Finance and Economics Discussion Series (FEDS)
July 1997
Recent Developments in Bootstrapping Time Series
Jeremy Berkowitz and Lutz Kilian
Abstract:
In recent years, several new parametric and nonparametric bootstrap methods have been proposed for time series data. Which of these methods should applied researchers use? We provide evidence that for many applications in time series econometrics parametric methods are more accurate, and we identify directions for future research on improving nonparametric methods. We explicitly address the important, but often neglected issue of model selection in bootstrapping. In particular, we emphasize the advantages of the AIC over other lag order selection criteria and the need to account for lag order uncertainty in resampling. We also show that the block size plays an important role in determining the success of the block bootstrap, and we propose a data-based block size selection procedure.
Keywords: Bootstrap, ARMA, frequency domain, blocks
PDF: Full Paper
Disclaimer: The economic research that is linked from this page represents the views of the authors and does not indicate concurrence either by other members of the Board's staff or by the Board of Governors. The economic research and their conclusions are often preliminary and are circulated to stimulate discussion and critical comment. The Board values having a staff that conducts research on a wide range of economic topics and that explores a diverse array of perspectives on those topics. The resulting conversations in academia, the economic policy community, and the broader public are important to sharpening our collective thinking.