Finance and Economics Discussion Series (FEDS)
October 2009
Bayesian Analysis of Stochastic Volatility Models with Lévy Jumps: Application to Risk Analysis
Abstract:
In this paper I analyze a broad class of continuous-time jump diffusion models of asset returns. In the models, stochastic volatility can arise either from a diffusion part, or a jump part, or both. The jump component includes either compound Poisson or Lévy alpha-stable jumps. To be able to estimate the models with latent Lévy alpha-stable jumps, I construct a new Markov chain Monte Carlo algorithm. I estimate all model specifications with S&P500 daily returns. I find that models with Levy alpha-stable jumps perform well in capturing return characteristics if diffusion is a source of stochastic volatility. Models with stochastic volatility from jumps and models with Poisson jumps cannot represent excess kurtosis and tails of return distribution. In density forecast and VaR analysis, the model with Levy alpha-stable jumps and joint stochastic volatility performs the best among all other specifications, since both diffusion and infinite activity jump part provide information about latent volatility.
Full paper (Screen Reader Version)Keywords: Bayesian estimation, stochastic volatility, Lévy jumps, density forecast
PDF: Full Paper
Disclaimer: The economic research that is linked from this page represents the views of the authors and does not indicate concurrence either by other members of the Board's staff or by the Board of Governors. The economic research and their conclusions are often preliminary and are circulated to stimulate discussion and critical comment. The Board values having a staff that conducts research on a wide range of economic topics and that explores a diverse array of perspectives on those topics. The resulting conversations in academia, the economic policy community, and the broader public are important to sharpening our collective thinking.