May 2012

Using the "Chandrasekhar Recursions" for Likelihood Evaluation of DSGE Models

Edward P. Herbst

Abstract:

In likelihood-based estimation of linearized Dynamic Stochastic General Equilibrium (DSGE) models, the evaluation of the Kalman Filter dominates the running time of the entire algorithm. In this paper, we revisit a set of simple recursions known as the ``Chandrasekhar Recursions" developed by Morf (1974) and Morf, Sidhu, and Kalaith (1974) for evaluating the likelihood of a Linear Gaussian State Space System. We show that DSGE models are ideally suited for the use of these recursions, which work best when the number of states is much greater than the number of observables. In several examples, we show that there are substantial benefits to using the recursions, with likelihood evaluation up to five times faster. This gain is especially pronounced in light of the trivial implementation costs--no model modification is required. Moreover, the algorithm is complementary with other approaches.

Full paper (Screen Reader Version)

Keywords: Kalman filter, likelihood estimation, computational techniques

PDF: Full Paper

Back to Top
Last Update: July 10, 2020