July 2024

Predicting Analysts’ S&P 500 Earnings Forecast Errors and Stock Market Returns using Macroeconomic Data and Nowcasts

Steven A. Sharpe and Antonio Gil de Rubio Cruz

Abstract:

This study scrutinizes the quality of “bottom-up” forecasts of near-term S&P 500 Composite earnings, derived by aggregating analysts’ forecasts for individual firm-level earnings. We examine whether forecasts are broadly consistent with current macroeconomic conditions reflected in economists’ near-term outlook and other available data. To the contrary, we find that a simple macroeconomic model of aggregate S&P 500 earnings, coupled with GDP forecasts from the Blue Chip Survey and recent dollar exchange rate movements, can predict large and statistically significant errors in equity analysts’ bottom-up forecasts for S&P 500 earnings in the current quarter and the quarter ahead. This finding is robust to the requirement that our econometric model is calibrated using only data available at the time of forecast. Moreover, the discrepancy between the macro-model-based earnings forecasts and analysts’ forecasts has predictive power for 3-month-ahead stock returns.

Keywords: Bottom-up Forecast, Earnings Forecasts, Equity Analyst Bias, Forecast Efficiency, Predicting Returns

DOI: https://doi.org/10.17016/FEDS.2024.049

PDF: Full Paper

Disclaimer: The economic research that is linked from this page represents the views of the authors and does not indicate concurrence either by other members of the Board's staff or by the Board of Governors. The economic research and their conclusions are often preliminary and are circulated to stimulate discussion and critical comment. The Board values having a staff that conducts research on a wide range of economic topics and that explores a diverse array of perspectives on those topics. The resulting conversations in academia, the economic policy community, and the broader public are important to sharpening our collective thinking.

Back to Top
Last Update: July 11, 2024