December 2015

Estimating (Markov-Switching) VAR Models without Gibbs Sampling: A Sequential Monte Carlo Approach

Mark Bognanni and Edward P. Herbst

Abstract:

Vector autoregressions with Markov-switching parameters (MS-VARs) fit the data better than do their constant-parameter predecessors. However, Bayesian inference for MS-VARs with existing algorithms remains challenging. For our first contribution, we show that Sequential Monte Carlo (SMC) estimators accurately estimate Bayesian MS-VAR posteriors. Relative to multi-step, model-specific MCMC routines, SMC has the advantages of generality, parallelizability, and freedom from reliance on particular analytical relationships between prior and likelihood. For our second contribution, we use SMC's flexibility to demonstrate that the choice of prior drives the key empirical finding of Sims, Waggoner, and Zha (2008) as much as does the data.

Accessible materials (.zip)

Keywords: Bayesian Analysis, Regime-Switching Models, Sequential Monte Carlo, Vector Autoregressions

DOI: http://dx.doi.org/10.17016/FEDS.2015.116

PDF: Full Paper

Back to Top
Last Update: June 19, 2020