December 2011

Expected Stock Returns and Variance Risk Premia

Tim Bollerslev and Hao Zhou

Data - Excel file (39KB XLS) | Data - Screen reader | Chart (PDF)

Abstract:

We find that the difference between implied and realized variances, or the variance risk premium, is able to explain more than fifteen percent of the ex-post time series variation in quarterly excess returns on the market portfolio over the 1990 to 2005 sample period, with high (low) premia predicting high (low) future returns. The magnitude of the return predictability of the variance risk premium easily dominates that afforded by standard predictor variables like the P/E ratio, the dividend yield, the default spread, and the consumption-wealth ratio (CAY). Moreover, combining the variance risk premium with the P/E ratio results in an R2 for the quarterly returns of more than twenty-five percent. The results depend crucially on the use of "model-free", as opposed to standard Black-Scholes, implied variances, and realized variances constructed from high-frequency intraday, as opposed to daily, data. Our findings suggest that temporal variation in risk and risk-aversion both play an important role in determining stock market returns.

Full Paper (Screen Reader Version)

Keywords: Return Predictability, Implied Variance, Realized Variance, Equity Risk Premium, Variance Risk Premium, Time-Varying Risk Aversion

PDF: Full Paper

Disclaimer: The economic research that is linked from this page represents the views of the authors and does not indicate concurrence either by other members of the Board's staff or by the Board of Governors. The economic research and their conclusions are often preliminary and are circulated to stimulate discussion and critical comment. The Board values having a staff that conducts research on a wide range of economic topics and that explores a diverse array of perspectives on those topics. The resulting conversations in academia, the economic policy community, and the broader public are important to sharpening our collective thinking.

Last Update: October 19, 2020