top five counties are Manhattan, San Francisco, San
Mateo, Brooklyn, and Santa Clara: New York and Silicon Valley. Asking price data
is from Zillow Group (2015), https://www.zillow.com/research/data/; units permit-
ted from the U.S. Census Bureau, Building Permits Survey, https://www.census.gov/

construction/bps/; data on units in 1990 from the U.S. Census Bureau obtained via Min-
nesota Population Center (2015), http://www.nhgis.org; and data on nominal wages from
the U.S. Census Bureau, American Community Survey (ACS), https://www.census.gov/
programs-surveys/acs.
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Figure 4: A Google Earth satellite image of the built-up edge of Las Vegas. Note that the
city edge is obvious: on the left, population densities are in the upper single-digit thousands
while the right is undeveloped desert. While this desert is itself likely to fill in, the pattern of
a sharp edge will likely remain. While desert development may entail unusually large fixed
costs, similar patterns hold in regions with friendlier climates.
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B Proofs

Proposition 1. For a given x, the portion of the OL (n, x) curve with n > 0 is strictly
concave, hump-shaped, and intersects the MC (n) curve twice, not at all, or once at a point
of tangency.

Proof. Consider an arbitrary x > 0. Recall that OL((n, x) for n > 0 is defined as

OL (n, x) = y(x) + Π− F

n
− u−1 (v(n) + ū) .

As F > 0, −F
n

is strictly concave. As u(c) is concave and strictly monotone, u−1(·) is convex
and strictly monotone. Similarly, v(n) + ū is convex and strictly monotone for a given ū.
Their composition is thus convex as well, implying that −u−1 (v(n) + ū) is concave. The
first two terms do not depend on n, and so OL((n, x) is strictly concave in n.

By assumption, v(0) is bounded below. Thus we have:

limn→0OL (n, x) = −∞.

From above, −u−1 (v(n) + ū) is concave and decreasing in n, so that

limn→∞OL (n, x) = −∞.

Hence OL (n, x) is hump-shaped.

Finally, consider the relation between OL (n, x) and MC(n). As marginal cost is linear in
n, the hump shape of OL (n, x) implies that for a given x they must intersect twice, once
with tangency, or not at all.

Proposition 2. Consider an arbitrary x for which there exists n with OL(n, x) ≥ MC(n).
For this x, the locally optimal zoning constraint solves:

(23) max
{c0(x),n̄(x)}

u(c0(x))− v(n̄(x))

subject to the budget constraint

(24) p0(x) + c0(x) +
F

n̄(x)
= y(x) + Π

and the participation constraint

(25) u

(
y(x) + Π− F

n̄(x)
− 2n̄(x)/Z2

)
− v (n̄(x)) ≥ ū.
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Proof. Note that the participation constraint can be rewritten as

OL (n̄(x), x) ≥MC (n̄) .

By Equation (6), satisfying the participation constraint implies n∗(x) = n̄(x): the zoning
law chosen by the initial residents will become the equilibrium population. For n̄(x) not
satisfying the participation, the equilibrium population will be n∗(x) = 0 if n̄(x) is to the
left of the intersection of the OL (n, x) and MC(n) curves or n∗(x) = nH(x), the rightmost
intersection of OL (n, x)) and MC(n), if n̄(x) is to the right. The first case cannot maximize
the initial resident problem: due to the assumption that F is large, they will always prefer to
have a positive population. In the second case, the eventual equilibrium population will be
nH(x), which satisfies the participation constraint. That is, choosing n̄(x) > nH(x) cannot
improve upon simply choosing n̄(x) = nH(x). Therefore there exists a zoning law n̄(x)
that satisfies the participation constraint and that maximizes the underlying initial resident
problem:

max
{c0(x),n̄(x)}

u (c0(x))− v (θ (n̄(x); ū,Π))

subject to

c0(x) = y(x) + Π− F

θ (n̄(x); ū,Π)
− p0(x)

It remains to see that the second-order conditions for a maximum are satisfied. Note that
u(·) is concave and utility is separable in c and n. Writing as λ0(x) and µ0(x) the Lagrange
multipliers for the budget and participation constraints, the first order condition for n̄(x) is

− v′ (n̄(x)) + λ0(x)
F

n̄(x)2
(26)

+ µ0(x)

[
u′
(
y(x) + Π− F

n̄(x)
− 2n̄(x)/Z2

)(
F

n̄(x)2
− 2/Z2

)
− v′ (n̄(x))

]
= 0.

As v(·) is convex, the second order condition for a maximum is satisfied as long as

− v′′ (n̄(x))− 2λ0(x)
F

n̄(x)3
+ µ0(x)u′′

(
y(x) + Π− F

n̄(x)
− 2n̄(x)/Z2

)
F

n̄(x)2
(27)

− µ0(x)

[
u′
(
y(x) + Π− F

n̄(x)
− 2n̄(x)/Z2

)(
2F

n̄(x)3
+ 2/Z2

)
+ v′′ (n̄(x))

]
(28)

< −2/Z2µ0(x)u′′
(
y(x) + Π− F

n̄(x)
− 2n̄(x)/Z2

)
.(29)

Every term on the left hand side of Equation (29) is negative. This equation is easy to check
for particular functional forms. For example, it is satisfied whenever

F

n̄(x)2
> 2/Z2.
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Proposition 3. The set of occupied locations X is [x, 1] for some threshold location x. For
the threshold location x, the OL(n, x) and MC(n) curves are tangent at a unique level of
population that depends on ū.

Proof. Consider an occupied location x̃. As y(x) is strictly increasing in x, OL (n, x) must
also be strictly increasing in x. For all locations x > x̃, this implies that there exists a positive
n such that OL (n, x) > MC(n). As initial residents prefer a strictly positive population,
they will choose such an n and, by Equation (1), that location will be occupied.

Recall that by assumption, the productivity and fixed cost parameters are such that a proper
subset of locations are occupied. By Equation (6) and Proposition 2, all locations with n
such that OL (n, x) ≥MC(n) will be occupied in equilibrium. By the continuity of y(x), this
set is closed. Thus there exists a threshold x such that OL (n, x) and MC(n) are tangent.

Tangency implies that

(30)
F

n2
−
[
u−1
]′

(v(n) + ū) v′(n) = 2/Z2.

The left-hand side is strictly decreasing in n and satisfies limn→0 = ∞ and limn→∞ = −∞,
and thus has a unique solution that depends solely on ū and parameters.

Lemma 1. Define n̄ to be the population that maximizes the OL (n, x) curve. Given outside
option ū, the level of population n̄ is unique and independent of location.

Proof. From Proposition 1, the OL (n, x) curve is strictly concave and twice continuously
differentiable. The portion of the OL (n, x) curve with n(x) > 0 is given:

OL (n, x) = y(x) + Π− F

n
− u−1 (v(n) + ū) .

The following first order condition is thus necessary and sufficient for the maximum:

(31)
F

n2
−
[
u−1
]′

(v(n) + ū) v′(n) = 0.

Call the population level that solves this n̄. Given ū, the value of n̄ is constant and inde-
pendent of location. Write as N (ū) the strictly decreasing function that gives the level of
population that solves Equation 31 as a function of ū.

Lemma 2. Define location x̂ (ū,Π) as follows:

x̂ (ū,Π) =

{
x s.t. OL (N (ū), x̂) = MC (N (ū)) if OL (N (ū), 1) ≥MC (N (ū))
1 otherwise.

Then x̂ (ū,Π) is unique and in the range [x, 1].
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Proof. In the first case, the highest-productivity location has an OL(n, 1) curve with max-
imum value that exceeds the marginal cost at the corresponding level of population n̄. At
the threshold occupied location x, the OL (n, x) and MC (n) curves meet with tangency.
The marginal cost curve has positive slope, and so this tangency must occur to the left
of the maximum of the OL (n, x) curve. Evaluated at N (ū), OL (N (ū), x) is continuous
and strictly increasing in x. Therefore there exists a unique x̂ (ū,Π) ∈ [x, 1] such that
OL (N (ū), x̂ (ū,Π)) = MC (N (ū)).

In the second case, OL(N (ū), x) < MC(N (ū)) for all locations. Then x̂ (ū,Π) is uniquely
defined as 1 and is within the specified range.

Proposition 4. In a stable general equilibrium, the following characterizes the local equilib-
rium populations and optimal zoning. For all locations x > x̂, n∗(x) = n̄(x) = N (ū). For
all locations x ∈ [x, x̂], the population n∗(x) and optimal zoning n̄(x) are given by the upper
intersection of the OL (n, x) and MC (n) curves. For all x ≥ x, p∗(x) is given by the value
of the OL (n, x) curve evaluated at n∗(x).

Proof. For locations x > x̂, the OL(n, x) curve is strictly greater than the MC(n) curve, and
therefore the equilibrium population can only be given by n̄ if the initial residents choose the
zoning law n̄(x) = n̄. I will show that this is the case. Note OL(n, x) > MC(n) implies that
the participation constraint will not bind, and so the solution to the initial resident problem
is given by the first order condition

u′
(
y(x) + Π− F

n
− p0(x)

)
F

n2
= v′ (n) .

And in stable equilibrium, p0(x) = p(x) so substituting from the household spatial equilib-
rium condition gives

u′
(
u−1 (v(n) + ū)

) F
n2

= v′ (n) .

From above, the maximum of the OL(n, x) curve is given by the n that solves

[
u−1
]′

(v(n) + ū) v′(n) =
F

n2
.

By the definition of the derivative of the inverse, these are equivalent: for locations with
non-binding participation constraints, the level of population N (ū) that gives the maximum
of the OL (n, x) curve is identical to that which maximizes initial resident utility (given the
stability condition that p0(x) = p(x)). For all locations x > x̂ (ū,Π), N (ū) is consistent
with the participation constraint and hence n∗(x) = n̄(x) = N (ū) for such locations. By
Equation (6), the equilibrium price for such locations is given by OL (N (ū), x).

Consider location x ∈ [x, x̂]. From above, with p0(x) = p(x) the unconstrained choice
of zoning that maximizes initial resident utility is the level of population that maximizes
the OL (n, x) curve. By definition, for locations with x < x̂ (ū,Π) the maximum of the
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OL (n, x) curve is below the MC (n) curve and hence infeasible. By concavity of the initial
resident problem, the participation constraint will bind and the local equilibrium population
(and optimal zoning law) is given by the upper intersection of the OL (n, x) and MC (n)
curves.

Proposition 5. The utility-maximizing choices for the set of opened locations X and the set
of zoning laws n̄(x) are identical to those chosen by the constrained planner. The equilibrium
price gradient and aggregate profits implement the planner’s choice of consumption. This set
of instruments allows households to fully implement the planner’s allocation.

Proof. Under this voting regime, the measure 1 of households cast the decisive vote. As
the vote takes place before development, households are identical and so the “median vote”
is simply the representative household. For any set of zoning choices, the representative
household rationally expects prices and consumption bundles to adjust to equalize utility
across all occupied locations.

The representative household problem thus implies choosing the set of open locations and
the set of zoning laws in order to maximize the level of utility ū consistent with rational
expectations about spatial equilibrium across all locations. Equivalently, the representative
household can also choose consumption c(x) for each location subject to the location-specific
household budget constraint.

In making these choices, households are constrained by the spatial equilibrium conditions for
all open locations, the budget constraints of households in all open locations, the definition
of aggregate profits, the population constraint, and to a participation constraint.35 The
participation constraint implies that the price paid by households is consistent with firm
construction decisions at each location.

As before, define θ (n̄(x); ū,Π) as the equilibrium population for a location as a function
of the zoning law for particular values of ū and Π. With this notation, the representative
household solves

max
{X ,n̄(x),c(x),ū}

ū

subject to the spatial equilibrium condition

u (c(x))− v (θ (n̄(x); ū,Π)) ≤ ū

with equality if θ (n̄(x); ū,Π) > 0 and for all x ∈ X , subject to the household budget
constraints

y(x) + Π− F

θ (n̄(x); ū,Π)
− p(x)− c(x) = 0,

35It could theoretically be possible that the utility-maximizing choice is to leave some households out of
the urban economy, but by assumption the income of the agricultural sector is low enough that this is not
the case.
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subject to the definition of profits

Π =

∫
X
p(x)θ (n̄(x); ū,Π)− (θ (n̄(x); ū,Π) /Z)2 dx,

subject to the population constraint

1 =

∫
X
θ (n̄(x); ū,Π) dx,

and subject to the participation constraint

p(x) ≥ 2θ (n̄(x); ū,Π) /Z2.

Now, note that adding a constant increment ∆ to the price for every location raises aggregate
profits by a total of ∆. Further, if the spatial equilibrium condition holds a particular set of
prices and profits, it will also hold when after adding ∆ to the price in each location. Spatial
equilibrium only pins down the relative price gradient. If it is the case that zoning laws
bind in all locations, this further implies that any price gradient and incumbent definition of
aggregate profits that satisfies spatial equilibrium will not distort location choices. As before,
if the participation constraint is not binding then θ (n̄(x); ū,Π) = n̄(x). As any price gradient
can be shifted upward by a sufficient increment such that the participation constraint does
not bind and the remaining equations are unaffected, the representative agent’s problem can
thus be rewritten as a direct choice of the local population with no participation constraint.

Rewriting the budget constraint yields

p(x) = y(x) + Π− F

n(x)
− c(x).

Substituting the full set of household budget constraints directly into the profit definition
yields

Π =

∫
X
n̄(x)

(
y(x) + Π− F

n̄(x)
− c(x)

)
−
(
n̄(x)

Z

)2

dx.

Rewriting, we have

0 =

∫
X

[
(y(x)− c(x)) n̄(x)− F −

(
n̄(x)

Z

)2
]
dx.

This is simply the aggregate resource constraint face by a constrained planner. Choosing a
local zoning law n̄(x), consumption level c(x), and outside option ū for all locations x that
satisfies the population and aggregate resource constraint implicitly defines a set of prices
and level of profit consistent with the definition of aggregate profits.

Finally, the set X consists of the set [x, 1] for some x. If not, there would exist an unoccupied
location x̃ for which some x < x̃ were occupied. In this case, the representative household
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could loosen the aggregate resource constraint by changing the zoning in any occupied loca-
tion x < x̃ from n̄(x) to 0 and in x̃ from 0 to n̄(x). Loosening the binding aggregate resource
constraint must increase the achievable level of utility ū, and so the representative household
will always make this choice.

With these considerations, the restated problem is now

max
{n(x),c(x),ū,x}

ū

subject to spatial equilibrium conditions

u (c(x))− v (n(x)) = ū,

the aggregate resource constraint

0 =

∫ 1

x

[
(y(x)− c(x))n(x)− F −

(
n(x)

Z

)2
]
dx,

and the population constraint

1 =

∫ 1

x

n(x)dx.

This problem is identical in objective and constraints to that of the constrained planner and
so must share a solution.
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