December 1987

Improving the Forecast Accuracy of Provisional Data: An Application of the Kalman Filter to Retail Sales Estimates

B. Dianne Pauls

Abstract:

If forecasts of economic activity are to rely on preliminary data, the predictable component of the data revisions should be taken into account. This paper applies the Kalman filter to improve the forecast accuracy of published preliminary estimates of retail sales. Successive estimates of retail sales are modeled jointly as a vector autoregressive process, incorporating panel rotation and calendar effects. Estimates of retail sales based on this model are then combined with the raw Census estimates via the Kalman filter. This technique, which may be applied to other bodies of data, yields a significant improvement in the efficiency of the raw Census data, reducing the mean-squared error by about 1/3.

PDF: Full Paper

Disclaimer: The economic research that is linked from this page represents the views of the authors and does not indicate concurrence either by other members of the Board's staff or by the Board of Governors. The economic research and their conclusions are often preliminary and are circulated to stimulate discussion and critical comment. The Board values having a staff that conducts research on a wide range of economic topics and that explores a diverse array of perspectives on those topics. The resulting conversations in academia, the economic policy community, and the broader public are important to sharpening our collective thinking.

Back to Top
Last Update: March 30, 2021