September 2003

Forecasting U.S. Inflation by Bayesian Model Averaging

Jonathan H. Wright

Abstract:

Recent empirical work has considered the prediction of inflation by combining the information in a large number of time series. One such method that has been found to give consistently good results consists of simple equal weighted averaging of the forecasts over a large number of different models, each of which is a linear regression model that relates inflation to a single predictor and a lagged dependent variable. In this paper, I consider using Bayesian Model Averaging for pseudo out-of-sample prediction of US inflation, and find that it gives more accurate forecasts than simple equal weighted averaging. This superior performance is consistent across subsamples and inflation measures. Meanwhile, both methods substantially outperform a naive time series benchmark of predicting inflation by an autoregression.

Keywords: Shrinkage, Phillips curve, model uncertainty, forecasting, inflation

PDF: Full Paper

Disclaimer: The economic research that is linked from this page represents the views of the authors and does not indicate concurrence either by other members of the Board's staff or by the Board of Governors. The economic research and their conclusions are often preliminary and are circulated to stimulate discussion and critical comment. The Board values having a staff that conducts research on a wide range of economic topics and that explores a diverse array of perspectives on those topics. The resulting conversations in academia, the economic policy community, and the broader public are important to sharpening our collective thinking.

Back to Top
Last Update: January 11, 2021