Finance and Economics Discussion Series (FEDS)
October 2004
Dynamic Estimation of Volatility Risk Premia and Investor Risk Aversion from Option-Implied and Realized Volatilities
Tim Bollerslev, Michael Gibson, and Hao Zhou
Abstract:
This paper proposes a method for constructing a volatility risk premium, or investor risk aversion, index. The method is intuitive and simple to implement, relying on the sample moments of the recently popularized model-free realized and option-implied volatility measures. A small-scale Monte Carlo experiment suggests that the procedure works well in practice. Implementing the procedure with actual S&P 500 option-implied volatilities and high-frequency five-minute-based realized volatilities results in significant temporal dependencies in the estimated stochastic volatility risk premium, which we in turn relate to a set of underlying macro-finance state variables. We also find that the extracted volatility risk premium helps predict future stock market returns.
Keywords: Stochastic volatility risk premium, model-free implied volatility, model-free realized volatility, Black-Scholes, GMM estimation, Monte Carlo, return predictability
PDF: Full Paper
Disclaimer: The economic research that is linked from this page represents the views of the authors and does not indicate concurrence either by other members of the Board's staff or by the Board of Governors. The economic research and their conclusions are often preliminary and are circulated to stimulate discussion and critical comment. The Board values having a staff that conducts research on a wide range of economic topics and that explores a diverse array of perspectives on those topics. The resulting conversations in academia, the economic policy community, and the broader public are important to sharpening our collective thinking.