International Finance Discussion Papers (IFDP)
April 1989
Exact and Approximate Multi-Period Mean-Square Forecast Errors For Dynamic Econometric Models
Neil R. Ericsson and Jaime R. Marquez
Abstract:
Both future disturbances and estimated coefficients contribute to the uncertainty in model-based ex ante forecasts, but only the first source is usually taken into account when calculating confidence intervals for practical applications. Schmidt (1974) and Baillie (1979) provide an easily computable second-order approximation to the mean-square forecast error (MSFE) for linear dynamic systems which recognizes both sources of uncertainty. To assess the accuracy of their approximation, and thus its usefulness, we compare it with three sets of estimates of the exact MSFE for the univariate AR(l) process: Monte Carlo estimates for OLS, analytically based values for OLS, and Monte Carlo estimates for maximum likelihood. We find that the Schmidt-Baillie formula is a good approximation to the exact MSFE, and that it helps explain why the exact MSFE can decrease as the forecast horizon increases. In fact, for dynamics typical to econometric models, the MSFE often has a maximum at a forecast horizon of one to twelve periods, i.e., at horizons that are of principal concern to forecasters and policy makers.
PDF: Full Paper
Disclaimer: The economic research that is linked from this page represents the views of the authors and does not indicate concurrence either by other members of the Board's staff or by the Board of Governors. The economic research and their conclusions are often preliminary and are circulated to stimulate discussion and critical comment. The Board values having a staff that conducts research on a wide range of economic topics and that explores a diverse array of perspectives on those topics. The resulting conversations in academia, the economic policy community, and the broader public are important to sharpening our collective thinking.