Finance and Economics Discussion Series (FEDS)
November 2005
Jump-Diffusion Processes and Affine Term Structure Models: Additional Closed-Form Approximate Solutions, Distributional Assumptions for Jumps, and Parameter Estimates
J. Benson Durham
Abstract:
Affine term structure models in which the short rate follows a jump-diffusion process are difficult to solve, and the parameters of such models are hard to estimate. Without analytical answers to the partial difference differential equation (PDDE) for bond prices implied by jump-diffusion processes, one must find a numerical solution to the PDDE or exactly solve an approximate PDDE. Although the literature focuses on a single linearization technique to estimate the PDDE, this paper outlines alternative methods that seem to improve accuracy. Also, closed-form solutions, numerical estimates, and closed-form approximations of the PDDE each ultimately depend on the presumed distribution of jump sizes, and this paper explores a broader set of possible densities that may be more consistent with intuition, including a bi-modal Gaussian mixture. GMM and MLE of one- and two-factor jump-diffusion models produce some evidence for jumps, but sensitivity analyses suggest sizeable confidence intervals around the parameters.
Keywords: Jump-diffusion, term-structure models
PDF: Full Paper
Disclaimer: The economic research that is linked from this page represents the views of the authors and does not indicate concurrence either by other members of the Board's staff or by the Board of Governors. The economic research and their conclusions are often preliminary and are circulated to stimulate discussion and critical comment. The Board values having a staff that conducts research on a wide range of economic topics and that explores a diverse array of perspectives on those topics. The resulting conversations in academia, the economic policy community, and the broader public are important to sharpening our collective thinking.